
HAL Id: hal-01529966
https://hal.science/hal-01529966v1

Submitted on 31 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SAT-Equiv: an efficient tool for equivalence properties
Véronique Cortier, Antoine Dallon, Stéphanie Delaune

To cite this version:
Véronique Cortier, Antoine Dallon, Stéphanie Delaune. SAT-Equiv: an efficient tool for equivalence
properties. [Research Report] LSV, ENS Cachan, CNRS, INRIA, Université Paris-Saclay, Cachan
(France); IRISA, Inria Rennes; LORIA - Université de Lorraine; CNRS. 2017. �hal-01529966�

https://hal.science/hal-01529966v1
https://hal.archives-ouvertes.fr


SAT-Equiv: an efficient tool for equivalence

properties
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Abstract—Automatic tools based on symbolic models have been
successful in analyzing security protocols. Such tools are particu-
larly adapted for trace properties (e.g. secrecy or authentication),
while they often fail to analyse equivalence properties.

Equivalence properties can express a variety of security prop-
erties, including in particular privacy properties (vote privacy,
anonymity, untraceability). Several decision procedures have al-
ready been proposed but the resulting tools are rather inefficient.

In this paper, we propose a novel algorithm, based on graph
planning and SAT-solving, which significantly improves the ef-
ficiency of the analysis of equivalence properties. The resulting
implementation, SAT-Equiv, can analyze several sessions where
most tools have to stop after one or two sessions.

I. INTRODUCTION

Formal methods have produced several successful tools for

the automatic analysis of security protocols. Examples of

such tools are ProVerif [1], Avantssar [2], Maude-NPA [3],

Scyther [4], or Tamarin [5]. They have been applied to many

protocols of the literature including e.g. Kerberos and TLS.

However, one type of properties still resists to these tools,

namely privacy properties. Privacy properties incude ballot

privacy (no one should know how I voted), privacy (no one

should know I am here), or unlinkability (no one should be

able to relate two of my transactions). Such properties are

typically expressed as equivalences: an attacker should not be

able to distinguish a session from Alice from one from Bob.

Equivalence properties are harder to analyze than the more

standard authentication or confidentiality properties (expressed

as trace properties). Among the tools mentioned earlier, only

ProVerif, Maude-NPA and Tamarin may handle equivalences.

Tamarin often requires user interaction for equivalence prop-

erties. Maude-NPA [6] often does not terminate when used for

equivalence properties. Since checking equivalence properties

for an unbounded number of sessions is undecidable [7],

ProVerif may of course also fail. This is in particular the case

when the order of the protocol rules matters or when some

step may be executed at most once.

The alternative is to decide equivalence, for a bounded num-

ber of sessions. Several procedures have been proposed [8]–

[10], often with a companion tool: Akiss [10], Spec [9],

Apte [11]. Unfortunately, these tools have a very limited

practical impact because they scale badly. Analyzing one

session typically requires several seconds and the analysis of

two sessions is often unreachable, although the tools Apte and

Akiss have recently improved their efficiency through the use

of Partial Order Reduction (POR) techniques [12], [13]. It

is interesting to note that considering one or two sessions is

not sufficient to explore all standard attack scenarios (where

each participant may engage a session with an honest or a

dishonest agent and may be involved in any role). For example,

in the case of a three-party protocol, with a trusted server, 6

sessions have to be considered to cover all possible scenarios

with two honest agents A, B and a dishonest one C (A talking

to B, A talking to C, and C talking to B, and three additional

sessions where the role of the agents A and B are swapped).

Assuming that dishonest roles do not need to be modelled, this

leads to a scenario with 14 roles in parallel. In practice, an

attack does not require 14 sessions. 3-4 sessions are typically

sufficient. However, it is impossible to predict which scenario

is required for the attack. Moreover, since the problem of

deciding equivalence is actually undecidable, an attack may

require an arbitrary number of sessions. Therefore, the more

sessions we can check, the more confidence we obtain.

Our contribution. In this paper, we propose a different

procedure for deciding equivalence. Instead of designing a

crafted algorithm for equivalence, we use more general verifi-

cation techniques, namely Graph planning [14], [15] and SAT-

solving. The idea of using Graph planning and SAT-solvers for

analyzing protocols has already been explored in [16], yielding

the tool SATMC [17] for trace properties. Moving from trace

to equivalence properties is far from being straightforward as

exemplified by the research effort on equivalence these past

10 years (see e.g. [18] for a survey).

Let us first sketch how SATMC works. The tool focuses

at secrecy and encodes accessibility of a (secret) term into a

SAT formula. For efficiency reasons, the main step of SATMC

actually consists in applying Graph planning techniques in or-

der to compute an over-approximation of reachable messages.

If no secret has been found, the protocol is deemed secure.

Otherwise, actual accessibility of the potentially leaked secret

is encoded into a SAT formula.

In order to benefit from Graph planning and SAT-solvers,

the size of messages has to be bounded and this bound needs to

be practical. In [16], [17], the authors simply assume protocols

to be given with a (finite) format for the messages. Here, we

do not bound a priori the format of the messages. Instead,

we rely on a recent result [19] that shows that if there is

an attack, that is a witness of non equivalence between two



protocols P and Q, then there is a “small” attack, where

messages comply to a certain format (induced by a type).

This result holds for deterministic protocols that use symmetric

keys and pairing. Note that this result only controls the format

of the messages exchanged in P , not in Q (or conversely).

The fact that the messages in Q are a priori unbounded

forbids any direct encoding of (non) equivalence into a SAT

formula. Planning graphs are particularly helpful here: while

computing an over-approximation of the messages reachable

in P , we simultaneously obtained an over-approximation of

the messages that need to be considered in Q for checking

equivalence w.r.t. P . This requires of course to characterize

(non) equivalence as a reachability property, which is made

possible thanks to the protocols’ determinism.

In order to further reduce the traces than need to be

explored, we show that we can restrict ourselves to an attacker

that only decompose messages (and do not compose them),

provided that protocols are flattened, that is all meaningful

composition steps are pre-computed in advance. This flattening

technique has been used in [16] (although we are not aware of

any proof of correction). We formally prove this technique to

be sound, in the more general case of equivalence properties.

Handling equivalence is non trivial since it is not sufficient

to preserve the set of messages that can be computed, it is

also necessary to preserve cases of failure on both processes.

Moreover, we had use one more ingredient to obtain an effi-

cient bound. We significantly reduce the number of constants

that need to be considered to find an attack. Namely, we show

that only two constants are necessary, which is a result of

independent interest.

Implementation. We have implemented our algorithm and

our first experimentations demonstrate the good performance

of our tool. For most protocols, we can easily analyse several

sessions while the three other tools (Akiss, Spec, Apte) typi-

cally fail for more than one session, with the exception of the

variant Apte-por [13], which can handle several sessions, in

some cases. All files related to the tool implementation and

case studies are available at [20].

II. MODEL FOR SECURITY PROTOCOLS

A common framework for modelling security protocols are

process algebra like the applied pi-calculus [21]. We consider

here a variant of the calculus provided in [19] in order to

benefit from its main result, which guarantees a “small attack”

property: when there is an attack, there is a well-typed attack.

A. Syntax

Term algebra: As usual, messages are modelled by terms.

We consider an infinite set of names N , an infinite set of con-

stants Σ0, and two distinct sets of variables X and W . Names

are typically used to represent keys or nonces. Variables in X
refer to unknown parts of messages expected by participants

while variables in W are used to store messages learnt by the

attacker. We consider the following sets of function symbols:

Σc = {enc, 〈 〉} Σd = {dec, proj1, proj2} Σstd = Σc ∪ Σd

The symbol enc and dec both of arity 2 represent encryp-

tion and decryption. Concatenation of messages is modelled

through the symbol 〈 〉 of arity 2, with projection func-

tions proj1 and proj2 of arity 1. We distinguish between

constructor symbols in Σc and destructor symbols in Σd.

We consider several sets of terms. Given a set of A of

atoms (i.e. names, variables, and constants), and a signature

F ∈ {Σc,Σd,Σstd}, we denote by T (F ,A) the set of

terms built from F and A. Constructors terms with atomic

encryptions are represented by the set T0(Σc,A), which is the

subset of T (Σc,A) such that any subterm enc(m, k) of a term

in T0(Σc,A) is such that k ∈ A. Given Σ ⊆ Σ0, we denote by

MΣ the set T0(Σc,Σ∪N ), i.e. the set of messages built using

constants in Σ. The positions of a term are defined as usual.

We denote vars(u) the set of variables that occur in u. The

application of a substitution σ to a term u is written uσ, and

we denote dom(σ) its domain, and img(σ) its image. Two

terms u1 and u2 are unifiable when there exists σ such that

u1σ = u2σ. In this case, we denote mgu their most general

unifier. The composition of two substitutions σ1 and σ2 is

denoted σ1 ◦ σ2.

Example 1: Let kab and kbs be two names in N , and a be

a constant from Σ0. We have that t = enc(〈kab, a〉, kas) is a

message from MΣ0
, whereas enc(a, 〈kas, kas〉) is not (due to

the presence of a compound term in key position).

An attacker can build any term by applying function sym-

bols. His computation is formally modelled by terms, called

recipes. Given Σ ⊆ Σ0, we denote RΣ the set T (Σstd,Σ∪W),
i.e. the set of recipes built using constants in Σ. Note that a

recipe does not contain names, since, intuitively, names are

initially secret.

Example 2: Assume that the attacker has first intercepted

the message t (stored in w1), and then the key kas (stored

in w2). The term R = proj1(dec(w1,w2)) is a recipe that

represents a computation that can be performed by the attacker.

Indeed, he can decrypt the first message with the second one,

and then apply a projection operator.

The decryption of an encryption with the right key yields the

plaintext. Similarly, the left (or right) projection of a concate-

nation yields the left (or right) component. These properties

are reflected in the three following convergent rewrite rules:

dec(enc(x, y), y) → x, and proji(〈x1, x2〉) → xi i ∈ {1, 2}.

A term u can be rewritten in v if there is a position p
in u, and a rewriting rule g(t1, . . . , tn) → t such that

u|p = g(t1, . . . , tn)θ for some substitution θ. Moreover, we

assume that t1θ, . . . , tnθ as well as tθ are messages. This

assumption slightly differs from [19]. Here, whenever an inner

decryption/projection fails then the overall evaluation fails.

Intuitively, we model eager evaluation while [19] models

lazy evaluation. Our rewriting system is convergent, and we

denote u↓ the normal form of a given term u.
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Example 3: Let t be the term given in Example 1, we have

that proj1(dec(t, kas))↓ = kab. Indeed, we have that:

proj1(dec(t, kas)) = proj1(dec(enc(〈kab, a〉, kas), kas))
→ proj1(〈kab, a〉)
→ kab

Process algebra: We only consider public channels and

we assume that each process communicates on a dedicated

channel. In practice, an attacker can typically distinguish be-

tween protocol participants thanks to their IP address and even

between protocol sessions thanks to session identifiers. Techni-

cally, this assumption avoids non determinism. Formally, we

assume an infinite set Ch of channels and we consider the

fragment of simple processes without replication built on basic

processes as defined e.g. in [22]. A basic process represents

a party in a protocol, which may sequentially perform actions

such as waiting for a message of a certain form, and outputting

a message. Then, a simple process is a parallel composition

of such basic processes playing on distinct channels.

Definition 1: The set of basic processes on c ∈ Ch is defined

as follows (with u1, u2 ∈ T (Σc,Σ0 ∪ N ∪ X )):

P,Q := 0 | in(c, u1).P | out(c, u2).P

A simple process P = {P1, . . . , Pn} is a multiset of basic

processes Pi on pairwise distinct channels ci.

The process 0 does nothing. The process “in(c, u1).P ”

expects a message m of the form u1 on channel c and

then behaves like Pσ where σ is a substitution such that

m = u1σ is a message. The process “out(c, u2).P ” emits u2
on channel c, and then behaves like P . We assume that names

are implicitly freshly generated, and therefore we do need a

specific action to model name generation. The construction

“new” is important in the presence of replication but we do not

consider replication here. For the sake of clarity, we may omit

the null process. We write fv (P ) for the set of free variables

that occur in P , i.e. the set of variables that are not in the

scope of an input.

Definition 2: A protocol is a simple process P that is

ground, i.e. fv (P) = ∅.

Example 4: The Denning Sacco protocol [23] (without

timestamps) is a key distribution protocol using symmetric

encryption and a trusted server. Informally, we have:

1. A→ S : A,B
2. S → A : {B,Kab, {Kab, A}Kbs

}Kas

3. A→ B : {Kab, A}Kbs

where {m}k denotes the symmetric encryption of a mes-

sage m with key k. The agents A and B aim at authenticating

each other and establishing a session key Kab through a trusted

server S. The key Kas (resp. Kbs) is a long term key shared

between A and S (resp. B and S).

To model the Denning Sacco protocol, we introduce several

atomic data: kas, kbs, kab are names, a and b are constants

from Σ0, and c1, c2, and c3 are channel names from Ch. Each

role is modelled by a basic process that is described below.

Below, we denote by 〈x1, x2, x3〉 the term 〈x1, 〈x2, x3〉〉.

PA = out(c1, 〈a, b〉).
in(c1, enc(〈b, xAB , xB〉, kas)).
out(c1, xB)

PS = in(c2, 〈a, b〉).
out(c2, enc(〈b, kab, enc(〈kab, a〉, kbs)〉, kas))

PB = in(c3, enc(〈yAB , a〉, kbs))

The protocol is then modelled by the simple ground process

PDS = {PA, PS , PB}. In order to model several sessions of the

same protocol, we simply have to consider several instances

of the basic processes PA, PS , and PB . We will use different

channel names to get a simple process, different names to

model fresh names, and we will rename variables to avoid

clashes. Two sessions of the Denning-Sacco protocol (between

honest participants) are therefore modelled by:

P ′
DS = {PA, PS , PB, P

′
A, P

′
S , P

′
B}

where P ′
A, P ′

B , and P ′
S are given below:

P ′
A = out(c4, 〈a, b〉).

in(c4, enc(〈b, x′AB , x
′
B〉, kas)).

out(c4, x
′
B)

P ′
S = in(c5, 〈a, b〉).

out(c5, enc(〈b, k′ab, enc(〈k
′
ab, a〉, kbs)〉, kas))

P ′
B = in(c6, enc(〈y′AB , a〉, kbs))

B. Semantics

The operational semantics of a process is defined using a

relation over configurations, i.e. triples (P ;φ;σ) where:

• P is a multiset of processes with fv (P) ⊆ dom(σ);
• φ is a frame, i.e. a substitution of the form

{w1 ⊲ m1, . . . ,wn ⊲ mn}

where w1, . . . ,wn ∈ W , and m1, . . . ,mn ∈ MΣ0
;

• σ is a substitution such that dom(σ) ⊆ X , and

img(σ) ⊆ MΣ0
.

We often write P instead of (P ; ∅; ∅), and P ∪ P instead

of {P} ∪ P . The terms in φ represent the messages that are

sent out and therefore known by the attacker whereas the

substitution σ is used to store parts of the messages received

so far. The operational semantics of a process is induced by

the relation
α
−→ over configurations defined below:

IN

(in(c, u).P ∪ P ; φ; σ)
in(c,R)
−−−−→ (P ∪ P ; φ; σ ⊎ σ0)

where R ∈ RΣ0
such that Rφ↓ ∈ MΣ0

,

and Rφ↓ = (uσ)σ0 for σ with dom(σ0) = vars(uσ).

OUT

(out(c, u).P ∪ P ; φ; σ)
out(c,w)
−−−−−→ (P ∪ P ; φ ∪ {w ⊲ uσ}; σ)

with w a fresh variable from W , and uσ ∈ MΣ0
.

A process may input any term that an attacker can built from

publicly available terms and symbols (rule IN). The second

rule corresponds to the output of a term: the corresponding

term is added to the frame of the current configuration, which
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means that the attacker has now access to it. Note that the

term is outputted provided that it is a message. In case the

evaluation of the term yields an encryption with a non atomic

key, the evaluation fails and there is no output. We do not need

to model internal communications since we assume public

channels: all communications are controlled by the attacker.

The relation
tr
−→ between configurations (where tr is a

possibly empty sequence of actions) is defined in the usual

way. Given Σ ⊆ Σ0, and a protocol P we define its set of

traces w.r.t. Σ as follows:

traceΣ(P) = {(tr, φ) | (P ; ∅; ∅)
tr
−→ (P ′;φ;σ)

for some configuration (P ′;φ;σ)
and any recipe occurring in tr is in RΣ.}.

Note that, for any (tr, φ) ∈ traceΣ(P), we have that trφ↓
only contains messages in MΣ0

.

Example 5: Consider the following sequence tr:

tr = out(c1,w1).in(c2,w1).out(c2,w2).
in(c1,w2).out(c1,w3).in(c3,w3)

This sequence tr allows one to reach the frame:

φ = {w1 ⊲ 〈a, b〉, w2 ⊲ enc(〈b, kab, enc(〈kab, a〉, kbs)〉, kas),

w3 ⊲ enc(〈kab, a〉, kbs) }.

We have that (tr, φ) ∈ traceΣ(PDS). This trace corresponds to

a normal execution of the protocol.

C. Trace equivalence

Trace equivalence can be used to formalise many interesting

security properties, in particular privacy-type properties. We

assume keys to be atomic and encryption to fail for non atomic

keys. We define trace equivalence accordingly, by letting the

attacker observe when an encryption fails. We first define

equivalence on sequences of messages.

Definition 3: A frame φ1 is statically included w.r.t.

Σ ⊆ Σ0 in a frame φ2, denoted φ1 ⊑s φ2, when we have

that dom(φ1) = dom(φ2), and:

• for any R ∈ RΣ, Rφ1↓ ∈ MΣ0
implies that Rφ2↓ ∈

MΣ0
;

• for any R1, R2 ∈ RΣ with R1φ1↓, R2φ1↓ ∈ MΣ0
,

R1φ1↓ = R2φ1↓ implies that R1φ2↓ = R2φ2↓.

They are in static equivalence w.r.t. Σ, denoted φ1 ∼s φ2,

when φ1 ⊑s φ2, and φ2 ⊑s φ1 (both w.r.t. Σ).

Example 6: Consider φ1 = φ ∪ {w4 ⊲ enc(m1, kab)} and

φ2 = φ ∪ {w4 ⊲ enc(m2, k)} where φ has been introduced in

Example 5. The terms m1, m2 are public constants from Σ0,

and k is a name from N . We have that the two frames φ1
and φ2 are statically equivalent (w.r.t. any Σ). Intuitively, at

the end of a normal execution between honest participants, an

attacker can not distinguish whether the key used to encrypt

a message (here the constants m1 and m2) is the session key

that has been established or a fresh key k.

In contrast, the frames φ′1 = φ1 ∪ {w5 ⊲ kab} and φ′2 =
φ2 ∪ {w5 ⊲ kab} are not in static equivalence. Actually φ′1 is

not statically included in φ′2. Indeed, an attacker can observe

that the 4th message of φ1 can be decrypted by the 5th message,

which is not the case in φ′2. Formally, considering R =
dec(w4,w5), we have Rφ′1↓ ∈ MΣ0

while Rφ′2↓ /∈ MΣ0
.

Then, we lift this notion of equivalence from frames to

configurations.

Definition 4: Let Σ ⊆ Σ0. A protocol P is trace included

w.r.t. Σ in a protocol Q, written P ⊑t Q, if for every

(tr, φ) ∈ traceΣ(P), there exists (tr′, ψ) ∈ traceΣ(Q) such

that tr = tr′ and φ ⊑s ψ w.r.t. Σ. The protocols P and Q
are trace equivalent w.r.t. Σ, written P ≈t Q, if P ⊑t Q
and Q ⊑t P (both w.r.t. Σ).

This notion of equivalence (even when Σ = Σ0) does not

coincide in general with the usual notion of trace equivalence

as defined e.g. in [22]. It is actually coarser since we simply

require the resulting frames to be in static inclusion (φ ⊑s ψ)

instead of static equivalence (φ ∼s ψ). However, these two

notions actually coincide (see [10]) for the class of simple

processes that we consider in this paper.

Assume given two protocols P and Q such that P 6⊑t Q
w.r.t. Σ. A witness of this non-inclusion is a trace tr w.r.t. Σ
for which there exists φ such that (tr, φ) ∈ traceΣ(P) and:

• either there is no ψ such that (tr, ψ) ∈ traceΣ(Q);
• or such ψ exists and φ 6⊑s ψ w.r.t. Σ.

Note that for a simple process, once the sequence tr is fixed,

the resulting frame reachable through tr is uniquely defined

(when it exists) since simple processes are deterministic.

Example 7: The protocol P ′
DS presented in Example 4

models two sessions of the Denning Sacco protocol. Assume

now that we wish to check strong secrecy of the exchanged

key, as received by the agent A. This can be expressed by

checking whether P ′1
DS ≈t P ′2

DS where:

• P ′1
DS is as P ′

DS but we add “out(c1, enc(m1, xAB))” at

the end of the process PA, and “out(c4, enc(m1, x
′
AB))”

at the end of P ′
A

• P2
DS is as PDS but we add the instruction

“out(c1, enc(m2, k))” at the end of PA, and

“out(c4, enc(m2, k
′))” at the end of P ′

A.

The terms m1 and m2 are two public constants from Σ0

whereas k and k′ are names from N .

While the key received by A cannot be learnt by an attacker,

strong secrecy of this key is not guaranteed. Indeed, due to

the lack of freshness, the same key can be sent several times

to A, and this can be observed by an attacker. Formally, the

attack is as follows. Consider the sequence

tr′ = tr · out(c4,w4).in(c4,w2).out(c4,w5).
out(c1,w6).out(c4,w7)

where tr has been defined in Example 5. The attacker simply

replays an old session. The resulting (unique) frames are

• φ′1 = φ ∪ φ′ ∪ {w6 ⊲ enc(m1, kab), w7 ⊲ enc(m1, kab)},

• φ′2 = φ ∪ φ′ ∪ {w6 ⊲ enc(m2, k), w7 ⊲ enc(m2, k
′)}

where φ is the frame given in Example 5, and

φ′ = {w4 ⊲ 〈a, b〉,w5 ⊲ enc(〈kab, a〉, kbs)}.
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We have that (tr′, φ′1) ∈ traceΣ0
(P ′1

DS) and (tr′, φ′2) ∈
traceΣ0

(P ′2
DS). However, we have that φ′1 6⊑s φ

′
2 since w6 =

w7 in φ′1 but not in φ′2. Thus P ′1
DS is not trace included

in P ′2
DS. To avoid this attack, the messages of the Denning-

Sacco protocol shall include timestamps or nonces.

The goal of the paper is to provide an efficient and practical

procedure for checking trace equivalence.

III. REDUCTION RESULTS

Even when considering finite processes (i.e. processes with-

out replication), the problem of checking trace equivalence is

difficult due to several sources of unboundedness:

• the size of messages which can be forged by an attacker

is unbounded;

• the number of nonces and constants that can be used by

an attacker is unbounded too.

