N
N

N

HAL

open science

Principles and Experimentations of Self-Organizing
Embedded Agents Allowing Learning From
Demonstration in Ambient Robotics

Nicolas Verstaevel, Christine Régis, Marie-Pierre Gleizes, Fabrice Robert

» To cite this version:

Nicolas Verstaevel, Christine Régis, Marie-Pierre Gleizes, Fabrice Robert.
perimentations of Self-Organizing Embedded Agents Allowing Learning From Demonstration
in Ambient Robotics. Future Generation Computer Systems, 2016, vol. 64, pp. 78-87.

10.1016/j.future.2016.03.023 . hal-01530401

HAL Id: hal-01530401
https://hal.science/hal-01530401
Submitted on 31 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Principles and Ex-

https://hal.science/hal-01530401
https://hal.archives-ouvertes.fr

OATAO

Cipen Archive Toulouse Archive Ouverte

OpenArchive TOULOUSEArchive Ouverte OATAQO)

OATAO is an open access repository that collectswvtlork of Toulouse researchers
makes it freely available over the web where pdssib

This is an author-deposited version published hittp://oatao.univtoulouse.fr
Eprints ID : 16964

Tolink tothisarticle: DOI : 10.1016/j.future.2016.03.023
URL : https://doi.org/10.1016/j.future.2016.03.023

Tocitethisversion : Verstaevel, Nicolas and Régis, Christine and
Gleizes, Marie-Pierre and Robert, Fabiizenciples and
Experimentations of Self-Organizing Embedded Agents Allowing
Learning From Demonstration in Ambient Robotics. (2016) Future
Generation Computer Systems, vol. 64. pp. 78-83NI8167-739X

Any correspondenceoncerning this service should be sent to the itpy
administratorstaff-oatao@listes-diff.inp-toulouse.fr

Principles and experimentations of self-organizing embedded agents
allowing learning from demonstration in ambient robotics

Nicolas Verstaevel *>*, Christine Régis?®, Marie-Pierre Gleizes?, Fabrice Robert”

2 IRIT, Université Paul Sabatier, 118 rte de Narbonne, 31062 Toulouse Cedex, France
b Sogeti High Tech, 3 Chemin Laporte, 31300 Toulouse, France

ABSTRACT

Ambient systems are populated by many heterogeneous devices to provide adequate services to their
users. The adaptation of an ambient system to the specific needs of its users is a challenging task. Because
human-system interaction has to be as natural as possible, we propose an approach based on Learning
from Demonstration (LfD). LfD is an interesting approach to generalize what has been observed during
the demonstration to similar situations. However, using LfD in ambient systems needs adaptivity of the
learning technique. We present ALEX, a multi-agent system able to dynamically learn and reuse contexts

Keywords:

Adaptive agents

Cooperative multi-agent systems
Robotics in ambient systems
Machine learning
Context-awareness

1. Introduction

Once confined in a science of control in structured environ-
ments, researches on robotics are now considering the integration
of robotic devices in the real world for applications where tasks are
diverse, complex and evolutive [1]. Service robotic differs from its
industrial version by the interest in providing services to humans.
Consequently, research now consider the use of robotic devices
in ambient applications [2] and the term ambient robotics directly
refers to the usage of robotic components in ambient systems. Am-
bient systems are characterized by their high dynamic and their
complexity. Many heterogeneous robotic devices can appear and
disappear along the system life-cycle and interact opportunisti-
cally together. According to the definition of Russell and Norvig [3],
the environments of ambient systems are:

* Corresponding author at: IRIT, Université Paul Sabatier, 118 rte de Narbonne,
31062 Toulouse Cedex, France.
E-mail address: nicolas.verstaevel@irit.fr (N. Verstaevel).

from demonstrations performed by a tutor. The results of the experiments performed on both a real and
a virtual robot show interesting properties of our technology for ambient applications.

e Inaccessible: each device composing the system has a partial
observation of the environment.

e Continuous: considering applications in the real world, the
number of observations and actions is not discrete.

e Non-deterministic: consequences of performed actions in the
real world could not be determined in advance with certainty.

e Dynamic: system’s actions, user activity, appearance and
disappearance of devices may change the environment.

Consequently, designing an ad hoc controller of a robotic device
in an ambient system is a complex task that requires a lot of knowl-
edge. This complexity is increased if we take into account that
users have multiple, specific and often changing needs. Providing
to those devices the ability to learn and adapt to users’ needs is then
a particularly challenging task [4]. To be as natural as possible, such
learning ability needs to rest on a process that does not require any
kind of technical knowledge for users (i). Furthermore, it needs
both genericity, to be applicable on any kind of devices with any
kind of users, and openness properties to deal with the appearance
and disappearance of devices. The genericity and openness proper-
ties require then using agnostic learning techniques that makes as

few assumptions as possible [5] (ii). To deal with (i) and (ii), we pro-
pose to use Learning from Demonstration (LfD), a paradigm to dy-
namically learn new behaviours. The paper is organized as follows:
first, we present the problems and challenges of LfD in ambient sys-
tems. Then, we present ALEX our solution to handle this challenge.
Two experiments are then proposed to illustrate ALEX’s behaviour.
At last, the conclusion discusses perspectives and future works.

2. Learning from demonstration

2.1. General principle

Learning from Demonstration, also named “Imitation Learning”
or “Programming by Demonstration”, is a paradigm mainly studied
in the robotic field that allows systems to self-discover new
behaviours [6]. It takes inspiration from the natural tendency of
some animal species and humans to learn from the imitation of
their congeners. The main idea is that an appropriate controller
for a robotic device can be learnt from the observation of the
performance of another entity (virtual or human) named as the
tutor. The tutor can interact with the system to explicit the
desired behaviour through the natural process of demonstration. A
demonstration is then a set of successive actions performed by the
tutor in a particular context. The learning system has to produce
a mapping function correlating observations of the environment
and tutor’s actions to its own actions. The main advantage of such
technique is that it needs no explicit programming or knowledge
on the system. It only observes tutor’s actions and current system
context to learn a control policy and can be used by end-users
without technical skills.

The paradigm has been used on a wide range of applications
such as autonomous car following [7], robot trajectory learning [8],
robot navigation in complex unstructured terrain [9] or haptic
guidance of bimanual surgical tasks [10]. Recent surveys [11,6]
propose an overview of the LfD field illustrating a wide variety
of applications. Our interest is not to focus on one particular
application. On the contrary, we want to deal with any kind of
ambient robotic system. This section ends with a study of the usage
of the LfD paradigm in the context of ambient robotics.

2.2. Problem formalization

Billing and Hellstrém [12] propose a complete LfD formaliza-
tion. Here, we propose to introduce the fundamental concepts of
LfD and discuss its usage in ambient robotics.

