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Abstract. The article is dedicated to the presentation of a vision-based system for road vehicle counting and
classification. The system is able to achieve counting with a very good accuracy even in difficult scenarios linked
to occlusions and/or presence of shadows. The principle of the system is to use already installed cameras in road
networks without any additional calibration procedure. We propose a robust segmentation algorithm that detects
foreground pixels corresponding to moving vehicles. First, the approach models each pixel of the background
with an adaptive Gaussian distribution. This model is coupled with a motion detection procedure, which allows
correctly location of moving vehicles in space and time. The nature of trials carried out, including peak periods
and various vehicle types, leads to an increase of occlusions between cars and between cars and trucks. A
specific method for severe occlusion detection, based on the notion of solidity, has been carried out and tested.
Furthermore, the method developed in this work is capable of managing shadows with high resolution. The
related algorithm has been tested and compared to a classical method. Experimental results based on four
large datasets show that our method can count and classify vehicles in real time with a high level of performance
(>98%) under different environmental situations, thus performing better than the conventional inductive loop
detectors.

Keywords: computer vision; tracking; traffic image analysis; traffic information systems.

1 Introduction

A considerable number of technologies able to measure
traffic flows are available in the literature. Three of the
most established ones are summarized below.

Inductive loops detectors (ILD): The most deployed are
inductive loops installed on roads all over the world.1

This kind of sensor presents some limitations linked to
the following factors: electromagnetic fields, vehicles mov-
ing very slowly not taken into account (<5 km∕h), vehicles
close to each other, and very small vehicles. Furthermore, the
cost for installation and maintenance is very high.

Infrared detectors (IRDs): There are two main families
among the IRDs: passive IR sensors and active ones (emis-
sion and reception of a signal). This kind of sensor presents
low accuracy in terms of speed and flow. Furthermore, the
active IRDs do not allow detecting certain vehicles such as
two-wheeled or dark vehicles. They are also very susceptible
to rain.1

Laser sensors: Laser sensors are applied to detect
vehicles, to measure the distance between the sensor and
the vehicles, and the speed and shape of the vehicles.
This kind of sensor does not allow detecting fast vehicles,
is susceptible to rain, and presents difficulty in detecting
two-wheeled vehicles.1

A vision-based system is chosen here for several reasons:
the quality of data is much richer and more complete com-
pared to the information coming from radar, ILD, or lasers.
Furthermore, the computational power of contemporary com-
puters is able to meet the requirements of image processing.

In the literature, a great number of methods dealing with
vehicle classification using computer vision can be found. In
fact, the tools developed in this area are either industrial sys-
tems developed by companies like Citilog in France,2 or
FLIR Systems, Inc.,3 or specific algorithms developed by
academic researchers. According to Ref. 4, many commer-
cially available vision-based systems rely on simple process-
ing algorithms, such as virtual detectors, in a way similar to
ILD systems, with limited vehicle classification capabilities,
in contrast to more sophisticated academic developments.5,6

This study presents the description of a vision-based sys-
tem to automatically obtain traffic flow data. This system
operates in real time and can work during challenging scenar-
ios in terms of weather conditions, with very low-cost cam-
eras, poor illumination, and in the presence of many shadows.
In addition, the system is conceived to work on the already
existing cameras installed by the transport operators.
Contemporary cameras are used for traffic surveillance or
detection capabilities like incident detections (counterflow,
stopped vehicles, and so on). The objective in this work is
to directly use the existing cameras without changing existing
parameters (orientation, focal lens, height, and so on). From a
user-needs analysis carried out with transport operators, the
system presented here is mainly dedicated to a vehicle count-
ing and classification for ring roads (cf. Fig. 1).

Recently, Unzueta et al.7 published a study on the same
subject. The novelty of their approach relies on a multi-cue
background subtraction procedure in which the segmentation
thresholds adapt robustly to illumination changes. Even if the
results are very promising, the datasets used in the evaluation
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phase are very limited (duration of 5 min.). Furthermore, the
handling of severe occlusions is out of the scope of his paper.

The novelty of our approach is threefold. (1) We propose
an approach for background subtraction, derived from
improved Gaussian mixture models (GMMs), in which
the update of the background is achieved recursively. This
approach is combined with a motion detection procedure,
which can adapt robustly to illumination changes, maintain-
ing a high sensitivity to new incoming foreground objects.
(2) We also propose an algorithm able to deal with strong,
moving casted shadows. One of the evaluation datasets is
specifically shadow-oriented. (3) Finally, a new algorithm
able to tackle the problems raised by severe occlusions
among cars, and between cars and trucks is proposed.

We include experimental results with varying weather
conditions, on sunny days with moving directional shadows
and heavy traffic. We obtain vehicle counting and classifica-
tion results much better than those of ILD systems, which are
currently the most widely used systems for these types of
traffic measurements, while keeping the main advantages
of vision-based systems, i.e., not requiring the cumbersome
operation or installation of equipment at the roadside or the
need for additional technology such as laser scanners, tags,
or GPS.

2 Related Work

Robust background subtraction, shadows management, and
occlusion care are the three main scientific contributions of
our work.