Recently, [19] has established how to reduced the search

space for attacks by bounding the size of messages involved

in a minimal attack. From a theoretical point of view, this also

yields a bound on the number of nonces/constants involved

in such a minimal attack. However, this bound is far from

being practical. In this section, we show that the small attack

property of [19] still holds even if our semantics has slightly

changed (due to eager evaluation) and we further demonstrate

that the number of constants can be significantly reduced since

only three constants need to be considered (and no nonces),

in addition to those explicitly mentioned in the protocol.

A. Bounding the size of messages

As in [19], we consider type-compliant protocols, and we

restrict ourselves to typing systems that preserve the structure

of terms. A typing system is defined as follows.

Definition 5: A typing system is a pair (T0, δ0) where T0
is a set of elements called atomic types with a special atomic

type denoted τ⋆, and δ0 is a function mapping atomic terms in

Σ0∪N ∪X to types τ generated using the following grammar:

τ, τ1, τ2 = τ0 | 〈τ1, τ2〉 | enc(τ1, τ2) with τ0 ∈ T0.

We further assume the existence of an infinite number of

constants in Σ0 (resp. variables in X , names in N ) of any type,

and the existence of three special constants denoted c〈ω,ω〉, c
0
⋆,

and c1⋆ of type τ⋆. The constant c〈ω,ω〉 can not be used in key

position. Then, δ0 is extended to constructor terms as follows:

δ0(f(t1, . . . , tn)) = f(δ0(t1), . . . , δ0(tn)) with f ∈ Σc.

Example 8: Continuing our running Example, we con-

sider the typing system generated from the set TDS =
{τa, τm, τks, τk} of atomic types and the function δDS that

associates the expected type to each constant/name, and the

following types to variables:

• δDS(xAB) = δDS(x
′
AB) = δDS(yAB) = δDS(y

′
AB) = τk;

• δDS(xB) = δDS(x
′
B) = enc(〈τk, τa〉, τks).

A protocol is type-compliant if two unifiable subterms have

the same type. Formally, we use the definition given in [19],

which is similar to the one introduced in [24].

We write St(t) (resp. St(τ)) for the set of (syntactic)

subterms of a term t (resp. type τ ), and ESt(t) the set of

its encrypted subterms, i.e.

ESt(t) = {u ∈ St(t) | u is of the form enc(u1, u2)}.

In the following definition, δP(P ) is the set of δP(t) for

every term t occuring in protocol P .

Definition 6: A protocol P is type-compliant w.r.t. a typing

system (TP , δP) if τ⋆ 6∈ St(δP(P)), and for every t, t′ ∈
ESt(P) we have that:

t and t′ unifiable implies that δP(t) = δP(t
′).

Example 9: The protocol P ′1
DS (resp. P ′2

DS) is type-compliant

w.r.t. the typing system given in Example 8. Indeed, the

encrypted subterms of P ′1
DS are:

1) tA = enc(〈b, xAB , xB〉, kas);

2) tB1 = enc(〈yAB , a〉, kbs);

3) tB2 = enc(m1, yAB);

4) tS1 = enc(〈b, kab, enc(〈kab, a〉, kbs)〉, kas);

5) tS2 = enc(〈kab, a〉, kbs)

as well as the renaming of these terms obtained by replac-

ing kab, xAB , yAB , and xB with fresh names/variables of the

same type, namely k′ab, x
′
AB , y′AB , and x′B .

It is easy to check that the type-compliance condition is

satisfied for any pair of terms. For instance, we have that tA
and tS1 are unifiable, and they have indeed the same type:

δDS(tA) = enc(〈τa, τk, enc(〈τk, τa〉, τks)〉, τks) = δDS(tS1).

Consider a protocol P that is type-compliant w.r.t. to a

typing system (TP , δP), an execution P
tr
−→ (P ′;φ′;σ′) is

well-typed if σ′ is a well-typed substitution, i.e. every variable

of its domain has the same type as its image. We say that

a trace (tr, φ) ∈ traceΣ(P) is well-typed if its underlying

execution (unique due to the class of protocols we consider in

this paper) is well-typed. Given a protocol P , we denote ΣP

the constants from Σ0 that occur in P .

We first show that the small attack property from [19] still

holds: whenever two processes are not in trace equivalence,

then there is a well-typed witness of non equivalence. In

addition, we show that the recipes involved in such a trace

have a simple form: they are built using constructor symbols

on top of destructors.

Definition 7: Let R be a recipe. We say that R is destructor-

only if R ∈ T (Σd,Σ∪W). It is simple if there exist destructor-

only recipes R1, . . . , Rk, and a context C made of constructors

such that R = C[R1, . . . , Rk].

Theorem 1: Let P be a protocol type-compliant w.r.t.

(TP , δP) and Q be another protocol. We have that P 6⊑t Q
w.r.t. Σ0 if, and only if, there exists a witness tr of this non-

inclusion that only contains simple recipes and such that one

of the following holds:

1) (tr, φ) ∈ traceΣ0
(P) for some φ and (tr, φ) is well-

typed w.r.t. (TP , δP);
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2) tr = tr′{c0 7→ c〈ω,ω〉} for some c0 ∈ Σ0 r ΣP , and

(tr′, φ′) ∈ traceΣ0
(P) for some φ′ and (tr′, φ′) is well-

typed w.r.t. (TP , δP).

Since we consider atomic keys, some execution may fail

when a protocol is about to output an encryption with a non

atomic key. In order to detect this kind of behaviours, it is

important to consider slightly ill-typed traces as defined in

Item 2.

Example 10: Continuing our running example, we have

seen that P ′1
DS 6⊑t P ′2

DS. The witness tr′ of this non-inclusion

(given in Example 7) only contains simple recipes, and

(tr′, φ′1) ∈ traceΣ0
(P ′1

DS) is well-typed w.r.t. (TDS, δDS) (the

typing system given in Example 8).

B. Bounding the number of constants

The previous result implicitly bounds the number of con-

stants used in an attack but the induced bound would be

impractical. We show here that actually, two constants are

sufficient. The proof technique is inspired from [25] and [26]

which respectively reduce the number of nonces and agents

in the context of equivalence properties. A direct application

of the proof technique would however yield two constants of

each type, which represents still a high number of constants.

Instead, we show here that just two constants are enough,

provided they are of special type τ⋆. To obtain this result,

we slightly relax the notion of well-typedness.

Given a typing system (T0, δ0), we denote by � the smallest

relation on types defined as follows:

• τ⋆ � τ and τ � τ for any type τ (atomic or not);

• f(τ1, τ2) � f(τ ′1, τ
′
2) when τ1 � τ ′1, τ2 � τ ′2, and f ∈ Σc.

Consider a protocol P that is type-compliant w.r.t. to a

typing system (TP , δP), an execution P
tr
−→ (P ′;φ′;σ′) is

quasi-well-typed if δP(xσ
′) � δP(x) for every variable

x ∈ dom(σ′). We say that a trace (tr, φ) ∈ traceΣ(P) is quasi-

well-typed if its underlying execution (unique due to the class

of protocols we consider in this paper) is quasi-well-typed.

If two processes are not in trace equivalence, then there is

a witness of non equivalence that is quasi-well typed and uses

at most two extra constants plus eventually c〈ω,ω〉 to detect

slightly ill-typed traces.

Theorem 2: Let P be a protocol type-compliant w.r.t.

(TP , δP) and Q be another protocol. Let Σ = ΣP ⊎
{c0⋆, c

1
⋆, c〈ω,ω〉}. We have that P 6⊑t Q w.r.t. Σ0 if, and only if,

there exists a witness tr of this non-inclusion w.r.t. Σ that only

contains simple recipes, and such that (tr, φ) ∈ traceΣ(P) for

some φ and (tr, φ) is quasi-well-typed w.r.t. (TP , δP).

Intuitively, we can show that non equivalence relies on at

most one disequality, and thanks to our equational theory,

only two constants c0⋆, c
1
⋆ are necessary to produce such a

disequality.

IV. FROM STATIC EQUIVALENCE TO PLANNING

The overall objective of this paper is to provide a practi-

cal algorithm for deciding trace equivalence, using planning

graphs and SAT-solving. We start here with the static case and

show how to reduce static equivalence to a planning problem.

Given two frames, we show how to build a planning problem

such that the planning problem has a solution if, and only if,

the two corresponding frames are not in static equivalence.

We consider two frames φ and ψ having same domain. We

denote Σ the constants from Σ0 that occur either in φ or in ψ.

A. Planning problems

We first recall the definition of a planning problem, slightly

simplified from [27]. Intuitively, a planning system defines a

transition system from sets of facts to sets of facts. New facts

may be produced and some old facts may be deleted.

Definition 8: A planning system is tuple 〈Fact, Init,Rule〉
where Fact is a set of variable-free atomic formulas called

facts, Init0 ⊆ Fact is a set of facts representing the initial

state, and Rule is a set of rules of the form:

Pre −→ Add ;Del

where Pre , Add , Del are finite sets of facts such that Add ∩
Del = ∅, Del ⊆ Pre. We write Pre −→ Add when Del = ∅.

Given a rule r ∈ Rule of the form Pre −→ Add ;Del , we

denote Pre(r) = Pre , Add(r) = Add , and Del(r) = Del .

Moreover, if S ⊆ Fact are such that Pre(r) ⊆ S, then we

say that the rule is applicable in S, denoted S
r
−→ S′, and the

state S′ = (S r Del) ∪ Add is the state resulting from the

application of r to S. A planning path from S0 ⊆ Fact to

Sn ⊆ Fact is a sequence of rules r1, . . . , rn ∈ Rule such

that there exist states S1, . . . , Sn−1 ⊆ Fact such that:

S0
r1−→ S1

r2−→ . . . Sn−1
rn−→ Sn

A planning problem for a system Θ = 〈Fact, Init,Rule〉
is a pair Π = 〈Θ, Sf 〉 where Sf ⊆ Fact represents the target

facts. A solution to Π = 〈Θ, Sf 〉, called a plan, is a planning

path from Init to a state Sn such that Sf ⊆ Sn.

In this paper, we consider an (infinite) set of facts Fact0
that consists of:

• all atomic formulas of the form att(uP , uQ) with

uP , uQ ∈ MΣ;

• all atomic formulas of the form statecP,Q(σP , σQ) where

c ∈ Ch, P,Q are basic processes on channel c, and σP
(resp. σQ) is a grounding substitution for P (resp. Q);

• a special symbol bad.

The rest of this section is dedicated to the reduction of

static equivalence to the (non) existence of a solution of a

planning system. Therefore, we will consider planning systems

with facts that represent the attacker’s knowledge, i.e. those

of the form att(uP , uQ) (plus the symbol bad). Later on, in

Section V, we will additionally consider the facts of the form

statecP,Q(σP , σQ) that model internal states of the agents.

B. Attacker rules

We first describe the planning rules that correspond to the

attacker behaviours. Instead of considering rules on ground

facts, we start by describing a set of abstract rules that we

instantiated later on, yielding a (concrete) planning system.
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The attacker behaviour is modelled by the following set RuleA
of abstract rules:

att(〈x1, x2〉, 〈y1, y2〉) −→ att(x1, y1)
att(〈x1, x2〉, 〈y1, y2〉) −→ att(x2, y2)
att(enc(x1, x2), enc(y1, y2)), att(x2, y2) −→ att(x1, y1)

Note that there is no Del since the attacker never forgets.

Interestingly, the rules only model decomposition There is no

rule to synthesize messages. In general, this would be unsound

but we will show why we can get rid of synthesis rules, thanks

to the flattening technique. This is a key point of our algorithm

to avoid building large terms.

We now explain how to obtain concrete planning rules from

the abstract ones. This step is called concretization. Basically,

we distinguish two kinds of concrete rules: the positive one,

and the negative one. We start in this subsection by defining

the positive one.

Given an abstract attacker rule r ∈ RuleA, we define its

positive concretizations by simply instantiating the abstract

rules such that the resulting terms are messages.

Concrete+(r) = {rσ | σ a substitution grounding for r
such that rσ only involve messages in MΣ}

Let φ and ψ be two frames with dom(φ) = dom(ψ). The

set of facts associated to φ and ψ is defined as the set of

couples of all identical constants and the couples of associated

messages of the two frames.

Fact(φ, ψ) =
{att(a, a) | a ∈ Σ} ∪ {att(wφ,wψ) | w ∈ dom(φ)}

It is easy to show that, applying (concrete) attacker rules to

Fact(φ, ψ), we compute the set of couples (u, v) that can be

reached by applying destructor-only recipes to φ and ψ.

Lemma 1: Let φ, ψ be two frames with dom(φ) = dom(ψ).
Let Θ = 〈Fact0,Fact(φ, ψ),Concrete

+(RuleA)〉 and Π =
〈Θ, {att(u, v)}〉 for some u, v ∈ MΣ. We have that Π has

a solution if, and only if, there is a destructor-only recipe

R ∈ RΣ such that Rφ↓ = u, and Rψ↓ = v.

C. Case of failures

To break static equivalence, an attacker may build new

terms but also check for equalities and computation failures.

Therefore, we encode when a computation can be performed

on the right hand side but can not be mimicked on the left.

We say that a fact f = att(u0, v0) (u0, v0 ∈ MΣ) left-

unifies (resp. right-unifies) with att(u, v) if there exists σ
such that uσ = u0 (resp. vσ = v0). Similarly, a sequence of

facts att(u1, v1), . . . , att(uk, vk) left-unifies with a sequence

att(u′1, v
′
1), . . . , att(u

′
k, v

′
k) if there exists σ such that u′1σ =

u1, . . . , u
′
kσ = uk (and symmetrically for right-unification).

Given an abstract attacker rule r = Pre −→ Add (note that

Del is empty for attacker rule), we define Concrete−(r) as

the set of concrete planning rules that contains:

f1, . . . , fk −→ bad

for any sequence of facts f1, . . . , fk ∈ Fact0 such that

f1, . . . , fk left-unifies with Pre , whereas f1, . . . , fk does not

right-unify with Pre . This is the generic way to compute the

failure rules from abstract attacker rules. In case of the set

of abstract rules RuleA that we consider here, we obtain the

following infinite set of rules, denoted Concrete−(RuleA):

att(〈u1, u2〉, v) −→ bad

for any u1, u2, v ∈ MΣ such that v is not a pair

att(enc(u1, u2), v), att(u2, v
′) −→ bad

for any u1, u2, v, v
′ ∈ MΣ such that enc(u1, u2) ∈ MΣ,

and dec(v, v′)↓ 6∈ MΣ.

In order to capture static inclusion, we have to consider

some additional cases of failure, in particular those corre-

sponding to an equality that holds in one side but not in the

other side. For this, we introduce the set Rtest
fail :

Rtest
fail = {att(u, v1), att(u, v2) −→ bad | v1 6= v2}

However, as exemplified below, due to the absence of rule

to compose terms, this is not sufficient.

Example 11: Let φ = {w ⊲ k} and ψ = {w ⊲ enc(s, k)}
where s, k ∈ N . We have that φ 6⊑s ψ. Indeed, consider

R = enc(w,w), we have that Rφ↓ ∈ MΣ whereas Rψ↓ 6∈
MΣ. However, we have no mean to witness this non-inclusion

without relying on synthesis rules (that we do not have).

Therefore, we introduce in addition the ability to check

whether a message is an atom or not (different from the

special constant c〈ω,ω〉). More formally, we consider the set:

Ratom
fail = {att(u, v) −→ bad | u is an atom different

from c〈ω,ω〉 but not v}

Given a set Rule of abstract rules, we denote

Concrete(Rule) = Concrete+(Rule) ∪ Concrete−(Rule).

Two frames are in static inclusion if, and only if, the

corresponding planning system has no solution.

Proposition 1: Let φ and ψ be two frames with dom(φ) =
dom(ψ), and Θ = 〈Fact0,Fact(φ, ψ),R〉 where

R = Concrete(RuleA) ∪Rtest
fail ∪Ratom

fail .

Let Π = 〈Θ, {bad}〉. We have that φ 6⊑s ψ if, and only if, Π
has a solution.

As we shall see later, in order to obtain an efficient algo-

rithm, we do not enumerate all ground attacker rules. Instead,

they are generated on the fly, only when they are needed.

V. FROM TRACE EQUIVALENCE TO PLANNING

In the previous section, we have shown how to encode

static inclusion into a planning system. We now show how

to encode trace inclusion. We consider a protocol P that is

type-compliant w.r.t. (TP , δP), and another protocol Q. For

simplicity we assume that variables of P and Q are disjoint.

Let Σ = (ΣP ∪ ΣQ) ⊎ {c0⋆, c
1
⋆, c〈ω,ω〉}. Moreover, we assume

that variables occurring in P are given with types.

A. Protocol rules

We first define the abstract rules describing the protocol be-

haviour. Given P and Q two basic processes on channel c, we

write St(P,Q) = statecP,Q(idP , idQ) where idP (resp. idQ) is

the identity substitution of domain fv(P ) (resp. fv (Q)). Then,
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the transformation Rule(P ;Q) from processes to abstract

planning rules is defined as follows: We distinguish several

cases depending on the shape of P .

1) Case P = 0:

Rule(P ;Q) = ∅.

2) Case P = out(c, u).P ′:

Rule(P ;Q) = Rule(P ′;Q′) ∪
{St(P,Q) −→ att(u, v), St(P ′, Q′); St(P,Q)}

when Q = out(c, v).Q′

Rule(P ;Q) = {St(P,Q) −→ att(u, c⋆0), bad}
otherwise.

3) Case P = in(c, u).P ′:

Rule(P ;Q) = Rule(P ′;Q′) ∪
{St(P,Q), att(u, v) −→ St(P ′, Q′); St(P,Q)}

when Q = in(c, v).Q′

Rule(P ;Q) = {St(P,Q), att(u, x) −→ bad}
otherwise (with x fresh).

Intuitively, abstract rules simply try to mimic each step of P
by a similar step of Q. Clearly, if Q cannot follow P , the two

processes are not in trace equivalence, which is modelled here

by the bad state. It then remains to check whether the bad

state is indeed reachable. Note that, in case P = out(c, u).P ′

whereas Q is not ready to perform an output, bad will be

trigger only if the outputted term is indeed a message.

Example 12: We consider protocols P ′1
DS and P ′2

DS as given

in Example 7. We focus on the computations of the abstract

protocol rules for the basic process defined on channel c1, i.e.

Rule(P 1
A.out(c1, enc(m1, x

1
AB)), P

2
A.out(c1, enc(m2, x

2
AB)))

where P i
A = out(c1, 〈a, b〉).

in(c1, enc(〈b, xiAB , x
i
B〉, kas)).

out(c1, x
i
B).

out(c1, enc(mi, x
i
AB)) with i ∈ {1, 2}.

We have simply renamed bound variables to ensure disjoint-

ness between the variables of P 1
A and those of P 2

A. Moreover,

for sake of conciseness, below, we write statec1i instead of

statec1
P 1

i
,P 2

i

where P 1
i (resp P 2

i ) with i ∈ {1, 4} represents the

subprocess of P 1
A (resp. P 2

A) starting at the ith action. We write

idX the identity substitution with dom(idX) = X . Since this

basic process is made up of 4 actions, we obtain 4 abstract

protocol rules, among which the following abstract rule r3:

statec13 (id{x1
AB

,x1
B
}, id{x2

B
}) −→

att(x1B , x
2
B), state

c1
4 (id{x1

AB
}, ∅);

statec13 (id{x1
AB

,x1
B
}, id{x2

B
})

Since both basic processes have the same shape, no absract

rule with bad in conclusion have been computed at this stage.

This transformation is then extended to protocols in a natu-

ral way. Assume w.l.o.g. that both simple processes are made

of n basic processes (we can complete with null processes if

needed). That is, P = {P1, . . . , Pn} and Q = {Q1, . . . , Qn}.

In addition, assume w.l.o.g. that Pi and Qi are basic processes

on channel ci. We define

Rule(P ,Q) = Rule(P1, Q1) ∪ . . . ∪ Rule(Pn, Qn).

Given a substitution σ, and statecP,Q(σP , σQ) occurring in

a protocol abstract rule, the application of σ to the abstract

state is defined as follows:

statecP,Q(σP , σQ)σ = statecP,Q(σ ◦ σP , σ ◦ σQ).

B. Flattening

In terms of efficiency, one key step of our algorithm is

to avoid composition rules from the attacker. For this, we

transform protocol rules in order to pre-compute all necessary

composition steps. For example, consider the second step of

the Denning Sacco protocol, presented in Example 4. The

agent A expects a message m of the form {b, xAB, xB}kas

and answers with xB . Either the attacker obtains m as an

existing ciphertext or he builds the ciphertext himself, provided

he knows the key kas. In the later case, we may avoid a

composition step by considering the following (informal) rule:

b, xAB, xB , kas → xB

This rule is clearly useless for this particular example but

illustrates our flattening technique. Note that such rules will

become useful for the analysis of a more complex scenario,

in particular those involving dishonest participants.

We now explain how formally to compute the set of

flattened rules from a given abstract rule r. For this, we start

by explaining how to decompose a fact att(u, v).

Definition 9: Given a term u ∈ T (Σc,Σ∪N ∪X ), we say

that u is decomposable when:

• either u ∈ X and δP(u) is not an atomic type;

• or u 6∈ Σ ∪ N ∪ X .

Intuitively, a variable of non atomic type is decomposable

since it may be instantiated by a non atomic term which, in

turns, may have been obtained by composition. Given att(u, v)
with u decomposable, we define split(att(u, v)) as follows:

split(att(u, v)) = (f; {att(x1, y1), att(x2, y2)};σP ;σQ)

where

• δP(u) = f(τ1, τ2) for some τ1, τ2 and some f ∈ Σc;

• x1 (resp. x2) is a fresh variable of type τ1 (resp. τ2) and

σP = mgu(u, f(x1, x2));
• y1, y2 are fresh variables, σQ = mgu(v, f(y1, y2)).

Note that σP exists and is necessarily a well-typed substitu-

tion. By convention, we assume that mgu(u, u′) = ⊥ when u
and u′ are not unifiable.

Let r be an abstract rule of the form Pre −→ Add ;Del

with f = att(u, v) ∈ Pre such that u is decomposable and

split(f) = (f, S, σP , σQ). The decomposition of r w.r.t. f ,

denoted decompo(r, f), is defined as follows:

1)
(

(Pre r f) ∪ S −→ bad
)

σP in case σQ = ⊥;

2)
(

(Pre r f) ∪ S −→ Add ;Del
)

(σP ⊎ σQ) otherwise.

Then, decomposition is applied recursively on each rule.

Flat(r) = Flat({decompo(r, f) | f = att(u, v) ∈ Pre(r)

with u decomposable}) ∪ {r}
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Example 13: Considering the abstract protocol rule r3 given

in Example 12, the set Flat(r3) contains (among others):

statec12 (∅, ∅),
att(〈b, x1AB , x

1
B〉, 〈b, x

2
AB , x

2
B〉), att(kas, kas)

−→ statec13 (id{x1
AB

,x1
B
}, id{x2

B
}); state

c1
2 (∅, ∅)

statec12 (∅, ∅),
att(b, b), att(x1AB , x

2
AB), att(x

1
B , x

2
B), att(kas, kas)

−→ statec13 (id{x1
AB

,x1
B
}, id{x2

B
}); state

c1
2 (∅, ∅)

statec12 (∅, ∅), att(b, b), att(x1AB , x
2
AB), att(kas, kas)

att(x1B1, x
2
B1), att(x

1
B2, x

2
B2)

−→ statec13 (σ1, σ2); state
c1
2 (∅, ∅)

where

• σ1 = {x1AB 7→ x1AB , x
1
B 7→ enc(x1B1, x

1
B2)};

• σ2 = {x2B 7→ enc(x2B1, x
2
B2)}; and

• x1B1 (resp. x2B2) is of type 〈τk, τa〉 (resp. τks).

