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Abstract Cloud computing helps reduce costs, increase

business agility and deploy solutions with a high return

on investment for many types of applications. However,

data security is of premium importance to many users

and often restrains their adoption of cloud technologies.

Various approaches, i.e., data encryption, anonymiza-

tion, replication and verification, help enforce differ-

ent facets of data security. Secret sharing is a particu-

larly interesting cryptographic technique. Its most ad-

vanced variants indeed simultaneously enforce data pri-

vacy, availability and integrity, while allowing compu-

tation on encrypted data. The aim of this paper is thus

to wholly survey secret sharing schemes with respect to

data security, data access and costs in the pay-as-you-

go paradigm.
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1 Introduction

Cloud computing is currently booming, with companies

of all sizes adopting associated technologies to benefit

from resource and cost elasticity. However, data secu-

rity remains one of the top concerns for cloud users

and would-be users. Security issues, both inherited from

classical distributed architectures and specific to the

new framework of the cloud, are indeed numerous, es-

pecially at the data storage level of public clouds [22].

Critical security concerns in cloud storage are de-

picted in Figure 1, which highlights the major issues in

cloud data security, i.e., data privacy, availability and

integrity. In particular, cloud architectures might not

be sufficiently safeguarded from inside attacks. In vir-

tual environments, a malicious user might be able to

break into ”neighboring” virtual machines located on

the same hardware, and then steal, modify or delete the

other users’ data [57,2,29,56,104,102,47]. In such envi-

ronments, users are indeed usually granted with supe-

ruser access for managing their virtual machines. A ma-

licious superuser can access real network components

and thus launch attacks [2,11]. Moreover, virtualization

allows the rollback of a virtual machine to some previ-

ous state if necessary. Although this rollback feature

provides flexibility to the users, it can also revert the

virtual machine to previous security policies and config-

uration control [2,47]. Eventually, virtual machine mi-

gration is run to improve quality of service. During such

migration processes, which typically do not shut down

services, virtual machine contents are exposed to the

network, and problems such as network transfer bottle-

necks and data damage may occur [2,47,97].

Classical data security approaches, i.e., data encryp-

tion [9,39], data anonymization [24], replication [69],

data verification [87], data separation [96,68,103] and
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Fig. 1: Data security issues in the cloud

differential privacy [34], can solve most data security is-

sues within cloud computing environments (Figure 2),

but usually one at a time. Many data-centric cloud ap-

plications do not only require data to be secure, but

also efficiently accessed, sometimes through complex,

analytical queries akin to on-line analysis processing

(OLAP) operations. With users seeking to reduce costs

in the cloud’s pay-as-you-go pricing model, achieving

the best tradeoff between data security and access power

and efficiency is a great challenge [22,81].

Data
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Verifiable
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Fig. 2: Features of data security approaches

Existing surveys about distributed data security list

security services in distributed storage: authentication

and authorization, availability, confidentiality and in-

tegrity, key sharing and management, auditing and in-

trusion detection, and finally useability, manageability

and performance [58,29]. Then, network file systems,

cryptographic file systems and storage intrusion detec-

tion systems are discussed and compared. This pre-

cloud review is complemented by a thorough compar-

ison of storage-centric data protection (i.e., network

storage devices) in user-centric data protection systems

(i.e., cryptographic storage systems and cloud-based

storage) [93,29]. Finally, [91,29] provide a short overview

of what should be done in terms of data auditing and

encryption in the cloud.

Although these surveys do mention secret sharing,

they provide few details about this particular cryp-

tographic technique, which was simultaneously intro-

duced by Shamir [76] and Blakley [12] in 1979 and can

be particularly useful nowadays in the context of cloud

computing, e.g., to safely manage and analyze big data.

Threshold secret sharing schemes indeed transform sen-

sitive data into individually meaningless data pieces

(called shares) that are distributed to n participants

akin to CSPs. Computations can then be performed

onto shares, but yield meaningless individual results.

The global result can only be reconstructed knowing

individual results from several participants (more than

threshold t ≤ n). Moreover, some secret sharing vari-

ants simultaneously enforce data privacy, availability

and integrity, which no other security scheme achieves.

Eventually, secret sharing can be used by both CSPs,

with data being shared within their cloud infrastruc-

ture, and users, who can dispatch sensitive data over

several providers. Since some secret sharing schemes

also support homomorphism, they allow data analysis

on shares, thus allowing data access cost optimization.

To the best of our knowledge, secret sharing schemes

(SSSs) up to 2008 have only been surveyed with re-

spect to bounds on share size and global data volume

[8]. In this paper, we also include the most recent SSSs

and complement [8] by analyzing the objectives of each

SSS, the security and data analysis features a user can

expect, and the costs implied in a cloud computing en-

vironment.

The remainder of this paper is organized as fol-

lows (Figure 3). Section 2 describes the principles of

secret sharing and classifies SSSs into eleven groups,

whose properties are thoroughly detailed. SSSs in a

given group are also positioned with respect to one an-
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other. In Section 3, we compare all surveyed SSSs with

respect to data security, queries over shares, and storage

and computing costs. Moreover, we present SSS-based

frameworks that provide secure storage, e.g., databases

or data warehouses, in the cloud in Section 4. Finally,

Section 5 concludes this paper, recaps open research

issues and describes sample applications in the cloud.

2 Secret Sharing Schemes

The threshold SSSs we survey in this paper are primar-

ily aimed at enforcing privacy. Individual secret d is di-

vided into n so-called shares {ei}i=0,··· ,n, each share ei
being stored by a different participant (PT) PTi (Fig-

ure 4(a)). Each share ei is meaningless to PTi. A sub-

set of t ≤ n PTs is required to reconstruct the secret

(Figure 4(b)). Thence, a convenient side effect of SSSs

is data availability, since up to n − t PTs may disap-

pear without preventing secret reconstruction. Classical

SSSs [76,12,3,49,54,71,46,72,61] mainly differ in shar-

ing methods, which bear different security properties

with different data storage and CPU requirements.

A major drawback of initial SSSs is the multipli-

cation of the initial data volume by the number of

PTs. Multi secret sharing schemes (MSSSs) thus aim

to reduce computation, storage and data transfer costs

by sharing and reconstructing more than one secret at

once. Some MSSSs achieve an overall shared data vol-

ume (i.e., at all PTs’) that is close to that of original

secret data. We categorize MSSSs into two types.

In MSSSs type I [94,90], data are shared with the

help of keys. m secrets {dj}j=1,··· ,m and n keys

{ki}i=1,··· ,n are used to construct x shares {ch}h=1,··· ,x,

where m ≤ x. Shares are stored in a news bulletin

board (NB), whereas each key ki is stored at PTi (Fig-

ure 5(a)). To reconstruct the m secrets, all or some

(depending on the MSSS) shares and t keys are used

(Figure 5(b)).

In MSSSs type II [18,75,61,83], m secrets

{dj}j=1,··· ,m are divided into n shares {ei}i=1,··· ,n, where

m ≤ t ≤ n. In case m > t, secrets are first organized

(t, n) SSS

d Data owner

e1 e2 en...
PT1 PT2 PTn

(a) Sharing process

(t, n) SSS

d Data owner

e1 e2 en...
PT1 PT2 PTn

select t from n

(b) Reconstruction process

Fig. 4: Classical secret sharing

into blocks that are fewer than t. Then, each block is

divided into n shares at once. Finally each share ei is

stored by PTi (Figure 6(a)). As in SSSs, reconstructing

the secrets requires t PTs (Figure 6(b)).

SSSs and MSSSs assume that all players, i.e., PTs

and NB, are honest and always provide valid informa-

tion (data and keys). However, in reality, they might

not, intentionally or not. Thus, verifiable secret sharing

schemes (VSSSs) [73,23,77,53,98] and verifiable multi

secret sharing schemes (VMSSSs) [37,99,27,28,89,38,

20,60,52,82,19,78,21,25,16,6,5,80] verify the correct-

ness of data and/or keys before or after reconstruction.

Therefore, VSSSs and VMSSSs enforce data integrity

in addition to privacy and availability.

Eventually, some SSSs aim at specic goals. Proac-

tive secret sharing schemes (PSSSs) are based on clas-

sical SSSs or VSSSs but, in addition, periodically re-

fresh shares [51,17,92,101,7,31,62]. Refreshing consists

in generating a random number at each PT’s and shar-

ing it at all other PTs’ to modify existing shares. ln

most PSSSs [51,92,7,31,62,62], refreshing is synchronous,

i.e., shares cannot be reconstructed during the process,
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Fig. 5: Multiple secret sharing type I

(m, t, n) MSSS type II

d1 d2 dm... Data owner

e1 e2 en...
PT1 PT2 PTn

(a) Sharing process

(m, t, n) MSSS type II

d1 d2 dm... Data owner

e1 e2 en...
PT1 PT2 PTn

select t from n

(b) Reconstruction process

Fig. 6: Multiple secret sharing type II

but there are also asynchronous refreshing protocols

[17,101] that allow share reconstruction at all times.

All PSSSs include a share verification process that ver-

ifies whether shares are up-to-date when refreshing. If

shares are obsolete, they may be safely deleted or re-

covered from other shares. Since shares are periodically

refreshed even if secrets have not been updated, an in-

truder has little time to compromise them.