2.1 Background Subtraction

The main aim of this section is to provide a brief summary of
the state-of-the-art moving object detection methods based
on a reference image. The existing methods of background
subtraction can be divided according to two categories:7 non-
parametric and parametric methods. Parametric approaches
use a series of parameters that determines the characteristics
of the statistical functions of the model, whereas nonpara-
metric approaches automate the selection of the model
parameters as a function of the observed data during training.

2.1.1 Nonparametric methods

The classification procedure is generally divided into two
parts: a training period of time and a detection period.
The nonparametric methods are efficient when the training
period is sufficiently long. During this period, the setting
up of a background model consists in saving the possible
states of a pixel (intensity, color, and so on).

Median value model. This adaptive model was developed
by Greenhill et al. in Ref. 8 for moving objects extraction
during degraded illumination changes. Referring to the
different states of each pixel during a training period, a
background model is thus elaborated. The background is
continuously updated for every new frame so that a vector
of the median values (intensities, color, and so on) is built
from the N∕2 last frames, where N is the number of frames
used during the training period. The classification back-
ground/object is simply obtained by thresholding the dis-
tance between the value of the pixel to classify and its
counterpart in the background model. In order to take into

account the illumination changes, the threshold considers
the width of the interval containing the pixel values.

This method based on the median operator is more robust
than that based on running average.

Codebook. The codebook method is the most famous non-
parametric method. In Ref. 9, Kim et al. suggest modeling
the background based on a sequence of observations of each
pixel during a period of several minutes. Then, similar occur-
rences of a given pixel are represented according to a vector
called codeword. Two codewords are considered as different
if the distance, in the vectorial space, exceeds a given thresh-
old. A codebook, which is a set of codewords, is built for
every pixel. The classification background/object is based
on a simple difference between the current value of each
pixel and each of the corresponding codewords.

2.1.2 Parametric methods

Most of the moving objects extraction methods are based on
the temporal evolution of each pixel of the image. A
sequence of frames is used to build a background model
for every pixel. Intensity, color, or some texture characteris-
tics could be used for the pixel. The detection process con-
sists in independently classifying every pixel in the object/
background classes, according to the current observations.

Gaussian model. In Ref. 10, Wren et al. suggest to
adapt the threshold on each pixel by modeling the intensity
distribution for every pixel with a Gaussian distribution.
This model could adapt to slow changes in the scene, like
progressive illumination changes. The background is
updated recursively thanks to an adaptive filter. Different
extensions of this model were developed by changing the
characteristics at pixel level. Gordon et al.11 represent
each pixel with four components: the three color components
and the depth.

Gaussian mixture model. An improvement of the pre-
vious model consists in modeling the temporal evolution
with a GMM. Stauffer and Grimson12,13 model the color
of each pixel with a Gaussian mixture. The number of
Gaussians must be adjusted according to the complexity
of the scene. In order to simplify calculations, the covariance
matrix is considered as diagonal because the three color
channels are taken into account independently. The GMM
model is updated at each iteration using the k-mean algo-
rithm. Harville et al.14 suggest to use GMM in a space com-
bining the depth and YUV space. They improve the method
by controlling the training rate according to the activity in the
scene. However, its response is very sensitive to sudden var-
iations of the background like global illumination changes. A
low training rate will produce numerous false detections dur-
ing an illumination change period, whereas a high training
rate will include moving objects in the background model.

Markov model. In order to consider the temporal evolu-
tion of a pixel, the order of arrival of the gray levels on
this pixel is useful information. A solution consists in mod-
eling the gray level evolution for each pixel by a Markov
chain. Rittscher et al.15 use a Markov chain with three states:
object, background, and shadow. All the parameters of the
chain, initial, transition, and observation probabilities, are



estimated off-line on a training sequence. Stenger et al.16 pro-
posed an improvement, since after a short training period,
the model of the chain and its parameters continues to be
updated. This update, carried out during the detection period,
allows us to better deal with the nonstationary states linked,
for example, to sudden illumination changes.

2.2 Shadow Removal

In the literature, several shadow detection methods exist,
and, hereunder, we briefly mention some of them.

In Ref. 17, Grest et al. determine the shadow zones by
studying the correlation between a reference image and a
current image from two hypotheses. The first one states
that a pixel in a shadowed zone is darker than the same
pixel in an illuminated zone. The second one starts from
a correlation between the texture of a shadowed zone and
the same zone of the reference image. The study of Joshi
et al.18 shows correlations between the current image and
the background model using four parameters: intensity,
color, edges, and texture.

Avery et al.19 determine the shadow zones with a region-
growing method. The starting point is located at the edge of
the segmented object. Its position is calculated thanks to the
sun position obtained from GPS data and time codes of the
sequence.

Song et al.20 make the motion detection with Markov
chain models and detect shadows by adding different shadow
models.