C. Concretization

Given an abstract rule r, we denote vars left(r) the variables

occurring on the left (first parameter) of a predicate occuring

in r, and similarly for vars right(r). More precisely,

• vars left(att(u, v)) = vars(u); and

• vars left(state
c
P,Q(σP , σQ)) = vars(img(σP )).

We have that vars(r) = vars left(r) ⊎ vars right(r).

Given an abstract protocol rule r, its positive concretization

simply consists in all its instantiations that are well-typed w.r.t.

the left side of the rule.

Concrete+(r) = {rσ | σ a substitution grounding for r
such that rσ only involve messages in MΣ

and δP(xσ) � δP(x) for any x ∈ vars left(r)}

Let KP = (P ; σP ; φ) and KQ = (Q; σQ; ψ) be two

configurations with dom(φ) = dom(ψ). The set of facts

associated to KP and KQ is defined as follows:

Fact(KP ,KQ) = Fact(φ, ψ) ∪
{statecP,Q(σP , σQ) | P ∈ P , Q ∈ Q are basic processes

on channel c, σP = σP |fv(P ) and σQ = σQ|fv(Q) }

We denote by Fact(KP ,KQ) ↑ S
′ when the set of facts S′

can be obtained from the set of facts Fact(KP ,KQ) by adding

only deducible facts (using destructor recipes only).

Definition 10: Given two sets of facts S and S′ such

that S = Fact(KP ,KQ) with KP = (P ;φ;σP ) and

KQ = (Q;ψ;σQ) with dom(φ) = dom(ψ), we write

Fact(KP ,KQ) ↑ S′ when:

• Fact(KP ,KQ) and S′ coincide on states;

• for any att(u, v) ∈ Fact(KP ,KQ), att(u, v) ∈ S′; and

• for any att(u, v) ∈ S′, there exists a destructor-only

recipe R such that Rφ↓ = u, and Rψ↓ = v.

The solutions of the planning system obtained as the positive

concretization of the abstract rules of P and Q exactly

corresponds to the set of (quasi-well-typed) traces of P that

can be mimicked by Q.

Lemma 2: Let P be a protocol type-compliant

w.r.t. (TP , δP), and Q be another protocol. Let Θ be the

following planning system:

〈Fact0,Fact(P ,Q),R〉

where R = Concrete+(RuleA ∪ Flat(Rule(P ,Q))).

Let (tr, φ) ∈ traceΣ(P ) for some φ and such that:

• tr only contains simple recipes;

• (tr, φ) is well-typed w.r.t. (TP , δP);
• (tr, ψ) ∈ traceΣ(Q) for some ψ.

Then, there exist a planning path r1, . . . , rn of

some length n from Fact(P ,Q) to some Sn such that

Fact(K ′
P ,K

′
Q) ↑ Sn where K ′

P (resp. K ′
Q) is the resulting

configuration starting from P (resp. Q) and executing tr.

Conversely, let r1, . . . , rn be a planning path from

Fact(P ,Q) to Sn such that bad 6∈ Sn. Then, there exist a

trace tr, and frames φ and ψ such that:

• tr only contains simple recipes;

• (tr, φ) is well-typed w.r.t. (TP , δP);
• (tr, ψ) ∈ traceΣ(Q) for some ψ; and

• Fact(K ′
P ,K

′
Q) ↑ Sn where K ′

P (resp. K ′
Q) is the

resulting configuration starting from P (resp. Q) and

executing tr.

D. Case of failures

Similarly to the static case, we need to make sure that we

can detect when P and Q are not in trace inclusion. For this,

we consider additional rules that express when a step that can

be performed on the left hand side cannot be mimicked on the

right hand side.

Given an abstract protocol rule r = Pre −→ Add ;Del ,

Concrete−(r) is the set of planning rules that contains:

f1, . . . , fk −→ bad

for any sequence of facts f1, . . . , fk ∈ Fact0 such that

f1, . . . , fk left-unify with Pre with substitution σL and u ∈
MΣ for any att(u, v) ∈ AddσL, and such that one of the

following conditions holds:

• f1, . . . , fk does not right-unify with Pre;

• f1, . . . , fk right-unify with Pre with substitution σR but

v 6∈ MΣ for some att(u, v) ∈ AddσR.

Our main technical result states that our encoding in plan-

ning system is sound and complete: two protocols are in

trace inclusion if, and only if, the corresponding planning

system (obtained by considering both positive and negative

concretizations) has a solution.

Theorem 3: Let P a protocol type-compliant w.r.t. (TP , δP),
and Q be another protocol. We consider the following set R
of concrete rules:

R = Concrete(RuleA ∪ flat(Rule(P ,Q))) ∪Rtest
fail ∪Ratom

fail

Let Θ = 〈Fact0,Fact(P ,Q),R〉 and Π = 〈Θ, {bad}〉. We

have that P 6⊑ Q if, and only if, Π has a solution.

9



This reduction to a planning system is a key ingredient of

our result. But of course, it does not immediately yields an

algorithm since the planning system encoding trace inclusion

of a process P w.r.t. a process Q is actually infinite. Indeed,

consider for example the positive concretizations of an abstract

rule in Rule(P ;Q). There are finitely many instantiations for

the “left” part, that corresponds to Q thanks to the typing

system. However, the “right” part (corresponding to Q) may be

instantiated arbitrarily. We explain how to design an (efficient)

algorithm in the next section.

VI. ALGORITHM

Our algorithm takes as input a protocol P that is type-

compliant w.r.t. a typing system (TP , δP) and another pro-

tocol Q. We explain here how to check trace inclusion of P
in protocol Q. Then, trace equivalence is obtained by checking

trace inclusion of P in Q and Q in P .

Step 1: Compute the abstract rules of (P ;Q). As ex-

plained in Section V-A, we compute the abstract rules

Rule(P ;Q) associated to (P ;Q), and then their flattened ver-

sion flat(Rule(P ;Q)), as described in Section V-B. Together

with the attacker rules (defined in Section IV-B), this yields

RuleA ∪ flat(Rule(P ;Q)).

Step 2: Initial state. Thanks to Theorem 2, it is sufficient

to consider at most three extra constants in addition to the

constants of P and Q, that is, it is sufficient to consider Σ =
ΣP ∪ ΣQ ⊎ {c0⋆, c

1
⋆, c〈ω,ω〉}. We then add the initial states of

the protocols. More formally, we start with the initial state

Fact(P ,Q).

Step 3: Planning graph algorithm. Given a planning system,

the standard technique for finding a solution to the planning

system is to apply the planning graph algorithm (see [14]),

that we briefly recall here. The algorithm consists in building a

graph (called planning graph), that consists in an alternance of

facts layers and rules layers, linked with four kinds of edges:

Pre , Add and Del edges, that are edges between the fact

layers and the rule layers; and mutex (as in mutual exclusion)

are edges between vertices of the same layers. Mutex edges

indicate when vertices may not be obtained simultaneously.

More precisely, the planning graph algorithm proceeds as

follows. Let i denote the number of layers. Initially, i := 0.

1) The first fact layer is Nf
0 = Fact(P ,Q) (the set of initial

facts) and the first rule layer is empty, N r
0 = ∅.

2) From the fact layer Nf
i , compute the set R of all

concrete rules (either from Concrete+ or Concrete−)

that are applicable from Nf
i without any mutex edge

between facts of their precondition. Since there are a

finite number of abstract protocol rules and since the

facts in Nf
i are ground and finite, the set R of concrete

rules applicable from Nf
i is finite as well.

3) Compute the new mutex edges between the rules. Rules

are in mutex if they either interfere (one deletes a

precondition or an add-effect of the other) or have

competing needs (there is a mutex edge between their

preconditions).

4) Build Nf
i+1 from N r

i by adding the facts introduced by

the rules in N r
i . We have that:

Nf
i+1 = ∪ρ∈Nr

i

5) We compute the mutex edges between facts. There is

a mutex edge between two facts f, f ′ if each rule that

adds f is in mutex with each rule that adds f ′.

6) i := i+ 1
7) Check whether Nf

i := Nf
i−1 (same facts and same

mutex). If yes, then stop. Otherwise, go back to Point 2.

When the planning graph algorithm stops, we obtain a

graph, that represents an over-approximation of the states

reachable from the planning system, starting from the initial

state. While we are looking for a solution to an infinite

planning system (finitely described through abstract rules), we

only need to consider a finite number of concrete rules at each

round of the algorithm (Point 2 of the algorithm). Note that

this construction is not a naive saturation that would explore

all possible paths. The mutex edges ensure a not too coarse

over-approximation and provide a mean for considering the

application of a rule to a family of facts instead a single fact.

Step 4: SAT encoding. If bad does not occur in the resulting

planning graph, then trace inclusion is guaranteed since the

planning graph is an over-approximation of the reachable

states. If bad does occur in the planning graph, we can check

whether bad is indeed reachable through SAT solvers. More

precisely, we encode the existence of a solution to the planning

system into a SAT instance, using the same technique as

SATMC (see [16]), and relying on the SAT solver minisat [28].

If bad is reachable, the SAT solver provides us with a solution,

which is translated back to an attack trace. If bad is not

reachable (that is, the SAT solver guarantees that there is no

solution), then trace inclusion is guaranteed.

Conclusion. Thanks to Theorem 3, P 6⊑t Q if, and only if, the

corresponding planning system R has a solution, that is, bad

is reachable. Therefore our algorithm is correct and complete:

it provides an attack if, and only if, P 6⊑t Q. Since P ≈t Q
is defined as P ⊑t Q and Q ⊑t P , we can then easily check

whether two processes are in trace equivalence (P ≈t Q ).

Termination. Our procedure is not guaranteed to terminate.

This may be surprising since Theorem 1 ensures that it is

sufficient to consider traces that are well-types w.r.t. (TP , δP).
Then, since the processes are deterministic, a given trace of P
can only be followed by at most one trace in Q, hence a

finite number of traces need to be considered. However, the

planning graph step over-approximates the set of facts that

need to be considered. Therefore, it may consider several

facts of the form att(u, u1), att(u, u2), . . . , att(u, un) with

distinct, uncontrolled, ui. One way to enforce termination

would be to check at each step that the planning graph

only considers reachable facts (applying our SAT encoding).

However, this would considerably slow down our algorithm

while our experiments show that, not only our algorithm

10



terminates in practice, but it is also much more efficient than

other existing tools.

VII. CASE STUDIES

In this section, we analyse several protocols of the literature

and compare the results obtained using different tools that

decide equivalence for a bounded number of sessions. The

characteristics of these tools are given in Section VII-A, the

different scenarios including some scenarios with corruption

are described in Section VII-B. The result are described In

Section VII-C and a discussion is provided in Section VII-D.

Our tool as well as the source files to reproduce the bench-

marks are available at [20].

A. Tools

Spec [9], [29] deals with a fixed set of cryptographic primi-

tives, namely symmetric encryption and pairs, and protocols

with no else branch. The procedure is sound and complete

w.r.t. open bisimulation (a notion that is strictly stronger than

trace equivalence [30]) and its termination is proved [9].

Apte decides trace equivalence [8], [11], [31] for a fixed

but richer set of cryptographic primitives (i.e. symmet-

ric/asymmetric encryptions, signature, pair, and hash func-

tions). Processes are also more general: they include private

channels, internal communications, processes that are not

necessarily simple, and possibly with else branches.

Systems we are interested in are highly concurrent and

a naive exploration of all possible interleavings limits the

practical impact of those tools. Recent works [12], [13] have

partially addressed the state space explosion problem due to

naive exploration of all possible interleavings implemented

in this tool. These dedicated partial order reduction (POR)

techniques have been implemented in Apte-por (as an option

of the Apte tool) yielding a significant speed-up.

Akiss implements the procedure described in [10], [32] and

deals with rich user-defined term algebras including symmetric

encryption and pairs. It is able to check an over-approximation

of trace equivalence that actually coincides with trace equiv-

alence for the class of simple processes that we study in this

paper. Its termination has been established for the particular set

of primitives used in this paper [33], and the perfomance of the

tool has been recently improved relying on POR techniques

mentionned above.

Of course, not all the tools consider exactly the same se-

mantics. For example, Akiss considers a true equational theory

while Spec, Akiss, and SAT-equiv consider a rewrite system

(with again subtle differences). We believe nevertheless that

they prove very similar properties and we therefore compare

here their performance.

B. Scenarios with corruption

The scenario we considered so far for the Denning-Sacco

protocol is quite simple. We only consider two sessions involv-

ing honest agents. This scenario involves 6 roles in parallel,

and is denoted DS-6 in the table given in Section VII-C.

In the same spirit, we consider a simpler scenario, denoted

DS-3, that corresponds to only one instance of each role

(between honest agents). Such scenarios are known to be too

simplistic and some attacks may be missed.

To go furhter, we consider scenario where honest agents are

willing to engage communications with a dishonest agent c.

Let us develop this corruption scenario on the Denning-Sacco

protocol. Formally, we consider in addition of the three basic

processes used to model scenario DS-3, a basic process to

model that the agent a may be involved in another session

with a corrupted agent c, and the server S is ready to answer

a request coming from them. Similary, we consider also two

additional basic processes to model the fact that agent b may

be involved in another session where the role A is played by

the corrupted agent c. This scenario is therefore made up of 7
basic processes and is named accordingly DS-7.

To be more complete, we can also consider the cases where

the role of A is played by b, and the role of B is played by a

(scenario DS-10), and then we add again processes to model

sessions with a corrupted agent (scenario DS-12 and DS-14).

We consider the case where the property is encoded on

role B (strong secrecy of the key as received by B). We may

also decide to encode the property on the two instances of the

roles of B (scenario DS-6-bis) or only once (scenario DS-6).

C. Review of symmetric key protocols

Most of the protocols we considered from [23] actually fall

in our class. We sometimes need to include some explicit tags

to ensure type-compliance (this check is performed automat-

ically by our tool). We now report on experimental results.

We ran the different tools on a single Intel 3.1 GHz Xeon

core with 190Go of RAM (shared with the other 19 cores)

and we compare their performances on several protocols. For

SAT-Equiv, we further indicate the number of ground facts and

rules considered when computing the planning graph.

We decide to stop each experiment after 24h, and we

indicate by TO (Time Out) when the tool does not return

an answer within this timeframe, SO when we encounter a

stack overflow, and MO in case the tool used more than 64

Go of Memory. We encountered some bugs that are indicated

by BUG when interacting with Apte (internal errors or wrong

results). We have reported these bugs to the authors.

Some protocols are subject to replay attacks, detected by the

scenario 6-bis mentioned earlier. Even if scenarios that corre-

spond to an attack are less interesting regarding performances

comparison (since most of the tools stop their exploration

once an attack has been found), we report the corresponding

analysis in the last raw of each table, whenever applicable,

that is, whenever there is indeed an attack.

Denning Sacco. The Denning Sacco protocol has been de-

scribed in Example 4. There is a replay attack on DS-6-bis

due to a lack of freshness on the messages that are exchanged.

This attack is similar to the one explained in Example 7.
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DS Spec Akiss Apte Apte-por Sat-Eq

3 12s 0.10s 0.3s 0.03s 0.25s 58

6 MO 15s TO 8s 1s 104

7 101s 13s 2s 132

10 SO 39m 4s 166

12 TO 7s 203

14 10s 234

6-bis 78m 49s 19s 0.07s 2s 122

Wide Mouth Frog. We consider the protocol as described

in [23] but without timestamps as described below:

A→ S : A, {B,Kab}Kas

S → B : {A,Kab}Kbs

Therefore, there is a replay attack on WMF-6-bis due to a lack

of freshness on the messages that are exchanged.

WMF Spec Akiss Apte Apte-por Sat-Eq

3 6s 0.04s 0.06s 0.01s 0.10s 52

6 58m 1.6s 55m 1.5s 1s 96

7 TO 5.3s TO 2s 2s 121

10 8m30s 22m 7s 165

12 SO TO 40s 238

14 118s 312

6-bis 13m 5.7s 0.06s 0.06s 1s 114

Needham-Schroeder. We consider the Needham-Schroeder

protocol based on symmetric encryption as described in [23]

(see below).

A→ S : A,B,Na

S → A : {B,Na,Kab, {A,Kab}Kbs}Kas

A→ B : {A,Kab}Kbs

B → A : {Req,Nb}Kab

A→ B : {Rep,Nb}Kab

NS Spec Akiss Apte Apte-por Sat-Eq

3 63s 4.4s 0.4s 0.03s 2s 100

6 MO TO TO 11m 54s 245

7 TO 153s 342

10 8m 475

12 22m 622

14 77m 838

Yahalom-Lowe. We consider the protocol as described in [23].

However, to ensure type-compliance, we consider a tagged

version of the protocol.

A→ B : A,Na

B → S : {1, A,Na, Nb}Kbs

S → A : {2, B,Kab, Na, Nb}Kas

S → B : {3, A,Kab}Kbs

A→ B : {4, A,B, S,Nb}Kab

YL Spec Akiss Apte Apte-por Sat-Eq

3 11s 3s 12s 0.12s 5s 122

6 MO TO TO 35m 3m 333

7 BUG 19m 549

10 206m 934

12 19h 1391

14 TO

Yahalom-Paulson. We consider the protocol as described

in [23]. To ensure type-compliance, we consider a tagged

version of the protocol.

A→ B : A,Na

B → S : B,Nb, {1, A,Na}Kbs

S → A : Nb, {2, B,Kab, Na}Kas
, {3, A,B,Kab, Nb}Kbs

A→ B : {3, A,B,Kab, Nb}Kbs
, {4, Nb}Kab

YP Spec Akiss Apte Apte-por Sat-Eq

3 23m 7s 111s 0.9s 50s 234

6 MO TO TO BUG 165m 976

7 TO

Otway-Rees. We have also analysed a tagged version of the

Otway-Rees protocol (see [23]).

A→ B : M,A,B, {1, Na,M,A,B}Kas

B → S : M,A,B, {1, Na,M,A,B}Kas,

{2, Nb,M,A,B}Kbs

S → B : M, {3, Na,Kab}Kas, {4, Nb,Kab}Kbs

B → A : M, {3, Na,Kab}Kas

OR Spec Akiss Apte Apte-por Sat-Eq

3 16m 225s BUG 24s 104s 239

6 MO SO SO 46m 660

7 50m 637

10 276m 1033

12 9h40m 1265

14 TO

Simple stateful example. Some protocols are stateful (see [34]

for a detailed discussion). For example, a process may lock

a ressource which cannot be used until it is unlocked. We

consider here a mock protocol that reflects this type of

behaviors. The protocol Pyes(n) with n tokens is described

informally below (1 ≤ i ≤ n), and is made of 3n processes

running in parallel on distinct channels.

1. → {tokai}ki
, {tokbi}ki

2. {x}ki
→ x

3. tokai, tokbi → yes

Here, yes and no are public constants, whereas ki, tokai, and

tokbi are names unknown by the attacker. The protocol Pno(n)
can be defined similarly. Intuitively, Pyes(n) ≈ Pno(n) holds

since rule 2 can be used only once for each key ki. Therefore,
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it is never possible to trigger a rule of type 3. We checked

equivalence using ProVerif and, unsurprinsgly, it found a false

attack. This is due to the fact that ProVerif cannot properly

model “a finite amount of time”.

# tok. Spec Akiss Apte Apte-por Sat-Eq

1 15s 0.02s 0.09s 0.01s 0.16s 49

2 MO 0.37s 240m 0.15s 1s 100

3 18s MO 5s 2s 144

4 SO 9min32s 6s 188

12 TO 155s 540

36 85m 1596

60 6h40m 2652

D. Discussion

For ease of comparison, we decided to run our experiments

using a single core machine since not all the tools are able

to take advantage of more cores. Running these examples

using more cores would have benefited to our tool that reaches

its optimum when it is launched using 4 cores (2 inclusions

have to be checked with constants c0⋆ and c1⋆ (resp. c〈ω,ω〉)),

and also to Akiss on which the saturation process is highly

parallelizable.

The obtained results give evidence that our technique is less

sensitive to the number of concurrent sessions analysed. On

the contrary, the other tools that handle messages symbolically

are less sensitive to the size of messages, which explains why

our tool is typically slower on a small number of sessions.

Moreover, on all our secure examples on which no attack

is found, the planning graph is an over-approximation that

appears to be precise enough, and does not require calls to

the SAT solver. For the examples where an attack has been

found (DS-6-bis and WMF-6-bis), the resulting SAT formulas

contain about 750 variables and 4000 clauses.

VIII. CONCLUSION

Our tool SAT-Equiv outperforms all existing tools, even for

the new Apte-por variant of Apte and the recently updated

Akiss tool on which POR techniques have also been integrated.

We also discovered several bugs in Apte-por, which prevented

us from a thorough comparison of the two tools. SAT-Equiv

is sometimes slower for a small number of sessions but in all

cases, SAT-Equiv is the tool that allows to analyze the largest

number of sessions.

One limitation of our tool is the fact that it covers protocols

with symmetric encryption only. This is not an intrinsic

limitation of our approach but rather a current limitation of the

typing result [19], which states that we can limit ourselves to

well-type attack traces. We plan to extend [19] to all standard

primitives and we believe that the extension to SAT-Equiv to

all standard primitives would then follow quite easily.

Note also that our tool is not guaranteed to terminate. We

could enforce termination by checking reachability of the

considered facts while building the planning graph, at the

price of considerably slowing down our tool. Instead, as future

work, we plan to formally prove termination of the planning

graph construction or to identify under which assumptions,

termination can be guaranteed.
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APPENDIX A

REDUCTION RESULTS

A. Bounding the size of messages

The goal of this section is to prove Theorem 1. A similar

result is stated and proved in [19] but for a slighlty different

semantics regarding rewriting of terms. Here, whenever an

inner decryption/projection fails then the overall evaluation

fails. Intuitively, we model eager evaluation while [19] models

lazy evaluation. More formally, in [19], a term u can be

rewritten in v if there is a position p in u, and a rewriting

rule ℓ → r and a substitution σ such that u|p = ℓσ, and

v = u[rσ]p, i.e v in which the subterm at position p has been

replaced by rσ. We will denote u⇒ v this notion of rewriting,

and u⇓ the associated notion of normal form of u.

Example 14: Let u = dec(enc(c, proj1(a)), proj1(a)). We

have that u⇒ c whereas u can not be reduced w.r.t. → since

proj1(a) is not a message.

Definition 11: A recipe R is without detour if it does

not contain any subterm of the form dec(enc(R1, R2), R3),
proj1(〈R1, R2〉), and proj2(〈R1, R2〉) for any recipes

R1, R2, R3.

Lemma 3: Let φ be a frame, and R be a recipe without

detour. If Rφ⇓ ∈ MΣ0
then we have that Rφ↓ ∈ MΣ0

.

Moreover, we have that R is actually a recipe made of

constructors on top of destructors.