However, the refreshing process in PSSSs induces

extra costs, i.e., computing costs for periodically shar-

ing random numbers among PTs and modifying shares

(time complexity is O(mn2) [51]); and high communi-

cation costs for commuting PTs with each other, whose

cost is at least n times that of sharing secrets. Because

of these costs, and since PSSSs reuse the data sharing

and reconstruction processes of the classical SSSs that

are detailed in this section, we do not survey PSSSs

further.

Weighted secret sharing schemes (WSSSs) extend

classical SSSs by introducing a priority among PTs by

assigning to each PT a weight, i.e., the number of shares

it stores [10,64,45,33]. More precisely, in these schemes,

any secret d is divided into w shares such that w ≥ n.

Each PTi holds wi shares such that w =
∑n
i=1 wi. If

n = w or wi = 1 ∀i, we fall back to a classical SSS.

Secret reconstruction is only possible by a group of PTs

holding at least t shares, with wi < t ≤ w ∀i. One single

PT cannot reconstruct the secret, since wi < t ∀i.
Social secret sharing schemes (SSSSs) extend from

WSSSs by allowing weights to be adjusted depending on

the situation, e.g., if some PTs are found insincere [67,

66,100,65] . Even though WSSSs and SSSSs bring in

a more flexible PT management, they induce a higher

share volume, i.e., at least n times the original data

volume vs. at most n times for previous SSSs, suppos-

ing that individual shares use up the same volume as

secrets. Thus, we do not survey them further.

Finally, function secret sharing schemes (FSSSs) [14,

59,15] aim at protecting data transfers over networks

when keyword search is performed on outsourced, repli-

cated data. A function f is shared into n functions

f1, · · · , fn such that f =
∑n
i=1 fi. Each function fi

is associated with a data node akin to a participant

PTi in classical secret sharing. When the user issues a

search query with some keyword k, fi(k) is sent to PTi
∀i = 1 · · ·n. Then data at each PTi are matched with

fi(k). The local result Ri is shared as fi(Ri) and sent

back to the user, who can finally reconstruct a global
result with t ≤ n values of fi(Ri). However, FSSSs do

not fit in our data outsourcing scenario since data are

replicated in clear form. Thus, we do not survey them

further. Yet, FSSSs are quite recent and hybridizing

them with other SSSs surveyed in this section could

help solve this issue.

We categorize SSSs into eleven groups (Table 1)

with respect to their basic type, i.e., SSSs and MSSSs

types I and II, as well as eventual data or key verifica-

tion. We survey all groups in the following subsections.

Moreover, we introduce the parameters and notations

used throughout this section in Table 2.

2.1 Group 1: Classical Secret Sharing Schemes

The very first (t, n) SSS [76] enforces data security by

using a random polynomial (Equation 1). This polyno-

mial is generated over a finite field such that coefficient

c0 is the secret and other coefficients cu=1,··· ,t−1 are ran-
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Table 1: Classification of secret sharing schemes

SSSs MSSSs type I MSSSs type II

V
e
r
ifi
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a
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o
n

None

Group 1 Group 2 Group 3 S
S
S
s
/
M

S
S
S
s

[76,12,3] [94,90] [18,75,83]

[49,54,46] [61] MSSS

[71,72]

[61] SSS

Data
Group 4 Group 7 Group 10

V
S
S
S
s/

V
M

S
S
S
s

[73,23,77] [37] [6,5]

Keys

Group 5 Group 8

[53] [99,27,28]

[89,38,20]

[60],[52]-I&II

Data Group 6 Group 9 Group 11

& [98] [82,19,78] [80]

keys [21,25,16]

dom integers. Then, each share ei is created by Equa-

tion 2 and stored at PTi. A number t ≤ n of PTs can

reconstruct the original polynomial by Lagrange inter-

polation over a finite field, which enforces data avail-

ability even if n − t PTs fail. A sample application

of this scheme is given in Figure 7, where t = 4 and

n = 6. The random polynomial of degree t − 1 = 3 is

ei = f(i) = i3 − 5i2 + 2i+ 4, where 4 is the secret. The

six shares {(i, ei)}i=1,··· ,6 (plotted in blue) are (1,2),

(2,-4), (3,-8), (4,-4), (5,14) and (6,52).

f(i) =

t−1∑
u=0

cu × iu (1)

ei = f(i) (2)

i

f(i)

1 2 3 4 5 6
-10

0
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.
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Fig. 7: Secret sharing by polynomial interpolation

In Blakley’s SSS [12], each PT is associated with an

hyperplane in a t-dimensional space over a finite field.

Hyperplanes, i.e., shares, intersect in a point that is

the secret, which can be reconstructed by solving the

hyperplanes’ equation system. A sample application of

this scheme is given in Figure 8, where t = 2 and n = 3

(there are thus three hyperplans).

Table 2: Secret sharing schemes’ parameters

Parameter Definition

m Number of secrets

D Secret data such that D = {d1, · · · , dm}
and D = {b1, · · · , bo}

d Secret in integer format

‖d‖ Storage size of d

dj jth element of D in integer format

n Number of PTs

t Number of shares necessary for recon-
structing the secret

γ Number of PTs of the first group in [83]

PTi PT number i

IDi Identifier of PTi

g Number of groups of PTs

Gr rth group of PTs such that
Gr ⊆ {PTi}i=1,··· ,n and
Gr = {PTr,1, · · · , PTr,g}

PTr,v PT number v of Gr

IDr,v Identifier of PTr,v of Gr

o Number of data blocks

bl lth block of D such that bl =
{dl,1, · · · , dl,t} with fixed-sized blocks
and bl = {dl,1, · · · , dl,tl} with variable-
sized blocks

tl Number of shares necessary for recon-
structing the secret in bl (in case of
variable-sized blocks)

dl,q qth element of bl in integer format

ei Share stored at PTi

ej,i jth share stored at PTi

el,i Share of bl stored at PTi

ch hth share stored at the NB

cj,h hth share of dj stored at the NB

cl,h hth share of bl stored at the NB

cl,q,h hth share of dl,q in bl stored at the NB

cr,l,h hth share of bl from Gr stored at the
NB

ki Key stored at PTi

ki,q Key number q stored at PTi

kr,i Key stored at PTi of Gr

‖k‖ Storage size of keys

s di Signature stored at PTi

s dl Signature of dl

s dl,i Signature of bl stored at PTi

s dl,q Signature number q of bl

s ki Signature of PTi’s key

s kr,v Signature of PTr,v’s key of Gr

‖s‖ Storage size of signatures

p, p1, p2 . . . Big prime numbers

A,A1, A2 . . . Matrices

f, f1, f2 . . . Functions

H,H1, H2 . . . Hash functions
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from: http://en.wikipedia.org/wiki/Secret sharing

Fig. 8: Secret sharing through hyperplan intersection

[3] exploits the Chinese remainder theorem [30]. First,

n+1 uniquely relatively primes1 {pi}i=0,··· ,n are deter-

mined such that p0 < p1 < · · · < pn and
∏t
i=1 pi >

p0
∏t−1
i=1 pn−i+1. Then, n shares {el}l=1,··· ,n are created

by Equations 3 and 4, where u is a random positive

integer. Finally, secret d is reconstructed from t shares

by Equations 5 and 6.

ei = y mod pi (3)

y = d+ u× p0 (4)

d = y mod p0 (5)

y ≡ ei mod mi (6)

All subsequent SSSs extend the three foundation

schemes above. [54] extends from [3] to reduce the size

of shares. Moreover, this SSS can reconstruct a secret

from t or more shares, whereas previous schemes ex-

ploit exactly t shares. In the sharing process, the secret

is split in t. Share creation from the t splits and secret

reconstruction proceed as in [3]. All other SSSs seek to

improve polynomial interpolation.

[71] proceeds in two steps. First, secret d is divided

into t intermediate shares {uv}v=1,··· ,t by mapping d

to the x-axis of a random polynomial. Second, these t

shares are divided again into n actual shares {ei}i=1,··· ,t
by Equation 7, where A1 is an n × t random matrix.

Secret d is reconstructed from a polynomial of degree

t created by Equation 8. {uv}v=1,··· ,t are reconstructed

by Equation 9, where A2 is a t×t inverse matrix seeded

from t rows of matrix A1.

[e1, · · · , en]
T

= A1 × [u1, · · · , ut]T (7)
t∏

a=1

(x− ua) ≡ 0 mod p (8)

[u1, · · · , ut]T = A2 × [e1, · · · , et]T (9)

The second step enforces availability and is optional.