LfD is a problem of imitation as an entity tries to produce a
behaviour similar to another entity. A tutor evolving in a world
realizes an observation 2 of this world. The tutor can perform a
set of actions A (A could be empty) and follows a policy 7yyor (1)
that associates to any world state a particular action. It is supposed
that (1) is the optimal policy to satisfy the tutor.

® Tor - 2 — a €A. (1)

The learner disposes of a set of observations O (named
observation space) on the world and its own set of actions B. The
learner follows another policy 7jeqmer (2) in order to produce a
behaviour similar to the observed one.

® Tliearner - O0—be B7 TClearner = Ttutor - (2)

In most cases, the tutor and the system, while evolving in the
same world (which can be a virtual world or the real world), have
a different observation of the world. It is particularly true in real
world problems with human tutors where the world is observed
by the system through sensors whereas the human observes it
through its own senses. It results in a problem of perception
equivalence [13]. The tutor demonstrating a particular behaviour

can observe modifications of the world that the learner cannot
perceive. However, equivalences of perception can be found by
the system. For example, a user is cold and turns the heating
on. Observing through sensors that a user is cold is complex,
but observing the current temperature, wind and humidity levels
is easily feasible. A learner can make a correlation between the
current situation described by sensors and the action of turning the
heating on and it can learn that it is necessary to turn the heating on
when a similar situation occurs. The learner has to find correlations
between its own observations and the performance of an action by
the tutor. This raises the challenging question of the possible lack
of perception. A tutor can perform a demonstration dependent of
a phenomenon that the learner cannot observe. In this paper, we
consider that the learner has sufficient observations to perform the
task. Nevertheless, some clues to handle this problem are proposed
in Section 5 as perspectives. The problem to tackle is then how to
interpret those observations to construct a control policy enabling
the learner to produce an imitative behaviour.

2.3. Lfd and ambient systems

Ambient systems are rich of interaction possibilities for users.
We propose to exploit the inherent interactivity of ambient
systems in order to learn and adapt from users’ activity. LfD then
appears to be a suitable paradigm to learn and generalize recurrent
activities from the observation of users’ activity. Therefore, users
can be seen as system'’s tutors. Each user’s action on a device
is then seen as a demonstration of the desired behaviour. The
key idea is if a user has to act on devices, the reason is that the
user wants to change his environment to improve the current
service. A consequence is that user actions are minimized and so
functionalities are more relevant. The device can then use this
information to self-adapt. However, ambient systems have some
particular properties and require functional properties that are
challenging for LfD.

Five central questions have been identified that need to be
addressed by scientists interested in designing experiments on
imitation [14,15]:

e Who to imitate: first is the choice of the model (the one to be
imitated).

e When to imitate: second is determining when imitation has to
be done. There are typically two types in literature if whether
the imitation is immediately leading to synchronous behaviour
or deferred which means that the imitated behaviour might
occur even in the absence of the model.

e What to imitate: a distinction has to be made between goals,
actions and results and which part of the demonstration has to
be replicated.

e How to imitate: the how question addresses the problematic
of generating an appropriate mapping between the model
behaviour and the imitator’s one.

e What is a successful imitation: one needs to be able to
distinguish good imitations from bad imitations. Then, good
metrics must be clearly identified.

The application of LfD in the robotic field mainly focuses the
“What” and “How” questions [6]. On a previous paper, we position
ourselves regarding those questions [16] and discuss specificities
of ambient systems.

An ambient system is open, which means that entities can ap-
pear and disappear during system activity. This openness property
is challenging for LfD, as it does not allow doing assumptions on
system’s composition. With respect to the openness property, it
must be considered that the set of observations O is a priori un-
known. One must deal with situations of opulence of data (which
induces that some data may be useless in order to learn the task)

and situations of shortage of data where the system functionality
is degraded.

To be truly applicable to any kind of system, it has also to be con-
sidered that the set of actions A is a priori unknown. Adding a new
effector to an ambient system has to be transparent to the learn-
ing system. A learner on an ambient system has to adapt its policy
to integrate new observations and actions. This adaptation must
be dynamic and invisible to users to provide a good quality of ser-
vice. A real-time learning capacity is required for such applications.
Thus, the approaches separating learning phase from exploitation
(classical supervised learning techniques) are not relevant.

Users with their specific and often changing needs are also a
source of challenge. In the ambient systems, many different users
have day-to-day interactions with the system. Capturing users’
needs in such a system cannot be an ad hoc process and has to
be made along system life-cycle, as users can often change their
needs and contradict themselves. The system dynamically adapts
its policy to integrate any change in the user’s need. An approach
based on user profiles appears to be not relevant as user needs
could be dynamic and highly specific. The approaches creating a
model of the user satisfaction will also suffer of the same lack of
adaptivity.

For those reasons, LfD in the ambient systems is relevant for
adaptivity to the task to perform (what to do), to the reasons to
do it (when to do) and to the users (whom to imitate). The success
of imitation is then evaluated by the fact that the user does not
have to act on a system any-more. Regarding those specificities,
we still need to answer to the last two questions: “What” to learn
and “How” to learn.

2.4. The “What” and the “How” questions

As interest in imitation learning is as old as the domain of
robotics, scientific literature is full of proposals to solve those
challenges. Argall et al. [6] categorize techniques for Learning
from Demonstration in three classes describing “What” is learnt:
mapping function, system model and plans. For each of those
categories, we provide a description and an example of application
and list the main advantages and disadvantages regarding our
application.

e Learning a Mapping function: those techniques calculate a
function that associates the current state to action f() : 0 —
a € A. lIts goal is to reproduce the underlying teacher policy
while generalizing in unseen situations. Those techniques use
classification and/or regression. For example, Miti¢ et al. [17] use
a combination of neural network and learning from demonstra-
tion to teach visual control of a nonholonomic mobile robot.

- pro: with those approaches, the tutor directly labels the dif-
ferent situations during the demonstration process with the
adequate actions to perform. As we intend to use the interac-
tivity of ambient systems as the motor of learning, learning
a mapping function appears to be adequate. An example is
Chernova et al. [18] who use a set of Gaussian Mixture Mod-
els to teach a car how to drive in a busy road. Each Gaussian
Mixture Model is incrementally trained with demonstrations
gathered from the observation of a human performance driv-
ing the virtual car through a keyboard.

- cons: traditional classification and regression techniques, such
as k-Nearest Neighbours (kNN) [19] are separated in two
phases: first, gathering the example, and then production of
the mapping function. Any change in the user behaviour in-
volves re-performing the whole training process which could
be time-greedy and unsatisfying for end-users. More over,
those techniques are parametrized, and then need to be tuned
for each application.

e Learning System model: those techniques use a state transi-
tion model of the world from which they derive a policy. Rein-
forcement learning techniques are a typical case where any state
is associated with a reward function. While the usage of rein-
forcement learning is traditionally limited by the need of large
number of environment samples to reach a desirable behaviour,
its combination with the LfD paradigm allows to reduce the
space search improving its performances. Brys et al. [20] illus-
trate the gain of performance by comparing performance of re-
inforcement learning algorithm with or without usage of the

LfD paradigm.

