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Overview

Automation and human expertise
in operational river forecasting
Thomas C. Pagano,1* Florian Pappenberger,2 Andrew W. Wood,3

Maria-Helena Ramos,4 Anders Persson5 and Brett Anderson1

Increased automation and use of computer-aided decision support systems are
attractive options for hydrologic forecasting agencies faced with growing product
complexity and institutional resourcing pressures. Although the hydrologic liter-
ature has been nearly silent on the roles of expertise and automation in forecast-
ing, other disciplines such as meteorology have had decades of open discussion
on the topic. To address the lack of dialogue in hydrology on automation, this
article seeks to contextualize relevant findings from similar disciplines, including
meteorology, psychology, decision support systems, and interface design. We
predict which aspects of operational hydrology have the greatest chance for suc-
cessfully increasing automation in the near future. Some applications have
employed higher levels of automation, notably flash flood forecasting which
requires rapid response times, and extended prediction which requires heavy
emphasis on uncertainty quantification. Short-range flood forecasting may be
more challenging to automate and traditionally has been less automated than
other types of forecasts, partly because of existing practices of interfacing with
meteorologists and water system operators, and the difficulties in modeling
human impacts on the water cycle. Overall, we suggest that the design of
computer-aided decision support systems for forecasting systems should con-
sider three factors: (1) processes change under automation and people may
require new roles; (2) automation changes the way people behave, sometimes
negatively; and (3) people may not have accurate perceptions of the quality of
the automated guidance. Seven lessons learned from automation in meteorology
are highlighted and translated into a hydrologic forecasting context, leading to a
set of recommendations for how to make best use of expertise in increasingly
automated systems. © 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc.
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INTRODUCTION

Hydrologists strive to provide reliable operational
river forecasts that facilitate effective water

management and emergency flood protection. Shift-
ing institutional resources and growing complexity—
such as an increasing number of data sources and
forecasting models, and demand for new forecast
products—creates pressure to reshape hydrologists’
involvement with forecast production. Increased
automation is one way to increase efficiency, acceler-
ate information generation, and broaden the capacity
of forecast centers. Automation in this context means
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the delegation of tasks (normally carried out by a
person) to a computer. This may be performed
within the context of a decision-support system
where the person and machine interact during
forecast production. Automation enables implemen-
tation of advanced techniques that may be inconsist-
ent or incompatible with the traditional manual
forecasting paradigm. For example, ensemble fore-
casting systems deal with more data/models than
deterministic systems.1 Objective data assimilation
and streamflow postprocessing procedures2 require a
consistent, repeatable process for a statistically
robust implementation.

It is a widely held view that experts’ contribu-
tions add value to warnings and information to sta-
keholders. If so, increased automation should be
accompanied by measures that continue to best uti-
lize forecasters’ talents,3 such as through the use of
adequately designed decision support systems. To the
authors’ knowledge, there are no systematic studies
in the hydrologic research literature investigating the
role of forecasters and their interactions with
machines. However, based on research from other
fields, there is ample evidence that people have sub-
jective expertise that allows them to consistently out-
perform objective algorithms in certain contexts.4

Studies in the climate domain have shown
nonetheless, people have cognitive biases that can
interfere with the generation and interpretation of
forecasts.5 Manual forecasting is nonrepeatable, may
lack transparency, and is more difficult to evaluate
than automated forecasting. Researchers warn of
problems that can arise when people and machines
work together, such as the tendency for people to put
too much trust in model outputs6 and difficulties for
people to regain control during automation failures.7

Awareness, training, and appropriate system design
can limit some of these negative aspects.8

Despite the lack of hydrologic studies in this
area, the role of the forecaster is an active topic of
discussion in the meteorological community.9–11 For
instance, Canada’s replacement of many of its human
forecasters with an automated weather forecasting
system raised questions such as: If routine weather
forecasts are relegated to machines, how can algo-
rithms also alert forecasters for the potential for high
impact weather, prompting the human to do more
detailed analysis?12,13 In meteorology, the availability
of supercomputers, widespread use of data assimila-
tion, and an increasing emphasis on probabilistic and
ensemble forecasts add to the practical difficulty of
adjusting and editing the large volumes of automati-
cally generated forecast information. This makes
automation and decision support systems more

attractive. However, the meteorological community
has recommended forecasters should be skeptical of
and critically evaluate model guidance (i.e., be aware
of particular meteorological phenomena that are not
well modeled) when developing public warnings.9

While the experience in meteorology is useful
to hydrology, the role of expertise in hydrologic fore-
casting deserves its own discussion. Hydrologists are
faced with many challenges that meteorologists do
not have to contend with, such as human impacts on
the water cycle (e.g., reservoirs, irrigation, and flood
control measures) and the space-time dynamics of
watersheds. Discussions about automation have
occurred internally at some operational river fore-
casting centers but have been largely absent from the
literature. Questions remain, such as: Aside from the
traditional manual practice, what other strategies are
viable for applying forecaster expertise to create river
forecasts and warnings? On what tasks and situa-
tions should a forecaster’s efforts be focused and
which be automated? Should complete automation of
hydrologic forecasting be a goal or is the ideal a com-
plementary blend?