A sample application of the first step is given in Fig-

ure 9, where d = 10 and t = 3. The polynomial equa-

tion of degree 3 (x−u1)(x−u2)(x−u3) ≡ x3− 21x2 +

1 Uniquely relatively primes are random prime numbers
that are related to each other by some conditions.

x − 10 ≡ 0 mod 31 is created with the help of prime

p = 31 and random positive integers u1 = 19, u2 = 22

and u3 = 11, where u1, u2, u3 match with condition

u3 ≡ d× (u1 × u2) mod p.

x

f(x)

p

d

u1. u2.u3.
5 10 15 20 25 30

0

5

10

15

20

25

30

Fig. 9: [71]’s secret mapping step

In [72], a secret d is split into t−1 smaller data units

{uv}v=1,··· ,t−1 to reduce global share volume. Then, a

polynomial equation of degree t−1 is created by running

recursive functions t− 1 times (Equation 10, where y is

a random integer) to improve security. Next, n shares

{ei}i=1,··· ,n are created by Equation 11. Finally, data

are reconstructed through t − 1 steps by Lagrange in-

terpolation.

fv(x) =

{
uv + y × x if v = 1

uv +
∑v
w=1 fv−1(w)× xw otherwise

(10)

ei = ft−1(i) (11)

[49] extends from [76] to guarantee the t-consistency

of shares, i.e., any subset of t shares or more always re-

construct the same secret. A random polynomial func-

tion f(x) is created as in [76] (f(0) = d). However, ki,1
and ki,2 are random keys stored at PTi and ki,2 is do

not need to be distinct from each other. Next, n shares

{ci}i=1,··· ,n are created by Equation 12 and stored on

the NB. Secret d can be reconstructed by Lagrange in-

terpolation from t pairs {ki,1, ci + ki,2}.

ci = f(ki,1)− ki,2 (12)

[46,61] extend from [73] (Section 2.4). However, none

verifies the correctness of shares. In addition, both ap-

proaches verify a strong t-consistency property. The

verification processes guarantee that any subset of t

shares or more (created by summing n random polyno-

mial functions of degree t−1 in [73]) always reconstruct

the same secret, but that any subset of t shares or fewer

cannot. Verification time is slower in [46] than in [61].
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Eventually, in (t, L, n) threshold ramp SSSs (RSSSs)

introduced by Blackley [13], the secret cannot be recon-

structed from t − L or less shares (vs. t − 1 or less in

above SSSs), with 1 ≤ ` ≤ L−1 shares being allowed to

leak information about the secret. Thus, RSSSs propose

a tradeoff between security and efficiency (measured by

entropy) [55]. Let H(d) and H(ei)i=1,··· ,n be the en-

tropy of the secret and its shares, respectively. In SSSs,

H(ei) ≥ H(d), while in RSSSs, H(ei) = H(d)÷ L. [55]

also introduces the notion of strong and weak RSSSs,

and shows that Shamir-based SSSs may be weak. Yet,

most of the following RSSSs still extend Shamir’s SSS.

2.2 Group 2: Multi Secret Sharing Schemes Type I

The first (m, t, n) MSSS type I [94] extends from [76]

to reduce share volume and execution time. All secrets

are shared at once, with share volume being controlled

to remain close to that of secrets. To share m secrets

{dj}j=1,··· ,m among n PTs, n keys {ki}i=1,··· ,n are cre-

ated with a two-variables one-way function. Then, a

polynomial (Equation 1) is created over a finite field

[76], with a degree w = max(m, t)− 1.

Moreover, coefficients {uj}j=1,··· ,m are secrets

{dj}j=1,··· ,m and other coefficients {uj}j=(m+1),··· ,t are

random integers. Next,m+n−t shares {ch}h=1,··· ,(m+n−t)
are generated by Equation 13 and are published on a

NB. Finally, secrets are reconstructed by Lagrange in-

terpolation from t or more keys and w shares.

ch =

{
f (kh) if 1 ≤ h ≤ n
f (H(h)) if n+ 1 ≤ h ≤ n+m− t

(13)

[90] extends from [80] (Section 2.11) by reducing

execution time and dynamically adjusting data block

size. In the sharing process, secrets are organized into

o unfixed size blocks {bl}l=1,··· ,o. Data block bl stores

tl secrets {dl,q}q=1,··· ,tl . Next, keys ki are randomly se-

lected and matrix A = [ax,y]n×max(t1,··· ,to) is created by

Equation 14, where l = 1, · · · , o, ul,q is a random inte-

ger and Al = [ax,y]n×tl such that Al is made of the first

tl columns of A. Next, o×tl shares {cl,h}l=1,··· ,o;h=1,··· ,tl
are created by Equation 15, where v is a random integer.

Finally, each key ki is shared at PTi and {cl,h}l=1,··· ,o;

h=1,··· ,tl , A and tl are published on the NB. In the recon-

struction process, {ul,q}q=1,··· ,tl is created by solving

Equation 14. Then, secrets are reconstructed by solv-

ing Equation 15.

[fl(k1), · · · , fl(kn)]
T

= Al × [ul,1, · · · , ul,tl ]T (14)

cl,h =
∑tl
q=1 dl,q × v(q−1)(

∑h−1
l=1 tl+h−1)

+
∑tl
q=1 ul,q × v(tl+q−1)(

∑h−1
l=1 tl+h−1t)

(15)

2.3 Group 3: Multi Secret Sharing Schemes Type II

The first (m, tm, n) MSSS type II [18] extends [76] to

share m secrets with different threshold access struc-

tures. In the sharing process, PT identifiers {IDi}i=1,··· ,n
are randomly chosen from distinct integers. With re-

spect to secret dj , tj and a prime pj are selected such

that t1 ≤ t2 ≤ · · · ≤ tm, p1 < p2 < · · · < pm,

P =
∏m
j=1 pj and dj < pj . Next, a polynomial of de-

gree tm − 1 (Equation 16) is created with coefficients

{uv}v=1,··· ,t−1 being integers chosen by the Chinese re-

mainder theorem [30] and the uniqueness theorem of

interpolating polynomial. ∀v ∈ [0, t− 1], uv ≡ uj,v mod

pj∀j = 1, · · · ,m where uj,v is a coefficient of a ran-

dom polynomial function of degree tj − 1 (fj(x) =∑tj−1
w=0 uj,v×xw [76]) and uj,0 = dj . Shares {ei}i=1,··· ,n

are generated by equation 17. Finally, IDi and ei are

stored at PTi, whereas {tj}j=1,··· ,m and {pj}j=1,··· ,m
are retained at the user’s. Secret dj is reconstructed

from pj and tj pairs (IDi, ei) by equations 18 and 19.

f(x) =

tm−1∑
v=0

uv × xv (16)

ei = f (IDi) mod P (17)

fj(0) ≡ dj mod pj (18)

fj(x) ≡ f(x) mod pj (19)

[75] shares unfixed sized data blocks with a linear

equation. There are tl secrets {dl,q}q=1,··· ,tl in block bl
(tl1 < tl2 if l1 < l2). Then, o × n shares {el,i}l=1,··· ,o;

i=1,··· ,n are created by multiplying bl with random ma-

trix A = [ax,y]n×max(t1,··· ,to) by Equation 20, where

Al = [ax,y]n×tl and Al is built from the first tl columns

of A. Next, o shares {el,i}l=1,··· ,o are stored at PTi and

matrix A is published on the NB. Finally, secrets from

block bl are reconstructed from matrix Al and tl shares

{el,i}i=1,··· ,tl by solving linear Equation 20.

[el,1, · · · , el,n]
T

= Al × [bl]
T

(20)

[61]’s MSSS extends from [61]’s SSS (Section 2.1)

with a new sharing process. At PTi, shares {ui,a,j}a=1,··· ,n
of secrets are computed and distributed to other PTs

[73] (Section 2.4). However, PTi’s actual share ei,j is

computed by weighting the sum of other PTs’ shares

(Equation 21), where wa is a random integer (weight).

ei,j =

n∑
a=1

wa × ui,a,j (21)

In [83], PTs are categorized into two groups: G1 =

{PTi}i=1,··· ,γ and G2 = {PTi}i=γ+1,··· ,n, with the ob-

jective of reducing share volume. PTs of G1 store only
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one key and one share. To share m secrets

{dj}j=1,··· ,m, a key ki and an identifier IDi are defined

for each PTi. Next, a first polynomial f1 (x) is defined

by Equation 22, where coefficients {u1,v}v=1,··· ,t−1 are

random integers. Then, n shares {e1,i}i=1,··· ,n are cre-

ated by Equation 23. Moreover, (m− 1) × γ pseudo

shares {ej,i}j=2,··· ,m;i=1,··· ,γ are generated with a pseudo-

random number generator, keys {ki}i=1,··· ,γ and shares

{e1,i}i=1,··· ,γ . Next, m−1 polynomials f2(x), · · · , fm(x)

(Equation 22) are solved from m× γ pseudo shares

{ej,i}j=2,··· ,m;i=1,··· ,γ andm secrets {dj}j=2,··· ,m to con-

struct the other (m− 1)× (n− γ) shares

{ej,i}j=2,··· ,m;i=γ+1,··· ,n (Equations 22 and 23). Even-

tually, each PTi ∈ G1 stores ki and one share e1,i; and

each PTi ∈ G2 stores shares {ej,i}j=1,··· ,m.

fj (x) = dj +

t−1∑
v=1

uj,v × xv (22)

ej,i = fj (IDi) (23)

To reconstruct the secrets, t of n PTs in bothG1 and

G2 are selected. If PTi ∈ G1, pseudo shares {ej,i}j=2,··· ,m
are generated as above. Then, secret data are recon-

structed by Lagrange interpolation from their shares,

m× t pseudo shares and t IDs.

