
HAL Id: hal-01530100
https://hal.science/hal-01530100

Submitted on 7 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AirNet: the Edge-Fabric model as a virtual control plane
Messaoud Aouadj, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla

To cite this version:
Messaoud Aouadj, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla. AirNet: the Edge-Fabric
model as a virtual control plane. 1st International Workshop on Software-Driven Flexible and Agile
Networking (SWFAN 2016) - INFOCOM, Apr 2016, San Francisco, CA, United States. pp. 743-748.
�hal-01530100�

https://hal.science/hal-01530100
https://hal.archives-ouvertes.fr


  
   

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 16979 

The contribution was presented at SWFAN 2016 :  
http://swfan.org/2016/ 

 
 
 

To cite this version : Aouadj, Messaoud and Lavinal, Emmanuel and Desprats, 
Thierry and Sibilla, Michelle AirNet: the Edge-Fabric model as a virtual control 
plane. (2016) In: 1st International Workshop on Software-Driven Flexible and 
Agile Networking (SWFAN 2016) - INFOCOM, 11 April 2016 (San Francisco, 
CA, United States). 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



20161EEE Conference on Computer Communications Workshops (INFOCOM 

WKSHPS)
: 

SWFAN 

16: International Workshop on 
Software-Driven Flexible and Agile Networking 

AirNet: the Edge-Fabric model 
as a virtual control plane 

Messaoud Aouadj, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla 
University of Toulouse, IRIT 

118 Route de Narbonne, F-31062 Toulouse, France 
Email: {FirstName.LastName} @irit.fr 

Abstract-While there are many motivations to virtualize 
networks, easing their management is probably one of the 
most important reasons. However, the choice of the network 
abstraction model that will be used to abstract the physical 
infrastructure represents a major challenge, given that this choice 
will have a significant impact on what an administrator can see 
and do. ln this article, we present a new domain specifie language, 
called AirNet, to design and control virtual networks. The central 
feature of this language is to rely on a new network abstraction 
model that offers a clear separation between simple transport 
fonctions and advanced network services. These services are 
classified into three main categories: static control fonctions, 
dynamic control fonctions and data fonctions. In addition, we 
developed a hypervisor that supports the AirNet language and 
handles, in particular, the virtual-to-physical mapping. 

1. INTRODUCTION 

The NFV /SDN shi ft allowed the emergence of new op­
portunities for network virtualization solutions which, until 
recently, were very difficult to achieve. To be used to its best 
advantages, network virtualization requires, first and foremost, 
identifying practical abstractions that allow operators to ease 
the configuration, control and management of the physical 
infrastructure, white also allowing fine-grained control in order 
to be able to respond to different types of constraints, whether 
physical or logical [1]. Today, there are two main approaches 
that are used for abstracting the physical infrastructure: i) the 
overlay network model [1] which consists in overlaying a 
virtual network of multiple switches on top of a shared physical 
infrastructure and ii) the one big switch abstraction mode! [2] 
which consists in abstracting the whole network view in a 
single logical switch. 

In continuation of our previous work on network control 
languages [3], we present in this article AirNet, a new high­
level language for programming SDN platforms. In order 
to ensure better modularity and fl exibility, we put network 
virtualization at the very heart of our language, and, unlike 
existing works, we rely on a new abstraction mode! that 
explicitly identifies three kinds of virtual units: i) Fabrics 
to abstract packet transport fonctions, ii) Edges to support, 
on top of host-network interfaces, control-plane fonctions and 
iii) Data Machines to provide complex data processing. This 
abstraction mode! allows AirNet to offer different types of 
network services (i.e., transport, data, static and dynamic 
control services) that can be both composed and chained 
together to define the overall control policy, as weil as reused 
over different physical infrastructures. Additionally, we have 
designed and implemented a hypervisor that supports this 
model and achieves its mapping on a physical infrastructure. 

978-1-4673-9955-5/16/$31.00 ©2016 IEEE 

The remainder of this paper is organized as follows: in 
section Il, we present the abstraction model we rely on, and 
the main motivations behind its proposition. In section III, 
an overview of the language is presented through four use 
cases, while their experimental results are exposed in section 
IV. Finally, related work are presented in section V, followed 
by a conclusion and a brief description of our future work. 