Recent methods for both background subtraction and
shadow suppression mix multiple cues, such as edges and
color, to obtain more accurate segmentations. For instance,
Huerta et al.21 apply heuristic rules by combining a conical
model of brightness and chromaticity in the RGB color space
along with edge-based background subtraction, obtaining
better segmentation results than other previous state-of-
the-art approaches. They also point out that adding a
higher-level model of vehicles could allow for better results,
as these could help with bad segmentation situations. This
optimization is seen in Ref. 22, in which the size, position,
and orientation of a three-dimensional bounding box of a
vehicle, which includes shadow simulation from GPS
data, are optimized with respect to the segmented images.
Furthermore, it is shown in some examples that this approach
can improve the performance compared to using only
shadow detection or shadow simulation. Their improvement
is most evident when shadow detection or simulation is inac-
curate. However, a major drawback for this approach is the
initialization of the box, which can lead to severe failures.

Other shadow detection methods are described in recent
survey articles.23,24

2.3 Occlusion Management

Except when the camera is located above the road, with
perpendicular viewing to the road surface, when vehicles

are close, they partially occlude one another and correct
counting is difficult. The problem becomes harder when
the occlusion occurs as soon as the vehicles appear in the
field of view. Coifman et al.25 propose tracking vehicle fea-
tures and to group them by applying a common motion
constraint. However, this method fails when two vehicles
involved in an occlusion have the same motion. For example,
if one vehicle is closely following another, the latter partially
occludes the former and the two vehicles can move with the
same speed and their trajectory can be quite similar. This sit-
uation is usually observed when the traffic is too dense for
drivers to keep large spacings between vehicles and to avoid
occlusions, but not enough congested to make them con-
stantly change their velocity. Pang et al.5 propose a threefold
method: a deformable model is geometrically fitted onto the
occluded vehicles; a contour description model is utilized to
describe the contour segments; a resolvability index is
assigned to each occluded vehicle. This method provides
very promising results in terms of counting capabilities.
Nonetheless, the method needs the camera to be calibrated
and the process is time-consuming.

3 Moving Vehicle Extraction and Counting

3.1 Synopsis

In this work, we have developed a system that automatically
detects and counts vehicles. The synopsis of the global proc-
ess is presented in Fig. 2. The proposed system consists of
five main functions: motion detection, shadow removal,
occlusion management, vehicle tracking, and trajectory
counting.

The input of the system is, for instance, a video footage
(in the current version of the system, we use a prerecorded
video), while the output of the system is an absolute number
of vehicles. The following sections describe the different
processing steps of the counting system.

3.2 Motion Detection

Motion detection, which provides a classification of the pix-
els into either foreground or background, is a critical task in
many computer vision applications. A common approach
to detect moving objects is background subtraction, in
which each new frame is compared to the estimated back-
ground model.

Motion

detection

Shadow

removal

Occlusion

management

Vehicle

tracking

Trajectory

counting
Traffic

information

Video

Fig. 2 Synopsis of the proposed system for vehicle counting.

Fig. 1 Some images shot by the existing CCTV system in suburban fast lanes at Toulouse in the
southwest of France.



Exterior environment conditions like illumination varia-
tions, casted shadows, and occlusions can affect motion
detection and lead to wrong counting results. In order to
deal with such particular problems, we propose an approach
based on an adaptive background subtraction algorithm
coupled with a motion detection module. The synopsis of
the proposed approach is shown in Fig. 3.

The first two steps, background subtraction and motion
detection, are independent and their outputs are combined
using the logical AND operator to get the motion detection
result. Then, an update operation is carried out. This ultimate
step is necessary for motion detection at the next iteration.
Those steps are detailed below.

3.2.1 Background subtraction using Gaussian
mixture model

The GMM method for background subtraction consists in
estimating a density function for each pixel. The pixel dis-
tribution is modeled as a mixture ofNG Gaussians. The prob-
ability of occurrence of a color ItðpÞ at the given pixel p is
estimated as

EQ-TARGET;temp:intralink-;e001;63;516P½ItðpÞjIp$ ¼
X

NG

i¼1

wt
iðpÞη½ItðpÞjμtiðpÞ;Σt

iðpÞ$; (1)

wherewt
iðpÞ is the mixing weight of the i 0th component at time

t, for pixel p (
PNG

i¼1 w
t
iðpÞ ¼ 1). Terms μtiðpÞ and Σ

t
iðpÞ are

the estimates of the mean and the covariance matrix that
describe the i 0th Gaussian component. Assuming that the
three color components are independent and have the same var-
iances, the covariance matrix is of the form Σ

t
iðpÞ ¼ σ

t
iðpÞI.

The current pixel p is associated with Gaussian compo-
nent k if kItðpÞ − μ

t
kðpÞk < Sdσ

t
kðpÞ, where Sd is a multiply-

ing coefficient of the standard deviation of a given Gaussian.
The value of Sd generally lies between 2.5 and 4, depending
on the variation of lighting condition of the scene. We fixed it
experimentally to 2.7.

For each pixel, the parameters of the matched component
k are then updated as follows (the pixel dependence has been
omitted for brevity):
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(2)

where αðpÞ is the updating coefficient of pixel p. An updat-
ing matrix that defines the updating coefficient of each pixel

will be reestimated at the final stage of the motion detection
process.