2.4 Group 4: Data-Verifiable Secret Sharing Schemes

There are only three (t, n) VSSSs in this group. [73]

helps each PT verify other PTs’ shares with the help

of an RSA cryptosystem [74]. To share secret d at PTi,

a random polynomial function fi (Equation 24) is cre-

ated such that d =
∑n
i=1 wi,0. Then, t signatures

{s di,v}v=0,··· ,t−1 are created (Equation 25, where p is

a prime and d = logp
∏n
i=1 yi) and shared on the NB.

Then, shares {ui,a}a=1,··· ,n are created by Equation 26

and distributed to other PTs. PTi’s actual share ei is

created by summing other PTs’ shares (Equation 27)

if they are correct (Equation 28). Secrets are recon-

structed by Lagrange interpolation.

fi(x) =

t−1∑
v=0

wi,v × xv (24)

s di,v =

{
yi if v = 0

pwi,v otherwise
(25)

ui,a = fi(a) (26)

ei =

n∑
a=1

ua,i (27)

pua,i =

t−1∏
v=0

(s da,v)
iv (28)

[23] extends from [76] by verifying the correctness of

reconstructed secrets. To this aim, in the sharing pro-

cess, a signature s d is created for each secret d (Equa-

tion 29, where u is a random integer). Then, s d is pub-

lished on the NB.

s d = ud mod p (29)

In the reconstruction process, secret d is reconstructed

from t shares by secure multi-party computation (SMC)

[95] (Equation 30). Next, a multi-prover zero-knowledge

argument [85] helps verify correctness. Secret d is cor-

rect if uv
′′
1 +···+v′′n × s dv0 =

∏n
i=1 v

′
i mod p, where

{v′i}i=1,··· ,n and {v′′i }i=1,··· ,n are generated by Equa-

tions 31 and 32, respectively, and {vi}i=0,··· ,n and

{wi}i=0,··· ,n are random integers such that d =
∑n
i=1 wi.

d =
∑
i∈G

ei × ∏
j∈G,j 6=i

j/ (j − i)

 (30)

v′i = uvi mod p (31)

v′′i = vi − v0 × wi mod p (32)

[77] exploits NTRU encryption [74] and a hash func-

tion to verify the correctness of shares. First, n pairs of

PTi keys (ki,1, ki,2)i=1,··· ,n are randomly created with

NTRU. Then, shares ei and signatures s di are created

by Equations 33 and 34, respectively, where {xi}i=1,··· ,n
are random integers, w is a random polynomial called

blinding value and f is a random polynomial [76]. Keys

(ki,1, ki,2) and shares ei are stored at PTi and {xi}i=1,··· ,n
and signatures {s di}i=1,··· ,n are published on the NB.
Before reconstruction, each share ei is verified for cor-

rectness by Equations 35 and 36. Finally, t pairs of

(ei, xi)i=1,··· ,n help reconstruct secrets from the poly-

nomial by Lagrange interpolation.

ei ≡ (w × ki,1 + f(xi)) mod p1 (33)

s di ≡ (w × ki,1 +H(f(xi))) mod p1 (34)

yi ≡ ki,2 × ei mod p1 mod p2 (35)

yi ≡ ki,2 × s di mod p1 mod p2 (36)

2.5 Group 5: Key-Verifiable Secret Sharing Schemes

In [53], the only (t, n) VSSS in this group, PT keys and

signatures are independent. Hence, if some PTs come

or go, the keys of other PTs do not change. PT keys

{ki}i=1,··· ,n and identifiers {IDi}i=1..n are randomly

chosen. On the other hand, key signatures {s ki}i=1,··· ,n
are generated with the help of an RSA cryptosystem
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(Equation 37). Then, key ki is stored at PTi, while iden-

tifiers and key signatures (IDi, s ki)i=1,··· ,n are pub-

lished on the NB. For sharing secret d, several groups of

PTs {Gr}r=1,··· ,g are selected, and then shares {er}r=1,··· ,g
are created by Equations 38, 39, 40 and 41, where u is a

random integer, p4 > p3 and p4 > p2 > p1. Next, v, w,

{Gr}r=1,··· ,g and {er}r=1,··· ,g are published on the NB.

Before reconstruction, the key signature of PTi ∈ Gr is

verified to check whether s ki = vki mod p2. If this is

true, secrets are reconstructed by Equations 42 and 43.

s ki=(p1)
ki mod p2 (37)

v=(p1)
u

mod p2 (38)

u× p3=a mod φ (p2) (39)

wr = d⊕ (s kr,1)u mod p2⊕· · ·⊕ (s kr,g)
u mod p2 (40)

er = wr ×
∏t
x=1

1−IDr,x

−IDr,x
+∑t

x=1

(s kr,x)
u mod p2×

∏t
y=1,y 6=x

1−IDr,y
IDr,x−IDr,y

IDr,x
mod p4

(41)

d = wr ⊕
(
vkr,1 mod p2

)
⊕ · · · ⊕

(
vkr,g mod p2

)
(42)

wr = er ×
∏t
x=1

−IDr,x

1−IDr,x
+∑t

x=1

vkr,x mod p2×
∏t

y=1,y 6=x

−IDr,y
IDr,x−IDr,y

IDr,x−1 mod p4
(43)

2.6 Group 6: Key and data-verifiable secret sharing

schemes

Unlike other schemes, [98]’s (t, n) VSSS verifies the cor-

rectness of both keys and shares. Moreover, it achieves

a smaller share size than that of secrets, by splitting

secrets before the sharing process. In the sharing pro-

cess, key k0 and keys {ki}i=1,··· ,n are randomly selected

from a prime and distinct positive integers, respectively.

Key signatures {s ki}i=0,··· ,n are constructed by Equa-

tion 44, where z is a positive integer and ϕ(p) is Euler’s

totient function [48]. Next, any secret d is split into t2

smaller pieces stored in Matrix D = [dx,y]t×t. Then,

two types of shares are created (PTs’ shares and NB’s

shares). PTs’ shares {Ei = {ei,0, · · · , ei,a}}i=1,··· ,n are

sets of randomly distinct positive integers such that

ei,0 is the sum of all entries in Ei (ei,0 =
∑a
h=1 ei,h)

and ei,0 < p. To construct the NB’s shares {ci}i=1,··· ,n,

polynomial function f(x) (Equation 45) is created from

split secrets and PTs’ shares by Equations 46 and 47,

where A is a Jordan normal form of D2. Finally, NB’s

shares {ci}i=1,··· ,n are constructed from Equations 48

2 A is a Jordan normal form of D if DY = Y A, where Y
is a row matrix and A is a square, upper triangular matrix
whose entries are all the same integer values on the diagonal,
all 1 on the entries immediately above the diagonal, and 0
elsewhere.

and 49; and share signatures {s di,j}i=1,··· ,n;j=1,··· ,m
are created from Equation 50. Keys ki and shares Ei
are stored at PTi; shares {ci}i=1,··· ,n, share signatures

{s di,j}j=1,··· ,n;j=1,··· ,m, key k0, key signatures

{s ki}i=0,··· ,n, p and A are published on the NB.

s ki=

{
k−10 mod ϕ(p) if i = 0

zki mod p if 1 ≤ i ≤ n
(44)

f (x)=

t−1∑
i=1

ui × xi−1 (45)

ui=(((z)k0)ei,0)−1yi mod p (46)

D × [y1, · · · , yt]T=[y1, · · · , yt]T ×A (47)

ci=f(vi) (48)

vi=((z)k0)ki mod p (49)

s di,j=z
ei,j mod p (50)

In the reconstruction process, key ki is correct if

((z)ki)s kn+1 = s ki mod p. PTi’s share ei,j is correct

if (((z)k0)ei,j )s kn+1 = s di,j mod p. Next, polynomial

function f(x) is reconstructed from t pairs of key and

NB’s share {ki, ci} by Lagrange interpolation and Equa-

tion 49. Then, {ya}a=1,··· ,t are created by Equation 51.

Finally, secret d is reconstructed by solving Equation 47.

yi = ui

a∏
j=1

((z)k0)ei,j (51)

2.7 Group 7: Data-Verifiable Multi Secret Sharing

Schemes Type I

The only (m, t, n) VMSSS type I in this group shares
and reconstructs all secrets at once with the help of

a cellular automaton, to enhance computation perfor-

mance. Moreover, the correctness of shares is verified

before reconstruction [37]. In the sharing process, a set

of integers
{
u1, · · · , umax(m,t), · · · , uw+n

}
is created, where

w is a random integer such that w ≥ max(m, t),

uj = dj if 1 ≤ j ≤ min(t,m) and uj is a random inte-

ger when m < j ≤ t. Others values of uj are created

with the help of the cellular automaton. Then, shares

{ch}h=1,··· ,m−t are generated by Equation 52. Shares

{ei}i=1,··· ,n and their signatures {s di}i=1,··· ,n are cre-

ated by Equations 53 and 54, where v is a random inte-

ger. Finally, each share ei is shared at PTi and shares

{ch}h=1,··· ,m−t and signatures {s dh}h=1,··· ,n are pub-

lished on the NB.

ch=dt+h + ut+h (mod2) (52)

ei=um+i (53)

s di=v
ei mod p (54)
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Before reconstruction, share integrity is verified by

Equation 54. Next,
{
u1, · · · , umax(m,t), · · · , uw+n

}
are

reconstructed from t shares with the cellular automa-

ton. Finally, all secrets are regenerated by Equation 55.

dj =

{
uj if 1 ≤ j ≤ min(t,m)

cj−t + uj (modp) otherwise
(55)

2.8 Group 8: Key-Verifiable Multi Secret Sharing

Schemes Type I

A fair amount of research has been done on (m, t, n)

VMSSSs type I, half of which belong to this group.