- pro: the main advantage of system models, and more precisely
of using reinforcement learning technique is their on-line ca-
pacity to learn and their capacity to find optimal behaviours.

- cons: while their on-line capacity to learn is highly desir-
able in our context, the design of a feedback function is a
well-known complex task that has to be hand-crafted for
each application. Some approaches, called inverse reinforce-
ment learning, propose to use LfD not only to reduce the num-
ber of samples but also to learn the feedback function. For
example, Knox et al. [21] taught to a robot different kinds of
behaviour such as keeping conversational distance or aiming
towards the human. They create a predictive model of human
reinforcement feedbacks and use this model to increase rein-
forcement learning algorithms. While they show interesting
results in learning a particular task, those approaches are not
robust to changes in the task to perform or the system com-
position and any of those changes involve re-performing the
whole learning process.

Learning Plans: instead of directly mapping states to actions,
those approaches represent the desired behaviour as a plan.
The plan is a sequence of actions that leads from an initial state
to the final goal state. For example Mollard et al. [22] pro-
pose an approach using plans for robot instruction for assembly
tasks. They use low-level demonstrations to learn high-level re-
lational plan of the task. Then, they use a graphical user inter-
face through which the user can interact with the plan to correct
both high-level plan or low-level geometrical knowledge of the
task.

- pro: plans offer the possibility to draw a readable map of
the controller behaviour and then enable intelligibility of the
learnt behaviour. Furthermore, they allow to identify goals
and to propose different behaviours to reach them.

- cons: the main drawback in using planification algorithm
is the complexity of re-planification. The approaches using
planification like the one of Mollard et al. [22] propose an in-
terface for the user to assist the system in its re-planification
process. However, such techniques prevent their online us-
age.

Regarding our desired application and state-of-the-art, we
would like to propose an approach combining the advantage of
mapping functions and system model. Such technique should be
able to learn in real time from the observation of user activity
without needing to re-perform the whole learning process. Each
action from the tutor should be dynamically and autonomously
integrated in the learning process allowing our system to be truly
self-adaptive.

2.5. An extremely sensitive system

There is still a question that has been ignored: who is the
learner? This sixth question is often considered as trivial: the robot
is the learner. Indeed, the classical approach considers a system as
a whole, which means that the system is seen as an omniscient
process that exercises a direct control over all of its parts. However,
this centralized approach shows some limitations for highly

dynamic and open systems where the observability is strictly local.
In a multi-robot application, a robot is a learner but the collective
of robots is also learning. The behaviour of the collective is not
only the sum of all robots capacities to learn but something greater.
Then, the question who is the learner is also the question “where to
put the intelligence”. Works among the community now consider
a decentralized approach where there is no supervisor of the
activity [1,4,23]. The “who learns” answer is often “the robot”, as
the entities are composed of sensors and effectors. Then a robot
is controlled by a unique program supervising the activity of all
sensors and effectors. The more there are sensors and effectors, the
more complex the controller is. The same reasoning can be applied
to ambient systems. The more devices are composing the ambient
system and the more complex its supervisor has to be.

We argue that this vision is restrictive and propose what
we call “Extreme Sensitive Robotic” [16]. The eXtreme Sensitive
Robotic (XS Robotic) vision considers each functionality as an
autonomous entity. A robot is then composed of many eXtreme
Sensitive Functions (XS Functions), globally one for each sensor
and effector. An XS Function is sensitive (such as a temperature or
ultrasound sensor) or effective (a motor, a led). Each XS Function
has to be designed as non final, which involves that the service
provided by the functionality has to be able to dynamically self-
adapt. Self-observation capacities are the key for sensing variation
in the environment and adapting in response. With this approach,
the production of a complex behaviour by a robot emerges from
the interaction between the different XS Functionalities and the
environment. There is thus no difference of design between a single
robot, a multi-robot application or a complex ambient system. All
those systems are composed of independent functionalities that
need to cooperate to perform a global function that is greater than
the sum of its parts.

Our proposal is to enable Learning from Demonstration in
ambient systems by enabling the EXtreme Sensitive Robotic
approach. The next section presents our contribution, ALEX, a
multi-agent system for learning by demonstration in ambient
robotics. Its conception is based on the Adaptive Multi-Agent
System (AMAS) approach and uses recent results on context-aware
learning [23,24].

3. ALEX: Adaptive Learner by Experiments

The Adaptive Learner by Experiments (ALEX) is a multi-agent
system designed to learn from demonstrations to control a robotic
device. A robotic device is responsible of a particular functionality
(as described in Section 2.2). ALEX has been built upon the Adaptive
Multi-Agent System approach (AMAS) [25], which addresses the
problems of complex systems with a bottom-up approach where
the concept of cooperation acts as the core of self-organization. The
theorem of functional adequacy [26] states: “for all functionally
adequate systems, there is at least one system with an internal
cooperative state that realizes the same function in the same
environment”. The role of an AMAS is then to automatically
detect and repair or anticipate non-cooperative situations by self-
organizing to reach a functionally adequate state. ALEX has been
designed according to the ADELFE methodology that guides the
design of an adaptive system. The ADELFE methodology is based
on the well-known software development methodology Rational
Unified Process in which some work products specific to the AMAS
approach are added [27].

3.1. ALEX architecture and general behaviour

An ALEX instance is designed to control a robotic device (basi-
cally an effector) by sending actions to it. Those actions are changes
of the current state of the robotic device. An ALEX instance is in

Adaptive Learner by EXperiments

Acion Confidence

Exploitation
Mechanism

Feedback

Action
Action

Device
Fig. 1. ALEX architecture.

constant interaction with its environment from which it receives
actions from its tutor and a set of sensors values. ALEX observes
the current state of all accessible sensors, the action performed by
the tutor and in response sends the action to be applied by the con-
trolled robotic device. ALEX is composed of two components, an
Exploitation mechanism and a set of Context agents. Fig. 1 illustrates
ALEX architecture.

The Exploitation mechanism is responsible for sending actions
to the robotic device. In order to do so, it receives both the action
performed by the tutor and a proposition of action from the set of
Context agents. By comparing the action realized by the tutor to the
proposition made by Context agents, the Exploitation mechanism can
generate a feedback which is sent to the set of Context agents. The
behaviour of the Exploitation mechanism and its feedback genera-
tion is listed in the Algorithm 1.