For the other components that do not satisfy the above
condition, their weights are adjusted with

EQ-TARGET;temp:intralink-;e003;326;708wt
k ¼ ð1 − αÞwt−1

k : (3)

If no matched component can be found, the component
with the least weight is replaced by a new component
with mean ItðpÞ, an initial variance, and a small weight w0.

In order to determine whether p is a foreground pixel,
all components are first ranked according to the value
wt
kðpÞ∕σtkðpÞ. High-rank components, which have low var-

iances and high probabilities, are typical characteristics of
background. The first CðpÞ components describing the back-
ground are then selected by the following criterion:

EQ-TARGET;temp:intralink-;e004;326;577CðpÞ ¼ arg min
CðpÞ

(

X

CðpÞ

i¼1

wt
iðpÞ > SB

)

; (4)

where SB is the rank threshold, which measures the mini-
mum portion of the components that should be accounted
for the background. The more complex the background
motion, the more the number of Gaussians needed and
the higher the value of SB.

Pixel p is declared as a background pixel if ItðpÞ is asso-
ciated with one of the background components. Otherwise,
it is detected as a foreground pixel.

This moving object detection using GMM could also be
employed to detect motionless vehicles. Indeed, this func-
tionality dealing with safety is often questioned by transport
operators. In our ring road environment, our main concern is
to detect and count moving vehicles. Furthermore, we do not
consider traffic jam periods because, in this case, the vehicle
flow will decrease, and it is more useful to calculate the
density of vehicles.

3.2.2 Moving region detection

In order to produce better localizations of moving objects
and to eliminate all the regions that do not correspond to
the foreground, a second algorithm is combined with the
GMM method. This algorithm is much faster than the
first one and maintains the regions belonging to real moving
objects and eliminates noise and false detections. This mod-
ule looks into the difference among three consecutive frames.
This technique has the advantage of requiring very few
resources. The binary motion detection mask is defined by

EQ-TARGET;temp:intralink-;e005;326;224MtðpÞ ¼

(

jItðpÞ − It−1ðpÞ − μ1j

σ1

> SM

)

∪

(

jIt−1ðpÞ − It−2ðpÞ − μ2j

σ2

> SM

)

; (5)

where ItðpÞ is the gray level of pixel p at time t, μ1 and σ1 are
the mean and the standard deviation of jIt − It−1j, and SM is
a threshold of the normalized image difference. The value
of SM has been experimentally defined to be 1.0 in our
application.

Moving

regions
Video

Model

updating

Background

subtraction

Moving region

detection

Fig. 3 Synopsis of the motion detection module.



3.2.3 Result combination and model updating

At this stage, the results of the GMM and of the moving
region detection methods are merged. This leads to moving
object detection illustrated by Fig. 4. Figure 4(a) shows the
observed scene. In Fig. 4(b), the GMM method has precisely
segmented moving objects but noise still remains. The
motion region detection [Fig. 4(c)] precisely generates an
undesired artifact behind the vehicle, which is eliminated
after the combination of the two methods [Fig. 4(d)].
Noise is also eliminated.

The updating matrix that defines the updating coefficient
of the Gaussian mixture of each pixel, used in Eqs. (2)
and (3), is reestimated at this step. It is a probability matrix
that defines the probability for a pixel to be part of the back-
ground. Initially, each element of the updating matrix is

equal to M. We experimentally defined M to be 0.01 in
our application. Then, the coefficients of this matrix are
reestimated as follows:

EQ-TARGET;temp:intralink-;e006;326;461αðpÞ ¼

+

m if p is detected as a pixel in motion;

M otherwise;
(6)

where m ≪ M. We fixed m to 0.0001 in our application.
The algorithm is able to tackle the problems of difficult

environments by extracting the moving objects with accu-
racy thanks to the background subtraction algorithm based
on GMM coupled with an adaptive update of the background
model, and by managing important illumination changes
with the moving region detection module. In Fig. 5, an illus-
tration of the ability of the algorithm to deal with artifacts is

Fig. 4 Combination of the two results: (a) observed scene, (b) foreground detected by GMM, (c) moving
region detection result, and (d) final result.

Fig. 5 Background perturbation illustration: (a) observed scene, (b) foreground detected by GMM,
(c) moving region detection result, and (d) final result.



provided. Observed scene [Fig. 5(a)] was captured after an
important background perturbation was caused by the pass-
ing of a truck a few frames earlier. The detected foreground
[Fig. 5(b)] is disturbed, but the moving region detection
module [Fig. 5(c)] allows us to achieve a satisfying result
[Fig. 5(d)].

3.3 Shadow Elimination

For shadow elimination, the algorithm developed is inspired
from Xiao’s approach.26 This latter was modified and
adapted to our problem. The authors have noticed that in
a scene including vehicles during a period with high illumi-
nation changes, these vehicles present strong edges whereas
shadows do not present such marked edges. In fact, from
where the scene is captured, road seems to be relatively uni-
form. In a shadowed region, contrast is reduced and reinfor-
ces this characteristic. Edges on the road are located only on
marking. On the contrary, vehicles are very textured and con-
tain many edges. Our method aims at correctly removing
shadows while preserving the initial edges of the vehicles.
As shown in Fig. 6, all steps constituting our method are
processed in sequence. Starting from results achieved by
the motion detection module, we begin to extract edges.
Then, exterior edges are removed. Finally, blobs (regions
corresponding to vehicles in motion) are extracted from
remaining edges. Each step is detailed in the following para-
graphs. This method is efficient, whatever the difficulty
linked to the shadow.