[99] extends from [94] by verifying whether keys shared

between PTs are correct. In the sharing process, each

key ki, its signature s ki and public key v are created

by Equations 56, 57 and 58, respectively, where prime

p1 is a multiple of prime p2, {ui}i=0,··· ,n are random

integers and φ is Euler’s totient function [48]. Key ki is

stored at PTi and {s ki}i=0,··· ,n and v are published on

the NB. Before reconstruction, keys are verified. Key ki
is correct if ((s k0)ki)v ≡ u′i mod p1.

ki=(s ki)
u0 mod p1 (56)

s ki=(p2)ui mod p1 (57)

v=(u0)−1 mod φ(p1) (58)

[27] also extends from [94] with the same goal. Only

key and signature generation actually varies. However,

the verification process is more efficient. Key ki is cre-

ated by Equations 59, 60 and 61, where ui=1,2,3 are ran-

dom integers and f is any two-variable one-way func-

tion. Signature s ki of key ki is created by Equation 62,

where u4 is a random integer. Key ki is stored at PTi,

while u1, · · · , u4 and {s ki}i=1,··· ,n are published on the

NB.

ki=f (u1, wi) (59)

wi=((vi)
u3)

u2 mod p (60)

u2 × u3≡1 mod φ (p) (61)

s ki=(u4)
ki mod p (62)

[28] in turn extends from [27] by proposing new

secret sharing and reconstruction processes to reduce

computation costs. After keys and signatures are cre-

ated, shares {cj,1}j=1,··· ,n and {cj,2}j=1,··· ,m are gen-

erated by Equations 63, 64, 65 and 66, where u0 is a

random integer. Next, {cj,1}j=1,··· ,n and {cj,2}j=1,··· ,m
are published on the NB. After key verification, secrets

are reconstructed by Equations 67, 68 and 69.

cj,1=dj − yj+n (63)

cj,2=kj − yj−1 (64)

yj=

{
kj+1 if 0 ≤ j < t

−∑t
v=1 uv × yj−v mod p otherwise

(65)

(x− u0)
t
=xt + u1 × xt−1 + · · ·+ ut = 0 (66)

dj=yj+n + cj,2 (67)

yj=


kj+1 if 0 ≤ j < t

kj+1 − cj+1,1 if t ≤ j < n

f(j)× (u0)
j

mod p otherwise

(68)

f(x)=

t∑
v=1

yv−1

(u0)
v−1

t∏
w=1&w 6=v

x− w + 1

v − w mod p (69)

[89] extends from [21] (Section 2.9) to improve the

efficiency of the sharing and reconstruction processes.

To this aim, secrets are split into blocks of size t that

are each shared and reconstructed all at once. Block bl
is divided into n shares {cl,h}h=1,··· ,n by Equation 70,

where A = [ai,w]t×n, ai,w = H(ul × ki × v)w−1, and

{ul}l=1,··· ,o and v are random integers. Key ki is stored

at PTi, whereas key signatures {s ki}i=1,··· ,n, shares

{cl,h}l=1,··· ,o;h=1,··· ,n and {xl = ul× v}l=1,··· ,o are pub-

lished on the NB. To reconstruct secrets, shares and

keys are verified for correctness with a bilinear map

f(ul × ki × v, v) = f(xl, s ki). Then, secrets are recon-

structed by solving Equation 70.

[cl,1, · · · , cl,n]
T

= A× [bl]
T (70)

[38] also extends from [21], pursuing the same goal

as [89]. The difference is that secrets are divided into

n+m− t shares to reduce the number of shares. Shares

{ch}h=1,··· ,(n+m−t) are computed by Equation 71, where

A = [ax,y](m+n)×(m+n−t), ax,y = (w)
x(y−1)

, zi = H(u×
v × ki), and u, v and w are random integers. Key ki
is stored at PTi, whereas key signatures {s ki}i=1,··· ,n,

shares {ch}h=1,··· ,(n+m−t), data signatures {s dj}j=1,··· ,m
and x = u× v are published on the NB. To reconstruct

secrets, shares and keys are verified for correctness with

a bilinear map f(u×ki×v, v) = f(x, s ki). Then, secrets

are reconstructed by solving Equation 71.

[c1, · · · , cn+m−t]T = A× [z1, · · · , zn, d1, · · · , dm]
T

(71)

Unlike in other schemes, PTs in [20] can be added

or deleted. Moreover, threshold t can vary. To this aim,

keys ki, key signatures s ki and PT identifiers IDi are

randomly selected such that they are different from

one PT to the other. Then, secrets are organized into
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unfixed-sized blocks, where block bl stores ul secrets. All

secrets {dl,q}q=1,··· ,ul
in block bl are divided into n+ul−

tl shares {cl,h}h=1,··· ,(n+ul−tl) by Equations 72, 73, 74,

75 and 76, where zl is a random integer. Each key ki is

stored at PTi and identifiers {IDi}i=1,··· ,n, signatures

{s ki}i=1,··· ,n and shares {yl}l=1,··· ,n and {cl,h}l=1,··· ,o;

h=1,··· ,(n+ul−tl) are published on the NB. Before recon-

struction, keys are verified for correctness with a dis-

crete logarithm modulo and a one-way hash function.

Finally, each secret dl,q in block bl is reconstructed by

Lagrange interpolation.

cl,h=fl (n+ ul + h) (72)

fl(x)=

ul∑
v=1

dl,v ×∆1 +

n∑
v=1

(s kv)
zl ×∆2 mod p1 (73)

∆1=

ul∏
w=1&w 6=v

x− (n+ w)

v − w ×
n∏
i=1

x− IDi

(n+ v)− IDi
(74)

∆2=

n∏
i=1&i 6=v

x− IDi

IDv − IDi
×

ul∏
w=1

x− (n+ w)

IDv − (n+ w)
(75)

yl=(p2)
zl mod p1 (76)

[60] extends from [72] to reduce computation cost

and verify key correctness. Secrets are organized into

blocks of size t− 1. Keys {ki}i=1,··· ,n are randomly se-

lected and their signatures {s ki}i=1,··· ,n are created

by Equation 77, where H is a hash function. In block

bl, the first secret dl,1 is divided into two shares cl,1,1
and cl,1,2 by Equation 78, where u is a random integer.

Other secrets in block bl are shared by Equations 79

and 80. Key ki is stored at PTi and {s ki}i=1,··· ,n ,

{cl,q,h}l=1,··· ,o;q=1,··· ,t−2; h=1,··· ,q+1 and {cl,t−1,h}l=1,··· ,o;
h=1,··· ,n are published on the NB. Before reconstruc-

tion, each key ki is verified for validity by Equation 81.

Then, all secrets in each block are reconstructed by La-

grange interpolation.

s ki=H
(
Ht−1 (ki)⊕ ki

)
(77)

cl,1,h=u× h+ dl,1 − (kq ⊕H (ki)) (78)

cl,q,h=fl,q (h)− (kq ⊕Hq (kq)) (79)

fl,q(x)=

{
dl,q + u× x if q = 1

dl,q +
∑q
v=1 x

v × fl,q−1 (x) otherwise
(80)

s ki=H
(
Ht−1 (ki)⊕ ki

)
(81)

Finally, [52] propose two schemes. They create keys

and verify their correctness by using a one-way hash

function and a LFSR public key cryptosystem [40,41].

The first scheme shares and reconstructs secrets as [94],

while the second scheme does as [28], while providing

higher security than [94,28] with keys of same lengths.

2.9 Group 9: Key and Data-Verifiable Multi Secret

Sharing Schemes Type I

The other third of (m, t, n) VMSSSs type I belong to

this group. [82] prevents cheating from malicious PTs

by verifying both shares and keys. Keys {ki}i=1,··· ,n
and their signatures {s ki}i=1,··· ,n are created by Equa-

tions 82, 83, 84, 85 and 86, where {uv}v=0,··· ,t−1 are

random integers and a1, · · · , a5 are set as discrete log-

arithms. Let p1 and p2 be big primes. a1 is a random

integer, a2 = (2× p1 + 1)(2× p2 + 1), a3 = p1 × p2 and

a3×a2 = φ(a5), where φ is Euler’s totient function [48].

Key ki is stored at PTi, while signatures {s ki}i=1,··· ,n
and {wv}v=0,··· ,t−1 are published on the NB. Key cor-

rectness is checked by Equation 87.

f(x)=

(
t−1∑
v=0

uv × xv
)

mod a3 (82)

wv=(p1)
uv mod a2 (83)

yi=
∏

∀PTv,v 6=i

(IDi − IDv) mod a3 (84)

ki=(f(IDi)/yi) mod a3 (85)

s ki=(a1)ki mod a2 (86)

((a1)yi)
ki=

t−1∏
v=0

(wv)
(IDi)

v

mod a2 (87)

A 4-tuple of shares {cj,1, · · · , cj,4} is created by Equa-

tions 88 and 89, where cj,1 and cj,2 are random integers.