This article aims to investigate these issues and
open a discourse among operational forecasters and
researchers on the roles of expertise and automation
in river forecasting. The article begins with reviews
of the tasks of hydrologists and the state of automa-
tion and decision support in forecasting (Operational
River Forecasting section). The main scientific contri-
bution of this article is the synthesis of relevant
findings in similar disciplines (Human–Machine
Interactions section) to create predictions of which
aspects of operational hydrology have the greatest
chance for success at implementing relatively high
levels of automation in the near future (Discussion
section). Discussion section develops a set of recom-
mendations for making best use of forecaster exper-
tise. The article finishes with a summary of the
findings.

OPERATIONAL RIVER
FORECASTING

Main Operational Tasks
Figure 1 synthesizes the operational tasks of a river
forecaster. The importance and details of each task
depends largely on the context and duties of the serv-
ice. Detailed descriptions of these tasks can be found
in the work of Sene,14 while the focus hereafter is on
the main aspects of each task that can play a role in
automation. Each task may be done by an individual
or shared among personnel. Additionally, one
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individual may do all tasks or work as a specialist
within a group. For example, some agencies distin-
guish modelers (whose objective is to generate quan-
titative predictions) from flood warning hydrologists
(who synthesize guidance and communicate to users).
This article uses ‘river forecaster’ as a generic term
for those involved with one or more of the tasks
described below.

Some of the tasks are routine, although some
activities may be context dependent. For example,
Figure 2 shows the various stages of a riverine flood
event (which happens on timescales of hours to
days). Routine monitoring may transition into a
heightened state of preparation (rostering, stake-
holder engagement, and scenario modeling) when
heavy rainfall is forecast. If the rainfall forecast is
confident enough, flood watch products may be
issued before rivers start to rise. These may transition
into warning products when it is apparent that flood-
ing will occur (because heavy rain has fallen and/or
flooding has begun upstream). As the river levels
begin to fall, flood response turns to recovery (e.g.,
assessing when flood-isolated communities will be
accessible). When the flood threat has passed, the
performance of the system is reviewed and routine
monitoring resumes.

Although data collection and transmission are
largely automated (Figure 1, tasks 1 to 3), the river
forecaster nevertheless spends nontrivial amounts of
time checking, cleaning, infilling, using, archiving,

and redistributing hydroclimatic data. Hydrologists
often visually inspect data to assess its quality but
also to recognize if any immediate action is necessary
(e.g., a reservoir has just filled and thus a flood warn-
ing is necessary for those downstream), or a data
provider must be notified that a gauge is offline.

Next, prognosis follows in two stages: The
forecasting of future weather conditions and the
modeling of hydrology (Figure 1, tasks 2 to 5). River
forecast accuracy is particularly vulnerable to precipi-
tation forecast displacement and magnitude errors,
and (where snow is present) to temperature errors.
Due to the large uncertainties in future precipitation,
particularly for extreme events, hydrometeorologists
may further localize weather forecasts, create contin-
gency scenarios (e.g., rainfall falling in or outside the
watershed), or to translate them to another spatial or
temporal format.

Critically distinct from meteorology’s Numeri-
cal Weather Prediction (NWP) models, operational
hydrologic models are typically parsimonious (i.e.,
having few tuneable parameters) and simple—some
run in seconds—allowing hydrologists to run them
iteratively, with real-time adjustments of their para-
meters and inputs as events unfold. Forecasters may
alter the raw hydrologic model output if compelling
anecdotal evidence is available that suggests that the
forecast is deficient (Figure 1, task 6). For example,
rainfall–runoff transformation may be driven by a
basin process that is known to be important but is
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5. Assimilating data and/or
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FIGURE 1 | The main operational tasks of forecasters.
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difficult to quantify. The hydrologist may also need
to consider nonstationarities (e.g., major changes in
land cover following fires) and human factors (e.g.,
the drop in river height when levees fail).

Forecast formulation is similar to the well-
studied process applied by weather forecas-
ters.9,13,15,16 Forecasters make interpretations and,
among other things, try to increase forecast consist-
ency through temporal and spatial smoothing of the
model outputs. Temporally smoothed outputs (i.e.,
keeping the previous forecast in place, even if new
model guidance disagrees) may be less accurate statis-
tically but users usually prefer forecasts that do not
waffle,17 e.g., ‘it will flood,’ ‘it will not flood,’ ‘it will
flood.’ The final forecast and contextual data are
packaged into textual and graphical forecast pro-
ducts that may include narrative discussion about
predicted conditions (Figure 1, tasks 7 and 8). The
products may also take the form of targeted warn-
ings, such as flood warnings, which may include pre-
dictions as well as instructions for remaining safe.