3.3.1 Edge extraction

Edge detection is a fundamental tool in image processing,
which aims at identifying in a digital image pixels

corresponding to object contours. We used the Canny’s fil-
ter,27 which is an efficient edge detector, with hysteresis
thresholding allowing us to detect a sufficient number of
edges belonging to the vehicles while maintaining a low
number of detected edges on the road. Canny’s filter is
applied on the foreground regions determined by the last
module of motion detection detailed in Sec. 3.2. This fore-
ground image is first dilated with a 3 × 3 structuring element
(SE) to ensure getting all vehicle edges. In our situation,
applying the filter on the three RGB channels of the images
would not bring significant additional information. That is
why we simply use it on a gray-level image. Moreover, it
reduces processing time. As shown in Fig. 7, from the
observed scene [Fig. 7(a)] and as a result of the moving
region detection module [Fig. 7(b)], foreground edges
[Fig. 7(c)] are extracted. It can be noticed that shadow
areas are linked to vehicles only with their exterior edges.

3.3.2 Exterior edge removal

To remove exterior edges, an erosion is applied on the binary
image previously dilated. Since the image was dilated with a
3 × 3 SE, it is now necessary to use a bigger SE to com-
pletely eliminate the exterior edges. For that, we apply an
erosion operation with a 7 × 7 SE to remove exterior
edges on a two- or three-pixel width. A logical AND is
then processed between this eroded image and the previously
detected edges. Thus, only interior edges are kept. As illus-
trated in Fig. 8, from an observed scene in the presence of
shadows [Fig. 8(a)] and the detected edges [Fig. 8(b)], this
module removes most of the exterior edges [Fig. 8(c)]. The
rest will be removed by the next operation, described in the
next paragraph.

3.3.3 Blob extraction

The goal of this procedure is to extract blobs from the
remaining edges. It consists of horizontal and vertical oper-
ations, which give two results. For the horizontal operation,
we proceed as follows: on each row, the distance in pixels

moving

regions
Edge

extraction

Exterior edge

removal

Blob

extraction
Blobs

Fig. 6 Synopsis of the shadow removal module.

Fig. 7 Foreground edges: (a) observed scene, (b) moving region detection result, and (c) detected
edges.



between two edge pixels is computed. If this distance is
lower than a threshold, then the pixels between these two
points are set to 1. The same operation is made on the col-
umns for the vertical operation. Two different thresholds are
chosen, according to vertical or horizontal operation, to
eliminate undesired edges from shadows. In our application,
we fixed the thresholds experimentally to 5 for horizontal
operation and to 17 for the vertical operation.

Then, the two results coming from vertical and horizontal
operations are merged. A pseudo-closing is applied to fill
small remaining cavities. To remove small asperities, we
apply an erosion with a 5 × 5 SE and finally a dilation
with a 7 × 7 SE. The SE is bigger for the dilation to recover
initial edges.

Figure 9 shows an illustration of the whole procedure for
shadow elimination and blob extraction.

3.4 Occlusion Management

Most existing methods consider cases in which occlusions
appear during the sequence but not from the beginning of
the sequence. We have developed a new method that can
treat occlusions occurring at any time. The first step consists
in determining, among all detected blobs, those that poten-
tially contain several vehicles and are candidates to be split.
The synopsis of this module is illustrated in Fig. 10.

3.4.1 Candidate selection

In order to determine potential candidates among all tracked
blobs, we analyze their shapes. Usually, a vehicle is roughly
a convex object. If the vehicle is correctly segmented, its
shape has only a few cavities. We make the assumption
that if a blob is composed of several vehicles, its shape is

less convex. Indeed, two convex objects side by side
could form a new concave one. The solidity of an object
is the object area to convex hull area ratio. It measures
the deviation of a shape from being convex. We assume
that a blob, corresponding to one vehicle, has a solidity
≥90%. Blobs that do not respect this criterion are submitted
to the splitting procedure. Jun et al. complete this criterion of
solidity in Ref. 28 with eccentricity and orientation. These
criteria are quite interesting. However, in our case, in
urban highway, vehicle trajectories are mainly rectilinear.
So, the criterion of orientation is ineffective here.

3.4.2 Candidate splitting

We propose to consider the evolution of the blob width along
the axis of the road. In our case, the camera is facing the road
and the projection of the road axis can be considered as
approximately vertical. The blob splitting procedure ana-
lyzes the width of the blob on each row of the smallest
bounding box of the blob. Figure 11 illustrates the variation
of the blob width along the vertical axis showing, on the left
side, the binary image of a blob and, on the right side, the
width image where the white pixels belonging to the blob
have been grouped at the beginning of each row. So the posi-
tion of the rightmost white pixel represents the width of the
blob. As we do not know the number of vehicles in the blob,
we begin to separate it into two new blobs. Then, their solid-
ities are calculated and they are recursively segmented, if
necessary.