Shares {cj,h}j=1,··· ,m;h=1,··· ,4 are published on the NB.

Before reconstruction, each PTi must verify share and

key correctness by Equation 90. If verification is posi-

tive, secrets are reconstructed by Equations 91 and 92,
where G is any group of t PTs.

cj,3=(a1)−a5+cj,1 × (cj,2)2×a5+cj,1+1 mod a2 (88)

cj,4=((cj,2)u0 − dj)(cj,3)−u0 mod a2 (89)

((cj,3)ki)a4 ≡(s ki)
a4×cj,1−1×

((cj,2)ki)2+a4(cj,1+1) mod a2
(90)

dj =
(∏

PTi∈G((cj,2)ki)4i
)
−(

cj,4
∏
PTi∈G((cj3)ki)4i

)
mod a2

(91)

4i =
∏

∀PTv∈G

−IDv ×
∏

∀PTv∈G

(IDi − IDv) (92)

[19] extends from [82] to improve the efficiency of

the sharing and reconstruction processes. To this aim,

j 3-tuples of shares {cj,1, cj,3, cj,4}j=1,··· ,m are created

by Equations 93 and 94 and published on the NB. Be-

fore reconstruction, each PT must verify share and key

correctness by Equation 95. If verification is positive,

secrets are reconstructed by Equations 96 and 92.
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cj,3=(a1)a5×cj,1 mod a2 (93)

cj,4=
(
(a1)u0×a5×cj,1 mod a2

)
⊕ dj (94)

((cj,3)ki)a4≡(s ki)
cj,1 mod a2 (95)

dj=cj,4 ⊕
∏

∀PTi∈G

((cj,3)ki)4i mod a2 (96)

[78] extends from [94] by checking whether keys and

shares are valid, with the help of a discrete logarithm.

Signatures {s dj}j=1,··· ,max(m,t) are created after secrets

are shared by Equation 97, where {uj}j=1,··· ,m are se-

crets (uj = dj) and {uj}j=(m+1),··· ,t are random inte-

gers. They are then published on the NB. Before recon-

struction, keys are verified first, and then shares are,

both by Equation 98. Signature s dj is also used to

check share integrity.

s dj=(p1)
uj mod p2 (97)

(p1)ci=

max(t,m)∏
h=1

(ch+n+1)f(w,ki)
h

mod p2 (98)

In [21], each secret dj is divided independently into

vary threshold tj . Keys {ki}i=1,··· ,n are randomly se-

lected such that their signatures {s ki}i=1,··· ,n (Equa-

tion 99, where v is a random integer) are unique. Each

secret dj is divided into n shares {cj,h}h=1,··· ,n by Equa-

tions 100 and 101, where Aj = [ax,y](n×ti), ax,y =

(u)x(y−1), Zj = [wj × v, dj × (k1)v, · · · , dj × (kn)v] and

u and wj are random integers. Signature s dj of dj is

created by Equation 102. Keys ki are stored at PTi,

whereas key signatures {s ki}i=1,··· ,n, shares

{wj , cj,1, · · · , cj,n}j=1,··· ,m, signatures {s dj}j=1,··· ,m, u

and v are published on the NB. Before reconstruction,

shares and keys are verified for correctness with a bi-

linear map f((ki)
s dj , v) = f(s dj , (kj)

v). Then, secrets

are reconstructed by solving linear Equations 100 and

101.

s ki=(ki)
v (99)

[cj,1, · · · , cj,n]
T

=Aj × [Zj ]
T (100)

dj=H(wj × v) (101)

s dj=dj × v (102)

Unlike other schemes that compute integers over a

finite field, [25] exploits binary strings in all processes

to improve the efficiency of both sharing and recon-

struction processes. In the sharing process, two kinds of

keys are randomly created in binary string format: PT

keys {ki}i=1,··· ,n and user keys {uj,v}j=1,··· ,m;v=1,··· ,tl .

Then, each share cj,h is created by Equation 103, where

H is a one-way hash function and ‖ is the concatenation

operator. Finally, shares cj,h, H(dj), H (H(ki ‖ j ‖ h))

with j = 1, · · · ,m; h = 1, · · · , tl and i = 1, · · · , n, are

published on the NB.

cj,h = dj ⊕
{
⊕i:PTi∈uj,vH(ki ‖ j ‖ h)

}
(103)

Secrets are reconstructed by Equation 104 if all keys

pass the verification process, which is split in two steps.

Before reconstruction, keys {ki}i=1,··· ,n are checked for

correctness by comparison with signaturesH (H(ki ‖ j ‖ h)).

After reconstruction, secrets {dj}j=1,··· ,m are checked

for correctness by comparison with signatures H(dj).

dj = cl,h ⊕
{
⊕i:PTi∈uj,v

H(ki ‖ j ‖ h)
}

(104)

Finally, [16] extends from [77] by sharing multiple

secrets, to improve sharing/reconstruction efficiency and

reduce share volume. To this aim, PTi’s identifier IDi

is randomly selected and PTi’s key ki and signatures

{s kv}v=0,··· ,(t−1) are created by Equations 105 and

106, respectively, where x and y are randomly created

with NTRU [74] and w is NTRU’s blinding value. Each

secret dj is divided into a 3-tuple of shares {cj,1, cj,2, cj,3}
by Equations 107 and 108, where cj,1 is a random inte-

ger. Key ki is stored at PTi, whereas identifiers

{IDi}i=1,··· ,n, signature {s kv}v=0,··· ,(t−1) and shares

{cj,h}j=1,··· ,m;h=1,··· ,3 are published on the NB.

ki=

t−1∑
v=0

uv × (IDi)
v (105)

s kv=w × x+ uv mod p1 (106)

cj,2=w × x+ cj,1 mod p1 (107)

cj,3=dj ⊕H(u0 × cj,2) (108)

Before reconstruction, keys and shares are verified

for correctness by Equations 109 and 110, respectively.

Finally, secrets are reconstructed by Equation 111.

ki = y

t−1∑
v=0

s kv(IDi)
v mod p2 (109)

y × ki × cj,2 = y

t−1∑
v=0

(wv × (IDi)
v × cj,1) mod p2 (110)

dj = cj,3 ⊕H

∑
i∈G

ki × cj,2 ×
∏

v∈G&v 6=i

−IDv

IDi − IDv


(111)
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2.10 Group 10: Data-Verifiable Multi Secret Sharing

Schemes Type II

VMSSSs type II are recent. Unlike all previous SSSs, [6]

verifies both PT honesty and share correctness with in-

ner and outer signatures, respectively. Inner signatures

are signatures that help verify secret correctness af-

ter reconstruction. If one or more shares are erroneous,

then reconstructed secrets do not match with their in-

ner signatures. Outer signatures are share signatures.

The correctness of shares is checked before reconstruct-

ing secrets.

In the sharing process of [6], n distinct random lin-

ear equations {fi}i=1,··· ,n (Equation 112, where coef-

ficients ui,v are random positive integers) are created.

Then, m secrets {dl,q}q=1,··· ,t−1 are organized into o

blocks bl of size t− 1. The inner signature s bl of block

bl is created with the help of an homomorphic function

(Equation 113). Next, n shares {el,i}i=1,··· ,n are created

by Equation 114. Their outer signatures {s outl,i}i=1,··· ,n
are created with any hash function. Shares {el,i, s outl,i}
l=1,··· ,o are stored at PTi.

fi(x1, · · · , xt)=xt × ui,v +

t−1∑
v=1

(xv + 2)× ui,v (112)

s bl=H(bl) (113)

el,i=fi(bl, s bl) (114)

Before reconstruction, shares from t out of n PTs are

verified against their outer signatures. Then, blocks and

their inner signatures are reconstructed by solving the

linear equations. Finally, recovered blocks are verified

against their inner signatures. If the test fails, erroneous

blocks can be reconstructed from shares in a new PT

group.

[5] extends from [76] by sharing each secret at fewer

than n PTs’. PT failure is also allowed, more specif-

ically by allowing data updates at remaining online

PTs. Moreover, [5] also protects from PT group cheat-

ing by imposing a new constraint: no PT group can hold

enough shares to reconstruct the secret when n < 2t−2.

PT honesty and share correctness are checked as in [6].

In addition, this scheme separates outer signature cre-

ation and verification from the sharing and reconstruc-

tion processes.