The final stage of disseminating and communi-
cating products may involve operational data
exchanges and decision support for consumers and
interaction with the media. Hydrologists may also
engage stakeholders with community outreach
(Figure 1, tasks 8 and 9) to raise awareness about,
and trust in, the forecasts, but also to help the fore-
casters better understand the users’ needs. In particu-
lar, some users struggle with probabilistic forecasts,
in part because the concepts are technically complex,
but also because their use is more effective when

coupled with risk-based decision frameworks, which
may not be easily articulated or formalized.18 Part of
the demonstration of the value of the forecasts
involves evaluating past forecasts (Figure 1, task
10).3,19,20 Evaluation includes components of verify-
ing the numerical accuracy of the forecasts compared
to observations, but also assessing the ability of the
forecast to positively affect users’ decisions. This may
include forecast timeliness, ease-of-access, clarity, rel-
evance, and so on. Forecasters may write ‘postmor-
tem’ evaluations of past significant events21

generating reports such as the NWS ‘Service Assess-
ments’ (http://www.nws.noaa.gov/om/assessments/).

Current Status of Automation
and Decision Support Systems
Although it is difficult to generalize about the status
of decision support systems in forecasting enterprises,
investigating a few key systems can be illustrative.22

Pagano23 compared and contrasted the roles of auto-
mation in 19 river forecasting systems in several
developed countries. Pagano encountered three pri-
mary modeling paradigms: (1) passive systems in
which the automatically run model’s output (without
human adjustment) becomes the public product,
(2) observant systems where people receive the model
guidance and consider it when generating public pro-
ducts but otherwise have little iterative engagement
with the model, and (3) engaged systems where peo-
ple actively use their expertise in real-time to adjust
and, in theory, improve the model runs. In reality,
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FIGURE 2 | The stages of a flood event. Heavy precipitation (top) precedes the rise of the river level (middle). The level may exceed various
flood impact thresholds (e.g., minor flooding is the inundation of low-lying farm lands whereas major flooding may affect buildings and other
structures). Various products and modes of operation (bottom) are discussed in the text.
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there is a continuous range of practices which may
also include varying levels of interaction between
forecaster and model at different times, but the para-
digms are presented here for the purposes of
discussion.

Some river forecasting systems are almost com-
pletely manual, such as some early warning systems
in developing countries. In Nepal, when river levels
cross a threshold, a person uses a hand-cranked siren
to alert communities downstream.24 Here, the fore-
cast skill comes from the delay between upstream
and downstream peak flows. The operator relies on a
standard operating procedure and hydrologic judg-
ments are unnecessary. This task would be auto-
mated but for the relatively low cost of employment
in developing countries and the limited, and possibly
unreliable, communications infrastructure, specifi-
cally during a flood event.

Among the countries that use computer models
for forecasting, the US National Weather Service
(NWS) has a hands-on engaged forecasting paradigm
where the hydrologist is ‘in the loop.’ The process is
semi-manual, having evolved to correct for the sys-
tem’s many data, modeling and science chal-
lenges.25,26 Hydrologists perform data management,
real-time monitoring, manually develop precipitation
forecasts, actively manage the forecast model forcing
inputs, and manually manipulate states and para-
meters of hydrologic model and its output. The focus
for flooding is on the single-valued flow and stage
predictions. Hydrologists may generate products and
interact with stakeholders,22 although this task is led
by local weather forecast offices in affected areas.

Less well known than these semi-manual offi-
cial flood forecasts, US agencies have created largely
automated and rapidly updated ‘guidance’ products
directly from their models.27 Examples include the
daily updating of seasonal streamflow forecasts from
statistical models28 and flood forecasts from dynami-
cal rainfall-runoff models forced with ensemble NWP
outputs.3,29 The latter set relies on the manual model
state maintenance process described earlier, but
avoids the real-time modification of forecast meteor-
ological inputs and streamflow outputs. All of the
above products are available to the public.

In other countries, national level forecasting
often follows a more observant paradigm with a
higher level of automation. In the United Kingdom
Flood Forecasting Centre (FFC), the hydrologic mod-
eling system creates national gridded maps of flood
probabilities, as well as time series at certain loca-
tions. Although the hydrographs are considered
physically realistic, the real-time predictions are often
couched in model climatology exceedences.30 Data

assimilation is automated and the hydrologist mainly
interprets the model output to aid in the creation of
categorical flood guidance maps and text-based pro-
ducts explaining the situation.31 A significant part of
the work involves coordinating with regional forecas-
ters (who run their own models and have their own
perspectives) and liaising with users. FFC share the
same systems as the regional forecasters and so can
run the same localized models in order to develop a
better understanding of forecast flood risks. In con-
trast to the gridded model output, the FFC’s flood
guidance statements are impact-based and relate to
general flood risk level by county. The public cannot
access the model output directly. The flood warnings
issued by regional forecasters are available to the
public and emergency responders. The FFC system is
similar to those operated in France and the Nether-
lands (Jan Verkade, personal communication, June
10, 2014).