Il. CHOOSING THE RIGHT ABSTRACTION MODEL 

From our point of view, using the one big switch mode! 
presents mainly two drawbacks: the major one is that it 
forces network administrators to always use a single router 
to abstract their physical infrastructure, which can be a very 
restrictive approach especially when there are underlaying 
physical constraints that can not or should not be hidden from 
the control program operating on top of the virtual network 
(e.g., specifying administrative boundaries, network fonction 
distribution according to physical topology characteristics). 
The second drawback is more a software engineering issue. 
Indeed, using the one big switch abstraction involves putting ali 
in-network fonctions within the same router, thereby resulting 
in a monolithic application in which the logic of different in­
network fonctions are inexorably intertwined, making them 
difficult to test and debug. 

Regarding the overlay network mode), it also presents a 
shortcoming, that is, unlike the one big switch mode!, there 
is no distinction or logical boundaries between in-network 
fonctions and packet transport fonctions, despite the fact that 
these two auxiliary policies solve two different problems. The 
result of this is that network operators will be forced to 
also consider packet transport issues when specifying their in­
network fonctions, which will naturally lead to control program 
and network fonctions that are Jess modular and reusable. 

Edge and Fabric: lifting up the modularity at the network 
control language leve! 

To overcome the limitations of both models, we relied on 
a well-known idea within the network designer community, 
which is making an explicit distinction between edge and core 
network deviees, as it is the case with MPLS networks. 

Explicitly distinguishing between edge and core fonctions 
was also used by Casado et al. in a proposai for extending 
current SDN infrastructures [4]. We propose to integrate this 
concept in our network abstraction mode!, thereby lifting it up 
at the language leve!. Network operators will thus build their 
virtual networks using four types of abstractions: 

pherve
Rectangle 

pherve
Rectangle 



• Edges which are general-purpose processing deviees 
used to support the execution of network control 
functions. 

• Data machines which are processing elements present 
at the data plane to support the execution of complex 
data functions. 

• Fabrics which are more restricted processing deviees 
used to deal with packet transport issues. 

• Hosts and Networks which are abstractions that are 
used to represent sources and destinations of data 
flows. 

As a consequence, the programming paradigm that we are 
advocating through this edge-fabric abstraction mode! is as 
follows: edges will receive incoming flows, apply appropriate 
control policies that have been previously defined by network 
operators (using specifie primitives that we will present in 
the next section), then redirect flows towards a fabric . From 
this point, it is the fabric's responsibility to carry flows either 
directly to another border edge in order to be delivered to its 
final destination (host or network) or indirectly by first passing 
through one or more data machines in order to apply sorne 
complex data processing on the flow. 

Considering the above discussion, we believe that de­
composing network policies into transport, control and data 
functions will enable network operators to write control pro­
grams which are much easier to understand, reason about 
and maintain. More importantly, the possibility to interconnect 
multiple edges, data machines and fabrics provides a good 
leve! of abstraction, white also ensuring a sufficient flexibility 
in order to be able to consider both various contexts of use 
(e.g., campus networks, data centers, operator networks) and 
physical constraints if necessary. 

Ill. AIRNET OVERVIEW 

In this section, we start by briefly presenting AirNet's 
programming pattern and its key instructions, then we illustrate 
the language's usage through four use cases (ali of which have 
been successfully tested in Section IV). 

A. AirNet's key instructions 

Every AirNet program contains three main phases: the 
first phase deals with the design of the virtual network, the 
second one specifies the control policies that will be applied 
over this virtual network, and finally the third one defines the 
mappings existing between virtual units and switches present 
at the physical leve!. This last phase is separated from the first 
two allowing network operators to reuse their control program 
over different physical infrastructures without requiring any 
changes apart from the mapping instructions. Due to space 
constraints, we will not describe the mapping phase but we 
will present execution results of the use cases on different 
physical topologies in section IV. 

The virtual network and control policies are specified 
thanks to severa! AirNet's instructions summarized in Fig. 1. 

Designing the virtual network relies on a straightforward 
declarative approach: one primitive for each virtual unit that 
has to de added to the network (addHos t, addEdge , etc.). 