Proof. We first show by structural induction on R the

following claim.

Claim. Let φ be a frame,R be a recipe without detour such that

root(R) 6∈ Σc, and root(Rφ⇓) 6∈ Σd. We have that Rφ⇓ =
Rφ↓ ∈ MΣ0

and R is destructor-only.

Base case: R = w for some w ∈ dom(φ). In such a case, the

result trivially holds.

Inductive case: R = dec(R1, R2) (or R = proji(R
′) with

i ∈ {1, 2}). First, we know that root(R1) 6= enc since R
is without detour, and we have also that root(R1) 6= 〈 〉
since root(dec(R1, R2)φ⇓) 6∈ Σd. Therefore, we have that

root(R1) 6∈ Σc. We have that Rφ⇓ = dec(R1, R2)φ⇓ =
dec(R1φ⇓, R2φ⇓)⇓. Since root(Rφ⇓) 6∈ Σd, we deduce that

root(R1φ⇓) 6∈ Σd. Therefore, we can apply our induction

hypothesis on R1, and we deduce that R1φ⇓ = R1φ↓ ∈ MΣ0
,

and R1 is destructor-only. We know that R1φ⇓ = R1φ↓ =
enc(u1, u2) and R2φ⇓ = u2 for some terms u1, u2. Since

enc(u1, u2) ∈ MΣ0
, we have that u2 ∈ MΣ0

, and since

it occurs in key position, it is an atom. Therefore, we have

that root(R2) 6∈ Σc, and root(R2φ⇓) 6∈ Σd. Thus, we can

apply our induction hypothesis, and we obtain that R2φ⇓ =
R2φ↓ ∈ MΣ0

, and R2 is destructor-only. This allows us

to conclude that R = dec(R1, R2) is destructor-only and

Rφ⇓ = Rφ↓ ∈ MΣ0
.

The case where R = proji(R
′) with i ∈ {1, 2} can be done

in a similar way. This concludes the proof of the claim.

Now, we prove the result stated in the lemma. Let R
be a recipe without detour. Let C be a context built using

constructor symbols and R1, . . . , Rk be recipes such that

root(Ri) 6∈ Σc (i ∈ {1, . . . , k}), and R = C[R1, . . . , Rk].
Note that C can be the empty context in case root(R) 6∈ Σc,

and in such a case we conclude thanks to the previous claim.

Otherwise, we have that Rφ⇓ = C[R1φ⇓, . . . , Rkφ⇓], and

therefore Riφ⇓ ∈ MΣ0
for i ∈ {1, . . . , k}, and R1, . . . , Rk

are recipes without detour. We apply our claim and we obtain

that, for 1 ≤ i ≤ k, Riφ⇓ = Riφ↓ ∈ MΣ0
and Ri is

destructor-only. This concludes the proof. �

Lemma 4: Let φ be a frame, and R be a recipe without

detour. If Rφ⇓ 6∈ MΣ0
then there exists f ∈ Σc ∪ Σd such

that:

• R = f(R1, . . . , Rk) for some R1, . . . , Rk;

• Rφ⇓ = f(u1, . . . , uk) for some u1, . . . , uk; and

• R1φ⇓ = u1, . . . , Rkφ⇓ = uk.

Proof. We show this result by induction on R.

Base case: R = w. In such a case, Rφ⇓ = Rφ ∈ MΣ0
, and

we are done.

Inductive step. Consider the case where R = enc(R1, R2). In

such a case, we have that Rφ⇓ = enc(R1φ⇓, R2φ⇓), and we

are done. The case where R = 〈R1, R2〉 can be done in a

similar way. Now, consider the case where R = dec(R1, R2).
In such a case, we have that Rφ⇓ = dec(R1φ⇓, R2φ⇓)⇓.

In case the dec symbol at the root position does not reduce,

we are done. Otherwise, we have that R1φ⇓ = enc(u1, u2),
and R2φ⇓ = u2 for some u1, u2. Moreover, we know that

u1 6∈ MΣ0
, and thus R1φ⇓ 6∈ MΣ0

, and thanks to our

induction hypothesis, we have that root(R1) = enc, and this

contradicts the fact that R is without detour. The case where

R = proji(R1) can be done in a similar way. �

Lemma 5: Let R be a recipe. There exists a recipe R′

without detour such that R′φ⇓ = Rφ⇓ for any frame φ such

that Rφ⇓ ∈ MΣ0
.

Proof. We introduce special notation to describe terms in

this proof. For any terms t, t′ and position p of the term t, t|p
is the subterm of t at position p, and t[t′]p denotes the term

t in which the term occurring at position p has been replaced

by t′. Given a term t and a position p of t, we denote seqp(t)
the sequence of function symbols encountered along the path

from ǫ (the root of t) to p.

Let R be a recipe. We consider a derivation in prefix order

from R to its normal form w.r.t. the following linear rewriting

system. Note that the last rule is not the usual one.

proj1(〈x, y〉) → x, proj2(〈x, y〉) → y, dec(enc(x, y), z) → x

We will denote the associated normal form by ↓ℓ.
We have that:

R = R0 →p1
R1 →p2

. . .→pn
Rn = R′

Assume by contradiction that there exists a first index i such

that Riφ⇓ 6= Ri+1φ⇓. So the reduction at position pi+1 is not

possible in Riφ. Therefore [Riφ]pi+1
= dec(enc(t1, t2), t3) for

some t1, t2, t3, as projections pass in Riφ whenever they pass

in Ri. As Riφ⇓ 6= Ri+1φ⇓, t2⇓ 6= t3⇓. So dec(enc(t1, t2), t3)
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will never reduce. We show that it will never be deleted by a

reduction occuring above.

More precisely, we show by induction on n the following

property. For every n, if Riφ →n t (for the lazy evaluation,

i.e. the one w.r.t. ⇓ semantics), then

1) pi+1 is a path of t, t|pi+1
⇓ = dec(enc(t1, t2), t3)⇓ and

seqpi+1
(t) = seqpi+1

(Ri);
2) for any p ≤lex pi+1 such that p is a path of t, if t|p is

headed with a constructor symbol then

• either p is a path of Ri and seqp(t) = seqp(Ri),
• or t|p is a subterm of a term of img(φ).

The case n = 0 is straightforward. Consider now a term

t′ such that Riφ →n t → t′. By induction hypothesis, the

properties above hold for t. We consider the position p′ at

which the reduction occurs in t.

• If p′ ≥lex pi+1 and pi+1 is not a prefix of p′, then the

induction hypothesis is trivially preserved.

• If pi+1 is a prefix of p′, then clearly, t′|pi+1
⇓ = t|pi+1

⇓ =
dec(enc(t1, t2), t3)⇓ and the positions p′′ <lex pi+1 are

left unchanged.

• If p′ <lex pi+1, we consider two cases. We have t′ =
t[rθ]p′ and t|p′ = lθ for some θ and l → r is one of the

rewrite rules.

1) either p′ is not a prefix of pi+1, then property

(1) is easily preserved for t′. Assume that l =
dec(enc(x, y), y). Since p′ <lex pi+1, we must have

p′.1 ≤lex pi+1 (we may even note that p′ ≤lex pi+1

since p′ is not a prefix of pi+1). Since t|p′.1 is

headed by enc, we have by induction hypothesis

that

– either t|p′.1 = enc(t′1, t
′
2) is a subterm of a term

of img(φ) and thus t′ = t[t′1]p′ satisfies property

(2).

– or p′.1 is a path of Ri and seqp′.1(t) =
seqp′.1(Ri), which means that Ri could have

been reduced at position p′, contradiction. (Re-

member that these reductions have been per-

formed following the prefix order.)

The case of the projection rule is similar.

2) or p′ is a prefix of pi+1. If p′.1 is also a prefix of

pi+1, then Ri could have been reduced at position p′

(as seqpi+1
(t) = seqpi+1

(Ri)), contradiction. Thus

we must have that l = dec(enc(x, y), y) and p′.2
prefix of pi+1. Since p′.1 ≤lex p

′.2 ≤lex pi+1 and

t|p′.1 = enc(t′1, t
′
2), by induction hypothesis, we

deduce that

– either t|p′.1 = enc(t′1, t
′
2) is a subterm of a term

of img(φ). As p′.2 is a prefix of pi+1, t|pi+1

is a subterm of tp′.2. Moreover, since there is a

reduction dec(enc(x, y), y) → x at position p′,
we know that t|p′.1.2 = t′2 = t|p′.2. Therefore,

we have that t|pi+1
is a subterm of t|p′.2 = t′2

(a constructor term). However, t|pi+1
contains a

destructor since seqpi+1
(t) = seqpi+1

(Ri) (by

induction hypothesis, item 1). Hence, we obtain

a contradiction.

– or p′.1 is a path of Ri and seqp′.1(t) =
seqp′.1(Ri), which means that Ri could have

been reduced at position p′, contradiction.

Thanks to item 1, we have that [Riφ]pi+1
⇓ =

dec(enc(t1⇓, t2⇓), t3⇓) is a subterm of Rφ⇓, which is not

a message. It is what we wanted to prove. �

Lemma 6: Let φ and ψ be two frames. We have that

φ ⊑s ψ if, and only if, φ is statically included in ψ w.r.t.

the semantics ⇓.

Proof. We show the two directions separately.

(⇐). Let φ and ψ be two frames such that φ ⊑s ψ w.r.t. the

semantics ⇓. We have to show that φ ⊑s ψ. We show this

result by induction on the number of steps to make the recipe

R (or the test R1 = R2) in normal form w.r.t. the rules below

(and considering an innermost derivation). Note that the last

rule is not the usual one.

proj1(〈x, y〉) → x, proj2(〈x, y〉) → y, dec(enc(x, y), z) → x

Base case: R (or R1, R2) is without detour.

• Let R be a recipe without detour such that Rφ↓ ∈ MΣ0
.

We have also that Rφ⇓ ∈ MΣ0
, and thanks to our

hypothesis, we know that Rψ⇓ ∈ MΣ0
. Applying

Lemma 3, we deduce that Rψ↓ ∈ MΣ0
.

• Let R1, R2 be two recipes without detour such that

R1φ↓, R2φ↓ ∈ MΣ0
, and R1φ↓ = R2φ↓. We have

also that R1φ⇓, R2φ⇓ ∈ MΣ0
, and R1φ⇓ = R2φ⇓.

Since φ ⊑s ψ w.r.t. the semantics ⇓, we deduce that

R1ψ⇓, R2ψ⇓ ∈ MΣ0
, and R1ψ⇓ = R2ψ⇓. Applying

Lemma 3, we deduce that R1ψ↓, R2ψ↓ ∈ MΣ0
and

therefore R1ψ↓ = R2ψ↓.

Inductive step.

• Let R be a recipe that contains n detours such

that Rφ↓ ∈ MΣ0
. We assume w.l.o.g. that R =

C[dec(enc(R1, R2), R3)], and R1, R2, R3 are without

detour. Let R′ = C[R1]. By definition of the rewrit-

ing, we have that R2φ↓, R3φ↓ ∈ MΣ0
, and R2φ↓ =

R3φ↓. We have also that enc(R1φ↓, R2φ↓) ∈ MΣ0
.

Since R2, R3 and enc(R1, R2) are without detour, we

know that R2ψ↓, R3ψ↓ ∈ MΣ0
, R2ψ↓ = R3ψ↓, and

enc(R1, R2)ψ↓ ∈ MΣ0
. Moreover, we have that R′φ↓ ∈

MΣ0
, and applying the induction hypothesis, we deduce

that R′ψ↓ ∈ MΣ0
, therefore we deduce that

Rψ↓ = C[dec(enc(R1ψ↓, R2ψ↓), R3ψ↓)]↓

= C[R1ψ↓]↓

= R′ψ↓ ∈ MΣ0

• Let R1, R2 be two recipes that contains n1 + n2

detours and such that R1φ↓, R2φ↓ ∈ MΣ0
, and

R1φ↓ = R2φ↓. Moreover, we assume w.l.o.g. that

R1 = C[dec(enc(Ra, Rb), Rc)] and Ra, Rb, Rc are

recipes without detour. Let R′
1 = C[Ra]. By definition

of the rewriting, we have that Rbφ↓, Rcφ↓ ∈ MΣ0
, and

Rbφ↓ = Rcφ↓. We have also that enc(Raφ↓, Rbφ↓) ∈
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MΣ0
. Since Rb, Rc and enc(Ra, Rb) are without detour,

we know that Rbψ↓, Rcψ↓ ∈ MΣ0
, Rbψ↓ = Rcψ↓,

and enc(Ra, Rb)ψ↓ ∈ MΣ0
. Moreover, we have that

R′
1φ↓, R2φ↓ ∈ MΣ0

, and R′
1φ↓ = R2φ↓. Applying

our induction hypothesis, we deduce that R′
1ψ↓, R2ψ↓ ∈

MΣ0
, and R′

1ψ↓ = R2ψ↓. Therefore, we deduce that

R1ψ↓, R2ψ↓ ∈ MΣ0
, and R1ψ↓ = R2ψ↓.

This allows us to conlude that φ ⊑s ψ w.r.t. the semantics ⇓
implies that φ ⊑s ψ.

(⇒) Let φ and ψ be two frames such that φ ⊑s ψ. We have to

show that φ ⊑s ψ w.r.t. the semantics ⇓. We show this result

(or more precisely a slightly stronger result) by induction on

the number of steps to make the recipe R (or the test R1 =
R2) in normal form w.r.t. the rules below (and considering an

outermost derivation). Note that the last rule is not the usual

one.

proj1(〈x, y〉) → x, proj2(〈x, y〉) → y, dec(enc(x, y), z) → x

Actually, we transfer all the tests even those that do not reduce

to messages.

Base case: R (or R1, R2) is without detour.

• Let R be a recipe without detour such that Rφ⇓ ∈ MΣ0
.

Thanks to Lemma 3, we have that Rφ↓ ∈ MΣ0
. Since

φ ⊑s ψ, we deduce that Rψ↓ ∈ MΣ0
, and therefore

Rψ⇓ ∈ MΣ0
.

• Let R1, R2 be two recipes without detour such that

R1φ⇓, R2φ⇓ ∈ MΣ0
, and R1φ⇓ = R2φ⇓. Thanks

to Lemma 3, we have that R1φ↓, R2φ↓ ∈ MΣ0
,

and R1φ↓ = R2φ↓. Since φ ⊑s ψ, we deduce that

R1ψ↓, R2ψ↓ ∈ MΣ0
, and R1ψ↓ = R2ψ↓. Therefore,

we conclude that R1ψ⇓, R2ψ⇓ ∈ MΣ0
, and R1ψ⇓ =

R2ψ⇓.

• Let R1, R2 be two recipes without detour such that

R1φ⇓ = R2φ⇓ (but R1φ↓ and R2φ↓ are not both in

MΣ0
). We show that R1ψ⇓ = R2ψ⇓ by induction on

|R1|+ |R2|, i.e. number of symbols in R1 and R2. When

R1φ⇓, R2φ⇓ ∈ MΣ0
, we have already shown the result,

therefore we consider the case where R1φ⇓, R2φ⇓ 6∈
MΣ0

. Applying Lemma 4 on R1, R2, we deduce that

we are in one of the following cases:

1) R1 = f(R′
1, R

′′
1 ), R2 = f(R′

2, R
′′
2 ) for some

R′
1, R

′′
1 , R

′
2, R

′′
2 , and f ∈ {enc, dec, 〈〉}. Moreover,

we have that R1φ⇓ = R2φ⇓ = f(u′, u′′) for

some u′, u′′ such that R′
1φ⇓ = R′

2φ⇓ = u′, and

R′′
1φ⇓ = R′′

2φ⇓ = u′′.
2) R1 = proji(R

′
1), R2 = proji(R

′
2) for some R′

1, R
′
2.

Moreover, we have that R1φ⇓ = R2φ⇓ = proji(u
′)

for some u′ such that R′
1φ⇓ = R′

2φ⇓ = u′.

We apply our induction hypothesis on the test R′
1 = R′

2

(and R′′
1 = R′′

2 ). This allows us to conclude that R′
1ψ⇓ =

R′
2ψ⇓ (and R′′

1ψ⇓ = R′′
2ψ⇓), and therefore conclude that

R1ψ⇓ = f(R′
1ψ⇓, R

′′
1ψ⇓)⇓

= f(R′
2ψ⇓, R

′′
2ψ⇓)⇓

= R2ψ⇓.

Inductive step.

• Let R be a recipe that contains n detours such

that Rφ⇓ ∈ MΣ0
. We assume w.l.o.g. that R =

C[dec(enc(R1, R2), R3)], and this pattern corresponds to

the outermost detour. Let R′ = C[R1]. By definition of

the rewriting, we have that R2φ⇓ = R3φ⇓ (even if we do

not know whether they are messages or not). Applying

our induction hypothesis, we know that R2ψ⇓ = R3ψ⇓,

and R′ψ⇓ ∈ MΣ0
. Therefore, we deduce that

Rψ⇓ = C[dec(enc(R1ψ⇓, R2ψ⇓), R3ψ⇓)]⇓

= C[R1ψ⇓]⇓

= R′ψ⇓ ∈ MΣ0

• Let R1, R2 be two recipes that contain n1 + n2 detours

and such that R1φ⇓ = R2φ⇓. We assume w.l.o.g. that

R = C[dec(enc(Ra, Rb), Rc)], and this pattern corre-

sponds to the outermost detour. Let R′
1 = C[Ra]. By

definition of the rewriting, we have that Rbφ⇓ = Rcφ⇓
(even if we do not know whether they are messages or

not). Applying our induction hypothesis, we know that

Rbψ⇓ = Rcψ⇓. Therefore, we deduce that R1ψ⇓ =
R2ψ⇓.

This allows us to conclude that φ ⊑s ψ implies that φ ⊑s ψ
w.r.t. the semantics ⇓. �

Theorem 1: Let P be a protocol type-compliant w.r.t.

(TP , δP) and Q be another protocol. We have that P 6⊑t Q
w.r.t. Σ0 if, and only if, there exists a witness tr of this non-

inclusion that only contains simple recipes and such that one

of the following holds:

1) (tr, φ) ∈ traceΣ0
(P) for some φ and (tr, φ) is well-

typed w.r.t. (TP , δP);
2) tr = tr′{c0 7→ c〈ω,ω〉} for some c0 ∈ Σ0 r ΣP , and

(tr′, φ′) ∈ traceΣ0
(P) for some φ′ and (tr′, φ′) is well-

typed w.r.t. (TP , δP).

Proof. We have that P 6⊑t Q w.r.t. Σ0, and therefore there

exists a witness (tr, φ) of this non-inclusion. We have that

(tr, φ) ∈ traceΣ0
(P) and:

1) either (tr, ψ) 6∈ traceΣ0
(Q) for any frame ψ;

2) or (tr, ψ) ∈ traceΣ0
(Q) for some ψ but φ 6⊑s ψ

w.r.t. Σ0.

Note that, due to the fact that we consider simple protocols,

the frame ψ is uniquely defined when it exists. Moreover,

we chose tr minimal in length. We first establish that P
is not included in Q w.r.t. the semantics ⇓ for terms. We

distinguish the two cases we mentionned above. Regarding

case 2, we have that (tr, φ) (resp. (tr, ψ)) is a trace of P
(resp. Q) w.r.t. the semantics ⇓, and therefore we conclude

thanks to Lemma 6. Regarding case 1, we have that (tr, φ) is

a trace of P w.r.t. the semantics ⇓, and we know also that

tr−1 (i.e. tr without the last action) is a trace of Q w.r.t.

the semantics ⇓. Let α be such that tr = tr−1 · α. Since

we know that tr = tr−1 · α is not a trace of Q (w.r.t. the

semantics ↓), the only case where tr can become a trace of Q
w.r.t. the semantics ⇓ is when α = in(c, R) with Rψ⇓ ∈ MΣ0
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whereas Rψ↓ 6∈ MΣ0
. However, we know that φ ⊑s ψ w.r.t.

semantics ↓ (thanks to the minimality of our witness), and

since we have Rφ↓ ∈ MΣ0
, we know that Rψ↓ ∈ MΣ0

.

Therefore this case can not happen. We have shown that

P 6⊑t Q w.r.t. semantics ⇓.

Now, we can apply the typing result as stated and proved

in [19], we deduce that there exists a witness (tr, φ) of this

non-inclusion (w.r.t. the semantics ⇓) such that one of the

following holds:

1) (tr, φ) is a trace of P (w.r.t. the semantics ⇓) and (tr, φ)
is well-typed w.r.t. (TP , δP); or

2) tr = tr′{c0 7→ c〈ω,ω〉} for some c0 ∈ Σ0 r ΣP , and

some (tr′, φ′) a trace of P (w.r.t. the semantics ⇓) for

some φ′, and (tr′, φ′) is well-typed w.r.t. (TP , δP).

We consider among these witnesses one that is of minimal

length. We have that (tr, φ) ∈ trace(P) (w.r.t. the semantics ⇓)

and:

1) either (tr, ψ) 6∈ trace(Q) (w.r.t. the semantics ⇓) for any

frame ψ;

2) or (tr, ψ) ∈ trace(Q) (w.r.t. the semantics ⇓) for some

ψ but φ 6⊑s ψ (w.r.t. the semantics ⇓).

Regarding case 2, we apply Lemma 5 and we consider tr a

trace made of recipes without detours such that trφ⇓ = trφ⇓,

and trψ⇓ = trψ⇓. Thanks to Lemma 3, the resulting trace

is made of simple recipes. We have that φ 6⊑s ψ (w.r.t. the

semantics ↓) thanks to Lemma 6. Regarding case 1, we have to

show that tr is not a trace of Q w.r.t. the semantics ↓. We know

that tr = tr−1 · α, and in such a case α = in(c, R) whereas

its counterpart in tr is in(c, R). We know that Rφ⇓ = Rφ⇓ ∈
MΣ0

, and therefore Rψ⇓ = Rψ⇓ ∈ MΣ0
since otherwise

we would contradict the minimality of our witness. Therefore,

tr is not a trace of Q w.r.t. the semantics ⇓, and thanks to

Lemma 3, we deduce that tr is not a trace of Q w.r.t. the

semantics ↓.

Note that trφ↓ = trφ↓, and since tr satisfies the require-

ments regarding typing, we easily deduce that (tr, φ) satisfies

the requirements regarding typing. �

B. Bounding the number of constants

First, we establish the following result.

Proposition 2: Let P be a protocol type-compliant w.r.t.

(TP , δP) and Q be another protocol. Let Σ = ΣP ⊎ {c ∈
Σ0 | δ0(c) = τ⋆}. We have that P 6⊑t Q w.r.t. Σ0 if, and

only if, there exists a witness tr of this non-inclusion w.r.t.

Σ that only contains simple recipes, and such that (tr, φ) ∈
traceΣ(P) for some φ and (tr, φ) is quasi-well-typed w.r.t.

(TP , δP).
Proof. First note that the converse is obvious: if there is any

kind of witness of non-inclusion, then P 6⊑ Q w.r.t. Σ0. So

we only prove the direct part.