Emerging systems having a transnational or
global extent typically employ very high levels of
automation. The European Flood Awareness System
(EFAS32) and fledgling global offshoot (GloFAS33)
are examples of observant systems, though their very
high levels of automation make them nearly passive.
EFAS is the result of interagency development, pri-
marily led by the Joint Research Centre of the
European Commission. Model-running now resides
at the European Center for Medium Range Weather
Forecasts (ECMWF). Multiple ensemble and deter-
ministic weather forecasts are used as input to EFAS.
The outputs are 6-h to daily streamflows with lead-
times up to 15 days ahead. EFAS performs auto-
mated streamflow data assimilation34 at a few dozen
points. Hydrologists’ responsibilities include moni-
toring the system running and delivering forecasts to
another center responsible for the dissemination of
products. Users are forecasters in national hydrologi-
cal services, because EFAS and GloFAS products are
not available to the public. EFAS is successful in its
approach because of its data-modeling consistency.
Specifically, the hydrology model is forced with real-
time NWP ensemble forecasts that are entirely con-
sistent with NWP ensemble hindcasts. Similarly, the
hydrology model is operationally initialized with the
same data used to generate the model climatology.
Streamflows for each pixel in the model domain can
be calculated and forecasts are compared to flood
thresholds of given return intervals derived from the
model climatology.32 Additional external informa-
tion is still needed to translate these predicted risk
levels into public warnings of local hazards (e.g.,
which shopping centers will be inundated). Such
localized public warnings are the responsibility of

Overview wires.wiley.com/water

696 © 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc. Volume 3, September/October 2016



national forecasting services that receive EFAS alerts.
National services often use these alerts as a ‘heads-
up’ that flooding is possible and base the warnings
on further analysis using in-house tools.

Finally, the highest level of automation can be
found in systems operated at universities and
research centers. The University of Oklahoma/NASA
provide fully automated flood predictions based on
satellite rainfall estimates, NWP outputs, and land
surface model simulations.35 Converting these gener-
alized forecasts into actionable warnings would still
require local flood vulnerability information. Such
examples of near or fully automated, passive systems
suggests that, at least at this stage in their develop-
ment, they play, at most, a complementary
(vs replacement) role to national-scale or regional,
engaged flood warning services.

HUMAN–MACHINE INTERACTIONS

Many research publications address automation and
human-machine interactions. These include studies of
psychology, decision support systems, and interface
design. Experimental evidence comes from the labo-
ratory and the field across professions including doc-
tors, pilots, and judges. The Capabilities and
Limitations of People and Machines section discusses
the relative strengths and weaknesses of people and
machines. The Effective Design of Decision Support
Systems section discusses what happens when people
and machines work together in the context of deci-
sion support systems. The Relevant Lessons from
Meteorology section focuses on lessons learned in the
context of meteorology. All sections analyze the
research that is most relevant to expertise in river
forecasting systems.

Capabilities and Limitations of People
and Machines
Machines are better at repetitive/routine tasks, apply-
ing logic, and multitasking. Machines are fast, relia-
bly follow instructions, are consistent, have sustained
performance, and their behavior is reproducible. Peo-
ple are better at improvisation, inductive reasoning,
and interactions with customers.36 People are com-
monly cited as being better at ‘the big picture,’ and
machines, ‘the details.’37 When people and machines
work together effectively, they may accomplish more
than either could individually.

Essentially, machines have logic but lack sense
(intuition in novel situations). However, how good
are people at these higher cognitive functions? In
order to have value in the active involvement of

hydrologists in the forecasting process, there must be
evidence that people are capable of making intuitive
judgments about impending floods. Such skilled intu-
ition is the subjective ability to make accurate sense
of a situation, through rapid assessment of environ-
mental factors, and recommend an optimal course of
action.4

Kahneman and Klein4 synthesized competing
schools of thought on the quality of intuitive judg-
ment. Kahneman studied cases in which human judg-
ment was flawed, whilst Klein focused on cases
where people recognized the best decision in highly
complex situations. Those authors concluded a ‘high
validity’ environment is a necessary though insuffi-
cient condition for the development of skilled intui-
tion. Such environments present ‘stable relationships
between objectively identifiable cues and subsequent
events or between cues and the outcomes of possible
actions.’ Validity and uncertainty are not incompati-
ble and they cited poker as a valid yet uncertain
example of where the best moves reliably increase
the potential for success. Unfortunately, high subjec-
tive confidence is not a good indication of validity.
People also struggle with recognizing randomness.
Streaks can occur in randomly generated sequences
but people too commonly assess streaks as
nonrandom.38

Finally, algorithms outperform people in low-
validity environments as algorithms can identify
weakly valid cues and use them more consistently
than people. In these cases, statistical models often
outperform humans. Models of the judges even out-
perform the judges themselves, partly due to human
inconsistency.39 It is a challenge to avoid over-fitting
models when cues are weakly valid—some of the
cues will be spuriously significant and there is a
desire for positive outcome. An additional use for
models in weakly valid environments is to inform the
human which cues are invalid and this should lead to
a search for better cues.

In the context of seasonal climate applications,
Nicholls5 describes 10 cognitive traps forecasters and
users can fall into. One of these, overconfidence, has
been called the most pervasive and potent bias to
which human judgment is vulnerable. For example,
when asked to provide a 90% confidence interval for
an estimate of a particular number, people typically
give too narrow a range (e.g., one that contains the
truth 30% of the time), indicating overconfidence.40

Over-precision is also remarkably robust and resist-
ant to de-biasing.41 People are overly optimistic
about personal risks, believing hazards are more
likely to happen to others than themselves.
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Murphy42 highlighted the possible discrepancy
between forecasters’ best judgment and their issued
forecasts. Ideally the two should be identical, how-
ever, in a hydrological context, e.g., the forecaster
may issue a hydrograph forecast with an unreasona-
ble recession rate. They may not truly believe that
recession may occur, but their primary goal was to
issue an accurate peak forecast and the software lim-
ited the ability to satisfy both objectives. This would
be a case of inappropriate human–machine interac-
tion. There are cases where forecasters would pur-
posefully issue a forecast that is too high or too low
so as to inspire or hedge against action by users, or
to smooth out forecast ‘waffles.’ Forecasters are more
vulnerable to external and societal pressures than
automated systems. Conversely, it could be argued
that forecasters are trying to satisfy users’ presumed
‘holistic’ needs, whereas the automated product’s sole
objective may be maximizing a narrowly defined
measure of forecast accuracy.