Virtual Network Design: 
addHost (n ame ) 
addNetwork (n a me ) 
addDataMach i ne (name) 
addEdge (n ame , port s ) 
addFabri c (n a me , ports ) 
addLi n k ( (n ame , p ort ) , (name , p o r t )) 

Edge Primitives: 
fi l t ers : match ( h~v) 1 a ll_ packets 
act ion s : f orward (d s t ) 1 modi fy ( h~v ) 1 t ag ( labe l ) 1 drop 
ne t work f u n c t ion s : @D y nami c Co n trolFc t 

Fabric Primitives: 
ca t c h ( fl ow ) 1 c a rry (dst , requ irement s~None ) 

via (dataMachine , da taFct ) 
Composition Operators: 

para l lel composition : "+" 
s e quen t i al compo s ition : ">>" 

Fig. 1. AirNet 's key primitives 

Edge primitives are divided into three main groups: Filters , 
Actions and Dynamic Control Functions. The language's main 
fil ter is the match(h=v) primitive that returns a set of packets 
that have a field h in their header matching the value v. Actions 
are applied on sets of packets that are returned by installed 
filters . Drop, forward and modify are standard actions found 
in most network control languages. As for the tag action, it 
attaches a label onto incoming packets, label that is used by 
fabrics to identify and process a packet. 

Static edge control policies are specified by composing a 
fil ter with actions (e.g., match () »tag ( ) »forward () ). These 
policies can be enforced on the physical infrastructure at design 
time. In order to take into account more complex control 
policies, AirNet introduces dynamic control functions that are 
evaluated at runtime directly by the controller. Use cases III-C 
and III-D will show examples of such functions. 

Fabrics provide three primitives: catch, carry and via. The 
catch primitive captures an incoming flow on one of the 
fabric's ports (based on a label inserted beforehand by an 
edge). The carry primitive transports a flow from one edge 
to the other (both connected to the fabric ). It is also possible 
to specify forwarding requirements such as maximum delay 
to guarantee or minimum bandwidth to offer. Finally, a via 
primitive composed with a carry redirects a flow through a 
data function before reaching the final edge. Use case Ill-E 
will present such an example. 

B. Static control function: simple forwarding example 

The aim of this first use case is to illustrate AirNet's basic 
primitives. The high-level goal here is to enable Net.A hosts to 
communicate only with server WSJ, and similarly Net.B hosts 
only with server WS2. Figure 2 depicts the virtual topology 
that we have chosen. We used two fabrics for demonstration 
purposes only. This choice remains at the discretion of the 
administrator. Although ali edges in the virtual network can be 
connected to a unique fabric, in sorne cases, it can be useful 
to rely on multiple fabrics according to the network operator's 
high leve! goals or to the physical constraints in place. Note 
however that using multiple fabrics does not imply necessarily 
the usage of different physical resources: two fabrics can map 
to the same set of physical switches or not. 

The second step is to define control policies that will allow 
the two networks to communicate with their respective servers. 



Net.A 

hl 

Net.B--< 

h2 h3 

~0 , ~c = Edge control policies 

PFab!x! = Fa bric control policies 

Fig. 2. A simple virtual network with two fabrics 

The following extract shows policies that allow ali network 
flows between Net.A and Serverl (similar policies are used 
between Net.B and Server2): 

def e dges () : 
e l = match( edge=" I O", s r c =" Net .A " , ds t=" WS1 11 ) >> 

tag ( 11 in_ wsl 11 ) >> forward ( " Fabl 11 ) 

e 2 = match( e d ge= 11 IO", dst= "Net . A ") >> forward(" Net . A n ) 
e3 = match( edge= " AC ", src= " WS1 11 , ds t = " Ne t. A") >> 

tag(" out _ ws l ") >> forward ( "Fab l ") 
e4 = match( edg e = " AC ", ds t = " WS l" ) >> forward(" WS l" ) 
return el + e2 + e3 + e4 

def t rans po rt( ): 
tl = catch( f abr i c=" Fabl ", src= '1 I O", fl ow=" in_ wsl " ) >> 

carry (dst= " AC ") 
t2 = catch( fabric= " Fab l", src = " AC ", flow= " out_wsl ") >> 

carry (d s t = " IO ") 
return tl + t 2 

The first function configures edges ro and AC as simple 
input/output deviees, meaning that they will only match flows 
and redirect them either inside or outside the network. For 
instance, the po licy e 1 uses the match instruction to capture 
ail flows coming from Net . A and having WSl as destination, 
then it tags these flows as in_wsl by sequentially combining 
the match with a tag instruction. Finally, the result is passed 
to the forward action that transfers packets to the output port 
leading to the first fabric. 

