Influence de la quantité de données sur une tâche de segmentation de phones fondée sur les réseaux de neurones
Abstract
Dans cet article, nous décrivons une étude expérimentale de segmentation de parole en unités acoustiques sous-lexicales (phones) à l'aide de réseaux de neurones. Sur le corpus de parole spontanée d'anglais américain BUCKEYE, une F-mesure de 68% a été obtenue à l'aide d'un réseau convolutif, en considérant une marge d'erreur de 10 ms. Cette performance est supérieure à l'accord inter- annotateurs de 62%. Restreindre les données d'apprentissage à celles d'un unique locuteur, 30 minutes environ, a eu pour conséquence moins de 10% de perte et utiliser celles de 5 locuteurs a permis d'atteindre des résultats similaires à utiliser plus de données. Utiliser le modèle entraîné avec le corpus anglais sur un petit corpus d'une langue peu dotée a donné des résultats comparables à estimer un modèle avec des données de cette langue.
Origin : Files produced by the author(s)
Loading...