Effective Design of Decision Support
Systems
Generally, a few conditions are necessary to success-
fully delegate tasks to an automated algorithm. Kah-
neman and Klein said there must be:

1. ‘confidence in the adequacy of the list of vari-
ables that will be used,

2. a reliable and measurable criterion [perfor-
mance measures],

3. a body of similar cases,

4. a cost/benefit ratio that warrants the invest-
ment in the algorithmic approach, and

5. a low likelihood that changing conditions will
render the algorithm obsolete.4’

It is best to automate tasks of information acquisition
and analysis but people should be able to recognize
when automation has gone awry and override auto-
mation.43 When increasing automation in a decision
support system, the literature cautions against the
following three issues.

Processes Change under Automation and
People May Require New Roles
According to Dawes44 people are much better at
selecting cues to be considered in a model than they
are at integrating the cues. People are also skilled at
providing a ‘sanity check’ on the model, such as
recognizing when it is relying on bad data or basing
its predictions on outliers. Automation can

compensate for, or mitigate, the unintended conse-
quences of cognitive bias. Similarly, human supervi-
sion can reduce the likelihood of computer-generated
errors, misguided predictions and automation fail-
ures. The two components—person and machine—
can be complementary in a well-designed system, and
can extend the human’s capabilities.

However, automation is unlikely to mimic
exactly the manual procedures it replaces. If system
developers simply pick the most easily automated
tasks and replace those first, people are often given
‘leftover’ tasks that may not suit the forecaster’s cap-
abilities. An automated system can also present
hazards, which can be a large concern if the system is
critical to a high-stakes mission. If a skilled operator
is decoupled from the workings of the process they
are supervising, they may become de-skilled and una-
ble to take over when automation fails.8

In a hydrologic setting, this means that because
forecasters often have very good mental models of
how nature behaves, they should work closely with
developers to build and implement numerical models
that take into account forecasters’ knowledge. There
may even be a role for an intermediary, such as a
group involved with forecast evaluation, to facilitate
the exchange between modelers and forecasters. Also,
before automation, forecasters may have a varied set
of responsibilities that enriched their experience and
improved their mental models, such as cleaning data,
running models, interpreting model output, and gen-
erating products. If some of these tasks are auto-
mated, the remaining tasks may appear monotonous.
This can de-motivate forecasters who may spend
their time discrediting the automated system, instead
of using their expertise to enhance it.

Automation Changes the Way People
Behave, Sometimes Negatively
Without vigilance, automation causes problems of
mistrust and complacency, degraded situational
awareness, and problems with reclaiming control.36

Skitka et al.6 suggest that under automated condi-
tions, the main problem is no longer operator error,
but rather designer error. Furthermore, operator
errors still occur, just in a different form. In contrast
to the maxim ‘Garbage In, Garbage Out,’ the phrase
‘Garbage In, Gospel Out’ describes human over-
reliance on automated decision aids.

Doswell45 suggests that this bias is not just due
to a cognitive blind spot, it also relates to personal
risk assessment. If an automated system warns of an
event and the person chooses to ignore it, they
expose themselves to liability and professional risk if
the event actually occurs. Conversely, if they issue

Overview wires.wiley.com/water

698 © 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc. Volume 3, September/October 2016



what they think is likely a false alarm, the repercus-
sions are diffuse.

With automation, hydrologists may be more
likely to issue a warning if the model predicts a flood,
even if it disagrees with the raw data. The reverse is
also true—when the automated warning is poten-
tially present, but silent, the forecaster could do noth-
ing, regardless of what all other indicators suggest
should be done.46

People May Not Have Accurate Perceptions
of the Quality of the Automated Guidance
While people often comply with model suggestions,
people also underestimate model output quality.
When pilots used a faulty decision support system,6

their subjective impressions of the reliability of the
system (e.g., 82% reliable) were worse than the
actual (94%). Put another way, people think models
are worse than they actually are but still use them
anyway. This is most challenging when quality is
variable,47 partly because trust is conditioned on the
worst outcomes (i.e., largest errors in recent mem-
ory48). Institutional factors also affect the acceptance
of automated guidance. Early performance of a sys-
tem leaves lasting impacts on operator acceptance,
and internal gossip can distort perceptions of a sys-
tem’s capabilities.49

Forecast evaluation can be used to ground
hydrologists’ understanding of automated product
performance, especially when compared to a baseline
like manually produced forecasts.50 However, a pro-
totype automated forecasting system may initially
perform poorly and could leave the hydrologist with
an enduring negative impression (even if errors were
atypical and subsequently improved). This hydrolo-
gist may even warn colleagues against accepting the
system. Therefore, care should be taken to evaluate
prototype systems critically, but not in a way that
undermines their later potential adoption.