Algorithm 1 Exploitation mechanism pseudo-code
repeat
Actiong,,r < ReceiveTutorAction();
Actionconext <— ReceiveContextAgentAction();
if Actiongor = ¥ && Actionconeexe # ¥ then
sendAction(Actionconcext);
sendFeedback(Nothing, Actioncoptext) ;
else
if Actiongor # ¥ && Actiongonexe = ¥ then
sendAction(Actiongsor);
sendFeedback(NoGood, Action,r);
else
if Actiongor = Actiongoneexe then
sendAction(Actiongoneext);
sendFeedback(Good, Actiongor);
end if
end if
end if
until end

The set of Context agents is then responsible of making action
proposals. The set of Context agents is a self-managed memory
of previous correlations between the perceived sensors state and
the action performed by the tutor. Each Context agent has the
set of sensors values and the previous Exploitation mechanism
feedback. Context agents must then be created when no Context
agent proposes the action performed by the tutor and self-adapt
whenever they receive a feedback from the Exploitation mechanism
after an action proposal. At start, the set of Context agent is empty.
It is then dynamically populated with Context agent due to the
interaction between ALEX and the tutor. The rest of this section
details Context agents behaviour, as they are the core of the learning
process.

3.2. Context-learning with Context agents

Section 2 illustrates that making an exhaustive list of all situ-
ations that an ambient system may be faced to is impossible. It is
then necessary for the system to dynamically adapt to contexts.
The term context refers in this paper to all information external to
the activity of an entity that affects its activity. This set of informa-
tion describes the environment [23]. A system capable of exploiting
context information is called “context-aware”. ALEX is designed to
continually interact with its environment and dynamically learn all
the different contexts that can occur. It associates to each context
the adequate action to perform. ALEX uses self-observation capac-
ities to dynamically build correlations between the performance of
an action and effects of this action on the environment. For thus, an
ALEX is composed of a non-finite set of Context agents that makes a
collective control over an XS functionality. The set of Context agents
is empty and ALEX dynamically and autonomously creates those
Context agents. In the next section, we describe the structure and
behaviours of Context agents. Context agents are described by de-
composing their behaviours in two kinds. The nominal behaviour
is the normal behaviour that the agent performs when the system
is in a functionally adequate state. The cooperative behaviour is a
subsumption of the nominal behaviour that occurs when the agent
needs to self-organize to bring the system towards a functionally
adequate state.

3.3. Context agents

3.3.1. Context agent nominal behaviour

A Context agent associates a low-level context description V
(see Section 3.3.2) to a unique action. An action corresponds to
maintaining or adjusting the XS functionality. This action is given
at the agent creation and never changes (see Section 3.3.6). It can
be a high-level command (such as “go Forward”, “go Left”) or a
low-level command (“speed at 42%”, “x = 2.1”) depending on
the functionality to control. A Context agent receives signals from
the environment and uses them to characterize current context.
When the observed environment O corresponds to its low-level
context description V, it decides to perform its associated action.
Otherwise, it does nothing. When a Context agent performs an
action, the agent is called selected.

3.3.2. Low-level context description

Value ranges (named validity ranges) manage the low-level
context description. A Context agent receives a set of observations
O from the environment. Each o € O is a continuous value such
as 0 € [Omin, Omax]. A validity range v € V is associated to each
observation such as v, corresponds to the validity range associated
to the observation o. The set of all validity ranges V is named
the validity domain. A validity range is composed of two values,
Umin, Vmax SUCH aS [VUmin, Vmax] < [Omin, Omax]. A validity range is
said valid if and only if as 0 € [vmin, Umax]- Then, a Context agent
is said valid if and only if Vv € V, v is valid. Validity ranges
allow the Context agent to determine if O is similar to V. Adaptive
Value Range Trackers (AVRT) manage validity ranges. AVRT is an
extension of Adaptive Value Tracker (AVT) [28], a tool that can
dynamically find a value from feedbacks greater, lower and good.

3.3.3. The cooperative behaviour

At each time step, only one action can be performed over the
robotic device. Thus, each Context agent has to determine if its
action is the most adequate in the current situation. To be in
a functionally adequate state, the system then needs that only
one Context agent proposes an action. However, situations where
more than one Context agent proposes an action can occur. Those

situations are non-cooperative situations (NCS). Three NCS can
occur. The first one (a) occurs when two (or more) agents propose
to perform an action (regardless of the nature of the action). The
second one (b) occurs if the Context agent proposes an action that is
not in adequation with the tutor’s one. The last one (c) occurs when
no Context agent proposes an action. To solve these situations,
Context agents follow a cooperative behaviour to dynamically self-
organize.

3.3.4. Confidence

A Context agent determines a confidence value that represents
the relevance of the action to perform. This confidence value allows
Context agents to compare their actions. If a Context agent wants
to perform an action with a confidence value lower than another
agent, it has to self-organize its context description to exclude the
current situation. Thus, the next time the same context occurs, the
Context agent will not try performing its action. The confidence
value v is ruled by the lambda function: v¢ 11 = v X (1—a)+F X .

V¢4 1 is the confidence value at the step t + 1. F, € 0|1 is a
feedback value and @ € [0, 1] is a given parameter that models
the importance of the feedback. Each time a Context agent makes
a correct proposal, F; = 1. Otherwise, F; = 0. In our model, « is
fixed at 0.8. The more the Context agent makes correct proposals,
the more its confidence value increases. At creation, v = 0.5. The
value is then used in the decision process of the Context agent.
Each Context agent can observe the current best confidence value to
decide if its action is the most adequate. Confidence allows solving
the ambiguity made by the non-cooperative situation (a). A low
confidence means that the Context agent is often mistaken. We
can then introduce a threshold value to detect mistaking Context
agents. A Context agent with a low confidence level will decide to
destroy itself to not disturb the system. In this paper, we set the
minimal confidence value at 0.1, meaning that any Context agent
with a confidence lower than 0.1 will self-destroy.

3.3.5. Adequation with the tutor’s action

A tutor can interact at any time with the system by demonstrat-
ing the desired behaviour. The demonstration consists in the per-
formance of a particular action a € A. Thus, at any time step, there
is a value ay,,r € A corresponding to the tutor’s action at this time
step. Each Context agent can perceive this value thanks to the feed-
back from the Exploitation mechanism. If ay,r = ¢, the tutor has
performed no action. Thus, it is a Context agent’s duty to find the
most adequate action to perform. However, if ayr # ¢, Context
agents can observe tutor’s action. If a Context agent finds itself valid
but proposes a different action than the tutor’s one, it has to self-
organize to exclude the current situation. Each valid validity range
manages its bounds to exclude the current situation. If the set of
observations O contains values that are not associated to a validity
range (for example, when a new sensor is added on the system),
the Context agent adds a new validity range to its validity domain
corresponding to the new observation. However, if a Context agent
proposes an adequate action, its confidence value is increased. This
allows solving the ambiguity made by the non-cooperative situa-
tion (b). The adaptation of a validity range V canresult in a situation
where vmax < Umin. If such a situation occurs, the Context agent has
a non-coherent structure making it useless. To allow the system to
stay in a cooperative internal state, the agent will self-destroy.