The transport function deals with fabric policies. In this 
simple example, labeled flows are carried from edge IO to 
edge AC, and vice versa. 

Note that AirNet does not impose any constraint on the 
control program 's structure (i.e., how policies are grouped into 
more general functions). For example, here we have defined 
edge() and transport() functions but one could use a different 
decomposition such as one function for ali policies allowing 
Net.A-WSJ flows and another function for Net.B-WS2. 

C. Dynamic control function: load balancer example 

As we have just seen, filters and actions allow network 
operators to write simple and static control applications. How­
ever, we believe that a control language should provide more 
powerful instructions in order to allow operators to write 
sophisticated and realistic control applications that can meet a 
variety of requirements. To fulfill this goal, we have integrated 
the concept of dynamic control function that implements a 
decision making process capable of generating, at runtime, new 
policies that change the control program's behavior. 

Dynamic control functions are defined in AirNet by using 
the decorator design pattern. Programmers will therefore be 

able to transform their own Python functions by simply apply­
ing this decorator, thereby being able to compose them with 
other AirNet primitives to build advanced policies. 
@DynamicControlFct( da t a= "packe t ", limi t = numb e r , spli t=[h=v] ) 
@DynamicControlFct( da ta= " s t a t", eve r y=seconds , spli t = [h=v ] ) 

As shown in the above syntax, the Dy nami cControlFct 

decorator has a data parameter that specifies whether to re­
trieve entire network packets or statistics related to the number 
of received bytes and packets. If network packets are used th en 
the limit and split parameters apply. The limit defines how 
many packets (from the matched flow) must be redirected to 
the network function. If limit is set to None, it means that 
ali packets need to be redirected to the network function. The 
second parameter is split, it allows to discriminate between 
packets that are sent to the network function. The split param­
eter is a list of head ers (e.g, split= [ "nw_src ", " tp_dst " J) that 
is used by our runtime as a key to identify subflows on which 
the limit parameter applies. If split is set to None, it means 
that the limit parameter applies on the entire flow. If statistics 
are used instead of en tire network packets, limit is replaced by 
a polling period specified thanks to the every parameter. 

As a concrete example, we will consider a use case that 
implements a dynamic Joad balancer on the same previous 
virtual topology (Fig. 2). The Joad balancing function is 
installed on edge AC. It intercepts web flows (i.e., HTTP flows 
sent to the web server's public address), and passes them to a 
dynamic control function that generates a new po licy changing 
the destination addresses (i.e., IP and MAC) of these flows to 
one of the backend severs (i.e., ws1 and ws2 ), white ensuring 
a workload distribution over the two servers. Moreover, the AC 
edge needs to modify the servers responses in order to restore 
the public address instead of the private ones (cf. e 2 and e3 ). 

def AC_ p ol i c y (): 
e l ~ match( edge~ " AC ", nw_dst~pub_WS , t p_dst~80 ) 

>> Dynamic_LB () 
e2 = match( e d ge= 11 AC 11 , src= "WS 1 11 ) 

>> modify( src=pub_ WS ) 
>> tag(" out_ web_ flows ") >> forward( 11 Fabl 11 ) 

e3 ~ match( e d ge= " AC ", src~ " WS2 ") 

>> modify( src~pub_WS ) 