For a blob of height H, all the widths are represented by a
vector containing the marginal sums (here, the number of
white pixels) along the rows of the binary image of the
blob. The blob is split by separating the width vector into
two classes. We use the minimum error thresholding
(MinError) algorithm proposed by Kittler and Illingworth
in Ref. 29. Considering the vector of the width values of
the blob as a mixture of two Gaussian distributions, this algo-
rithm calculates the threshold that minimizes the classifica-
tion error. The returned value is the row splitting the blob into
two parts.

Fig. 8 Exterior edge removal: (a) observed scene, (b) detected edges, and (c) interior edges.

Fig. 9 Shadow elimination and blob extraction: (a) initial vehicle, (b) moving region detection, (c) edge
extraction, (d) exterior edge removal, and (e) final blob.

Blob
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Candidate

splitting
Vehicles
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Fig. 10 Synopsis of the occlusion management module.



From detected blobs, which are in white in Figs. 12(b) and
12(d), we obtain the splitting results shown in Fig. 13. The
two Gaussian curves minimizing the classification error are
displayed in red and blue. The corresponding thresholds are
represented by green lines.

Occasionally, the iterative MinError algorithm does not
converge or converge to a value out of the ½0;H − 1$ interval.
When this occurs, only one Gaussian function is appropriate
to approximate the blob widths and the blob is not split. It
could happen in two cases: (1) it is possible that the occlu-
sion between two vehicles is so strong that the resulting blob
might be convex and (2) a vehicle can also be badly seg-
mented and fail the solidity test.

3.5 Vehicle Tracking

After the previous module of motion detection, shadow
removal, and occlusion management, all blobs do not nec-
essarily match with a single vehicle. Therefore, some arti-
facts can remain or several blobs can correspond to the
same vehicle. A way to overcome this is to consider trajec-
tories. This is what tracking does. It allows counting a
vehicle only once. Kalman filter is very well adapted to
the kinds of motion in our sequences (rectilinear and
smooth). It is a fast filter whose results are accurate enough
for our requirements. The algorithm works in a two-step
process: in the prediction step, Kalman filter produces

estimates of the current state variables, along with their
uncertainties. Once the outcome of the next measurement
is observed, these estimates are updated. For each detected
blob, a structure is used to save the information about it. All
the position states are kept in a vector and a status (counted
or not) is used to be sure to count the blob only once. At each
iteration, current and previous states are compared to match
existing blob or to create new ones. Temporal and definitive
trail disappearance is checked. In the case of a temporal dis-
appearance, the trail is kept and its evolution depends on
Kalman prediction. A definitive disappearance implies the
deletion of the trail. Vehicles are tracked until they disappear
from the scene. As the blob states do not abruptly change
between two consecutive frames, we have forbidden big
changes because they could happen with a bad shadow elimi-
nation or with an unexpected fusion of two vehicles. For that,
we compare current and previous positions and compute the
Euclidean distance between them. If it is greater than a fixed
threshold, we use Kalman prediction at the previous state
instead of current measure to predict the new state.

3.6 Trajectory Counting

First of all, we define a counting zone delimited by two vir-
tual lines. A compromise has to be chosen on its size. This
zone has to be large enough to avoid too many false positives
and small enough to count every vehicle whatever its size
(two-wheelers, small cars, and so on). In our case, we
take into account vehicles going on a one-way direction.
So, we define a single entry line, which is the upper line,
and a single exit line, which is the lower line in Fig. 14.

(a) (b)

pixelspixels

Fig. 11 Variation of the blob width along the vertical axis: (a) binary
image of the smallest bounding box of the blob and (b) corresponding
width image.

Fig. 12 Convexity study: (a) and (c) observed scene, (b) and (d) detected blobs (white) and their convex
hull (dark gray).

Fig. 13 Blob splitting: (a) result of MinError on the width image and
(b) blob image with the corresponding splitting row.



Avehicle is counted if it crosses the counting zone, i.e., if
its trajectory begins before the entry line and continues after
the exit line.

Then, vehicles are classified into three categories: light
vehicles (LV: all traditional cars and small commercial
vehicles, vans, and so on), heavy vehicles (HV: small and
big trucks needing a different driving license), and two-
wheelers (TW: motorbikes, mopeds). The classification is
made according to their width compared to those of the
road at the exit line level. As in our case, we are facing
the road, and the width is a good discriminating indicator.

For some vehicles, like two-wheelers, the tracking begins
later because of detection problems. In order to take into
account these kind of vehicles, we add a second counting
zone that overlaps the first one, as shown in Fig. 15. The
second counting zone reinforces the counting procedure.

4 Results

In this section are detailed results of our shadow removal
method and the entire counting system as well.

4.1 Shadow Removal

The shadow removal module has been evaluated on the
Highway I video from the ATON project datasets30 with
the consent of the UCSD Computer Vision and Robotics
Research Laboratory31 in the Electrical and Computer
Engineering Department at U.C. San Diego. ATON
Highway I is a very interesting video sequence for shadow
elimination. It contains many vehicles coming up in front of
the camera. There are large shadows from moving vehicles
and from the background. This video had been used in some
articles for shadow removal.18,32–34 Figure 16 illustrates one
image of this sequence.