Assume that P 6⊑ Q w.r.t. Σ0. By Theorem 1, it implies

that there exists a witness tr of this non-inclusion that only

contains simple recipes and such that one of the following

holds:

1) (tr, φ) ∈ traceΣ0
(P) for some φ and (tr, φ) is well-

typed w.r.t. (TP , δP);
2) tr = tr′{c0 7→ c〈ω,ω〉} for some c0 ∈ Σ0 r ΣP , and

(tr′, φ′) ∈ traceΣ0
(P) for some φ′ and (tr′, φ′) is well-

typed w.r.t. (TP , δP).

Assume that one of those conditions holds. In each case, tr

is a trace w.r.t. Σ0 quasi-well-typed w.r.t. (TP , δP), as c〈ω,ω〉

has type τ⋆ (the smallest for �). Then there is only a finite

number of public constants of Σ0 r ΣP occuring in (tr, φ).
Call them {c1, . . . , cn}. As {c ∈ Σ0 r ΣQ | δ0(c) = τ⋆} is

infinite, we choose c′1, . . . , c
′
n in this set (different from c〈ω,ω〉)

and define a substitution σ such that σ(ci) = c′i for each i.
As c1, . . . , cn do not occur in P , (trσ, φσ) is a trace of P
w.r.t. Σ. If (tr, φ) was not a trace of Q, then (trσ, φσ) is still

not because c′1, . . . , c
′
n do not occur in Q. If (tr, ψ) was a

trace of Q. it passes in Q with frame ψσ. As σ is a bijective

substitution, R(φσ)↓ is a message if and only if (Rσ−1)φ↓
is. So if there is a recipe R such that Rφ↓ is a message, but

Rψ↓ is not, then (Rσ)(φσ)↓ is a message, but (Rσ)(ψσ)↓ is

not.

The equality case is similar, so trσ is still a witness of non-

inclusion. �

Note that we still have an unbounded number of constants

to consider. We have to consider constants that occur in P and

in addition an unbounded number of constants of type τ⋆. In

the following, we show that it is actually sufficient to consider

two constants of type τ⋆. To prove Theorem 2, we have to state

and prove some useful properties about renamings.

Given a set of atomic data A, an A-renaming is a function ρ
such that dom(ρ) ∪ img(ρ) ⊆ A.

Lemma 7: Let Σ ⊆ Σ0, and t, t′ be two terms in

T (Σstd,Σ ∪N ).

1) If t↓ ∈ MΣ then (t↓)ρ = (tρ)↓ for any Σ-renaming ρ.

2) If t↓ 6∈ MΣ, then there exists c0 ∈ Σ such that for any

Σ-renaming ρ such that c0 6∈ dom(ρ)∪ img(ρ), we have

that tρ↓ 6∈ MΣ.

3) If t↓, t′↓ ∈ MΣ and t↓ 6= t′↓, there exists c0 ∈ Σ such

that for any Σ-renaming ρ such that c0 6∈ dom(ρ) ∪
img(ρ), we have that tρ↓ 6= t′ρ↓.

Proof. We prove the three items separately.

Item 1. Let t ∈ T (Σstd,Σ∪N ) such that t↓ ∈ MΣ. We show

the result by structural induction on t.

Base case: t ∈ Σ ∪ N . In such a case, we have that (t↓)ρ =
tρ = (tρ)↓.

Inductive case: In such a case, t = f(t1, t2) with f ∈
{enc, dec, 〈 〉, proj1, proj2}.

• Case f = enc. In such a case, we have that t =
enc(t1, t2), and t↓ = enc(t1↓, t2↓). Therefore, we know

that t1↓, t2↓ ∈ MΣ, and we conclude relying on our
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induction hypothesis:

(t↓)ρ = enc(t1↓, t2↓)ρ

= enc((t1↓)ρ, (t2↓)ρ)

= enc((t1ρ)↓, (t2ρ)↓)

= enc(t1ρ, t2ρ)↓

= (enc(t1, t2)ρ)↓

= (tρ)↓

• Case f = dec. In such a case, we have that t =
dec(t1, t2), t1↓, t2↓ ∈ MΣ, t1↓ = enc(u, v), t2 = v
and dec(t1, t2)↓ = u for some u ∈ MΣ, and v ∈
Σ ∪ N . Thanks to our induction hypothesis, we have

that (t1↓)ρ = enc(u, v)ρ = enc(uρ, vρ) = (t1ρ)↓ and

(t2↓)ρ = vρ = (t2ρ)↓. Therefore, we have that (t↓)ρ =
(dec(t1, t2)↓)ρ = uρ, and (tρ)↓ = (dec(t1, t2)ρ)↓ =
dec(t1ρ↓, t2ρ↓)↓ = dec(enc(uρ, vρ), vρ)↓ = uρ. This

allows us to conclude.

The cases where f ∈ {〈 〉, proj1, proj2} can be done in a similar

way.

Item 2. Let t ∈ T (Σstd,Σ∪N ) such that t↓ 6∈ MΣ. We show

the result by structural induction on t.
Base case: t ∈ Σ∪N . In such a case, we have that t↓ ∈ MΣ.

Therefore, this case is impossible.

Inductive case: In such a case, t = f(t1, t2) with f ∈
{enc, dec, 〈 〉, proj1, proj2}.

• Case f = enc. We have that f(t1, t2)↓ = f(t1↓, t2↓). Since

f(t1, t2)↓ 6∈ MΣ, we have that either t1↓ 6∈ MΣ; or

t2↓ 6∈ MΣ; or t2↓ 6∈ Σ ∪ N .

In case t1↓ 6∈ MΣ (resp. t2↓ 6∈ MΣ), by induction

hypothesis, there exists c0 ∈ Σ such that t1ρ↓ 6∈ MΣ

(resp. t2ρ↓ 6∈ MΣ) for any Σ-renaming ρ such that

c0 6∈ dom(ρ) ∪ img(ρ), and this allows us to conclude.

In case t2↓ ∈ MΣ but t2↓ 6∈ Σ∪N , thanks to Item 1, we

know that t2ρ↓ = t2↓ρ for any Σ-renaming ρ. Therefore

t2ρ↓ 6∈ Σ ∪N for any Σ-renaming ρ, and enc(t1, t2)ρ 6∈
MΣ for any Σ-renaming ρ.

• Case f = 〈 〉. In such a case, we have that f(t1, t2)↓ =
f(t1↓, t2↓). Since f(t1, t2)↓ 6∈ MΣ, we have that either

t1↓ 6∈ MΣ; or t2↓ 6∈ MΣ. Therefore, we conclude by

applying our induction hypthesis.

• Case f = dec. In case t1↓ 6∈ MΣ or t2↓ 6∈ MΣ, we

conclude by applying our induction hypothesis. Now, we

assume that t1↓ ∈ MΣ and t2↓ ∈ MΣ. Since t↓ 6∈ MΣ,

we know that either t1↓ is not of the form enc(u, v), or

t1↓ is of the form enc(u, v) and t2↓ = v′ but v 6= v′.
Thanks to Item 1, we know that (t1↓)ρ = (t1ρ)↓ and

(t2↓)ρ = (t2ρ)↓ for any Σ-renaming ρ. Therefore, in the

first case, we deduce that the root symbol of t1ρ↓ is not

enc for any Σ-renaming, and we are done. In the second

case, for any Σ-renaming ρ, we have that:

(tρ)↓ = dec((t1ρ)↓, (t2ρ)↓)↓

= dec((t1↓)ρ, (t2↓)ρ)↓

= dec(t1↓, t2↓)ρ↓

= dec(enc(u, v), v′)ρ)↓

Moreover, we know that v 6= v′. In case v or v′ is not

a constant in Σ, we still have that vρ 6= v′ρ for any Σ-

renaming ρ, and therefore we are done: (tρ)↓ 6∈ MΣ. In

case, v, v′ are both in Σ, let c0 be the constant v′, and

consider any renaming ρ such that c0 6∈ dom(ρ)∪img (ρ).
We have that vρ 6= c0, and thus vρ 6= v′ρ, and this allows

us to conclude.

• Case f = proj1 (or proj2). In such a case, we have that

t = proj1(t
′) for some t′. In case t′↓ 6∈ MΣ, we conclude

by applying our induction hypothesis. Now, assuming that

t′↓ ∈ MΣ, we know that t′↓ is not of the form 〈u, v〉
(since otherwise t↓ ∈ MΣ). Thanks to Item 1, we have

that (t′↓)ρ = (t′ρ)↓ for any Σ-renaming ρ. Therefore,

we know that (t′ρ)↓ is not of the form 〈u′, v′〉 for any

Σ-renaming ρ, and thus tρ↓ 6∈ MΣ for any Σ-renaming.

Item 3. Let t1, t2 ∈ T (Σstd,Σ ∪ N ) such that t1↓, t2↓ ∈ MΣ

and t1↓ 6= t2↓. Thanks to Item 1, we have that (t1↓)ρ = (t1ρ)↓
and (t2↓)ρ = (t2ρ)↓. Therefore, we can simply show that if

t1, t2 ∈ MΣ and t1 6= t2 then there exists c0 ∈ Σ such that

t1ρ 6= t2ρ for any Σ-renaming ρ such that c0 6∈ dom(ρ) ∪
img(ρ).
Base case: The only non trivial base case is when both t1
and t2 are in Σ. In such a case, let c0 be t2. Clearly, since

t1 6= t2, we have that t1ρ = t2ρ for any Σ-renaming ρ such

that c0 6∈ dom(ρ)∪ img(ρ). The other base cases where either

t1 or t2 is in Σ ∪ N are trivial and we may actually choose

any Σ-renaming ρ.

Inductive case: Now, in case t1 and t2 are not atomic, we dis-

tinguish two cases. In case they do not have the same function

symbol has their root, again we can actually choose any Σ-

renaming ρ, and the disequality between t1ρ and t2ρ will be

preserved. Now, assume that t1 = f(u1, v1) and t2 = f(u2, v2)
with f ∈ {enc, 〈 〉}. We know that either u1 6= u2 or v1 6= v2.

Assume w.l.o.g. that u1 6= u2. We can apply our induction

hypothesis to conclude that there exists c0 such u1ρ 6= u2ρ for

any Σ-renaming ρ such that c0 6∈ dom(ρ)∪img(ρ). Therefore,

considering any Σ-renaming that satisfies such a condition will

allow us to conclude. �

Lemma 8: Let Σ ⊆ Σ0, m ∈ MΣ, and u be a term in

T (Σc,X ∪ N ∪ Σ0). If m 6= uσ for any substitution σ, then

there exists c0 ∈ Σ such that for any Σ-renaming ρ such that

c0 6∈ dom(ρ) ∪ img(ρ), we have that mρ 6= (uρ)σ for any σ.

Proof. Ifm and u do not match because their structure differ,

then no renaming will change that. Else, the only possibility is

that there are two leaves of u that have the same variable, but

m has different subterms t1 6= t2 at those positions. Thanks

to Lemma 7 (item 3), there is a constant c0 such that for any

Σ0-renaming ρ with c0 /∈ dom(ρ) ∪ img(ρ), t1ρ 6= t2ρ. So

for such a ρ, mρ does not unify with uρ. �

We say that a renaming ρ is type-preserving if for any a ∈
dom(ρ) we have δ(aρ) = δ(a).

Lemma 9: Let P be a protocol type-compliant w.r.t.

(TP , δP) and ρ be a Σ-renaming where Σ = Σ0 r ΣP . Let
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(P ′;φ′;σ′) be a configuration such that P
tr
−→ (P ′;φ′;σ′) for

some tr. We have that P
trρ
−−→ (P ′;φ′ρ;σ′ρ).

Moreover, when ρ is type-preserving and (tr, φ′) is quasi-

well-typed w.r.t. (T , δ), then (trρ, φ′ρ) is quasi-well-typed

w.r.t. (T , δ).
Proof. We show this result by induction on the length ℓ of

the execution trace (P ; ∅; ∅)
tr
−→ (P ′;φ′;σ′).

Base case. In case ℓ = 0, the result trivially holds.

Induction case. In such a case, we have that:

P
tr′

−→ (P ′′; φ′′; σ′′)
α
−→ (P ′; φ′; σ′)

Thanks to our induction hypothesis, we know that

P
tr′ρ
−−→ (P ′′;φ′′ρ, σ′′ρ).

We distinguish two cases depending on the action α.

• α = in(c, R). In such a case, we have that P ′′ =
{in(c, u).P0} ∪ P0 for some u, P0, and P0. We have

also that φ′ = φ′′, and σ′ = σ′′ ⊎ σ0 for some σ0 such

that Rφ′′↓ = (uσ′′)σ0 and Rφ′′↓ ∈ MΣ. To conclude

that (P ′′; φ′′ρ; σ′′ρ)
αρ
−−→ (P ′; φ′ρ; σ′ρ), it remains to

show that (Rρ)(φ′′ρ)↓ = u(σ′′ρ)σ′
0 and σ′ρ = σ′′ρ ⊎ σ′

0

for some σ′
0. Since Rφ′′↓ = (uσ′′)σ0, we deduce

that (Rφ′′↓)ρ = ((uσ′′)σ0)ρ, and thanks to Lemma 7

(item 1), we have that (Rφ′′)ρ↓ = ((uρ)(σ′′ρ))(σ0ρ).
Lastly, since ρ is a Σ-renaming and Σ = Σ0 r ΣP ,

we know that uρ = u, and therefore we have that

(Rρ)(φ′′ρ)↓ = (u(σ′′ρ))(σ0ρ). Moreover, since σ′ =
σ′′ ⊎ σ0, we have that σ′ρ = σ′′ρ ⊎ σ0ρ. Therefore,

choosing σ′
0 = σ0ρ allows us to concude.

• α = out(c,w). In such a case, we have that P ′′ =
{out(c, u).P0} ∪ P0 for some u, P0, and P0. We have

also that σ′ = σ′′, and φ′ = φ′′ ∪ {w 7→ uσ′′}. To

conclude that (P ′′; φ′′ρ; σ′′ρ)
αρ
−−→ (P ′; φ′ρ; σ′ρ), it is

sufficient to show that (uσ′′)ρ = u(σ′′ρ). Actually, we

have that (uσ′′)ρ = (uρ)(σ′′ρ), and since Σ = Σ0rΣP ,

we deduce that uρ = u, and this allows us to conclude.

Note that δ(xσ′ρ) = δ(xσ′) since ρ is type-preserving, and

therefore the resulting trace is quasi-well-typed when (tr, φ′)
is quasi-well-typed. �

Theorem 2: Let P be a protocol type-compliant w.r.t.

(TP , δP) and Q be another protocol. Let Σ = ΣP ⊎
{c0⋆, c

1
⋆, c〈ω,ω〉}. We have that P 6⊑t Q w.r.t. Σ0 if, and only if,

there exists a witness tr of this non-inclusion w.r.t. Σ that only

contains simple recipes, and such that (tr, φ) ∈ traceΣ(P) for

some φ and (tr, φ) is quasi-well-typed w.r.t. (TP , δP).
Proof. One direction is trivial. Therefore, we focus on the

other one. Let Σ⋆ = ΣP ⊎ { c ∈ Σ0 | δ0(c) = τ⋆ }.

Proposition 2 states that if P 6⊑t Q w.r.t. Σ0 then there exists

a witness tr of this non-inclusion w.r.t. Σ⋆ that only contains

simple recipes, and such that (tr, φ) ∈ traceΣ⋆
(P) for some

φ and (tr, φ) is quasi-well-typed w.r.t. (TP , δP).

Let tr be such a witness having a minimal length. To

conclude, we establish the following claim.

Claim: There exists a type-preserving renaming ρ with

dom(ρ) ⊆ Σ⋆ r ΣP , and img(ρ) ⊆ Σ r ΣP such that trρ
is a witness of the non-inclusion P 6⊑t Q w.r.t. Σ.

Since tr is a witness of minimal length, we have that:

1) either tr is not a trace of Q but tr−1 (i.e. tr without its

last element) is a trace of Q;

2) or Q
tr
−→ (Q′;ψ;σQ) for some ψ (that is uniquely

defined) but φ 6⊑s ψ.

Case 1): tr is not a trace of Q. In such a case, we have that

tr = tr0 · α and we know that

P
tr0−−→ (P0;φ0;σ0)

α
−→ (P ′

0;φ
′
0;σ

′
0)

and also that Q
tr0−−→ (Q0;ψ0; τ0). We distinguish several cases

depending on the action α and also the reason that prevents

this step to be mimicked in Q.

1) α = in(c, R), so there is in(c, u).P0 ∈ P0, but there is

no process on channel c starting with an input in Q0. Let

ρ0 be the renaming that maps any constant in Σ⋆ rΣP

to the constant c0⋆. Thanks to Lemma 9, we have that

P
tr0ρ0
−−−→ (P0;φ0ρ0;σ0ρ0)

αρ0
−−→ (P ′

0;φ
′
0ρ0;σ

′
0ρ0)

and also that Q
tr0ρ0
−−−→ (Q0;ψ0ρ0; τ0ρ0). There is still

no process on channel c starting with an input in Q0ρ0,

and thus trρ0 is the witness we are looking for.

2) α = in(c, R) and there is in(c, u).P0 ∈ P0 as well as

in(c, v).Q0 ∈ Q0. Since tr is minimal and we know

that Rφ0↓ ∈ MΣ0
, we have also that Rψ0↓ ∈ MΣ0

.

Therefore, we know that Rψ0↓ does not unify with vτ0.

Thanks to Lemma 8, there is a constant c in Rψ0↓ such

that for any ρ with c /∈ dom(ρ) ∪ img(ρ), we have that

(Rψ0↓)ρ does not unify with vρ.

If c /∈ Σ⋆ rΣP , then ρ0 (as defined above) satisfies the

requirement. Therefore, applying Lemma 9, we obtain

that:

P
tr0ρ0
−−−→ (P0;φ0ρ0;σ0ρ0)

αρ0
−−→ (P ′

0;φ
′
0ρ0;σ

′
0ρ0)

and also that Q
tr0ρ0
−−−→ (Q0;ψ0ρ0; τ0ρ0). We have also

that (Rψ0↓)ρ0 does not unify with vρ0, and we have

that

(Rψ0↓)ρ0 = Rψ0ρ0↓ = (Rρ0)(ψ0ρ0)↓

thanks to Lemma 7 (item 1). This allows us to conclude

that this step can not be mimicked by Q.

If c ∈ Σ⋆ r ΣP , then up to a bijective α-renaming, we

can assume that c = c1⋆. Let ρ1 be the renaming that

maps any constant in Σ⋆ r ΣP on c0⋆ except c1⋆ that is

left unchanged. Applying Lemma 9, we have that:

P
tr0ρ1
−−−→ (P0;φ0ρ1;σ0ρ1)

αρ1
−−→ (P ′

0;φ
′
0ρ1;σ

′
0ρ1)

and also that Q
tr0ρ1
−−−→ (Q0;ψ0ρ1; τ0ρ1). We have also

that (Rψ′
0↓)ρ1 does not unify with vρ1, and we have

that

(Rψ0↓)ρ1 = Rψ0ρ1↓ = (Rρ1)(ψ0ρ1)↓
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thanks to Lemma 7 (item 1). This allows us to conclude

that this step can not be mimicked by Q.

3) α = out(c,w). In this case, either there is no correspond-

ing output in Q0, or there is a corresponding output,

but the corresponding term is not a message. This can

happen in case an encryption with a non-atomic key

occurs in the outputted term. However, since renaming

will not change that, we easily conclude considering ρ0
as defined above.

Case 2): tr is a trace of Q. In such a case, we know that

P
tr
−→ (P0;φ0;σ0) and Q

tr
−→ (Q0;ψ0; τ0) for some ψ0 that is

uniquely defined, and we have that φ0 6⊑s ψ0. Following the

definition of static inclusion, we distinguish two cases:

1) There is a recipeR w.r.t. Σ⋆ such that Rφ0↓ is a message

but Rψ0↓ is not. Then by Lemma 7, there is a constant

c such that for any renaming ρ such that c /∈ dom(ρ) ∪
img(ρ), we have that Rψ0ρ↓ is not a message.

If c /∈ Σ⋆ r ΣP , then ρ0 (as defined above) is a

renaming such that c /∈ dom(ρ0) ∪ img(ρ0). Thanks

to Lemma 9, we have that P
trρ0
−−→ (P0;φ0ρ0;σ0ρ0) and

Q
trρ0
−−→ (Q0;ψ0ρ0; τ0ρ0). Note that the only constants

occuring in this execution are those of Σ. Thanks to

Lemma 7 (item 1), we have that (Rρ0)(φ0ρ0)↓ =
(Rφ0)ρ0↓ = (Rφ0↓)ρ0 ∈ M. However, we have that

(Rρ0)(ψ0ρ0)↓ = (Rψ0)ρ0↓ /∈ M. Therefore, we have

φ0ρ0 6⊑s ψ0ρ0.

If c ∈ Σ⋆ r ΣP , then up to a bijective α-renaming,

we can assume that c = c1⋆. Applying Lemma 9

with the renaming ρ1 as defined above, we have that

P
trρ1
−−→ (P0;φ0ρ1;σ0ρ1) and Q

trρ1
−−→ (Q0;ψ0ρ1; τ0ρ1).

Note that the only constants occuring in this execution

are those of Σ. Thanks to Lemma 7 (item 1), we have

that (Rρ1)(φ0ρ1)↓ = (Rφ0)ρ1↓ = (Rφ0↓)ρ1 ∈ M.

However, we have that (Rρ0)(ψ0ρ1)↓ = (Rψ)ρ1↓ /∈
M. Therefore, we have that φ0ρ1 6⊑s ψ0ρ1.

2) There are two recipes R1 and R2 w.r.t. Σ⋆ such that

R1φ0↓, R2φ0↓ are messages, and R1φ0↓ = R2φ0↓.

We may also assume that R1ψ0↓, R2ψ0↓ are messages.

However, we have that R1ψ0↓ 6= R2ψ0↓.

Then by Lemma 7 (item 3), there is a constant c such

that for any renaming ρ such that c /∈ dom(ρ)∪ img(ρ),
we have that R1ψ0ρ↓ 6= R1ψ0ρ↓.

If c /∈ Σ⋆ r ΣP , then ρ0 (as defined above) is a

renaming such that c /∈ dom(ρ0) ∪ img(ρ0). Thanks

to Lemma 9, we have that P
trρ0
−−→ (P0;φ0ρ0;σ0ρ0) and

Q
trρ0
−−→ (Q0;ψ0ρ0; τ0ρ0). Note that the only constants

occuring in this execution are those of Σ.

Thanks to Lemma 7 (item 1), we have that

(Riρ0)(φ0ρ0)↓ = (Riφ0)ρ0↓ = (Riφ0↓)ρ0 ∈ M
for i = 1, 2, and (Riρ0)(ψ0ρ0)↓ = (Riψ0)ρ0↓ =
(Riψ0↓)ρ0 ∈ M for i = 1, 2. Moreover, we have

that R1ψ0ρ0↓ 6= R1ψ0ρ0↓, i.e. (R1ρ0)(ψ0ρ0)↓ 6=
(R2ρ0)(ψ0ρ0)↓, whereas R1φ0↓ρ0 = R2φ0↓ρ0, i.e.

(R1ρ0)(φ0ρ0)↓ = (R2ρ0)(φ0ρ0)↓. Hence, we have our

witness of non-inclusion.