>> tag(" out_web_ flows ") >> forward( 11 Fab2 ") 
return e l + e2 + e3 

As shown below, the Dynamic_ LB function is triggered for 
each first packet coming from a different IP source address, 
since the parame ter limit is set to "1 ", and the parameter split 
is set to "nw_src". The function extracts the match filter from 
the received packet, then uses it to generale a new policy for 
the other packets that belong to the same flow as the retrieved 
packet. Renee, one new forwarding rule will be installed at 
runtime on the physical infrastructure for each flow with a 
different IP source address. Regarding the forwarding decision, 
it is based on a simple Round-Robin algorithm: if the value of 
a token is one, then the flow is sent to the first backend server, 
else it is sent to the second one. 
@DynamicControlFct (da t a = "packe t ", l i mi t = l , spl i t = [ " nw_ src " J ) 
def Dynamic_ LB (self , packe t ): 

my_ match = match. from_ packet( p acket ) 
if se lf.rrlb_t o ken =~ 1 : 

se l f . rrlb_ token = 2 
return my_ ma t c h >> modify( dst= " WS l ") >> forward(" WS l ") 

else: 
sel f . rr l b_ to k en = 1 
return my_ mat ch >> modify( ds t = " WS2 11 ) >> forward( 11 WS2 ") 



D. Dynamic control function: data cap example 

As explained in the previous section, dynamic control 
functions can also rely on network statistics. Here we present a 
data cap use case which monitors and possibly suspends traffic 
coming from a particular host if it exceeds a data threshold 
(again, we use the virtual topology shown in Fig. 2): 

match (edge = " IO ", src = " Net . A") >> tag( 11 in_ flows " ) 
>> (forward ( " Fab l") + check_ data_ cap ()) 

The check_data_cap function is executed in parallel of 
the forward action (the + operator is used). Based on the 
decorator's arguments, the function will be called by the 
network hypervisor every hour, providing statistics sorted by 
network source address: 
@Oynam.ieControlFct (data= "stat ", every=3600 , sp l it=[ " nw_ src 11 ] ) 

def check_dat a_cap (s tat ): 
if s tat . b y te_ coun t > t h r esho l d: 

return (s t a t. ma t ch >> drop) 

Note that policies returned by dynamic control functions 
are al ways installed with a higher priority than existing ones. In 
this example, it guarantees that the drop action on the subflow 
is installed with a higher priority than the globalforward action 
executed in parallel, thus only blocking the flows that exceed 
the threshold. 

E. Data function: codee conversion example 

Until now, we have seen that AirNet allows to easily 
configure paths and other control functions between hosts 
within a virtual network, configuration which may be static 
or dynamic . However, it is quite common, especially today 
with the rise of Network Functions Virtualization (NFV), 
to have networks that include severa! network appliances or 
middleboxes that implement complex data processing on the 
packet's payload that cannot be performed by the switches' 
basic set of actions (i.e., forward, modify, drop). Encryption, 
compression or transcoding are examples of such functions. 
For this purpose, AirNet provides a mechanism to easily 
redirect a flow through one or severa! data plane middleboxes, 
that we define as DataMachines. As for edges, a DataMachine 
must be connected to a fabric. However, they are not associated 
to any AirNet primitive since their processing depends only on 
the data function they host. 

For this use case, we consider severa! clients streaming 
media from a YoD service. Fig. 3 shows the virtual topology 
we use. We assume that flows from the YoD service consumed 
by Net.A end-users must pass through the codee conversion 
function deployed on the CC data machine. This policy can 
be completely specified within the fabric that implements the 
service chaining logic between the virtual units: 

def t ranspo rt(): 
tl = catch (fabric=" Fab ", src="I O", flow= "i n_ vod_ f lows " ) 

>> ca rry (dst~AC) 

t 2 = catch (fabric =" Fab ", src= 11 AC ", f l ow=" out_ vod_ fl ows ") 
>> vi a (da t aMachine = "CC", dataFct = "CodecConve rsion 11 ) 

>> carry (dst~IO ) 

return tl + t2 

IV. IMPLEMENTATION AND EVALUATION 

In this section, we briefly outline AirNet's implementa­
tion, then we present the experiments we have conducted on 

Datafct 

Net.A 

hl hx 
h2 

Fig. 3. Virtual network with one data machine 

different use cases and physical topologies executed with the 
Mininet network emulator. 