3.3.6. “Validable” and context agent creation

The system’s functional state requires that at least one Context
agent is valid at any step (see Section 3.3.3). If at the end of a
decision cycle, no Context agent proposes to perform an action,
the system is in a situation of incompetence. Two mechanisms can
solve this situation: extending an already existing Context agent

Fig. 2. The experiment in Webots. On the left, the rover inside the arena. On the
right, the camera detection. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

or creating a new Context agent to represent the situation. To
anticipate a situation of incompetence, the concept of validable is
added. A validity range v, is validable if and only if 0 € [Viin, Vmax]
and 0 € [Vmin — Smin» Vmax + Omax]- Omin and Smax are two values
(one for each bound) dynamically managed by the AVTs to control
the evolution of each bound. § can be interpreted as the next
increment of the bound. With the concept validable, Context agents
can propose their action in situation that are not so different to
their validity domain. If the Context agent proposition is selected,
it has to adapt its bound by updating the nearest bound to include
the current situation. This mechanism allows Context agents to
dynamically increase their validity ranges.

The second mechanism occurs when no Context agent is valid
or validable. The previously selected Context agent (and not valid
anymore) can create a new Context agent associated with the
tutor’s action. The created Context agent then initializes its validity
range around the current position in order to represent the current
situation. If anr = @, two mechanisms can occur depending
on the desired level of autonomy. With a collaborative approach,
the system can ask the tutor what is the action to perform.
On contrary, with a more autonomous approach, a system will
maintain the last known action, considering that the inaction of the
tutor corresponds to the maintaining of the current action. Those
two mechanisms, the validable concept and context creation, allow
solving the third non-cooperative situation (c). In the next section,
we propose to illustrate ALEX on a set of experiments.

4. Experiments

We want to highlight that ALEX presents interesting properties
for ambient robotics that differ from the traditional approaches:

e Genericity: the learning process is independent of the task to
perform and uses no semantic on signals.

e Openness: new signals can be dynamically integrated in the
decision process.

e Distributed: self-observation allows each functionality to be
autonomous while remaining cooperative.

e Real-time: self-organization is performed without any system
downtime. To illustrate these properties, the following experi-
ment has been performed.

In order to do so, we propose to study ALEX behaviour on two
different experiments. The first one is the well-known experiment
of the Mountain Car problem. The second one is a collecting task
involving a 2 wheeled rover. The same implementation of ALEX
with no difference of parameter are used in both experiments.

For each experiment, the Tutor (which is either human or
virtual) performs a full demonstration of the task to perform.
Then, the system acts autonomously under the supervision of the
tutor which can act at any time to correct the system behaviour.
The results of experiments are obtained after an observation of

Fig. 3. Illustration of the mountain car problem: the car (circle) has to try to reach
the top of the right hill (right square).

the system in complete autonomy (without tutoring). The first
experiment is realized with a virtual tutor which performs a perfect
demonstration of the task. The second is performed with a human
tutor, which is by nature imperfect.

4.1. First experiment: the Mountain Car problem

Initially introduced by Moore [29] and lately defined by [30],
the Mountain Car is a well-known toy problem mainly studied in
the field of reinforcement learning (Fig. 3). An under-power car
situated in a valley must drive up a steep hill. The gravity is too
strong for the car’s engine so that the car cannot only speed up
to climb the hill. The car has to learn to leverage potential energy
by driving up to the opposite hill in order to gain enough energy
to climb the other hill. As the experiment has been mainly used
as a didactic tool to illustrate reinforcement learning algorithms
behaviour, the scientific literature is rich of result which can be
compared with ALEX.

4.1.1. Problem formalization
The problem is described by [30] as follows:
A two dimensional continuous state space:

e Velocity € [—0.07, 0.07]
e Position € [—1.2, 0.6].

A one-dimensional discrete action space:
e motor € [left, neutral, right].
An update function performed at every step:

e Action € [—1,0, 1]

e Velocity < Velocity + (Action) % 0.001 4 cos(3 * Position) *
(—0.0025)

e Position < Position + Velocity.

A reward function:

e reward <— —1 + height with height 0 being the lowest point in
the valley.

Initial condition:

e Position <— —0.5
e Velocity < 0.0.

Termination condition:

e Position >= 0.6.

4.1.2. Introducing the tutor

As the mountain car is initially a problem for reinforcement
learning techniques, it does not include in its initial description the
notion of tutoring. We introduce a virtual tutor which performed
the initial demonstration. The virtual tutor acts as an oracle
providing at any step the action to perform (Algorithm 2).

This behaviour is considered to be the optimal behaviour to
satisfy the user as we are not interested in finding an optimal policy
to control the car but to mimic the demonstrated behaviour. With
this policy, the task is performed in 125 steps which serves of
metric to evaluate likeness of the learnt policy. The virtual tutor
strategy is interesting because it is only based on velocity. Thus,
position is a useless data.

Algorithm 2 Virtual tutor policy
if Velocity < 0 then
return —1
else
return 1
end if

Velocity

////, - Position
7
/ S
////// 7 ////////// % 4”’///’/////////////////?/////?/}// 7 74
f/m// / [0 0

s

Fig.4. A 2D view of the virtual tutor policy. In abscissa the position of the car, and
in ordinate, its velocity. The filled area corresponds to the action 1 and the striped
area to the action —1.

During the demonstration, the ALEX instance controlling the car
receives three signals: the current Velocity, the current Position, the
tutor Action.

We define v; and p; the velocity and position values at step t
and a; the action performed by the system. Then, the desired ALEX
behaviour can be described as the function mapping to any couple
of velocity and position the adequate action to perform:

o ALEX : (v, p¢) — a.

When the tutor performs an action on ALEX the action is sent
to ALEX and Context agents use this information to self-adapt.
When the tutor performs no action, Context agents cooperatively
determine which action has to be made. If no Context agent
proposes to perform an action, ALEX will automatically maintain
the last known action.

The two dimensions of the problem allow a 2D projection of the
policy. For example, the policy applied by the virtual tutor can be
seen in Fig. 4. The projection is composed of two areas. The filled
area corresponds to the subspace of the problem where the tutor
realizes the action 1 (which means “go forward”) and the striped
area is the subspace where the tutor realizes the action —1 (“go
backward”). The virtual tutor policy maps the entire space of the
problem, including subspaces which will never be reached due to
system dynamics.

The Algorithm 3 describes in pseudo-code the experiment.