Although [5] is an MSSS, each secret is shared and

reconstructed independently. Inner signature s dj of se-

cret dj is created with the help of an homomorphic func-

tion. Next, PTs are split into two groups: n−t+2 PTs in

group G1 and t+2 PTs in group G2. Then, t+2 pseudo

shares {ej,i}PTi∈G2
(G2’s shares created to construct

polynomial f2 but not stored at PTi ∈ G2) are created

from dj ’s identifier d idj and identifiers {IDi}PTi∈G2

of PTs in G2 with an homomorphic function (Equa-

tion 115).

ej,i=f1(d idj , IDi) (115)

Next, a polynomial f2 of degree t−1 is created from

dj , inner signature s dj , pseudo shares {ej,i}PTi∈G2 and

PT identifiers {IDi}PTi∈G2
by Lagrange interpolation

(Equation 116, where {(x1, y2), . . . , (xt, yt)} =

{(H(Kd), dj), (H(Ks), s dj)}∪{(H(IDi), ej,i)PTi∈G2}).

f2(x)=

t∑
u=1

∏
1≤v≤t,u6=v

x− xv
xu − xv

× yu (116)

Shares {ej,i}PTi∈G1
are created by Equation 117

and stored at PTi ∈ G1. To reconstruct dj , t out of

n PTs from G1 and G2 are selected. Secrets are re-

constructed by Lagrange interpolation (Equation 116)

from both shares and pseudo shares (Equation 115).

ej,i=f2(H(IDi)) (117)

2.11 Group 11: Key and Data-Verifiable Multi Secret

Sharing Schemes Type II

[80] is the only (m, t, n) VMSSS type II. It exploits el-

liptic curve cryptography to verify the correctness of

both shares and keys. In the sharing process, keys K =

{ki,q}i=1,··· ,n,q=1,··· ,t are randomly chosen from small

integers. Then, l× t secrets {dl,q}l=1,··· ,o;q=1,··· ,t are or-

ganized into o blocks {bl}l=1,··· ,o of size t. Each block

bl is divided into n shares {el,i}i=1,··· ,n by Equation 118.

Signature s dl,q of dl,q is created by Equation 119, where

u is an elliptic curve point. Keys {ki,q}q=1,··· ,t and shares

{el,i}l=1,··· ,o are stored at PTi, whereas signatures

{s dl,q}l=1,··· ,o;q=1,··· ,t are published on the NB. Before

reconstruction, each share el,i and its keys {ki,q}q=1,··· ,t
are verified for correctness by Equation 120. Finally,

each block is reconstructed by solving t simultaneous

linear equations (Equation 118).

[el,1, · · · , el,n]
T

=K × [bl]
T

mod p (118)

s dl,q=u× dl,q (119)

u× [el,1, · · · , el,n]
T

=K × [s dl,1, · · · , s dl,t]T (120)

3 Discussion

In this section, we compare the SSSs presented in Sec-

tion 2 along four axes. First, we provide a global view of
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the evolution of SSSs since their inception (Section 3.1).

Second, we synthesize and account for the various shar-

ing and verification techniques used in SSSs to enforce

data security (Section 3.2). Third, we compare the fea-

tures provided by SSSs beyond data privacy and in-

tegrity (Section 3.3). Finally, we study the factors that

influence the cost of cloud SSS-based solutions in the

pay-as-you-go paradigm (Section 3.4).

3.1 Evolution of Secret Sharing Schemes

To clarify the historical relationships between the SSSs

reviewed in this paper and better visualize the improve-

ments brought to Shamir’s [76] and Blakley’s [12] schemes

since 1979, we refer the reader to Figure 10. In this

flowchart, each scheme is identified by a bibliographi-

cal reference (in red), the group (in orange) and type

(in yellow) it belongs to (Section 2), and whether it

enforces key (represented by a green K) and/or data

(represented by a blue D) verification. Moreover, a brief

text describes the novelty brought by each scheme. Fi-

nally, an arrow from scheme S1 to scheme S2 indicates

that S1 extends from S2. For example, [78], proposed

in 2005, is a VMSSS type I belonging to Group 9. This

scheme can verify both data and key correctness and

extends from [94] to improve sharing and reconstruc-

tion efficiency.

Figure 10 quite clearly shows that SSSs have been

less studied for almost 25 years than since the 2000’s,

when they attracted new attention in conjunction with

the development of new, on-line distributed systems,

i.e., clusters, grids and the cloud. Moreover, research

about secret sharing seems to have accelerated since

2012, with the wide spread of cloud computing and as-

sociated data security concerns.

3.2 Sharing, Reconstruction and Verification Methods

SSSs may be subdivided into five subprocesses, i.e.,

data sharing, data reconstruction, key creation, key ver-

ification and data verification. Of course, data sharing

and reconstruction are the main processes for all groups

of SSSs (Table 1). Key creation is always optional. Fi-

nally, data verification is the focus of groups 4, 6, 7, 9,

10 and 11; and key verification the focus of groups 5,

6, 8, 9 and 11. The methods supporting these processes

in each studied SSS are summarized in Table 3.

Approximately half of the surveyed SSSs share se-

crets by polynomial interpolation and reconstruct them

by Lagrange interpolation, as Shamir’s [76]. Yet, other

methods, such as homomorphic encryption, NTRU or

RSA enhance security. Similarly, approximately half of

the schemes necessitating keys generate them at ran-

dom,while more elaborate methods such as hash func-

tions, LFSR, NTRU or RSA help protect keys. Even-

tually, the same variety of methods is found in the key

and data verification processes, although discrete loga-

rithm modulo and hash functions are by far the most

popular.

Given such variety, it is difficult to crisply rank the

security level of all studied schemes. SSSs have indeed

been continually addressing different issues over time,

and thus adopted ad-hoc methods suited to their objec-

tives. Moreover, the papers describing them typically

do not compare to one another. Thence, we push the

comparison of SSSs’ features and cost in the following

subsections.

3.3 Features of Secret Sharing Schemes

SSSs mainly aim at enforcing data security (privacy,

availability and integrity). However, in the context of

cloud data processing, efficient data access (update,

search and aggregation operations) must also be made

possible by SSSs. Thus, some SSSs allow computation

(e.g., sums and averages [5,6,12,49,76,80] and exact

matches [6,12,25]) directly over shares, i.e., without re-

constructing secrets. To provide a global overview, the

features of all studied SSSs are synthesized in Table 4,

where an X means a particular feature is supported by

the corresponding SSS(s); NB means that data avail-

ability is supported, but only when the NB is accessi-

ble; G means that data availability is supported only

when shares are replicated; IN and OUT stand for in-

ner and outer code verification, respectively; B means
that updates operate on data blocks instead of individ-

ual shares; and I means that exact matches are run on

indices.

3.3.1 Data Privacy and Availability

Since all SSSs divide data into n shares such that each

individual share is meaningless, they enforce data pri-

vacy by design. Moreover, data availability is guaran-

teed as long as t out of n PTs are available, since t PTs

are enough to reconstruct secrets. However, a coalition

of t or more malicious PTs can break any secret. Thus,

[5] provides further privacy by protecting data from PT

group cheating, by having a number of shares at all PTs

that is lower than t. Finally, since most (V)MSSSs type-

I store all shares in the NB, they are vulnerable and can

loose data access if the NB is compromised.

The privacy level of all SSSs mainly depends on pa-

rameter t. Provided PTs independently enforce sound
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security measures, collecting at least t shares, i.e., com-

promising at least t PTs, is indeed harder and harder

when t increases. High data protection is thus achieved

when t is large [3,26], but at the expense of computing

overhead, especially when sharing and reconstructing

data (Section 3.4). Moreover, some SSSs may be inse-

cure for applications where t is limited in practice. For

instance, when t is a number of CSPs or servers, budget

constraints come into play. We discuss three frameworks

for outsourcing data in the cloud that address this issue

in Section 4.

The robustness of almost SSSs directly relies on the

gap between the two parameters n and t. The secret

can be recovered although up to n − t PTs disappear.

Nevertheless, computing time and storage costs become

prohibitive when n � t (Section 3.4). Thus, n should

be only a little bigger than t to achieve data availability

with acceptable costs.

3.3.2 Data Integrity

The reconstruction process in SSSs always produces the

correct result if secrets, shares and sharing and recon-

struction functions are defined over a finite field [8].

However, if shares are altered, reconstructed secrets are

mechanically incorrect. Thus, VSSSs and VMSSSs have

been introduced to enforce data integrity. We catego-

rize them into four classes: SSSs that verify keys, shares,

secrets or both secrets and shares.

First, all schemes in groups 5, 6, 8, 9 and 11 ver-

ify keys before reconstructing shares. Hence, they can

detect PT cheating and prevent transferring any data

back to the user when incorrect keys are detected.

Second, most schemes in groups 4, 6, 7, 9, 10 and 11

verify the correctness of shares before reconstruction to

reduce computation cost at the user’s (no reconstruc-

tion occurs from incorrect shares). However, they re-

quire extra storage for signatures.

Third, [23,25] verify the correctness of reconstructed

secrets. Their signature volumes are lower than that of

the second class of VSSSs, since the number of shares

is generally greater than that of secrets. However, in-

correct secrets are detected only after they are already

reconstructed.

Fourth, [6,5] verify the correctness of both secrets

and shares with inner and outer code verification, re-

spectively. Thus, no erroneous share is transferred to

the user. Moreover, any PT cheating is detected.

Finally, although VSSSs and MVSSSs guarantee in-

tegrity, they consume more storage to handle signatures

and more CPU power to verify keys, shares, and/or se-

crets. Moreover, to achieve the best possible verification

performance, i.e., the lowest possible false positive rate,
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signatures must be big [5,6]. A larger storage volume is

thus required. We push the comparison of such costs in

Section 3.4.