A. AirNet's general architecture 

The AirNet language has been implemented as a domain­
specifie language embedded in Python, as well as a runtime 
system that we name "AirNet hypervisor" . Fig. 4 gives an 
overview of our prototype's architecture. Our current imple­
mentation relies on the POX controller. The runtime core 
module is composed of two main parts: i) the proactive core 
that relies on other modules to resolve, in particular, policy and 
topology mapping issues and to generate the initial network's 
configuration, and ii) the reactive core that handles dynamic 
control functions and changes that may occur in the physical 
topology (e.g. link down). 

inpur rc:-...,.,..·::,-···...,.···.,.,--l'!eJ..I_ ____ l 

r· 

~---- OpenFiow 

~ ............. \ C(~r.7'J 
'-..__ Min inet -----------· 

Fig. 4. AirNet's architecture overview 

B. Experiments 

In this section we present some experimental results we 
have obtained by conducting functional, performance and 
scalability tests. In the first set of tests (Table 1), we executed 
four use cases addressing different scenarios with different 
virtual topologies (detailed in section III). These tests were 
performed on the same physical topology composed of 11 
physical switches. In the second set of tests (Fig. 5), we 
did sorne measures with greater number of virtual policies 
as weil as larger physical topologies. Finally, the last set of 
tests (Fig. 6) concentrated on end-to-end delay with respect to 
network functions utilization. Ali these tests were performed 
with Mininet in a virtual machine with 2 GB of RAM and a 
2,7 GHz Intel Core i5 CPU. 

Table 1 shows the execution results in terms of total physi­
cal rules generated and compilation time divided into two main 
steps: i) the virtual composition step which mainly includes 
retrieving infrastructure information to build a corresponding 
graph, and composing virtual policies to resolve ali intersection 
issues, ii) the physical mapping step which includes trans­
forming virtual policies into physical rules, finding appropriate 



TABLE l. NUMBER OF POLJCJES AND RULES FOR EACH USE CASE 

Use case 
Virtual Physical Composition Physical 
policies rules generated ti me mapping ûme 

twoFab 12 42 101 20 
dynLB 9 31 94 16 
bwCap 6 27 89 Il 
dataFct 10 44 100 29 

Fig. 5. AirNet's proactive phase: compilation lime according to the number 
of virtual policies (left) and to the number of physical switches/rules (right) 

paths for each flow, and finally distributing physical rules on 
switches according to the specified mapping module. 

Number of generated physical rules. Table I underlines 
the difference between the number of specified virtual policies 
and the number of rules actually installed by our hypervisor 
on the physical switches, which is greater by a factor two or 
three. Thus, a first conclusion that we can draw is that the usage 
of AirNet effectively simplifies network programmability, and 
this not only by providing modern control instructions, but also 
by sparing administrators from the tedious task of writing a 
large number of low-level rules and handling at the same time 
their intersection and priority issues. Moreover, the cost of this 
simplification is highly acceptable since, for ali the use cases, 
it remains in the order of a hundred milliseconds. 

Virtual composition time. As illustrated in Fig. 5, the 
virtual composition time is highly correlated to the number 
and the complexity of the specified virtual policies, but to­
tally independent from the size of the physical infrastructure. 
Indeed, we can see on the left graph that the more virtual 
policies, the greater the virtual composition time is. However, 
on the right graph, the same control program executed over 
different physical topologies (varying from 7 to 127 switches) 
shows the same virtual composition time. 

Physica1 mapping time. Still looking at Fig. 5, we can see 
that the physical mapping time is correlated to both virtual 
policies and physical infrastructure. On the left graph, we 
have the same physical topology, but the more virtual policies 
are added, the more the hypervisor needs to solve policy 
composition issues, which ultimately gives a greater mapping 
time. The same goes for the right graph, the number of 
policies does not change but the more the topology is large and 
complex, the more the hypervisor needs to perfonn calculation 
to find paths and install a large number of physical rules, 
thereby resulting in a greater physical mapping lime. 

Dynamic and data fonctions delay. We finally made tests 
to measure the impact of dynamic control and data functions on 
the end-to-end delay. To conduct this experiment, we installed 
a path between two hosts within the network (composed of 

10 0 
Delay (topology with 11 physical switches) 

• -. No network function 
*" _,. Via data machine (no data fct) 

0 • -11 Via data machine (simulated data fct) 

' ..... Dynamic control function 
' ' ' 

0 

• 

• • • 

' ' 

0 ' 

', . 

' • • • 

• 
~ . 