Relevant Lessons from Meteorology
Weather forecasting is an often-studied success story
in which automation and experts work together to
create better products more effectively. Meteorolo-
gists work in extremely visually rich forecast produc-
tion environments in which they can explore a
variety of automatically run weather model outputs
and automatically processed observed data (including
expert-devised heuristic indices that reflect the poten-
tial for various kinds of weather). Meteorologists can
select a draft forecast (or have one suggested by the
system) and then graphically edit features so as to

add value. Rather than tediously writing text fore-
casts, algorithms translate the gridded forecasts into
plain language products at numerous locations,
which the forecasters can then review and edit.51

Decades ago, NWP models were few enough
that a meteorologist could gain familiarity with their
tendencies and compensate for failings in the real-
time forecasts. Today, forecasters cannot possibly
have the same understanding of the dozens of real-
time models, thus the traditional manual approach
has ceded some ground to semi-objective consolida-
tions and corrections of models.52 For nearly as long
as computer weather models have existed, there has
been the suggestion that someday meteorologists will
be unable to outperform the NWP models. The
warning is of a ‘meteorological cancer’53 in which
forecasters rely on models unquestionably, atrophy
their independent talents and find it difficult to com-
pete. This ultimately leads to forecaster obsolescence.

Studies have shown that the forecasters with
the lowest skill are indeed those who are highly pro-
ceduralized and are unquestioning of the model guid-
ance, that is those who behave the most like the
machines.54 The best forecasters make the most use
of their interaction with the systems, first developing
a mental model of the weather situation through
investigation of the observations, and then use the
numerical models as one source of guidance among
many. They use different fields (e.g., wind speed and
humidity) from different models to develop a narra-
tive of what may occur and would not consider one
model ‘right’ or ‘wrong’ but rather each is a tool to
help with understanding. In other words, the best
forecasters are complementary to the machines.

Researchers recommend seven best practices for
meteorologists and system developers:

1. Use automation to quality-control and ingest
data. Aside from the effective use of high per-
formance computing, meteorology’s greatest
technological achievement lies in the implemen-
tation of automated data assimilation. Weather
modelers routinely objectively assimilate tens of
millions of four-dimensional observations per
day into models with 108 degrees of freedom.
Furthermore, automatically processed satellite
image and weather radar products are widely
available to forecasters and the public. While
imperfect models are used to translate raw sen-
sor values into public products, there is no
expectation that a person would be editing
those data graphics.
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2. Use well-designed forecasting interfaces. Some
studies of meteorological automation focuses
on workstations, the primary tool for forecast
creation.55 Meteorology has pioneered the
development of Interactive Forecast Prepara-
tion software, such as the Graphical Forecast
Editor.56 Here, instead of manually crafting
narrative and products, the forecaster interac-
tively edits a set of NWP forecast grids and
products are automatically generated from the
result. This does not reduce the subjective input
to the forecast and allows new, more detailed,
products by streamlining the integration task.
GFE relies on an underlying digital weather
database to ensure that internal consistency
and physical realism are maintained even after
the forecast has been edited.

3. Have transparent systems. To effectively super-
vise and intervene in automated systems, peo-
ple need the option to view inputs and
intermediate states to determine if the auto-
mated output disagrees with what would be
expected. This includes being able to view
model output before statistical postprocessing
is applied, making it easier to diagnose poten-
tial errors.

4. No peeking at the answer. Meteorologists rec-
ommend the separation of prognosis from diag-
nosis.57 Although the practice is rare nowadays
due to automated chart drawing, Roebber
et al.58 recommend that the forecaster should
also hand-draw weather charts before looking
at the weather model output. This prevents
being prejudiced by model output and places
meteorologists in a better position to under-
stand and question the model guidance. Occa-
sionally turning off ‘auto-pilot’ during typical
conditions keeps up operator training in case
of system failure. Experimental evidence59 and
studies of forecasters in the field54 consistently
shows that forecasters generate considerably
better short-range predictions when model
guidance is initially withheld and they are
forced to spend more time on analyses, diag-
noses, and creating their own prognoses. This
may be because short-range (nowcasting) appli-
cations depend heavily on the latest observa-
tions and this may not be true for longer-range
applications.

5. Evaluate your forecasts. Rapid, relevant, and
unambiguous feedback is the key to improving
intuitive expertise.4 Structured forecast evalua-
tion is also critical for directing investments in

system improvement and recognizing existing
weak spots. In forecast verification (assessing
numerical accuracy), one should avoid viewing
evaluators as ‘the forecast police’ or using
highly aggregated skill scores. Forecast verifica-
tion should be stratified to focus on ‘high
impact’ and/or difficult forecasts, and be done
in an informative way.12

6. Never stop learning the science. To develop
expertise, the forecaster must learn to recognize
reliable, relevant cues from the environment
and be able to respond effectively. Recognition
can come from training and experience. Nearly
all publications stress the need for better fore-
caster education and training. Doswell60 recog-
nized the challenges of operational learning:

Instead of having the chance to learn forecasting
by doing it, one quickly discovers that the
forecasting world is a lousy place for learning.
In the rush to get products out, there are few
opportunities for leisurely consideration of the
meteorological issues. If one makes a bad fore-
cast, there are few opportunities to go back and
see what could have been done to avoid that
problem.