In order to perform a quantitative evaluation of our
method and to compare it to a similar method, we have
set up a ground truth composed of 64 frames in which we
have manually segmented, on average, three areas corre-
sponding to shadows (this ground truth can be requested
from the authors). So, the total number of vehicles seg-
mented is ∼200. The ATON Highway I video was used
for that purpose. The performance of the proposed algo-
rithms on shadow elimination is evaluated thanks to recall
= number of detected true shadow pixels / number of true

shadow pixels, and precision = number of detected true
shadow pixels / number of detected shadow pixels. The
numerous shadows carried by the vehicles present several
configurations: vehicles far from the sensor, with small
shadow areas, vehicles in the central part of the scene,
and, finally, vehicles close to the sensor. Many difficulties
appear on this setup. There are single vehicles but also on
the same image, few vehicles merged by shadow.

Figure 17 shows the comparison of our method with
Xiao’s. In the first case, in which vehicles are isolated,
for both methods, results are very similar most of the
time, but our method performs much better in the second
case, in which several vehicles are present in the scene.
On average, from the 64 frames processed, our recall indi-
cator is better than Xiao’s (77 versus 62%). The precision
scores are similar for the two methods.

Figure 18 shows the comparison between the two meth-
ods for only two images extracted from the ATONHighway I
video. For the first one, we got a recall rate of 77.36 versus
42.13% for Xiao’s method. For the second one, we obtained

counting zone

Exit of the
counting zone

Entry of the

Fig. 14 Preliminary counting zone.

Second counting
zone

First counting
zone

Fig. 15 Double counting zone.

Fig. 16 Image extracted from the Highway I video of the ATON
project.
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Fig. 17 (a) Recall and (b) precision comparison between our method
and Xiao’s (dashed line) on the 64 images setup.



94.15%, while Xiao’s method achieves below 70%, 66.95%
of recall rate.

4.2 Occlusion Management

In this section, we provide some figures on the evaluation of
the occlusions. In principle, according to the position of the
cameras (in the main axis of the road and relatively high), we
try to avoid a maximum of occlusions. Nonetheless, accord-
ing to the nature of the vehicles taken into account (trucks,
cars, two-wheelers), there are, of course, some unavoidable
occlusions. In these cases, we have analyzed them one by
one and the software is able to handle more than 90% of
the occlusion situations. Nevertheless, as noted in
Sec. 3.4.2, there are some clinic situations for which it is
quasi-impossible to deal with occlusions. These situations
are a light vehicle hidden by a truck, a two-wheeled vehicle
hidden by a light car or a truck, or situations in which the
blobs resulting from vehicles are too overlapped to overcome
the solidity test. In this case, only one final blob is consid-
ered, which leads to a subcounting. Another possibility to

overcome this drawback is to install the video sensor higher,
but it requires new installation features, which is not author-
ized by transport operators.

4.3 Vehicle Counting

The evaluation work was divided into two stages. During the
first stage, we acquired three different datasets on the same
site (cf. Fig. 19). This site is also equipped with inductive
loops, which are convenient for comparison purposes. The
first dataset (named Cloudy) was shot during cloudy
weather, and thus with cloudy illumination and without shad-
ows. The second one (Sunny) was shot during a very sunny
day and with severe shadows. The third one (Transitions)
was shot in the presence of sparse clouds leading to sudden
illumination changes. The three datasets are ∼20 min long
and contain between 1300 and 1500 vehicles each, according
to the ground truth.

During the second stage, a longer dataset was shot in
another site and contains many difficulties due to shadows
(cf. Fig. 20). It contains 3111 vehicles and is a 37-min-
long video. Casted shadows from vehicles are more spread
and stretched due to the sun position. In the observed scene,
there are two kinds of shadows: those that are stationary and
created by road panels, and those moving and coming from
swaying branches. Moreover, as we are next at an exit road,
the road marking is denser.

Table 1 shows the vehicle counting and classification
results. The ground truth has been obtained manually. For
each vehicle class, from the results automatically computed
by our system, the number of false negatives (undetected
vehicles), false positives (mistakenly counted vehicles),
and misclassified (assigned to a wrong class) vehicles are
calculated. The system is evaluated according to

• classification performance using recall = true positives /
ground truth, and precision = true positives / (detected
vehicles − misclassified); “total recall” and “total preci-
sion” are the averages of the values obtained with the
three vehicle categories;

• detection performance using detection rate = 1 − false
negatives / ground truth, false detection rate = false

Fig. 18 Shadow removal comparison: results from (a) image no. 393
and (b) image no. 98. Raw images with vehicle shadows manually
segmented on the first row. Vehicle shadows automatically seg-
mented with Xiao method and from our moving region detection result
on the second row. Vehicle shadows automatically segmented with
our shadow removal module and from our moving region detection
result on the last row.

Fig. 19 Dataset: (a) Cloudy, (b) Sunny with strong shadows, and (c) Transitions with abrupt illumination
changes.