If c ∈ Σ⋆ r ΣP , then up to a bijective α-renaming,

we can assume that c = c1⋆. Applying Lemma 9

with the renaming ρ1 as defined above, we have that

P
trρ1
−−→ (P0;φ0ρ1;σ0ρ1) and Q

trρ1
−−→ (Q0;ψ0ρ1; τ0ρ1).

Note that the only constants occuring in this execution

are those of Σ.

Thanks to Lemma 7 (item 1), we have that

(Riρ1)(φ0ρ1)↓ = (Riφ0)ρ1↓ = (Riφ0↓)ρ1 ∈ M
for i = 1, 2, and (Riρ1)(ψ0ρ1)↓ = (Riψ0)ρ1↓ =
(Riψ0↓)ρ1 ∈ M for i = 1, 2. Moreover, we have

that R1ψ0ρ1↓ 6= R1ψ0ρ1↓, i.e. (R1ρ1)(ψ0ρ1)↓ 6=
(R2ρ1)(ψ0ρ1)↓, whereas R1φ0↓ρ1 = R2φ0↓ρ1, i.e.

(R1ρ1)(φ0ρ1)↓ = (R2ρ1)(φ0ρ1)↓. Hence, we have our

witness of non-inclusion.

This allows us to establish the claim and therefore concludes

the proof of our theorem. �

APPENDIX B

FROM STATIC EQUIVALENCE TO PLANNING

Lemma 1: Let φ, ψ be two frames with dom(φ) =
dom(ψ). Let Θ = 〈Fact0,Fact(φ, ψ),Concrete

+(RuleA)〉
and Π = 〈Θ, {att(u, v)}〉 for some u, v ∈ MΣ. We have

that Π has a solution if, and only if, there is a destructor-only

recipe R ∈ RΣ such that Rφ↓ = u, and Rψ↓ = v.

Proof. We show the two directions separately.

(⇒) Let π = r1, . . . , rn be a planning path from S0 to Sn,

and att(u, v) ∈ Sn. We show the result by induction on the

length of π.

Base case. We have that π is empty. In such a case, by

definition of S0, the result trivially holds.

Inductive case. We know that rn is an instance of one of the

abstract rules in RuleA, e.g.

att(enc(u1, u2), enc(v1, v2)), att(u2, v2) −→ att(u1, v1)

Thanks to our induction hypothesis, we know that there exist:

• R1 ∈ RΣ such that R1φ↓ = enc(u1, u2), and R1ψ↓ =
enc(v1, v2);

• R2 ∈ RΣ such that R2φ↓ = u2, and R2ψ↓ = v2.

Therefore, the recipe R = dec(R1, R2) allows us to conclude.

(⇐) Let R ∈ RΣ be a destructor-only recipe such that Rφ↓ =
u and Rψ↓ = v. We show the result by structural induction

on R.

Base case. We have that R is either w ∈ dom(φ) or a constant

in Σ. In both cases, by definition of S0, the empty path allows

us to conclude.

Inductive case. In such a case, we have that R = dec(R1, R2)
or R = proji(R

′) with i ∈ {1, 2}. We assume that R =
dec(R1, R2). Since we know that Rφ↓ and Rψ↓ are messages,

we have that:

• R1φ↓ and R2φ↓ are messages of the form enc(u1, u2)
and u2 for some terms u1, u2;
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• R1ψ↓ and R2ψ↓ are messages of the form enc(v1, v2)
and v2 for some terms v1, v2.

Thanks to our induction hypothesis, we know that there exists

π1 a planning path from S0 to S1 with att(R1φ↓, R1ψ↓) ∈ S1.

We have also that there exists π2 a planning path from S0 to

S2 with att(R2φ↓, R2ψ↓) ∈ S2. Therefore, the planning path

obtained by concatening π1 and π2 is a planning path from S0

to S1∪S2, and we have that att(enc(u1, u2), enc(v1, v2)) and

att(u2, v2) are both in S1 ∪S2. Applying the planning rule r:

att(enc(u1, u2), enc(v1, v2)), att(u2, v2) −→ att(u1, v1)

which is indeed an instance of a rule in RuleA, we obtain a

planning path from S0 to S such that att(Rφ↓, Rψ↓) ∈ S.

The other cases can be done in a similar way. �

We define the notion of static inclusion for destructors,

which is roughly the classical notion of static inclusion re-

stricted to destructor-only recipes.

Definition 12: A frame φ is statically included for destruc-

tors (w.r.t. Σ ⊆ Σ0) in a frame ψ, denoted φ ⊑des ψ, when

dom(φ) = dom(ψ), and:

1) for any destructor-only recipe R ∈ RΣ, Rφ↓ ∈ MΣ0

implies that Rψ↓ ∈ MΣ0
; and

2) for any destructor-only recipes R1, R2 ∈ RΣ with

R1φ↓, R2φ↓ ∈ MΣ0
, we have that R1φ↓ = R2φ↓

implies that R1ψ↓ = R2ψ↓;

3) for any destructor-only recipe R ∈ RΣ, Rφ↓ is an

atom different from c〈ω,ω〉 implies that Rψ↓ is an atom

different from c〈ω,ω〉.

We will show that this notion coincides with the regular

notion of static equivalence (see Proposition 3). To prove that,

we first establish some technical lemmas.

Lemma 10: Let φ and ψ be two frames such that φ ⊑des ψ.

Let R0 = f(at1, at2) with f ∈ {enc, 〈 〉} and at1, at2 ∈ Σ ∪
dom(φ) and such that R0φ↓ is a message. We have that R0ψ↓
is a message, and φ+ ⊑des ψ

+ where φ+ = φ ⊎ {w ⊲ R0φ↓},

and ψ+ = ψ ⊎ {w ⊲ R0ψ↓} for any fresh variable w.

Proof. First, since φ ⊑des ψ, if R0φ↓ is a message then

R0ψ↓ is a message too.

We will establish this result by induction. More precisely,

we will show that:

1) If R is a destructor-only recipe with at most n destruc-

tors such that Rφ+↓ is a message, then Rψ+↓ is a

message.

2) If R1 (resp. R2) is a destructor-only recipe with n1 (resp.

n2) destructors such that n1 + n2 ≤ n, and R1φ
+↓ =

R2φ
+↓ ∈ MΣ0

, then R1ψ
+↓ = R2ψ

+↓.

3) If R is a destructor-only recipe with at most n destruc-

tors such that Rφ+↓ is an atom different from c〈ω,ω〉,

then Rψ+↓ is an atom different from c〈ω,ω〉.

Base cases.

1) R ∈ Σ ∪ dom(φ+), and Rφ+↓ ∈ MΣ0
. The only

interesting case is when R = w. In such a case, we

have that Rψ+ = wψ+ = R0ψ↓, and we have seen that

R0ψ↓ is a message.

2) R1, R2 ∈ Σ∪dom(φ+), and R1φ
+↓ = R2φ

+↓ ∈ MΣ0
.

In case both R1 and R2 are equal to w then the

result trivially holds; and in case both R1 and R2 are

different from w, then the result follows from φ ⊑des ψ.

Therefore, the only interesting case is when R1 = w

and R2 6= w (or the converse).

Case f = enc. In such a case, we have that

dec(R2φ↓, at2φ↓)↓ = at1φ↓. As dec(R2, at2) and

at1 are destructors recipes, φ ⊑des ψ applies

and dec(R2ψ↓, at2ψ↓)↓ = at1ψ↓. So R1ψ
+↓ =

enc(at1ψ↓, at2ψ↓) = R2ψ↓ = R2ψ
+↓.

Case f = 〈 〉. In such a case, we have that proji(R2φ↓) =
at iφ↓ for each i ∈ {1, 2}, and proji(R2) and at i are

destructor recipes, so proji(R2ψ↓)↓ = at iψ↓ for each

i ∈ {1, 2}, which implies that

R1ψ
+↓ = 〈at1ψ↓, at2ψ↓〉

= 〈proj1(R2ψ↓)↓, proj2(R2ψ↓)↓〉

= R2ψ
+↓

3) R ∈ Σ∪ dom(φ+), and Rφ+ is an atom different from

c〈ω,ω〉. The only interesting case is when R = w. In such

a case, we have that Rφ+↓ = wφ+ = f(at1φ↓, at2φ↓)
which is not an atom, thus contradiction.

Before proving the inductive case, we establish the following

claim.

Claim. Let Rd be a destructor-only recipe that contains at least

one destructor and such that w occurs in Rd, and Rdφ
+↓ ∈

MΣ0
. There exists a destructor-only recipe R′

d smaller than

Rd (i.e. with less destructor symbols than Rd) such that

R′
dφ

+↓ = Rdφ
+↓ and R′

dψ
+↓ = Rdψ

+↓.

Proof of the claim. We distinguish two cases depending on

whether f = enc or f = 〈 〉.

Case f = enc. Then the destructor directly above a w must be a

dec (because proji(w)φ
+↓ = proji(enc(at1φ↓, at2φ↓)) would

never reduce, as a term only reduces when their subterms are

messages). Moreover, it is impossible that we have dec(R′,w)
for some recipe R′. In this case, we would have R′φ+↓ =
enc(t,wφ+↓) for some t as there is a reduction at top level in

dec(R′,w)φ+. But wφ+↓ is not atomic, so enc(t,wφ+↓) is not

a message, so dec(R′,w)φ+↓ does not reduce, contradiction.

So w only occurs in dec(w, R′) patterns. There is such a

pattern where vars(R′) ⊆ dom(φ), so we assume that we are

in this case. We have R′φ+↓ = R′φ↓. There is a reduction

at top level in dec(w, R′)φ+ = dec(enc(at1, at2), R
′)φ,

therefore R′φ↓ = R′φ+↓ = at2φ↓. As φ ⊑des ψ and

R′ and at2 are destructor recipes, R′ψ↓ = at2ψ↓. So

dec(enc(at1ψ↓, at2ψ↓), R′ψ↓) = at1ψ↓.

We replace one occurrence of dec(w, R′) by at1 in Rd

and we get R′
d. Clearly, R′

d has less destructors than Rd and

R′
dφ

+↓ = Rdφ
+↓, R′

dψ
+↓ = Rdψ

+↓ because we proved
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that the equality between dec(w, R′) and at1 was true in both

frames.

Case f = 〈 〉. Similarly as above, the destructor occuring

directly above w must be proji for some i. But proji(w)φ
+↓ =

atiφ↓ and proji(w)ψ
+↓ = atiψ↓. So we replace one occur-

rence of proji(w) by at i in Rd and we get R′
d. We have that

R′
dφ

+↓ = Rdφ
+↓ and R′

dψ
+↓ = Rdψ

+↓, and R′
d has less

destructors than Rd. This concludes the proof of the claim.

Now, we assume that the result holds for n, and we establish

it for n+ 1.

1) Let R be a destructor recipe with n + 1 destructor

symbols, and assume that Rφ+↓ ∈ MΣ0
. The only

interesting case is when w occurs in R. Our claim

gives us a R′ with less than n destructors such that

R′φ+↓ = Rφ+↓ and R′ψ+↓ = Rψ+↓. Then, our

induction hypothesis (item 1) applies to R′ so Rψ+↓ =
R′ψ+↓ ∈ MΣ0

.

2) Let R1 (resp. R2) be a destructor recipe with n1

(resp. n2) destructor symbols with n1 + n2 ≤ n + 1,

and R1φ
+↓ = R2φ

+↓ ∈ MΣ0
. In case w occurs

neither in R1 nor in R2, the result trivially holds.

Therefore, we assume w.l.o.g. that w occurs in R1. If

R1 is not atomic, our claim (item 2) gives us a R′
1

such that R′
1 has less destructor symbols than R1 and

R′
1φ

+↓ = R1φ
+↓, R′

1ψ
+↓ = R1ψ

+↓. Then, applying

our induction hypothesis (item 2) to R′
1 and R2, we get

that R1ψ
+↓ = R′

1ψ
+↓ = R2ψ

+↓.

Now assume that R1 = w. We can also assume that w

does not occur in R2 (else R2 is not atomic and contains

w: we just proved the result for this case). So R2φ
+↓ =

R2φ↓ and R2ψ
+↓ = R2ψ↓. Now, we distinguish two

cases depending on f.

Case f = enc. In such a case, we have

that enc(at1φ↓, at2φ↓) = R1φ
+↓ = R2φ

+↓.

So at1φ↓ = dec(R2, at2)φ↓. As φ ⊑des ψ,

at1ψ↓ = dec(R2, at2)ψ↓, which implies that R1ψ
+↓ =

enc(at1ψ↓, at2ψ↓) = R2ψ
+↓.

Case f = 〈 〉. This case can be done in a similar way.

3) Let R be a destructor recipe with n + 1 destructors

symbols such that Rφ+↓ is an atom but is not c〈ω,ω〉.

Again, the only interesting case is when w occurs in R.

In such a case, our claim gives us a recipe R′ with less

than n destructor symbols such that R′φ+↓ = Rφ+↓ and

R′ψ+↓ = Rψ+↓. Applying our induction hypothesis

(item 3) on R′, we obtain that R′ψ+↓ is a message

different from c〈ω,ω〉. Therefore, Rψ+↓ is a message

different from c〈ω,ω〉.

This concludes the proof. �

Lemma 11: Let φ and ψ be two frames such that φ ⊑des ψ.

Let R be a recipe such that Rφ↓ is a message. We have that

Rψ↓ is a message and φ+ ⊑des ψ
+ where φ+ = φ⊎{w⊲Rφ↓}

and ψ+ = ψ ⊎ {w ⊲ Rψ↓} for any fresh variable w.

Proof. We prove this result by structural induction on R.

Base case. R ∈ Σ∪dom(φ). In such a case, the result trivially

holds.

Inductive cases. In such a case, we have that R = f(R1, R2)
with f = {enc, dec, 〈 〉}, or R = proji(R

′) with i ∈ {1, 2}.

We distinguish two cases depending on whether f ∈ {enc, 〈 〉}
or f ∈ {dec, proj1, proj2}.

f is a destructor symbol. We assume w.l.o.g. that R =
dec(R1, R2). Since Rφ↓ is a message, we know that R1φ↓ and

R2φ↓ are messages. Thanks to our induction hypothesis, we

know that R1ψ↓ and R2ψ↓ are messages too, and φ′ ⊑des ψ
′

where:

• φ′ = φ ⊎ {w1 ⊲ R1φ↓,w2 ⊲ R2φ↓};

• ψ′ = ψ ⊎ {w1 ⊲ R1ψ↓,w2 ⊲ R2ψ↓}.

Since f = dec is a destructor symbol, φ′ ⊑des ψ′, and

f(R1φ↓, R2φ↓)↓ = Rφ↓ is a message, we deduce that

f(R1ψ↓, R2ψ↓)↓ = Rψ↓ is a message. We have also that

φ′′ ⊑des ψ′′ where φ′′ = φ′ ⊎ {w ⊲ Rφ↓} and ψ′′ =
ψ′ ⊎ {w ⊲ Rψ↓}, and thus we conclude that φ+ ⊑des ψ

+.

f is a constructor symbol. We assume w.l.o.g. that R =
enc(R1, R2). Thanks to our induction hypothesis, we know

that φ′ ⊑des ψ
′ where:

• φ′ = φ ⊎ {w1 ⊲ R1φ↓,w2 ⊲ R2φ↓};

• ψ′ = ψ ⊎ {w1 ⊲ R1ψ↓,w2 ⊲ R2ψ↓}.

Since f = enc, relying on Lemma 10, we obtain that Rψ↓ is

a message, and φ′′ ⊑des ψ
′′ where φ′′ = φ′ ⊎ {w ⊲ Rφ↓} and

ψ′′ = ψ′⊎{w⊲Rψ↓}, and thus we conclude that φ+ ⊑des ψ
+.

This conclude the proof. �

Now, we prove that the two notions of static inclusion

coincide.

Proposition 3: Let φ and ψ be two frames. We have that

φ ⊑s ψ if, and only if, φ ⊑des ψ.

Proof. Let φ and ψ be two frames. We show the two

directions separately.

(⇒) We assume that φ ⊑s ψ, and we have to establish that

φ ⊑des ψ. First, the items 1 and 2 of Definition 12 are direct

consequences of the definition of static inclusion. Now, let R
be a destructor recipe such that Rφ↓ is atomic and different

from c〈ω,ω〉. Let c be a constant in Σ0, and let R′ = enc(c, R).
We have that R′φ↓ = enc(c, Rφ↓) is a message. Therefore,

R′ψ↓ = enc(c, Rψ↓) is a message as φ ⊑s ψ. Hence, we have

that Rψ↓ is atomic and different from c〈ω,ω〉. This allows us

to concllude.

(⇐) We assume that φ ⊑des ψ, and we have to establish

that φ ⊑s ψ. We show that the two items of Definition 3 are

satisfied. First, let R be a recipe such that Rφ↓ is a message.

Thanks to Lemma 11, we know that Rψ↓ is a message too.

Second, let R1 and R2 be two recipes such that R1φ↓ =
R2ψ↓ ∈ MΣ0

. Thanks to Lemma 11, we obtain that φ′ ⊑des

ψ′ where:

• φ′ = φ ⊎ {w1 ⊲ R1φ↓,w2 ⊲ R2φ↓},

• ψ′ = ψ ⊎ {w1 ⊲ R1ψ↓,w2 ⊲ R2ψ↓}.

In particular the equation w1 = w2 holds in φ′ and w1 and

w2 are destructor recipes so this equation also holds in ψ′, i.e.

R1ψ↓ = R2ψ↓. �
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Now we can state and prove our main proposition:

Proposition 1: Let φ and ψ be two frames with dom(φ) =
dom(ψ), and Θ = 〈Fact0,Fact(φ, ψ),R〉 where

R = Concrete(RuleA) ∪Rtest
fail ∪Ratom

fail .

Let Π = 〈Θ, {bad}〉. We have that φ 6⊑s ψ if, and only if, Π
has a solution.

Proof. First, thanks to Proposition 3, it is sufficient to show

that φ 6⊑des ψ if, and only if, Π has a solution. We show the

two directions separately.

(⇒) We have that φ 6⊑des ψ. Following the definition of ⊑des,

we consider 3 cases.

1) There is a destructor recipe R such that Rφ↓ ∈ MΣ0

but Rψ↓ 6∈ MΣ0
. We consider one having a minimal

size. Since both φ and ψ are frames, we have that

R = dec(R1, R2) or R = proji(R
′) with i ∈ {1, 2}.

We assume w.l.o.g. that R = dec(R1, R2), and by

minimality of R we have that R1ψ↓ and R2ψ↓ are

in MΣ0
. Thanks to Lemma 1, we know that there

exists a plan π1 (resp. π2) or att(R1φ↓, R1ψ↓) (resp.

att(R2φ↓, R2ψ↓)). We consider the plan obtained by

“concatening” the plans π1 and π2, and we consider the

rule r of the form:

att(R1φ↓, R1ψ↓), att(R2φ↓, R2ψ↓) → bad

which is indeed an instance of a rule in

Concrete−(RuleA) since R1φ↓ = enc(u1, u2) for

some u1, u2, and enc(u1, u2), R1ψ↓, R2ψ↓ are

messages whereas dec(R1ψ↓, R2ψ↓)↓ is not a message.

This rule r can be triggered and leads to bad. Therefore,

Π has as solution.

2) There are two destructor recipes R1 and R2 such that

R1φ↓ = R2φ↓ ∈ MΣ0
whereas R1ψ↓ 6= R2ψ↓. First,

thanks to the first item, we may assume that R1ψ↓ and

R2ψ↓ are both in MΣ0
. Therefore, thanks to Lemma 1,

we know that there exists a plan π1 (resp. π2) of or

att(R1φ↓, R1ψ↓) (resp. att(R2φ↓, R2ψ↓)). We consider

the plan obtained by “concatening” the plans π1 and π2,

and we consider the rule r of the form:

att(R1φ↓, R1ψ↓), att(R2φ↓, R2ψ↓) → bad

which is indeed an instance of a rule Rtest
fail . Therefore,

we have shown that Π has a solution.

3) There is a destructor recipe R such that Rφ↓ is an

atom different from c〈ω,ω〉 whereas Rψ↓ is either not

an atom or it is c〈ω,ω〉. First, thanks to the first item,

we may assume that Rψ↓ is in MΣ0
. Therefore, thanks

to Lemma 1, we know that there exists a plan π of or

att(Rφ↓, Rψ↓). We consider the rule r of the form:

att(Rφ↓, Rψ↓) → bad

which is indeed an instance of a rule Ratom
fail , and which

leads to a solution for Π. Therefore, we have also that

Π has a solution.

So in any case we have shown that Π has a solution.

(⇐) We have a plan of bad. We consider such a plan r1, . . . , rn
of minimal length. Since this plan is mimimal, we know that

r1, . . . , rn−1 are rules in Concrete+(RuleA), and therefore, we

can rely on Lemma 1 to conclude that there exists a destructor-

only recipe R such that Rφ↓ = u and Rψ↓ = v for any

att(u, v) ∈ Sn−1 (the state resulting from the application of

r1, . . . , rn−1). Then, in order to derive bad, we have applied

either a rule in Concrete−(RuleA), or a rule in Ruletestfail , or a

rule in Ruleatomfail . The two last cases are quite obvious, and we

easily derive a witness of φ 6⊑des ψ relying on item 2 (resp.

item 3) of Definition 12. Regarding the first case, according to

the definition of Concrete−(RuleA), we distinguish two cases:

• rn = att(〈u1, u2〉, v) −→ bad with v not a pair; or

• rn = att(enc(u1, u2), v), att(u2, v
′) −→ bad with v not

of the form enc(v0, v
′) for some v0.

Moreover, we have destructor-only recipes R1 (and R2) allow-

ing us to derive these facts. In the first case, we conclude using

the recipe proj1(R1) and checking whether it is a message or

not. In the second case, we do the same with dec(R1, R2). �

APPENDIX C

FROM TRACE EQUIVALENCE TO PLANNING

Lemma 12: Let r = Pre, att(u, v) −→ Add;Del be an

abstract rule. Let σ be a grounding substitution for r such

that δP(xσ) � δP(x) for any x ∈ vars left(r). Let C be a

constructor context such that uσ = C[u1, . . . , un] and vσ =
C[v1, . . . , vn]. There exists r′ ∈ Flat(r):

r′ = Pre′, att(u′1, v
′
1), . . . , att(u

′
n, v

′
n) −→ Add′;Del′

and σ′ a grounding substitution for r′ such that:

1) δP(xσ
′) � δP(x) for any x ∈ vars left(r

′);
2) (Pre′, Add′, Del′)σ′ = (Pre,Add,Del)σ; and

3) att(u, v)σ = att(C[u′1, . . . , u
′
n], C[v

′
1, . . . , v

′
n])σ

′.

Proof. We first establish the following claim:

Claim. Let r = Pre, att(u, v) −→ Add;Del be an abstract

rule. Let σ be a grounding substitution for r such that

δP(xσ) � δP(x) for any x ∈ vars left(r). Let f ∈ Σc be

such that uσ = f(u1, u2) and vσ = f(v1, v2) for some

terms u1, u2, v1, v2. Then u is decomposable, and r1 =
decompo(r, att(u, v)) is of the following form:

r1 = Pre1, att(u
′
1, v

′
1), att(u

′
2, v

′
2) −→ Add1;Del1

Moreover, there is a grounding substitution σ1 for r1 such

that:

1) δP(xσ1) � δP(x) for any x ∈ vars left(r1);
2) (Pre1, Add1, Del1)σ1 = (Pre,Add,Del)σ; and

3) uσ = f(u′1, u
′
2)σ1 and vσ = f(v′1, v

′
2)σ1.