7. Redefine your role. The meteorological com-
munity is divided on the role of forecasters in
supporting customer decisions. Many agree
that the most important task is to help end-
users, such as regional and national authorities,
to make the optimal decision about protective
action.16 This may involve interacting with cus-
tomers, transitioning forecasters into the role
of communicator and interpreter, and taking
some meteorologists away from basic forecast
construction.10,12 However, this distances the
forecaster from the creation of forecasts, poten-
tially limiting the ability to understand and jus-
tify it. Furthermore, increased emphasis on
‘adding value’ for users may put government
forecasters in competition with those from the
private sector. Many government agencies are
now charging users for customized forecasts on
a cost-recovery basis as part of a registered
(i.e., not publicly available) service.

DISCUSSION

Here, we drew on some of the recommendations in
meteorology and other fields, framed them in the
broader literature on automation, decision support
systems, and expertise, and translated them to a river

Overview wires.wiley.com/water

700 © 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc. Volume 3, September/October 2016



forecasting context. The review presented herein sup-
ports several clear, high-level messages. Specifically,
if the environment has reliable, relevant and observa-
ble cues people can use to improve forecasts, they
should be given those tools and opportunities. If a
process can be relegated to an algorithm, do so, pro-
vided people may still supervise and intervene where
applicable. The effectiveness of these runtime inter-
ventions should be monitored and reported by the
forecasters to assist improvement. The automation
should lead to synergies between people and
machines in the context of a decision support system.
Turning the person into a disinterested machine
minder should be avoided.

Given the conditions for success discussed in
this article and in the literature, these are candidates
for successful automation in hydrology:

1. Seasonal forecasts are infrequently issued, and,
typically, there is a long delay (one or several
months) between forecasts and the outcome,
making the process of receiving feedback (e.g.,
to improve mental models) slow. Also, the rela-
tive skill of the forecasts is currently typically
low61 and the forecaster’s interventions are
often within the limits of the typical errors of
the models; this means that the hydrologist will
usually not receive definitive proof as to
whether the hypotheses used were correct.

2. Flash flood forecasts62 have response times that
are very rapid. These are often not based on a
formal forecasting model, but instead on now-
casting techniques, issuing alerts based on
recent observations and high rates of change.
Real-time data must be processed quickly and
there is a narrow timeframe to alert the user.
Hydrologists would struggle to provide
around-the-clock rapid response without addi-
tional resources and staff. Depending on the
climate, flash floods may be rare, leaving peo-
ple without learning opportunities on
most days.

3. Extended and medium-range forecasting have
considerable uncertainty and there is thus
greater emphasis on forecast ensembles and
quantifying uncertainty. Aside from the work-
load of intervening in data-rich ensemble pro-
ducts, people are poor at subjectively
estimating probabilistic forecast distributions.
Simulation models typically exhibit overconfi-
dence because one or more sources of uncer-
tainty are ignored. Postprocessing hydrologic
models outputs is often necessary.63,64 Several

techniques exists to make hydrological ensem-
ble forecasts probabilistically reliable.65,66,67

The challenge are how to transfer such techni-
ques to operational environments and how to
supplement the results with the forecasters’
views.68

For the above systems, there is still a major role for
people as system designers, monitors, and inter-
preters, rather than as ‘in-the-loop’ operators. For
example, while many flash flood systems are based in
relatively simple real-time triggers (e.g., 50 mm of
rain has fallen in 3 h at a certain location), there is
considerable up-front work done by experts to deter-
mine what the triggers should be and how to quan-
tify the forecast uncertainty. This work may include
more complicated modeling, historical analyses, and
use of local knowledge. If possible, a forecaster may
perform a sanity check before releasing an automati-
cally prepared warning to the public, but for flash
flooding there is little time to assimilate situation-
dependent information (e.g., perform an interactive
hydrologic model run and manually narrow/widen
the forecast range). Highly localized anecdotal infor-
mation about the status of a flash flood in progress
may become available to the forecaster (e.g., a
removable fence was not successfully demounted by
emergency services and the usual flow path is
diverted) but this is more about the observed flood
situation and is likely not forecastable.

In contrast, short-range riverine flood forecast-
ing may be more difficult to fully automate and tradi-
tionally has been less automated than other types of
forecasts.23,69 These systems have often been devel-
oped based on single-valued forecasts and at local
scales, with spatially lumped and parsimonious mod-
els. Provided that the correct systems and training
are in place, hydrologists can frequently receive rapid
and unequivocal feedback when forecast evaluation
is performed, quickly correcting and learning from
mistakes. There are also important but difficult to
numerically model factors, such as obstructions to
flow (e.g., blocked drains), structure failures, and
human regulations, each providing opportunities for
people to manually enhance the forecasting process.
In addition, some catchments are difficult to model
because of their extreme climate and/or unusual
hydrologic processes. In contrast to flash flooding,
there is more time to consider how this information
may be used to adjust riverine flood forecasts.