Fig. 20 Second-stage dataset with strong shadows.



positives / ground truth, and detection ratio = detected
vehicles / ground truth.

The results obtained by inductive loops are evaluated
using their detection ratio.

Based on the detection ratio, vehicle detection results of
the video-based system are better than those obtained with
the ILD system, whatever the dataset considered: 99.2
against 94.02% for Cloudy, 98.69 against 95% for Sunny,
and 98.3 against 93.71% for Transitions. The detection
rate of our system is always greater than 98% and the
false positive rate is equal to 0.85% in the worst case.
The detection results of two-wheeled vehicles are worse
than those of light vehicles. The number of false negatives
can be explained by several factors. Their small size, their
high speed, and their nonrectilinear trajectories make them
difficult to track with the Kalman filter. Moreover, the
shadow removal process needs a minimum number of
interior edges, which is rarely the case with two-wheelers.
It can also be noted that the number of two-wheelers
being low, the results have to be interpreted carefully. It is
also the case for heavy vehicles in the Transitions dataset.
The promising results on the first three datasets are con-
firmed by the counting results for the fourth dataset used
in the second stage of our experiments. In spite of difficulties
induced by road marking and shadows due to road panels,
moving tree branches, and vehicles, the detection ratio
remains very satisfactory, 98.33%, with 3059 vehicles
detected out of 3111.

Finally, the results achieved here meet the transport oper-
ators’ requirements, which are as follows: an acceptable
result for them is an error of *3% for 95% of the dataset
processed. In our case, we obtained an error of around
2% on average for the entire database.

Regarding the classification performance, despite the sim-
plicity of the criterion (width of the blob), results are rather
satisfactory. For all the datasets, the best recall and precision
are obtained for the LV category, with a mean recall equal to
98.16% and a mean precision of 99.87%. For the other
vehicle categories, the number of misclassified vehicles
comes from the low number of classes. Intermediate
vehicles, like camping cars or vans for example, supposed
to be classified into LV could be classified into heavy
cars due to their width. It would be interesting to consider
more classes of vehicles to reduce errors and to get a better
characterization of the traffic — but taking into account that
more categories would require a more sophisticated and
discriminant classification criterion than the blob width.

The authors are ready to make the different datasets avail-
able for the community.

4.4 Computation Time

The global algorithm developed is able to process data at a 20
frames/s cadence. In our environment (ring roads), this rep-
resents a real-time functioning because with this processing
time, every vehicle is taken into account whatever its speed.
In a first stage, images were captured at a resolution of 720 ×
576 pixels. Then, these images were converted into a smaller

Table 1 Results of the proposed video-based vehicle counting system.

Our system Inductive loops

Results
Classification
performance Detection performance

Detection
performance

Dataset Class
Ground
truth

Detected
vehicles

False
negatives

Mis
classified

False
positives Recall Precision

Detection
rate

False
detection
rate

Detection
ratio

Detected
vehicles

Detection
ratio

Cloudy

LV 1425 1417 10 1 2 99.23% 99.86%

HV 46 46 1 1 1 95.65% 97.78%

TW 34 30 6 0 2 82.35% 93.33%

Total 1505 1493 17 2 5 92.41% 96.99% 98.87% 0.33% 99.20% 1415 94.02%

Sunny

LV 1196 1160 20 0 2 96.82% 99.83%

HV 67 81 4 14 4 94.03% 94.03%

TW 38 43 2 2 5 94.74% 87.80%

Total 1301 1284 26 16 11 95.20% 93.89% 98.00% 0.85% 98.69% 1236 95.00%

Transitions

LV 1284 1266 15 1 1 98.44% 99.92%

HV 19 20 3 4 1 78.95% 93.75%

TW 48 42 7 1 0 85.42% 100.00%

Total 1351 1328 25 6 2 87.60%% 97.89% 98.15% 0.15% 98.30% 1266 93.71%



resolution of 288 × 172 without affecting the counting
accuracy. Of course, the different routines present different
consumption with respect to the total. One can find below
the main differences between these routines:

1. Motion detection: 45.48% (including GMM and
updating, 31.07%, and moving region detection,
14.41%);

2. Tracking: 37.19%;

3. Shadow removal: 16.01%;

4. Occlusion management: 1.00%;

5. Trajectory counting: 0.31%.

5 Conclusion

In this work, we developed an advanced road vehicle count-
ing system. The aim of such a system is to replace or comple-
ment in the future the old systems based on ILD. The system
has been tested with different kinds of illumination changes
(cloudy, sunny, transitions between sun and clouds),
obtaining results better than those of ILD. The developed
algorithm is able to eliminate several kinds of shadows
depending on the time of the day. Another particular strength
of the method proposed is its ability to deal with severe
occlusions between vehicles. Multicore programming allows
us to achieve real-time performances with only a piece of
software. The perspective of this work is, with the same sen-
sor, to continue to calculate traffic indicators like occupation
rate or density of vehicles. The two previous indicators could
be used to calculate more global congestion indicators. The
infrastructure operators are very interested in having such
statistics in real time for management purposes.
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