Proof of the Claim. We have that uσ = f(u1, u2) and we

know that δP(xσ) � δP(x) for any x ∈ vars left(r). Therefore,

we know that u is decomposable. We have that

split(att(u, v)) = (f, {att(x1, y1), att(x2, y2)}, σP , σQ)

with δP(x1) = τ1, δP(x2) = τ2, σP = mgu(u, f(x1, x2))
is quasi-well-typed, and σQ = mgu(v, f(y1, y2)). Note that
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σQ 6= ⊥ since vσ = f(v1, v2). Moreover, when u (resp v)

is not a variable, we assume w.l.o.g. that x1, x2 (resp.

y1, y2) do not occur in img(σP) (resp. img(σQ)). Let r1 =
decompo(r, att(u, v)). We have that:

r1 = [Pre, att(x1, y1), att(x2, y2) −→ Add;Del](σP ⊎ σQ)

Let σleft = σ|vars left(r) and σright = σ|vars right(r). Note that

vars left(r) ∩ vars right(r) = ∅, and thus σ = σleft ⊎ σright.

Now, we make a distinction depending on whether u (resp.

v) is a variable or not. In case u is a variable, say zu, then we

have that σP = {zu 7→ f(x1, x2)}, and we let σleft
1 = σleft ⊎

{x1 7→ u1, x2 7→ u2}. Otherwise, we have that u = f(a1, a2),
and σP = {x1 7→ a1, x2 7→ a2}, and we let σleft

1 = σleft.

We proceed similarly for v. It remains to show that r1 and

σ1 = σleft
1 ⊎ σright

1 as defined above satisfy the requirements.

We establish each property separately,

1) We have that δP(xσ1) = δP(xσ
left
1 ) = δP(xσ) � δP(x)

for any x ∈ vars left(r1) r {x1, x2}; and δP(xiσ1) =
δP(xiσ

left
1 ) = δP(ui) = τi � δP(xi) for i ∈ {1, 2}.

Hence the result.

2) In case u is a variable, we have that (zuσP)σ
left
1 = zuσ,

and similarly for v. Therefore, it is easy to see that

(Pre,Add,Del)(σP ⊎ σQ)σ1 = (Pre,Add,Del)σ.

3) We have that f(u′1, u
′
2)σ1 = f(x1σP , x2σP )σ1 = uσ,

and similarly for v.

This concludes the proof of the claim.

Now we prove the main result by induction on C. The base

case, i.e. C is empty, is obvious. We simply choose r′ = r.
Assume now that C = f(C1, C2). From our claim, we get

r1 = decompo(r, att(u, v)) of the following form

r1 = Pre1, att(u
′
1, v

′
1), att(u

′
2, v

′
2) −→ Add1;Del1

and a substitution σ1 grounding for r1 such that:

1) δP(xσ1) � δP(x) for any x ∈ vars left(r1);
2) (Pre1, Add1, Del1)σ1 = (Pre,Add,Del)σ; and

3) uσ = f(u′1, u
′
2)σ1 and vσ = f(v′1, v

′
2)σ1.

In particular we have that Ci[u1, . . . , un] = u′iσ1 and

Ci[v1, . . . , vn] = v′iσ1 for each i ∈ {1, 2}.

Now we write

r1 = Pre′1, att(u
′
2, v

′
2) −→ Add1;Del1

and we apply our induction hypothesis with context C2 and

substitution σ1. We get a rule r2 ∈ Flat(r1) such that

r2 = Pre2, att(u
2
1, v

2
1), . . . , att(u

2
n, v

2
n) −→ Add2;Del2

and a substitution σ2 grounding for r2 such that:

1) δP(xσ2) � δP(x) for any x ∈ vars left(r2);
2) (Pre2, Add2, Del2)σ2 = (Pre′1, Add1, Del1)σ1;

3) u′2σ1 = C2[u
2
1, . . . , u

2
n]σ2, and similarly v′2σ1 =

C2[v
2
1 , . . . , v

2
n]σ2.

We can write:

r2 = Pre′2, att(u
′′
1 , v

′′
1 ) −→ Add2;Del2

where u′′1σ2 = u′1σ1 and v′′1σ2 = v′1σ1 and we apply our

induction hypothesis with context C1 and substitution σ2. We

get a rule r3 ∈ Flat(r2) such that

r3 = Pre3, att(u
3
1, v

3
1), . . . , att(u

3
n, v

3
n) −→ Add3;Del3

and a substitution σ3 grounding for r3 such that:

1) δP(xσ3) � δP(x) for any x ∈ vars left(r3);
2) (Pre3, Add3, Del3)σ3 = (Pre′2, Add2, Del2)σ2,

3) u′′1σ2 = C1[u
3
1, . . . , u

3
n]σ3, and similarly v′′2σ2 =

C1[v
3
1 , . . . , v

3
n]σ3.

We have that r3 ∈ Flat(r) and it remains to check that r3
and σ3 as defined above satsify our three conditions. First, we

have seen that δP(xσ3) � δP(x) for any x ∈ vars left(r3).
Second, we have that

(Add3, Del3)σ3 = (Add2, Del2)σ2
= (Add1, Del1)σ1
= (Add,Del)σ

As Pre3σ3 = Pre′2σ2, we have

Pre3 = Pre′3, att(u
4
1, v

4
1), . . . , att(u

4
n, v

4
n)

for some Pre′3 where u4iσ3 = u2iσ2 and v4i σ3 = v2i σ2 for each

i ∈ {1, . . . , n}. Hence, we have that:

Pre′3σ3, att(u
4
1, v

4
1)σ3, . . . , att(u

4
n, v

4
n)σ3, att(u

′′
1 , v

′′
1 )σ2

= Pre3σ3, att(u
′′
1 , v

′′
1 )σ2

= Pre′2σ2, att(u
′′
1 , v

′′
1 )σ2

= Pre2σ2, att(u
2
1, v

2
1)σ2, . . . , att(u

2
n, v

2
n)σ2

= Pre′1σ1, att(u
2
1, v

2
1)σ2, . . . , att(u

2
n, v

2
n)σ2

= Pre1σ1, att(u
′
1, v

′
1)σ1, att(u

2
1, v

2
1)σ2, . . . , att(u

2
n, v

2
n)σ2

= Preσ, att(u′1, v
′
1)σ1, att(u

2
1, v

2
1)σ2, . . . , att(u

2
n, v

2
n)σ2

Hence, we have that Pre′3σ3 = Preσ. Lastly, we have that:

uσ

= f(u′1, u
′
2)σ1

= f(u′′1σ2, C2[u
2
1, . . . , u

2
n]σ2)

= f(C1[u
3
1, . . . , u

3
n], C2[u

4
1, . . . , u

4
n])σ3.

We can establish in a similar way that vσ =
f(C1[v

3
1 , . . . , v

3
n], C2[v

4
1 , . . . , v

4
n])σ3, and this concludes

the proof. �

For the next lemmas, we need to be more specific on

how the fact bad has appeared. Therefore, from now on,

we consider three facts instead: bad-proto, bad-flat, and

bad-concrete. Moreover, we assume that in protocol rules, bad

is replaced by bad-proto, in flattening rules, bad is replaced

by bad-flat, and in concretization rules bad is replaced by

bad-concrete. When the precise origin of the failure does not

matter, we simply write bad (meaning one of the three cases

above).
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Lemma 13: Let r be an abstract protocol rule. Let r′ ∈
Flat(r) written as

r′ = state, att(u1, v1), . . . , att(un, vn) −→ Add;Del

where state is a state fluent.

• Either we have bad-flat /∈ Add, and then there exists a

constructor context C and a substitution τ such that

rτ = state, att(u, v) → Add;Del.

where u = C[u1, . . . , un] and v = C[v1, . . . , vn].
• Or Add = bad-flat, Del = ∅ and there ex-

ists a constructor context C, a substitution τ and a

term v and two sets Add0 and Del0 such that rτ =
state, att(C[u1, . . . , un], v) −→ Add0;Del0 but v does

not unify with C.

Proof. As r′ ∈ Flat(r), there exists a sequence r0, . . . , rn of

rules, and a sequence f0, . . . , fn−1 of facts, such that r0 = r,
rn = r′ and for each 0 ≤ i ≤ n − 1, we have that ri+1 =
decompo(ri, fi). We establish the result by induction on n.

The base case, i.e. n = 0, is trivial.

Assume that we have the result for n. Let

rn = staten, att(u1, v1), . . . , att(um, vm) −→ Addn;Deln.

and rn+1 = decompo(rn, fn) = Pren+1 −→
Addn+1;Deln+1. Without loss of generality, we can

assume that fn = att(um, vm).

First case. bad-flat /∈ Addn+1. Then, as rn+1 =
decompo(rn, fn), bad-flat /∈ Addn. By induction hypothesis,

there exist C and τn such that:

rτn = staten, att(u0, v0) −→ Addn;Deln

where u0 = Cn[u1, . . . , um] and v0 = Cn[v1, . . . , vm].

We have split(fn) = (f, S, σP , σQ) with S =
{att(x1, y1), att(x2, y2)}, σP = mgu(um, f(x1, x2)), and

σQ = mgu(vm, f(y1, y2)). Moreover, since bad-flat /∈
Addn+1, we have that σQ 6= ⊥. We get the following rule

rn+1:

(staten, att(u1, v1), . . . , att(um−1, vm−1),

att(x1, y1), att(x2, y2) −→ Addn;Deln)(σP ⊎ σQ)

Let τ = τn(σP ⊎ σQ) and C = Cn[ , . . . , f( , )]. We have

that

rτn(σP ⊎ σQ)

= staten(σP ⊎ σQ), att(u0σP , v0σQ) −→ Addn(σP ⊎ σQ);

Deln(σP ⊎ σQ).

It only remains to establish that u0σP =
C[u1σP , . . . , um−1σP , x1σP , x2σP ] (and similarly for v0).

We have that:

u0σP
= Cn[u1, . . . , um]σP
= Cn[u1σP , . . . , um−1σP , f(x1, x2)σP ]

= C[u1σP , . . . , um−1σP , x1σP , x2σP ]

Hence, this case is proved.

Second case. bad-flat ∈ Addn+1 but bad-flat /∈ Addn. By

induction hypothesis, there exist C and τn such that:

rτn = staten, att(u0, v0) −→ Addn;Deln

where u0 = Cn[u1, . . . , um] and v0 = Cn[v1, . . . , vm].

We have split(fn) = (f, S, σP ,⊥) with S =
{att(x1, y1), att(x2, y2)}, σP = mgu(um, f(x1, x2)). We get

the following rule rn+1:

(staten, att(u1, v1), . . . , att(um−1, vm−1),

att(x1, y1), att(x2, y2) −→ bad-flat)σP

Let τ = τn.σP and C = Cn[ , . . . , f( , )].
We have that

rτnσP)

= statenσP , att(u0σP , v0) −→ AddnσP ;

DelnσP

It only remains to establish that u0σP =
C[u1σP , . . . , um−1σP , x1σP , x2σP ] but v0 does not unify

with C. We have that:

u0σP
= Cn[u1, . . . , um]σP
= Cn[u1σP , . . . , um−1σP , f(x1, x2)σP ]

= C[u1σP , . . . , um−1σP , x1σP , x2σP ]

and v0 = Cn[v1, . . . , vm], so if it unifies with C then vm
unifies with f( , ) so with f(y1, y2) as y1, y2 are variables.

But it is impossible as σQ = ⊥. So v0 does not unify with C,

which concludes the proof of this second case.

Third case. bad-flat ∈ Addn+1 and bad-flat ∈ Addn. By

induction hypothesis, there exist C and τn such that:

rτn = staten, att(u0, v0) −→ Add0;Del0

where u0 = Cn[u1, . . . , um] and v0 does not unify with Cn.

We have split(fn) = (f, S, σP , σQ) with S =
{att(x1, y1), att(x2, y2)}, σP = mgu(um, f(x1, x2)) and

σQ = mgu(vm, f(y1, y2)).

Subcase 3.1. σQ 6= ⊥. We get the following rule rn+1:

(staten, att(u1, v1), . . . , att(um−1, vm−1),

att(x1, y1), att(x2, y2) −→ bad-flat)(σP ⊎ σQ)

Let τ = τn(σP ⊎ σQ) and C = Cn[ , . . . , f( , )]. We have

that

rτn(σP ⊎ σQ)

= staten(σP ⊎ σQ), att(u0σP , v0σQ) −→ Addn(σP ⊎ σQ);

Deln(σP ⊎ σQ).

It only remains to establish that u0σP =
C[u1σP , . . . , um−1σP , x1σP , x2σP ] but v0σQ does not

unify with C. We have that:

u0σP
= Cn[u1, . . . , um]σP
= Cn[u1σP , . . . , um−1σP , f(x1, x2)σP ]

= C[u1σP , . . . , um−1σP , x1σP , x2σP ]
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and v0σQ does not unify with Cn, so it does not unify with

C, which concludes the proof of this subcase.

Subcase 3.2. σQ = ⊥. We get the following rule rn+1:

(staten, att(u1, v1), . . . , att(um−1, vm−1),

att(x1, y1), att(x2, y2) −→ bad-flat)σP

Let τ = τnσP and C = Cn[ , . . . , f( , )]. We have that

rτnσP
= statenσP , att(u0σP , v0) −→ AddnσP ;

DelnσP .

It only remains to establish that u0σP =
C[u1σP , . . . , um−1σP , x1σP , x2σP ] but v0 does not unify

with C. We have that:

u0σP
= Cn[u1, . . . , um]σP
= Cn[u1σP , . . . , um−1σP , f(x1, x2)σP ]

= C[u1σP , . . . , um−1σP , x1σP , x2σP ]

and v0 does not unify with Cn, so it does not unify with C,

which concludes the proof of this subcase, and hence of the

lemma. �

Lemma 14: Let r be an abstract rule, r = Pre, att(u, v) −→
Add;Del. Let σ be a substitution grounding for vars left(r)
such that δP(xσ) � δP(x) for any x ∈ vars left(r), and f a

constructor function symbol such that uσ = f(u1, u2). Assume

that Add = bad or v does not unify with f( , ).
Then u is decomposable. Let r′ defined by

r′ = decompo(r, att(u, v))

= Pre′, att(u′1, v
′
1), att(u

′
2, v

′
2) −→ bad

If Add 6= bad then there is a substitution σ′ grounding for

vars left(r) such that δP(xσ
′) � δP(x) for any x ∈ vars left(r

′),
Pre′σ′ = Preσ, f(u′1, u

′
2)σ

′ = uσ and v′1, v
′
2 are distinct

variables that do not occur elsewhere in r′.
If Add = bad and Del = ∅, the result still holds except

that nothing is required on v′1 and v′2 if v unifies with f( , ).

Proof. uσ = f(u1, u2) so either u is not atomic or u is

a variable and δP(uσ) � δP(u) = f(δP (u1), δP(u2)). So in

both cases u is decomposable.

We first consider the case where Add 6= bad.

As v does not unify with f(v1, v2) for any v1, v2,

split(att(u, v)) = (f, {att(x1, y1), att(x2, y2)}, σP ,⊥)

where σP = mgu(u, f(x1, x2)) and δP(xi) = δP(ui).

First case. u is a variable. We have σP = {u 7→ f(x1, x2)}.

Let r′ defined by

r′ = decompo(r, att(u, v))

= PreσP , att(x1σP , y1), att(x2σP , y2) −→ bad

and σ′ defined by σ′ = {x1 7→ u1;x2 7→ u2} ∪ σ}

As x1, x2 /∈ dom(σ), σ′ is well-defined. We have

δP(xσ
′) � δP(x) for any x ∈ vars left(σ

′). Moreover,

Pre′σ′ = PreσPσ
′ = Preσ as σ′ coincide with σ on dom(σ)

and uσP .σ
′ = uσ. Finally, y1, y2 are variables that do not

occur elsewhere in r′. So it concludes the proof for this case.

Second case. u = f(a1, a2) for some ai with aiσ = ui for

each i ∈ {1, 2}. We have σP = {x1 7→ a1;x2 7→ a2}. Let r′

defined by

r′ = decompo(r, att(u, v))

= PreσP , att(x1σP , y1), att(x2σP , y2) −→ bad

and σ′ defined by σ′ = σ.

We have δP(xσ
′) � δP(x) for any x ∈ vars left(σ

′). More-

over, Pre′σ′ = PreσPσ
′ = Preσ as PreσP = Pre because

dom(σP ) ∩ vars(Pre) = ∅. Finally, y1, y2 are variables that

do not occur elsewhere in r′. So it concludes the proof of the

main result.

We now consider the case where Add = bad.

Now, if v does unify with f( , ), then, the hypotheses

of Lemma 12 are satisfied, so we get its conclusion, which

implies the desired result. �

For the next lemmas, we need to define the relation =left

on facts as f1 =left f2 iff f1 = att(u, v), f2 = att(u′, v′) with

u = u′, or f1 = statecP,Q(σP , σQ), f2 = statec
′

P ′,Q′(σ′
P , σ

′
Q)

with c = c′, P = P ′ and σP = σ′
P . We extend this definition

to Pre.
Lemma 15: Let r = Pre, att(u1, v1), . . . , att(un, vn) −→

bad. Let σ be a substitution grounding for vars left(r) and such

that δP(xσ) � δP(x) for each x ∈ vars left(r).
Let C1, . . . , Cn be constructor contexts. We assume that

uiσ = Ci[u
i
1, . . . , u

i
ki
]. Then there exists r′ ∈ Flat(r) such

that r′ = Pre′, att(s11, t
1
1), . . . , att(s

n
kn
, tnkn

) −→ bad and σ′

such that uji = sjiσ
′ and Pre′σ′ =left Preσ and the tji are

any terms.

Proof. We first prove the following claim:

Claim. Let r = Pre, att(u, v) −→ bad. Let σ be a substitu-

tion grounding for vars left(r) and such that δP(xσ) � δP(x)
for each x ∈ vars left(r).

Let C be a constructor context. We assume that uσ =
C[u1, . . . , un]. Then there exists r′ ∈ Flat(r) such that

r′ = Pre′, att(u′1, v1), . . . , att(u
′
n, vn) −→ bad and σ′ such

that ui = u′iσ
′ and Pre′σ′ =left Preσ.

Proof of the claim. We proceed by induction on C. The

base case is obvious. We assume C = f(C1, C2). By

Lemma 14, we have that u is decomposable, and r1 =
decompo(r, att(u, v)) = Pre1, att(u

1
1, v1), att(u

1
2, v2) −→

bad. There exists a σ1 such that σ1 is grounding for

vars left(r1) and Pre1σ1 = Preσ, f(u′1, u
′
2)σ1 = uσ.

Recall that uσ = C[u1, . . . , un] =
f(C1[u1, . . . , um], C2[um+1, . . . , un]). By induction

hypothesis on C1 with r1 = Pre′1, att(u
′
1, v1) −→ bad,

we get that there exists r2 ∈ Flat(r1) ⊂ Flat(r) such that
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r2 = Pre2, att(u
2
1, v

′
1), . . . , att(u

2
m, v

′
m) −→ bad and a σ2

such that u2iσ2 = ui for i ≤ m, and Pre2σ2 =left Pre′1σ1.

By induction hypothesis on C2 with r2 =
Pre′2, att(u

′
2, v2) −→ bad, we get that there

exists r3 ∈ Flat(r2) ⊂ Flat(r) such that

r3 = Pre3, att(u
3
m+1, v

′
m+1), . . . , att(u

3
n, v

′
n) −→ bad and a

σ3 such that u3iσ3 = ui for i > m, and Pre3σ3 =left Pre′2σ2.

So we have that Pre3 =left

Pre′3, att(u
3
1, v

′′
1 ), . . . , att(u

3
m, v

′′
m) for some Pre′3 where

u3iσ3 = u2iσ2 for each i ≤ m. Hence we have that

Pre′3σ3, att(u
3
1, v

′′
1 )σ3, . . . , att(u

4
m, v

′′
m)σ3, att(u

′
2, v2)σ2

= Pre3σ3, att(u
′
2, v2)σ2

=left Pre′2σ2, att(u
′
2, v2)σ2

=left Pre2σ2, att(u
2
1, v

′
1)σ2, . . . , att(u

2
m, v

′
m)σ2

=left Pre′1σ1, att(u
2
1, v

′
1)σ2, . . . , att(u

2
m, v

′
m)σ2

=left Pre1σ1, att(u
1
2, v2)σ1, att(u

2
1, v

′
1)σ2, . . . , att(u

2
m, v

′
m)σ2

=left Preσ, att(u12, v2)σ1, att(u
2
1, v

′
1)σ2, . . . , att(u

2
m, v

′
m)σ2

We deduce that Preσ =left Pre′3σ3 and ui = u3iσ3 for

each i. It concludes the proof of the claim.

Now we want to prove the main result. We proceed by

induction on the number n of contexts. The base case (n = 1)

is our claim. Consider the inductive case.

We have r = Pre, att(u1, v1), . . . , att(un+1, vn+1) −→ bad.

We define Pre′ = Pre, att(un+1, vn+1). We apply our induc-

tion hypothesis on r = Pre′, att(u1, v1), . . . , att(un, vn) −→
bad and we get a r1 ∈ Flat(r) such that r1 =
Pre1, att(s

1
1, t

1
1), . . . , att(s

n
kn
, tnkn

) −→ bad and σ1 such that

uji = sjiσ1 and Pre1σ1 =left Pre′σ.

We can apply our claim on r1 = Pre′1, att(u
′
n+1, v

′
n+1) −→

bad for some adequate Pre′1, where u′n+1σ1 = un+1σ
and v′n+1σ1 = vn+1σ1. We get a rule r2 =
Pre2, att(α1, β1), . . . , att(αkn+1

, βkn+1
) −→ bad and σ2 such

that Pre2σ2 =left Pre′1σ1 and Cn+1[α1, . . . , αkn+1
]σ2 =

u′n+1σ1. So Pre2 = Pre′2, att(γ
1
1 , δ

1
1), . . . , att(γ

n
kn
, δnkn

)

where γji σ2 = sjiσ1 for any i, j. So Pre′2σ2 =left

Pre1σ1\{att(un+1σ1, vn+1σ1)} =left Preσ. �

Lemma 16: Let r = Pre, att(u, v) −→ Add;Del be a rule, σ
be a grounding substitution for vars left(r) such that δP(xσ) �
δP(x) for any x ∈ vars left(r), and C a linear context built

on Σc only Assume uσ = C[u1, . . . , un] and v and C are not

unifiable.

Then there exists r′ ∈ Flat(r) such that r′ =
Pre′, att(u′1, v1), . . . , att(u

′
n, vn) −→ bad and σ′ such that

ui = u′iσ
′ and Pre′σ′ =left Preσ.

Proof. Let r = Pre, att(u, v) −→ Add;Del be a rule, σ be

a grounding substitution for vars left(r) such that δP(xσ) �
δP(x) for any x ∈ vars left(r), and C a linear context built

on Σc only.