Algorithm 3 Mountain car problem pseudo-code
Require: ALEX

> Initialization
Velocity < 0.0;
Position <— —0.5;
> While goal is not reached
while Position < 0.6 do
> Send current data to ALEX
ALEX .updateObservations(Velocity, Position);
ALEX .newTutorAction(VirtualTutorPolicy());
Action < ALEX .getAction();
> Update world state
Velocity < Velocity + (Action) % 0.001 + cos(3 * Position) *
(—0.0025)
Position < Position + Velocity
end while

Position :

% %] —

164 . 127 -az% 000
145 azt

Velocity :

) zZ—
004 003 001 -0.00.00

-0.03 000 -0.00

Etat = VALIDABLE

Confiance = 0.668928

Action = Left

Fig. 5. The structure of a Context agent involved in the mountain car problem.
The agent propose the action left (corresponding to action —1) when Position €
[—1.45,0.02276] and Velocity € [—0.03, 0].

Fig. 6. The 2D view of the learnt policy. Context agents populates the observed
subspace of observation.

4.1.3. Learning from a virtual tutor

In this experiment, the virtual tutor performs a complete
demonstration of the hill climbing task. At each step, the virtual
tutor provides to ALEX the action to perform. This demonstration
is performed in 125 steps. We then realize a second experiment
in which previously learned Context agents are kept and virtual
tutoring is deactivated. ALEX must then autonomously use its
knowledge to perform an effective control on the car.

In a unique demonstration, ALEX succeeds to map the obser-
vation space with enough Context agents in order to be able to
perform the task autonomously and as efficiently as the tutor (in
125 steps). A 2D representation of the learnt policy is visible in
Fig. 6. We observe that ALEX did not completely map the obser-
vation space. Only the space observed during the demonstration is
mapped, leaving the unvisited subspace empty of Context agents.
If we compare the learnt policy (Fig. 6) to the virtual tutor policy
(Fig. 4) we observe a similar separation of the space. Context agents
proposing the action —1 occupy the bottom space whereas Context
agents proposing the action 1 occupy the top space.

If we observe the structure of particular Context agents (and
example is visible on Fig. 5) we found that validity range are a lot
smaller on the Velocity than they are on Position. As Position is a
useless data (regarding to the virtual tutor strategy), Context agents
have learnt to be more sensitive to Velocity than Position.

4.1.4. Comparison with other approaches

The mountain car problem serves as a toy-problem in the
reinforcement learning field [31]. Those reinforcement learning
algorithms took interest in finding the optimal policy in least
possible steps. Knox et al. [32] propose an approach to reduce
the space of research using Learning from Demonstration. Authors
propose an algorithm named TAMER which creates a predictive
model of human reinforcement feedback and uses this model
to increase a reinforcement learning algorithm. Demonstration
in TAMER consists in a succession of quantitative feedbacks (for
example: —1, 0, +5) given by a tutor which is only an observer of
the system. The experiment they performed on the mountain car
problem compared TAMER to the traditional Sarsa [30] algorithm.
They show that TAMER reduces the time needed to arrive at
a “good” policy while needing more time to find optimality.
However, each TAMER agents needs to be shaped for three runs
of twenty episodes.

Our own experiment has shown that only one demonstration is
required for ALEX to learn a control policy which is as good as the
one demonstrated by the tutor. However, in our approach, the tutor

Camera Observations | Symbol | Domain
Distance in pixel to the center of the green artefact D, [-680; 680]
Angle between the rover front and the green artefact A, [—27m, 27]
Distance in pixel to the center of the blue artefact Ap [—2m, 2]
Angle between the rover front and the blue artefact Dy, [-680; 680]

Fig. 7. Camera observations.

is an actor of the system which exhibits a policy that is supposed
to be the optimal policy satisfying its needs. This illustrates the
advantage of using ALEX for systems where the most important
criterion is the likeness of the policy.

4.2, Second experiment: collecting artefacts

4.2.1. Description

A two-wheeled rover with no sensor isimmersed ina2 mx 2 m
arena composed of a blue area and a green block. An intelligent
camera located perpendicularly to the arena at 2 m of its centre can
analyse pixels to capture the position of artefacts (the blue area and
the green block) relatively to the rover orientation (determined
by two red markers on the rover) (Fig. 2). Thus at each time step,
the camera can produce four observations on the scene (Fig. 7). To
show ALEX openness properties, the camera sends observations
only if an artefact is in front of the rover. At each time step, the
camera can then produce either zero, two or four observations. This
means that some observations can appear and disappear.

A human user performs a direct control over the rover through
a 2-joystick gamepad. Each joystick controls the speed of one
wheel (left joystick for left wheel and reciprocally). Speed value
belongs to [—100; 100] and corresponds to the percentage of the
maximum speed to be applied and the sign of the rotation. The
user can perform a range of activities in the arena and it is ALEX
duty to exploit this interaction to imitate the user performance.
The experiment is performed both on real and virtual world. To
show both genericity and distributed properties of ALEX, an ALEX is
associated to each wheel allowing each wheel to act autonomously.
Each wheel is then seen as an autonomous device. The role of an
ALEX instance is then to control the wheel speed by correlating
the observations from the camera to the actions performed by the
user. An ALEX receives at each step of a set of observations from
the camera and, if relevant, the action made by the user. One-step
of decision occurs every 250 ms. The exact same implementation
of ALEX is used on both experiments; only network protocol
will differ depending on ALEX controls either a simulated rover
or a real rover. The virtual experiment has been developed on
Webots simulator using the given Boe-bot model. The real world
implementation has been made with a Boe-bot rover and uses an
Xbee communication protocol. One of the activities the user can
perform on the arena is a collecting task. In order to do so, solid
whiskers are added to the rover to allow the rover to capture boxes.
Whiskers are not movable and there is no sensor on them. They are
just a physical part of the robot. Whenever the boxes are inside
the blue area, boxes are moved randomly inside the arena. The
Algorithm 4 describes in pseudo-code the experiment.

4.2.2. Context agent creation

The Fig. 8 illustrates the creation of Context agents in the
two ALEX instances. It shows the trajectory performed by the
rover during the first demonstration of the collecting task. In this
demonstration, the user takes control over the rover and drives it
to collect and transport the box to the blue area. We can observe
that ALEX instances create new Context agents when the user
changes the direction. On contrary, when the user maintains the
direction of the rover, no Context agents are created. Each user
action is observed and each Context agent determines if the current

Algorithm 4 Collecting artefacts pseudo-code

Require: ALEXe, ALEX igns
> While the experiment is not stopped

while notEnded do
> Receive data from Camera
D, < getDataDg();
Ag < getDataAg();
Ap < getDataAb();
Dy, < getDataDb();
> Send current data to ALEX e
ALEXies .updateObservations(Dg, Ag, Ap, Dp);
ALEXer: .newTutorAction(getTutorLeftAction());
> Send current data to ALEXign¢
ALEX;igh: .updateObservations(Dg, Ag, Ap, Dp);
ALEXign: .newTutorAction(getTutorRightAction());
> Send new speed command
leftSpeed <— ALEX.f; .getAction();
rightSpeed <— ALEX;ign .getAction();
setSpeed(leftSpeed, rightSpeed);
end while

o
f \ Blue area

patoe

e

Start

Box

——Trajectory e Context Creation

Fig. 8. Rover’s trajectory and context creation during a demonstration. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

situation belongs to its own context description. If there is no such
Context agent, a new one is created. This illustrates ALEX capacity
to detect new contexts and dynamically self-organize to integrate
these new contexts in its decision process.