When making predictions that extend beyond
the response time of their river catchments, hydrolo-
gists must consider weather forecasts. There are
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several successful examples of river forecasting sys-
tems that automatically use NWP model output,70

provided that care is taken to convert the weather
model output into the appropriate form for the
hydrology model. Although this enriches the flow
forecasting system, the value of the meteorologists’
expertise can be lost if a dialogue or communication
platform does not exist between meteorologists and
hydrologists.71 Without this dialogue, there is a risk
that the input used in hydrologists’ models may con-
tradict the meteorologists’ assessments.

Traditionally, modeled hydrographs have been
made presentable for users by manually adjusting
model inputs, states, and parameters. This reduces
the occurrence of implausible forecasts coming from
atypical combinations of model states and forcings.
Working within the model space often aids in preser-
ving the physical consistency of all aspects of the
forecasts, including other sites downstream. The
research community has not adequately demon-
strated practical methods of objective data assimila-
tion that performs to forecaster expectations.3 As a
result, automatic data assimilation is very rare in
operational flood forecasting, even though hydrologi-
cal models are simpler and datasets are much smaller
than their meteorological counterparts. The solution
may lay with automatic data assimilation, manual
postadjustment of local features on the hydrograph,
automated algorithms to maintain internal consist-
ency, and automated checking that the forecaster is
not over-adjusting. This may be similar to decision
support systems in weather forecasting where the
expert is ‘Over-the-loop’ and the expert and machine
work together to ensure the physical realism of the
edited products.51

Several countries are increasingly centralizing
their regionalized river forecasting services into a
national center. The broader geographic domain
means that forecasters in a centralized office can
develop experience more rapidly, as opposed to the
forecasters in a small regional office, who may expe-
rience only a few extreme events in a career. The rar-
ity of local learning opportunities is particularly
challenging in dry climates. However, the increased
operational workload in a centralized system may
also have its drawbacks, including fewer opportu-
nities to develop local knowledge or to interface with
local customers. Because water management and
other human impairments feature in most watersheds
in many countries, and river forecasting relies on
interaction with water managers, the effort to cen-
tralize forecasting operations must somehow leverage
the information arising from local interactions. This
information is most important for flood forecasting

timescales (where water managers can control struc-
tures to alter the flow), and is relatively less impor-
tant on seasonal and flash flooding timescales.
Furthermore, just how there is a mutually beneficial
interaction between hydrologists and (possibly local)
meteorologists, there are mutual benefits that come
from hydrologists interacting with users (e.g., local
flood intelligence, increased confidence in the pro-
ducts, and increased understanding of user needs).
The needs of users should be considered determining
the ideal mix of automation and expertise.

Interestingly, while very short and long lead-
time forecasts are well suited for higher levels of
automation, there is also a rising trend toward the
provision of ‘seamless’ forecasts which cover all time-
scales (from hours to weeks) in a consistent manner.
This could lead to automated products overlapping
with semi-manual flood forecasts, and agencies may
need to manage the communication issues that arise
from potentially conflicting messages. This might be
done by labeling the automated forecasts as experi-
mental and providing links to the official (i.e., expert
enhanced) forecasts.

CONCLUSIONS

Operational agencies are approaching a crossroad,
where crucial decisions must be made about the role
of hydrologists and automation in the production of
river forecasts. There are many technology-driven
opportunities to improve current operational river
forecasts, such as access to better and more detailed
weather and climate forecasts, improved connectiv-
ity, more complex models, and more powerful com-
puters. The frontiers of scientific research are
exploring methods such as data assimilation, statisti-
cal postprocessing, and multimodel combination.
Furthermore, agencies are facing increased sophisti-
cation and specialization of consumers and their
requirements. Some of these advances do not fit well
with traditional formalized practices of operational
forecasting in hydrology.

It would be misguided to use decision support
systems that simply automate some of the hydrolo-
gists’ existing tasks in a piecemeal fashion, without
careful consideration of the consequences. The fore-
casting process may have to be redesigned to make
the best use of the strengths of both, people and
machines. The pitfalls of automation, such as the de-
skilling of forecasters and the difficulty with reclaim-
ing control when models fail, can be avoided through
conscious design of the human–machine mix.

Overview wires.wiley.com/water

702 © 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc. Volume 3, September/October 2016



This article reviewed findings from the cogni-
tive psychology and decision support systems litera-
ture, as well as results from other forecasting
enterprises, such as meteorology. However, hydrol-
ogy has several factors that differentiate it from other
fields and the implications of such differences were
also discussed. In particular, several domains of
hydrology more amenable to higher levels of automa-
tion such as flash flood forecasting and extended
(subseasonal to seasonal) hydrologic prediction.
Short-range flood forecasting, may require a more
thoughtful and cautious pathway to automation. In

this case, human impacts on the hydrologic cycle and
complex patterns of vulnerability mean that there is
much ‘soft information’ that must be considered for
the forecasts to be effective.

Already, several highly automated forecasting
systems are emerging and will continue to evolve.
Those involved with these systems should be encour-
aged to share their lessons with the hydrological
community as part of a broader effort to engage fore-
casters, stakeholders and researchers in an ongoing
conversation about balancing tradition and progress.
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