• 

• • 

• • 

• 

• 
• 

0 ~\\, 
' ' \ \ ;, 

·;,' -- ·-- _, -- -- -- ·--- --
0 

,_-- , ___ --- --- -- ·-- . -- . --

10 

Fig. 6. Impact of dynamic control and data functions on the RTT 

11 physical switches) and measured the round-trip time (RTT) 
between them using four different approaches: i) the path is 
installed proactively (i.e. at deployment time), ii) the path is 
installed by a dynamic control function at runtime, iii) the path 
is installed proactively but goes through a DataMachine, which 
does not perform any function (other than forwarding the flow) 
and iv) the path goes through a DataMachine in which we have 
simulated a data function. Fig. 6 shows the results. 

With no network function, the first measure is higher than 
the other nine: this is due to the initial ARP guery that is 
handled by a proxy ARP we have implemented within the 
controller. This also explains why the fi.rst RTT is higher in 
the data functions tests. In our experiments, passing through 
an "empty'' DataMachine (implemented by a Mininet host 
with two interfaces) adds only a few milliseconds to the RTT. 
When we simulated a simple function (printing the payload's 
content), the RTT increased a little ( < lOms) but this is not 
relevant since the actual delay will depend entirely on the data 
function's complexity. Finally, regarding the dynamic control 
function, the high first delay ('::::::: 95ms) is mainly due to the 
time required to redirect the first packet of the flow to AirNet's 
hypervisor, to evaluate the function and install the new path 
according to the returned policy. Once the new path is installed, 
the RTT is equivalent to the one of proactive static paths. 

To conclude, these charts demonstrate the feasibility of our 
edge-fabric approach and, to a lesser extent, its scalability 
(we emulated tree topologies up to 127 physical switches). 
Moreover, the different use cases we have tested confirm that 
AirNet allows programmers to focus on the specification of 
their high-level policies and delegate the low-level complexity 
to the hypervisor (high number and intersection of physical 
rules). Also, we have seen that using these network abstractions 
leads to an extra time cost, nevertheless we think that this small 
cost is perfectly bearable considering the benefits in terms 
of modularity and flexibility brought by the use of network 
virtualization. 

V. RELATED WORK 

Proposing modern programrlling language for SDN plat­
forms has been the subject of numerous research projects. In 
this section we will present those that we think are the most 
important and closest to our research problem. 



The focus of early related works was mainly on the low­
level nature of SDN programming interfaces and their inability 
to build control modules that compose. The FML language 
[5] is one of the very first, it allows to specify policies 
about ftows, where a policy is a set of statements, each 
representing a simple if-then relationship. Frenetic [6] is a 
high-levellanguage that pushes programming abstractions one­
step further. Frenetic is implemented as a Python library and 
comprises two integrated sub-languages: i) a declarative guery 
language that allows administrators to read the state of the 
network and ii) a general-purpose library for specifying packet 
forwarding rules. 

Additional proposais introduced features enabling the con­
struction of more realistic and sophisticated control programs. 
Indeed, languages such as Procera [7] and NetCore [8] offer 
the possibility to guery traffic history, as weil as the controller's 
state, thereby allowing network administrators to construct 
dynamic policies that can automatically react to conditions like 
authentication or bandwidth use. 

AirNet 's contribution differs from these previous work by 
the logical abstractions on which network operators specify 
their control programs. These logical abstractions mainly allow 
to: i) ease network programmability by providing only relevant 
information to administrators in order to specify their high­
level goals and ii) reduce the correlation between the control 
programs and the physical infrastructure, thereby enabling a 
better reusability and greater ftexibility. 

Recently, Monsanto et al. proposed the Pyretic language 
[9], which introduced two main programrning abstractions 
that have greatly simplified the creation of modular control 
programs. First, they provide, in addition to the existing 
parallel composition operator, a new sequential one that applies 
a succession of functions on the same packet flow. Second, they 
allow network administrators to use their control policies over 
abstract topologies, thus constraining what a control module 
can see and do. 