4.2.3. Self-adaptation of context agents

Fig. 9 shows the structure of a particular Context agent at its
creation and at the end of a demonstration. Each line corresponds
to the structure of a validity range associated to an observation.
The filled range corresponds to the valid range whereas the striped
area corresponds to the validable range. White boxes correspond
to the current value of the signal. We observe that each validity
range has its own evolution. This evolution is the result of the self-
organization process. More precisely, validity ranges associated to
the perception of the green block (GreenA and GreenD) are smaller
than the one associated to the perception of the blue area (BlueA
and BlueD). This particular Context agent is valid when the block is
close to the front of the rover and the rover is in front of the blue
area. It is involved in the part of the activity where the rover brings
back the block to the blue area.

4.2.4. Performances

To observe the capacity of the system to imitate the user
performance, the user realized a 5 min demonstration in which 12
boxes were collected. The number of collected boxes by the user
serves as a metric for performance comparison. The system is then
let in autonomy and each 5 min the score is computed. During the

Number of box
o
O ORI

Fig. 9. Number of collected boxes each 5 min. The step 0 corresponds to the reference score. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

GreenA :

-1.50 -0.08 0091 1.00
GreenD :

-20.00 1E2997254.86 500.00
BlueA :

-1.50 -0.09 0.1 1.00
BlueD :

-20.00 24PTEEINO 500.00
GreenA :

-1.50 -0.10 0,609.15 1.00
GreenD :

-20.00 2583388 73.84 500.00
BlueA :

-1.50 -0.15:002 015 . 048 1.00
BlueD :

7772k 7,

20080 o 8259 252,382,40 500.00

Fig. 10. On the top, the validity domain structure at the creation of a Context agent. On the bottom, the same Context agent at the end of the demonstration.

autonomy phase, Context agents have to find the most adequate
action. Contrary to the collaborative demonstration phase where
the user interacts with the system to teach previously unknown
situations, the user never acts on the system. Fig. 9 shows results
we obtained. In the worst case, the system performs the task as
well as the user does: 12 boxes are collected. However, the number
of collected boxes is often better than the user’s ones. Two factors
influence this result. The first one comes with the randomness
of the box movements. In some case, boxes are moved farther
away from the blue area and it takes more time to reach and
bring back the block. The other one, more interesting, lies in the
fact that the user needs more time to take a decision than ALEX
does. Moreover, the user can contradict itself. This phenomenon
is observable in Fig. 10. At midpoint between the start position
and the box position, we can observe a change in the trajectory.
This change is in fact a user tele-operation mistake. Context agents
corresponding to this situation will never be reselected as they
correspond to a non-desired action and will then self-destroy. The
learnt behaviour is then “filtered” of user mistakes allowing it to
perform the task more efficiently.

5. Conclusion and future work
This paper deals with the challenges of LfD in ambient robotics.

It illustrates that LfD is an interesting approach to learn and gen-
eralize recurrent activities. It presents ALEX, a multi-agent system

to learn from demonstration in ambient applications. Experiments
tend to show the capacity of ALEX to learn from the interaction
with its user. While the experiment may appear to be simpler than
a realistic situation, the combinatory of the observation space and
the randomness of the movement of the artefact illustrate a certain
level of complexity, which is a crucial property of ambient systems.
Then, the experiment is still illustrative of ALEX behaviour. At last,
the study of more realistic situations and limits of the LfD usage
are in perspectives. This means concretely that a simple demon-
stration of the task to perform allows each multi-agent system as-
sociated to all the effectors to understand autonomously what the
relevant data are in order to mimic collectively what the tutor does,
without any central control. Each ALEX creates and self-organizes
its Context agents to produce collectively a behaviour that is user
satisfying. Experiments have shown that two ALEX instances can
cooperate without direct interaction. Moreover, it illustrates that
the system is able to perform a task more efficiently than the user.
This work is a proof of concept that multi-agent context learning
is a promising approach to deal with the complexity of ambient
systems. We want to consider the use of ALEX technology in more
complex problems coming from industrial needs. We have a partic-
ular interest for collaborative robotic applications where workers
and robots have to work collaboratively. Factories of Future (FoF)
are a good illustration of such applications [33]. Evolutions of ALEX
algorithm have to include the capacities to filter useless data and

to discover that data are missing. Such processes could be done by
adding percept agents associated to each signal which will have the
responsibility to learn their utility for Context agents and to cooper-
ate with them. Furthermore, on a future approach, we will propose
not to imitate user actions, but to learn from the observation of the
activity which are the effects on the environment that are desired
by the user. The system will then be able to self-discover which are
the intentions of the user, and then provides an adequate response
to these needs. At last, we want both to formalize our approach
and to compare its performances with other well-known learning
techniques. Formalization has already led to a proposal of a generic
pattern for context learning with Context agents [34].

Acknowledgements

Authors would like to gratefully thank Sogeti High Tech and the
ANRT (convention n° 2013/0339) for funding this research. This
project is involved in the neOCampus operation (more information
at www.irit.fr/neocampus/).

References

[1] G.A. Kaminka, Autonomous agents research in robotics: A report from the
trenches, in: 2012 AAAI Spring Symposium Series, 2012.

[2] J. Chung, Ambient robotics for meaningful life of the elderly, 2014, p. 43.

[3] S.Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall,
Englewood Cliffs, 1995.

[4] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish, H. Duman,
Creating an ambient-intelligence environment using embedded agents, IEEE
Intell. Syst. 19 (6) (2004) 12-20.

[5] M.J. Kearns, R.E. Schapire, L.M. Sellie, Toward efficient agnostic learning, Mach.
Learn. 17 (2-3) (1994) 115-141.

[6] B.D. Argall, S. Chernova, M. Veloso, B. Browning, A survey of robot learning
from demonstration, Robot. Auton. Syst. 57 (5) (2009) 469-483.

[7] S. Lefévre, A. Carvalho, F. Borrelli, Autonomous car following: A learning-
based approach, in: Intelligent Vehicles Symposium (IV), 2015 IEEE, IEEE, 2015,
pp. 920-926.