Assume uσ = C[u1, . . . , un] whereas v and C are not

unifiable. Take C′ a maximal prefix of C such that v and C′

are unifiable. We can define σ′ such that σ′ = σ on vars left(r)
and σ′ unifies v with C′: vσ′ = C′[v1, . . . , vn].

By Lemma 12, there exists r1 ∈ Flat(r) in the form:

r1 = Pre1, att(u
′
1, v

′
1), . . . , att(u

′
n, v

′
n) −→ Add1;Del1

and σ1 a grounding substitution such that:

1) δP(xσ1) � δP(x) for any x ∈ vars left(r1);
2) (Pre1, Add1, Del1)σ1 = (Pre,Add,Del)σ′; and

3) att(u, v)σ′ = att(C′[u′1, . . . , u
′
n], C

′[v′1, . . . , v
′
n])σ1.

Now, we have C = C′[C1, . . . , Cn]. But v and C where not

unifiable, and by maximality of C′, we assume without loss

of generality that v′1 and C1 are not unifiable.

As C1 is a context built on Σc only, C1 is not a leaf (oth-

erwise v′1 would be unifiable with C1). So C1 = f(C′′
1 , C

′′
2 ).

By maximality of C′, v′1 is not even unifiable with f( , ). u′1
is unifiable with C1 as uσ = C[u1, . . . , un].

We can apply Lemma 14 on rule r1 = Pre′1, att(u
′
1, v

′
1) −→

Add1;Del1, u′1 is decomposable and the following rule is

well-defined:

r2 = decompo(r1, att(u
′
1, v

′
1))

= Pre2, att(u
′′
1 , v

′′
1 ), att(u

′′
2 , v

′′
2 ) −→ bad

Moreover, there is a substitution σ2 such that δP(xσ2) �
δP(x) for any x ∈ vars left(r2), Pre2σ2 = Pre′1σ1,

f(u′1, u
′
2)σ

′ = u′1σ and v′1, v
′
2 are distinct variables that do

not occur elsewhere in r2.

Now we write r2 =
Pre′2, att(u

′′
1 , v

′′
1 ), att(u

′′
2 , v

′′
2 ), att(α2, β2), . . . , att(αn, βn) −→

bad, where αiσ2 = u′iσ1 and βiσ2 = v′iσ1 for each i ≥ 2.

We can apply Lemma 15 with contexts C′′
1 , C

′′
2 , C2, . . . , Cn.

We get a rule

r3 =

Pre3, att(γ
1
1 , δ

1
1), . . . , att(γ

1
k1
, δ1k1

)

att(γ21 , δ
2
1), . . . , att(γ

2
k2
, δ2k2

)

att(η21 , θ
2
1), . . . , att(η

2
j2
, θ2j2)

. . .

att(ηn1 , θ
n
1 ), . . . , att(η

n
jn
, θnjn)

−→ bad

and a substitution σ3 where Pre3σ3 =left Pre′2σ2 and

u′′i σ2 = C′′
i [γ

i
1, . . . , γ

i
ki
]σ3 for each i ∈ {1 ; 2}, αiσ2 =

Ci[η
i
1, . . . , η

i
ji
]σ3 for each i ≥ 2 and the δij, θ

i
j are any terms.

We have:

uσ = C′[u′1, . . . , u
′
n]σ1

= C′[f(u′′1 , u
′′
2), u

′
2, . . . , u

′
n]σ2

= C′[f(C′′
1 [(γ

1
i )1≤i≤k1

], C′′
2 [(γ

2
i )1≤i≤k2

],

C2[(η
2
i )1≤i≤j2 ], . . . , Cn[(η

n
i )1≤i≤kn

]]σ3

= C[(γ1i )1≤i≤k1
, (γ2i )1≤i≤k2

, (η2i )1≤i≤j2 , . . . , (η
n
i )1≤i≤kn

]σ3

Moreover, as u′iσ1 = αiσ2 for each i ≥ 2, we have:

Pre2σ2 =left Pre1σ1, att(u
′
2, v

′
2)σ1, . . . , att(u

′
n, v

′
n)σ1

=left Pre′2σ2, att(α2, β2)σ2, . . . , att(αn, βn)σ2
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so Pre1σ1 =left Pre′2σ2 =left Pre3σ3. As Pre1σ1 = Preσ
we get Preσ =left Pre3σ3. It concludes the proof. �

Lemma 2: Let P be a protocol type-compliant

w.r.t. (TP , δP), and Q be another protocol. Let Θ be the

following planning system:

〈Fact0,Fact(P ,Q),R〉

where R = Concrete+(RuleA ∪ Flat(Rule(P ,Q))).

Let (tr, φ) ∈ traceΣ(P ) for some φ and such that:

• tr only contains simple recipes;

• (tr, φ) is well-typed w.r.t. (TP , δP);
• (tr, ψ) ∈ traceΣ(Q) for some ψ.

Then, there exist a planning path r1, . . . , rn of

some length n from Fact(P ,Q) to some Sn such that

Fact(K ′
P ,K

′
Q) ↑ Sn where K ′

P (resp. K ′
Q) is the resulting

configuration starting from P (resp. Q) and executing tr.

Conversely, let r1, . . . , rn be a planning path from

Fact(P ,Q) to Sn such that bad 6∈ Sn. Then, there exist a

trace tr, and frames φ and ψ such that:

• tr only contains simple recipes;

• (tr, φ) is well-typed w.r.t. (TP , δP);
• (tr, ψ) ∈ traceΣ(Q) for some ψ; and

• Fact(K ′
P ,K

′
Q) ↑ Sn where K ′

P (resp. K ′
Q) is the

resulting configuration starting from P (resp. Q) and

executing tr.

Proof. (⇒) We show this result by induction on the length

of tr.

Base case. The trace is empty, and the empty planning path

can be used to establish the result.

Inductive case. tr = tr′.α with α = out(c,w) or α = in(c, R).
We apply our induction hypothesis on tr′ and we obtain a

planning path r1, . . . , rn from Fact(KP ,KQ) to some Sn.

Let K ′
P (resp. K ′

Q) the resulting configuration starting from

P (resp. Q) and executing tr′. Similarly, let K ′′
P (resp. K ′′

Q)

the resulting configuration starting from P (resp. Q) and

executing tr′.α. Thanks to our induction hypothesis, we have

that Fact(K ′
P ,K

′
Q) ↑ Sn. We have also that K ′

P

α
−→ K ′′

P

and K ′
Q

α
−→ K ′′

Q, and therefore K ′
P = (P ′; σ′

P ; φ
′) con-

tains a simple process of the form P = out(c, u).P ′ and

K ′
Q = (Q′; σ′

Q; ψ
′) contains a simple process of the form

Q = out(c, v).Q′ (and similarly in case of an input). More-

over, we know that uσ′
P and vσ′

Q are messages.

Let R be the abstract protocol rule corresponding to this

step.

We consider the case of an output. We have that R ∈
Rule(P ,Q) and this rule is of the form:

St(P,Q) −→ att(u, v), St(P ′, Q′); St(P,Q)

Now, we consider the concrete instance that corresponds to the

execution mentioned above, i.e. the one obtained by applying

σ′
P ⊎ σ′

Q. This will allow us to conclude.

We now consider the case of an input, i.e. P = in(c, u).P ′

and Q = in(c, v).Q′. We have that R ∈ Rule(P ,Q) and this

rule is of the form:

St(P,Q), att(u, v) −→ St(P ′, Q′); St(P,Q)

We know that Rφ′↓ = uσ′
P and Rψ′↓ = vσ′

Q with R a

simple recipe. R is a constructor on destructor recipe, so there

is a constructor context C such that R = C[R1, . . . , Rn]
where R1, . . . , Rn are destructor-only recipes. So uσ′

P =
C[R1φ

′↓, . . . , Rnφ
′↓] and vσ′

Q = C[R1ψ
′↓, . . . , Rnψ

′↓]. So

it is possible to apply Lemma 12. There exists a rule r′ ∈
Flat(r):

r′ = Pre′, att(u′1, v
′
1), . . . , att(u

′
n, v

′
n) −→ Add′;Del′

and σ′ a grounding substitution for r′ such that:

1) δP(xσ
′) � δP(x) for any x ∈ vars left(r

′);
2) (Pre′, Add′, Del′)σ′ = (Pre,Add,Del)(σ′

P ⊎σ′
Q); and

3) att(uσ′
P , vσ

′
Q) = att(C[u′1, . . . , u

′
n], C[v

′
1, . . . , v

′
n])σ

′.

R1, . . . , Rn are destructor-only recipes such that

att(Riφ↓, Riψ↓) unifies with att(u′i, v
′
i). Thanks to Lemma 1,

for each Ri there is an associated plan πi containing only

adversary rules such that att(Riφ↓, Riψ↓) is in the final

state of πi. As the adversary rules delete nothing, these plans

are composable together. They give π = π1. . . . .πn. As the

att(Riφ↓, Riψ↓) unify with Pre(r′), there is a rule r′′ in

Concrete+(r′) such that its preconditions are exactly the

att(Riφ↓, Riψ↓).
This allows us to conclude.

(⇐) We show this result by induction on the length of the

planning path.

Base case. Obvious.

Inductive case. We have a planning path r1, . . . , rn. Thanks

to our induction hypothesis, we know that the result holds for

r1, . . . , rn−1 and therefore the existence of a trace tr. Then,

we distinguish several cases depending on the rule rn. In case

rn is an instance of Concrete+(RuleA), we consider tr again.

The case where rn is a rule that adds bad is impossible since

bad 6∈ Sn. Now, if rn is an instance of an abstract rule in

Flat(Rule(P ,Q)). Let Rf be the flattened abstract rule, and R

the abstract protocol rule.

In case R is a rule corresponding to the case of an output,

then rn is an instance of R since the flattening does not

produce any other rule. In such a case, we can mimick this

step by considering tr.out(c,w).

In case R is a rule corresponding to an input, then rn is an

instance of a rule Rf ∈ Flat(R). We have that Rf is of the

form:

StcP,Q(θP , θQ), att(u1, v1), . . . , att(uk, vk) −→ StcP ′,Q′(θP ′ , θQ′)

and rn is an instance of Rf(σP ∪σQ) where σP (resp. σQ) is

the substitution obtained after executing tr. Let τP , and τQ be

grounding substitution such that rn = (Rf (σP∪σQ))(τP∪τQ).
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We know that there exist destructor only recipes R1, . . . , Rk

such that Riφ↓ = uiσP τP and Riψ↓ = viσQτQ by Lemma 1.

We can apply Lemma 13 on rule rn written as:

rn = state, att(u1, v1), . . . , att(un, vn) −→ Add;Del

We are in the case where bad-flat /∈ Add, so there ex-

ists a constructor context C and a substitution τ such that

Rf (σP ∪ σQ)τ = state, att(u, v) −→ Add;Del where u =
C[u1, . . . , un] and v = C[v1, . . . , vn].

Therefore, consider the trace tr · in(c, C[R1, . . . , Rk]). This

step can be done on the P side, as well as in the Q side.

Hence, the result. �

Theorem 3: Let P a protocol type-compliant w.r.t.

(TP , δP), and Q be another protocol. We consider the fol-

lowing set R of concrete rules:

R = Concrete(RuleA ∪ flat(Rule(P ,Q))) ∪Rtest
fail ∪Ratom

fail

Let Θ = 〈Fact0,Fact(P ,Q),R〉 and Π = 〈Θ, {bad}〉. We

have that P 6⊑ Q if, and only if, Π has a solution.

Proof. We show the two directions separately.

(⇒) In case P 6⊑ Q, we know thanks to Theorem 2 that

there exists a witness of this fact such that (tr, φ) ∈ trace(P) is

quasi-well-typed, only involve the constants we consider here.

Moreover, tr is made of simple recipes. We consider such

a witness of minimal length, and we distinguish two cases

depending on the fact that (tr, ψ) ∈ trace(Q) for some ψ or

not. If not, we let tr−1 the trace tr without its last element,

ortherwise tr−1 = tr.

Lemma 2 allows us to conclude that there exists a plan-

ning path r1, . . . , rn from Fact(P ,Q) to Sn such that

Fact(K ′
P ,K

′
Q) ↑ Sn where K ′

P (resp. K ′
Q) is the resulting

configuration starting from P (resp. Q) and executing tr−1.

In case (tr, ψ) ∈ trace(Q), we know that φ 6⊑s ψ, and

thanks to Proposition 1, we will obtain a planning path that

we can concatenate to r1, . . . , rn to conclude.

Otherwise, we have that (tr−1, ψ−1) ∈ trace(Q) but the

last action α can not be performed. In case α = out(c,w).
If such an action can not be performed, it means that this

action is not available in the process or would lead to output

a term that is not a message. In the first case, we have an

abstract protocol rule R that can be instantiated to mimick

this step. In the second case, we have to consider the instance

in Concrete−(R). Note that for such a rule Flat(R) = R.

Now, in case α = in(c, R). If such an action can not be

performed, it means that either this action is not syntactically

available in the process or the term in the Q side does not

match. In both case, we have an abstract protocol rule in Rf ∈
R that corresponds to this step.

First of all, remind that R is a simple recipe: R =
C[R1, . . . , Rk] where R1, . . . , Rk are destructor-only recipes

and C a constructor context built on Σc only. Thanks to

Lemma 1, for each Ri there is an associated plan πi containing

only adversary rules such that att(Riφ↓, Riψ↓) is in the final

state of πi. As the adversary rules delete nothing, these plans

are composable together. They give π = π1. . . . .πk. We call

S′
n the resulting state.

If the input is not syntactically available in the process, then

Rf is of the form St(P,Q), att(u, y) −→ bad-proto where y
is a fresh variable. St(P,Q) unifies with some fact of S′

n by

induction hypothesis (we arrived at this step). So we call σ
the substitution such that:

• St(P,Q)σ ∈ S′
n.

• Rφ↓ = uσ
• δP(xσ) � δP(x) for any x ∈ vars left(Rf )
• Rψ↓ = yσ

There exists such a σ because we arrived at step (induction

hypothesis: item 1), the input passes in the P side (item 2,3)

and y is a fresh variable.

We can apply Lemma 12. We get a rule r′ ∈ Flat(Rf ):

r′ = Pre′, att(u′1, v
′
1), . . . , att(u

′
k, v

′
k) −→ Add′;Del′

and a grounding substitution σ′ such that:

• δP(xσ
′) � δP(x) for any x ∈ vars left(r

′).
• (Pre′, Add′, Del′)σ′ = (St(P,Q), bad-proto, ∅)σ
• att(u, v)σ = att(C[u′1, . . . , u

′
n], C[v

′
1, . . . , v

′
n)σ

′

As the att(Riφ↓, Riψ↓) unify with Pre(r′), there is a rule

r′′ in Concrete+(r′) such that its preconditions are exactly the

att(Riφ↓, Riψ↓). This concludes the case where the input is

not syntactically available in the process.

We consider the case where there is an input in the Q side:

Q = in(c, v).Q′ ∈ Q′, but the recipe R is such that Rψ↓ does

not unify with v. In this case, we write Rf = Pre, att(u, v) −→
Add;Del.

First, assume that v does not unify with C. We call σ
a substitution such that uσ = Rφ↓ which is grounding for

vars left(Rf ) with δP(xσ) � δP(x) for each x ∈ vars left(Rf )
(it exists by induction hypothesis because we arrived at this

step). We apply Lemma 16 and we get a r′ ∈ Flat(R) and a

σ′ with:

r′ = Pre′, att(u′1, v1), . . . att(u
′
k, vk) −→ bad-flat

and u′iσ
′ = Riφ↓, Pre′σ′ =left Preσ.

We have proven that we have facts in S′
n that unify at left

with r′σ. Then either they unify with r′σ and then there is a

rule r′′ ∈ Concrete+(r′) that allows to reach bad-flat, or they

do not unify at left with r′σ, and we get a r′′ ∈ Concrete−(r′)
that allows to reach bad-concrete. In both cases, we reach bad.

Now, assume that v does unify with the context C. There

is a σ grounding for Rf such that vσ = C[v1, . . . , vn],
uσ = C[u1, . . . , un] and δP(xσP ) � δP(x) for each x ∈
vars left(Rf ). So we can apply Lemma 12 and we get a

r′ ∈ Flat(Rf ):

r′ = Pre′, att(u′1, v
′
1), . . . , att(u

′
n, v

′
n) −→ Add′;Del′

and a σ′ such that:

1) δP(xσ
′) � δP(x) for any x ∈ vars left(r

′);
2) (Pre′, Add′, Del′)σ′ = (Pre,Add,Del)σ; and
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3) att(u, v)σ = att(C[u′1, . . . , u
′
n], C[v

′
1, . . . , v

′
n])σ

′.

We have that there is some fact unifying at left with

Pre′σ′ = Preσ in S′
n by induction hypothesis, and the

Riφ↓ unify with the ui, but the Riψ↓) do not unify with

the vi by hypothesis. So there is a r′′ ∈ Concrete−(r′) whose

precondition are true. It concludes this case and therefore the

proof.

(⇐) We show this result by induction on the length of plan-

ning path leading to bad. We consider one of minimal length.

We have that π = r1, . . . , rn, and we can apply Lemma 2 on

r1, . . . , rn−1, we obtain tr. This trace allows us to reach the

configurations (P ′, σP′ , φ′) and (Q′, σQ′ , ψ′). We call Sn−1

the set of fluents resulting from this planning path, and Sn

the set resulting from r1, . . . , rn. Now, we distinguish several

cases depending on whether rn is in Concrete−(RuleA) ∪
Rtest

fail ∪ Ratom
fail or in Concrete(Flat(Rule(P ,Q)). In the first

case, we conclude relying on Proposition 1, and therefore we

obtain that the frames resulting from the execution of tr are

not in static inclusion.

The second case occurs when rn ∈
Concrete(Flat(Rule(P ,Q))). So there is a Rf such that

rn ∈ Concrete(Flat(Rf )).

This rule cannot come from the first item of the protocol

rules definition, so it comes either from the second or from

the third.

We first consider the case where it comes from the second.

Then, there is no flattening on those rules. Therefore: rn ∈
Concrete(Rf). We write:

Rf = St(P,Q) −→ Add;Del

rn = f0 −→ Addn;Deln

for some Add,Del, Addn, Deln sets of facts and f0 ∈ Sn−1.

As rn ∈ Concrete(Rf ) is applicable, St(P,Q) unifies with

f0 ∈ Sn−1 by induction hypothesis: call σ a substitu-

tion such that St(P,Q)σ = f0. (Add,Del) unifies at left

with (Addn, Deln) through σ. If it unifies at right, then

rn ∈ Concrete+(Rf ). Therefore Del = ∅ and Add =
att(u, c⋆0), bad-proto. u must be instanciated by a message as

rn exists and is applicable. So in P ′ there is a process P on

some channel c that begins with an output but the process in

Q′ on channel c does not begin by an output. Moreover, it is

possible to make this output, so tr.out(c,w) is a witness of

non-inclusion.

If it does not unify at right, then rn ∈ Concrete−(Rf ).
Assume Rf = St(P,Q) −→ att(u, c⋆0), bad-proto. Then by def-

inition of Concrete− we deduce that uσ is a message but c⋆0 is

not. So this case never happens. We get that Rf = St(P,Q) −→
att(u, v), St(P ′, Q′); St(P,Q). As St(P,Q)σ ∈ Sn−1, we

must have that uσ is a message but vσ is not. So the output is

possible in the P side, but not in the Q side. This concludes

the case of the second item of protocol rules definition.

Only the third item remains to be considered. We write:

Rf = St(P,Q), att(u, v) −→ Add;Del

rn = f0, att(t1, t
′
1), . . . , att(tk, t

′
k) −→ Addn;Deln

where f0 unifies at left with St(P,Q) and the ti, t
′
i are

messages. We have that bad ∈ Addn. As rn is applicable,

there are recipes R1, . . . , Rk such that Riφ
′↓ = ti and

Riψ
′↓ = t′i for each i by Lemma 1.

Moreover, the form of the rule indicates that there is some

process P = in(c, u).P ′ ∈ P ′ and Q is the process on channel

c in Q′. We distinguish three cases according to the origin of

this bad:

First case. It is bad-proto. Then the only possibility

is that Rf = St(P,Q), att(u, x) −→ bad-proto where x
is a fresh variable. We have rn ∈ Concrete+(Flat(Rf ))
(Concrete− would give bad-concrete) so there is a rule r′ =
f ′
0, att(u1, v1), . . . , att(uk, vk)) −→ Add′;Del′ ∈ Flat(Rf )

such that rn ∈ Concrete+(r′). In particular there is a σ0 such

that rn = r′σ0 and f ′
0σ0 = f0, uiσ0 = ti and viσ0 = t′i

for each i. So bad-flat /∈ Add′. We apply Lemma 13, there

is a constructor context C and a substitution τ such that

Rfτ = f ′
0, att(u, v) −→ Add;Del and u = C[u1, . . . , uk] and

v = C[v1, . . . , vk].
The att(ti, t

′
i) are in Sn−1. So by Lemma 1, there are

destructor only recipes R1, . . . , Rk such that Riφ
′↓ = ti and

Riψ
′↓ = t′i.

So it means that tr.in(c, C[R1, . . . , Rk]) is a trace of P but

it is not a trace of Q because there is no input in Q′.

Second case. It is bad-flat. We have rn ∈
Concrete+(Flat(Rf )) (Concrete− would give bad-concrete)

So there is a rule

r′ = f ′
0, att(u1, v1), . . . , att(uk, vk) −→ bad-flat; ∅ ∈ Flat(Rf )

and a substitution σ such that rn = r′σ. So we apply

Lemma 13, and we get that there exists a constructor context

C a substitution τ , a term v′ and two sets Add0 and Del0
such that

Rfτ = f ′
0, att(C[u1, . . . , un], v

′) −→ Add0;Del0

but v′ does not unify with C.

So tr.in(c, C[R1, . . . , Rk]) is a trace of P , but it is not a

trace of Q (either there was no input in Q or there is an

input but it does not unify with C[R1, . . . , Rk]ψ
′↓). It gives a

witness of non-inclusion.

Third case. It is bad-concrete. We have

rn ∈ Concrete−(Flat(Rf )) (Concrete+ would not give

bad-concrete). So there is a rule

r′ = f ′
0, att(u1, v1), . . . , att(uk, vk) −→ Add′;Del′ ∈ Flat(Rf )

for some Add′, Del′ and a substitution σ such that rn =left

r′σ, but rn and r′ do not unify at right.

In both cases of Lemma 13, we get a constructor con-

text C, a substitution τ and two sets Add0, Del0 such that
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Rfτ = St(P,Q), att(u′, v′) −→ Add0;Del0 where u =
C[u1, . . . , uk].

So tr.in(c, C[R1, . . . , Rk]) is a valid trace of P (we have

C[R1, . . . , Rk]φ
′↓ = u′ = uτ ).

Moreover, C[R1ψ
′↓, . . . , Rkψ

′↓] does not unify with v, (as

rn ∈ Concrete−(r′)). So tr.in(c, C[R1, . . . , Rk]) is not a trace

of Q, which gives a witness of non-inclusion.

It concludes the proof.

�
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