Merlin [ 10] is a recent programming language designed to 
address essential aspects of the one big switch abstraction. Its 
main contribution is to allow programmers to specify a set of 
authorized forwarding paths through the network using regular 
expressions that match sequences of network locations, includ­
ing names of packet-processing functions. Merlin also allows 
to specify bandwidth constraints on network ftows. However, 
we think that it presents two shortcomings: i) even if it is 
possible to process the entire network as a single big switch, 
there is no clear separation between the control program and 
the physical infrastructure (i.e., physical constraints are tied 
to the control program) and ii) Merlin offers limited dynamic 
adaptation, meaning that Merlin allows programmers to only 
add new constraints on existing ftows, but they can not change 
the overall control program behavior. 

The novelty of the AirNet control language is to rely on 
an edge/fabric abstraction mode!, compared to existing work 
that make use either of the one big switch (e.g., Merlin) or 
the overlay mode! (e.g., Pyretic). We claim that using this 
mode! at the virtual network leve! offers greater modularity 
by enforcing logical boundaries between edge and fabric 
policies and th us easing the ir evolution, maintenance and re use. 
Another difference with related work is that, thanks to a 

separate mapping module, we make a clear distinction between 
the virtual network and the physical infrastructure, while also 
allowing administrators to consider the possible underlying 
physical constraints (such as in-network functions placement, 
processing capabilities or administrative boundaries) that can 
not or should not be hidden from the control program. 

VI. CONCLUSION 

This paper described the design and the implementation 
of AirNet, a new high-level domain specifie language for 
programming virtual networks. AirNet's programming pattern 
involves, first, defining a virtual network that copes with the 
operator's high-level goals and possible physical constraints, 
second, specifying the control policies that will apply to it. 
We used network virtualization as a main feature in order 
to both build portable control programs independent of the 
physical infrastructure and to spare administrators the trouble 
of dealing with low-level parameters. The main novelty in 
AirNet is to integrate an abstraction model that offers a clear 
separation between functions that represent network basic 
packet transport capacities and functions that represent richer 
network services (i. e., data and dynamic control functions). 
In addition, AirNet provides an easy and intuitive way for 
programming and composing these advanced network services, 
allowing operators to extend the language according to their 
own requirements. Finally, we described our Air Net hypervisor 
prototype, which has been successfully tested over severa) use 
cases, sorne of them presented in this article. 

Currently, we are still testing the AirNet hypervisor and 
finishing some implementation issues. Also, we are working on 
the possibility to send code (i.e., data functions) to be executed 
on data machines, and on the proposai of a development 
environment for AirNet that would include a specifie policy 
editor and debugger. 

REFERENCES 

[1] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, "Virtualizing 
the Network Forwarding Plane," in PRESTO. ACM, 2010. 

[2] E. Keller and J. Rex ford , "The "Platform As a Service" Mode! for 
Networking," in Froc. of the 2010 Internet Network Management 
Workshop (INM!WREN'JO). USENIX Association, 2010. 

[3] M. Aouadj , E. Lavina!, T. Desprats, and M. Sibilla, 'Towards a 
virtualization-based control language for SDN platforms," in Froc. of 
the lOth /nt. Conf on Network and Service Management (CNSM) , 2014. 

[4] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, "Fabric: A 
Retrospective on Evolving SDN," in Froc. of the First Workshop on 
Hot Topics in Software Defined Networks (HotSDN'l2). ACM, 2012. 

[5] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker, 
"Practical declarative network management," in Froc. of the lst ACM 
Workshop on Research on Enterprise Networking. ACM, 2009. 

[6] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, 
A. Story, and D. Walker, "Frenetic: A network programming language," 
SIGPLAN Notices, vol. 46, no. 9, 2011. 

[7] A. Voellmy, H. Kim, and N. Feamster, "Procera: A language for high­
level reactive network control," in Proc. HotSDN. ACM, 2012. 

[8] C. Monsanto, N. Foster, R. Harrison , and D. Watker, "A compiler 
and run-time system for network programming languages," SIGPLAN 
Notices , vol. 47, no. 1, 2012. 

[9] C . Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, "Compos­
ing Software Detined Networks," in USENIX Symposium, NSD/, 2013 . 

[10] R. Soulé, S. Basu, P. J. Marandi , F. Pedone, R. Kleinberg, E. G. 
Sirer, and N. Foster, "Merlin: A Language for Provisioning Network 
Resources," in CoNEXT 14, 2014. 