[8] N. Vukovié¢, M. Miti¢, Z. Miljkovié, Trajectory learning and reproduction for
differential drive mobile robots based on gmm/hmm and dynamic time
warping using learning from demonstration framework, Eng. Appl. Artif. Intell.
45 (2015) 388-404.

[9] D.Silver, J.A. Bagnell, A. Stentz, Learning from demonstration for autonomous
navigation in complex unstructured terrain, Int. J. Robot. Res. (2010).

[10] M. Power, H. Rafii-Tari, C. Bergeles, V. Vitiello, G.-Z. Yang, A cooperative control
framework for haptic guidance of bimanual surgical tasks based on learning
from demonstration, in: 2015 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2015, pp. 5330-5337.

[11] A. Billard, S. Calinon, R. Dillmann, S. Schaal, Robot programming by demon-
stration, in: Springer Handbook of Robotics, Springer, 2008, pp. 1371-1394.

[12] E.A. Billing, T. Hellstrom, A formalism for learning from demonstration®,
Paladyn, J. Behav. Robot. 1(1) (2010) 1-13.

[13] C.L. Nehaniv, K. Dautenhahn, The correspondance problem, in: Imitation in
Animals and Artifacts, MIT press, 2002.

[14] M. Riedmiller, A. Merke, Learning by experience from others—Social learning
and imitation in animals and robots, in: Adaptivity and Learning, Springer,
2003, pp. 217-241.

[15] K. Dautenhahn, C.L. Nehaniv, The Agent-Based Perspective on Imitation, MIT
Press, 2002.

[16] N. Verstaevel, C. Régis, V. Guivarch, M.-P. Gleizes, F. Robert, Extreme sensitive
robotic—A context-aware ubiquitous learning, in: International Conference
on Agents and Artificial Intelligence (ICAART 2015), Vol. 1, INSTICC, 2015,
pp. 242-248.

[17] M. Miti¢, Z. Miljkovi¢, Neural network learning from demonstration and
epipolar geometry for visual control of a nonholonomic mobile robot, Soft
Comput. 18 (5)(2014) 1011-1025.

[18] S.Chernova, M. Veloso, Confidence-based policy learning from demonstration
using Gaussian mixture models, in: Proceedings of the 6th International
Joint Conference on Autonomous Agents and Multiagent Systems, ACM, 2007,
p. 233.

[19] J. Saunders, C.L. Nehaniv, K. Dautenhahn, Teaching robots by moulding
behavior and scaffolding the environment, in: Proceedings of the 1st
ACM SIGCHI/SIGART Conference on Human-Robot Interaction, ACM, 2006,
pp. 118-125.

[20] T. Brys, A. Harutyunyan, H.B. Suay, S. Chernova, M.E. Taylor, A. Nowé,
Reinforcement learning from demonstration through shaping, in: Proceedings
of the International Joint Conference on Artificial Intelligence, IJCAI, 2015.

[21] W.B. Knox, P. Stone, C. Breazeal, Training a robot via human feedback:
A case study, in: Social Robotics, Springer International Publishing, 2013,
pp. 460-470.

[22] Y. Mollard, T. Munzer, A. Baisero, M. Toussaint, M. Lopes, Robot programming
from demonstration, feedback and transfer, in: Intelligent Robots and Systems
(IROS), 2015.

[23] V. Guivarch, V. Camps, A. Péninou, P. Glize, Self-adaptation of a learnt
behaviour by detecting and by managing user’s implicit contradictions,
in: Proceedings of the 2014 I[EEE/WIC/ACM International Joint Conferences on
Web Intelligence (WI) and Intelligent Agent Technologies (IAT)-Vol. 03, I[EEE
Computer Society, 2014, pp. 24-31.

[24] J. Boes, F. Migeon, P. Glize, E. Salvy, Model-free optimization of an engine
control unit thanks to self-adaptive multi-agent systems, in: International
Conference on Embedded Real Time Software and Systems-ERTS? 2014, 2014,
p. 350.

[25] M.-P. Gleizes, Self-adaptive complex systems, in: Multi-Agent Systems,
Springer, 2012, pp. 114-128.

[26] D. Capera, J.-P. Georgé, M.-P. Gleizes, P. Glize, The AMAS theory for complex
problem solving based on self-organizing cooperative agents, in: Twelfth
IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003. WET ICE 2003. Proceedings, IEEE, 2003,
pp. 383-388.

[27] N. Bonjean, W. Mefteh, M.-P. Gleizes, C. Maurel, F. Migeon, Adelfe 2.0,
in: Handbook on Agent-Oriented Design Processes, Springer, 2014, pp. 19-63.

[28] S. Lemouzy, V. Camps, P. Glize, Principles and properties of a mas learning
algorithm: A comparison with standard learning algorithms applied to implicit
feedback assessment, in: 2011 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology (WI-IAT), Vol. 2, IEEE, 2011,
pp. 228-235.

[29] AW. Moore, Efficient memory-based learning for robot control (Thesis),
University of Cambridge, Computer Laboratory, 1990.

[30] R.S. Sutton, A.G. Barto, Reinforcement learning: An introduction, Robotica 17
(2)(1999) 229-235.

[31] C. Gatti, The mountain car problem, in: Design of Experiments for Reinforce-
ment Learning, Springer, 2015, pp. 95-109.

[32] W.B. Knox, A.B. Setapen, P. Stone, Reinforcement learning with human
feedback in mountain car, in: AAAI Spring Symposium: Help Me Help You:
Bridging the Gaps in Human-Agent Collaboration, 2011.

[33] B. Siciliano, F. Caccavale, E. Zwicker, M. Achtelik, N. Mansard, C. Borst, M.
Achtelik, N.O. Jepsen, R. Awad, R. Bischoff, Euroc-the challenge initiative for
European robotics, in: ISR/Robotik 2014; 41st International Symposium on
Robotics; Proceedings of, VDE, 2014, pp. 1-7.

[34] J. Boes, J. Nigon, N. Verstaevel, M.-P. Gleizes, F. Migeon, The self-adaptive
context learning pattern: Overview and proposal, in: International and
Interdisciplinary Conference on Modeling and Using Context, CONTEXT, 2015.

Nicolas Verstaevel Ph.D. Student—Engineer at Sogeti High
Tech.

He is currently Ph.D. student in a partnership project
between Sogeti High Tech and the IRIT laboratory.

Christine Régis is Assistant professor at Paul Sabatier
University.

She works in multi-agent application in robotic
application inside the self-adaptive multi-agent system
team at IRIT.

Marie-Pierre Gleizes Professor at Paul Sabatier University
in Toulouse.

She is the team manager of the Self-adaptive multi-
agent system at the IRIT laboratory.

Fabrice Robert Innovation Manager at Sogeti High Tech.
Leads the R&D team focusing on robotic and artificial
intelligence application.