3.3.3 Data Access

SSSs manage data at two levels: data piece or data

block. First, [83,5] and most schemes in groups 1, 4,

5, 6, 9 share secrets independently. Hence, they can

directly update data. For example, any secret can be

deleted by removing its shares at all PTs’. Second, [90,

75,89,20,60,80,6] share secrets as blocks and support

the homomorphic property. Thus, they allow updating

shared blocks without reconstruction. Moreover, they

update data faster because several shares in the same

data block can be updated at once. In contrast, the

schemes that share all secrets at once cannot perform

updates on shares. The whole database must indeed be

reconstructed, updated and then shared again. Thus,

such schemes require longer execution times and use

lots of memory when updating data.

Some SSSs allow computing exact matches on shares.

Since [76,12,49,80,6,5] use polynomial or linear equa-

tions to share data, they also allow sum and average

operations on shares. Moreover, [12,25,6] allow exact

matches on shares, because they use the same keys to

share all secrets. In contrast, [5] uses indices to achieve

exact match queries. Indices indeed help perform faster

exact matches than operating directly on shares, al-

though at the expense of extra storage volume. Thus,

the tradeoff between security and query efficiency must

be carefully considered before choosing an SSS. We fur-

ther discuss this issue in Sections 4 and 5.2.

3.3.4 Other Features

More features are included in some schemes. [49,46,61]

verify a strong t-consistency property. Thus, they guar-

antee that any subset of t shares or more always recon-

struct the same data, but that any subset of t shares or

fewer cannot. [53,20] allow the user to add and remove

PTs to/from the PT pool by updating the value of n.

[90,18,75,20,21] allow the user to assign different val-

ues of t to different secrets, to enforce different security

levels for each secret. Eventually, [5] allows inserting

new data even if some PTs disappear.

3.4 Costs

In the cloud pay-as-you-go paradigm, the cost of secur-

ing data must be balanced with the risk of data loss or

pilfering, and thus the level of data security must be

balanced with its cost. This is a particularly important

issue with secret sharing, which basically multiplies se-

cret data volume by n in the worst case (provided in-

dividual share volume is not greater than secret data

volume). We summarize the costs induced by SSSs in

Table 5.

SSS time complexity and storage volume depend on

a few parameters: m, n and t. To determine time com-

plexity and storage volume, we suppose that only m

is big. Other parameters n and t should remain quite

small, because they relate to the number of PTs, i.e.,

the number of cloud service providers, which is limited

in practice. Moreover, some SSSs such as [54,72,98] can-

not assign a big value to parameters n and t because

neither can be greater than the size of a secret.

3.4.1 Time Complexity

Data sharing and reconstruction complexity of most

SSSs increases with n and t. In practice, n is a little

bigger than t to guarantee data availability. Thus, the

time complexity of sharing data is a little higher than

that of reconstruction, e.g., O(mnt) > O(mt2) in [76].

However, when availability is not enforced, data sharing

and reconstruction complexity is the same.

In contrast, in most MSSSs type I, secret sharing

time complexity is clearly lower than that of data re-

construction, e.g., O ((n+m− t) t) < O(m3) in [94],

because they share several secrets at once but recon-

struct each secret independently.

Overall, time complexities to share/reconstruct data

by [37] are the lowest: O(max(m, t2)). Execution time

actually depends only on m, because m is large, while

both t and n are small in the normal case (m� n ≥ t).
Moreover, VSSSs and VMSSSs must verify the cor-

rectness of keys and/or data. Thus, extra computa-

tion time is required. The time complexity of data/key

verification is generally lower than that of data shar-

ing/reconstruction. Moreover, the time complexity of

key verification is generally lower than that of data veri-

fication. Several schemes achieve the lowest key verifica-

tion complexity: O(t), but only [37] achieves the lowest

data verification complexity: O(n).

3.4.2 Storage Volume

Figure 11 plots the estimated global share volume of

all SSSs with respect to n, with t = n− 1 and original

data volume is 1 GB. [60] is not plotted because global

share volume grows very rapidly (about 252 GB when

n = 7).

Almost all SSSs require a volume about n times that

of secret data to store shares. Some SSSs propose solu-

tions to minimize share volume. We categorize them
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Fig. 11: Global share volume comparison

into three classes. First, [54,72,98] split data before

sharing. Hence, share volume is only n/t times that

of secrets. However, since the size of shares decreases

when t increases, the value of t cannot be bigger than

the size of a secret.

Second, global share volumes in [90] and [75,89,20,

80,6] are only 1 and n/t times that of secret data, re-

spectively, because they construct t and n shares, re-

spectively, per data block sizing t secrets.

Third, [37,82,19,16,5] share secrets independently,

but they construct fewer than n shares per secret (1,

4, 3, 3 and n− t+ 2 shares, respectively). Hence, share

volumes are only 1, 4, 3, 3 and n− t+ 2 times that of

secret data, respectively.

Overall, [90,37] require the lowest storage volume

(the same as secret data volume) to store shares. How-

ever, [90] does not support data availability and [37]

supports data availability only when the NB is accessi-

ble. Share volumes of [54,72,80,6,5] are a little higher

than that of the lowest-share-volume approaches [90,37]

if n is close to t, but they do support data availability.

Some SSSs require extra storage to store keys. Most

of them use only n or nt keys to share all secrets. Thus,

they only consume a small storage volume. However,

key volumes of [12,49,25] are greater than the secret

data volume (about t2 [12], 2n [49] and t [25] times data

volume) because they use different key sets to share a

secret. Hence, their overall storage volume (shares, keys

and signatures) are greater than that of other SSSs, and

thus incurs a higher storage cost.

Finally, all VSSSs and VMSSSs require extra stor-

age to store signatures. The number of signatures is

about the number of keys or shares, depending on the

verified data type. Thus, overall signature volume is

lower than share volume in all VSSSs and VMSSSs.

However, if signatures are too small, verification accu-

racy becomes weak.

Overall, [16] requires the lowest storage volume to

store signatures. Hence, its overall storage volume is

lower than n times that of secret data. In contrast, [73,

77] require the greatest storage volume to store signa-

tures. Hence, their overall storage volume turn to be

greater than other SSSs, i.e., the same as [12,49,25],

which construct a huge volume of keys.

4 Frameworks and Architectures for Sharing

Secrets in the Cloud

Secret sharing-based cloud frameworks, such as the ones

proposed by [84,70], are similar to classical data dis-

tribution frameworks [97,69,104] in the cloud and dis-

tribute secrets over nodes at a single CSP’s (Figure 12).

They mostly differ in the SSSs they use. Unlike a classi-

cal data distribution framework, such frameworks guar-

antee data availability by default. Both secret shar-

ing and data reconstruction processes run at a master

server’s (Figure 13). Although the master server may

be a node in the cloud, to reduce privacy breaches in

case of hacking, the master server usually stands at the

user’s side to hide all private parameters and keys from

intruders collecting shares.

Two optional verification processes may be enforced

by VSSSs. The first process helps verify the correctness

of query results at PTs’ so that no erroneous query

results are transferred back to the master server. The

second process runs at the master server’s and verifies

the correctness of reconstructed query results in case

some PTs are not honest.

However, this framework bears a critical security

weakness. Since all shares are stored at the same CSPs,

if the CSP is hacked, all data can be easily collected

and reconstructed by the intruder.

Single CSP

Node 1
(PT1)

Node 2
(PT2)

• • •
Node n

(PTn)

Node n+ 1
(NB or Index Servers)

*** Optional

Master Server(s)
User

Fig. 12: Architecture from [84,70]

In contrast, the frameworks such as the ones pro-

posed by [6,5,32,63] distribute secrets over multiple

CSPs (Figure 14), thus providing better availability (it

is unlikely that two or more CSPs all fail at the same
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Fig. 13: Cloud SSS framework

time) and privacy (collecting all shares is more difficult

than in the one-CSP case).

As in the previous framework, storage and compu-

tation costs are still high. However, unlike global data

volume, global storage monertary cost might not be n

times that of original data because storage cost dif-

fers from CSP to CSP. In contrast, data access time

is bounded to the slowest CSP. Yet, this problem may

be alleviated by both balancing data access time and

providing the lowest possible costs [5,4].

CSP 1

(PT1)

CSP 2

(PT2)

• • •
CSP n

(PTn)

CSPn + 1

(NB or Index Servers)
*** Optional

Master Server(s)

User

Fig. 14: Architecture from [6,5,32,63]

Finally, an SSSS-based framework [67,66,100,65] gen-

eralizes the first two frameworks by distributing se-

crets over multiple nodes at multiple CSPs’ (Figure 15).

CSPs play the role of PTs and a number of nodes at

CSPs’ are the weight of PTs (wi). Thus, security is not

limited by the number of CSPs (n), but by the total

number (w =
∑
i wi) of nodes at all CSPs, which can

be large. Moreover, shares stored in nodes at any CSPs

are not enough to reconstruct any secret since wi < t.

There are some applications, e.g., secure data stor-

age, secure databases and data warehouses, private in-

formation retrieval, and data management in the cloud,

use the above frameworks.

w1 nodes at CSP1

(w1 PTs)

• • •

wx nodes at CSPn

(wx PTs)

• • •• • •

CSPn + 1

(NB or Index Servers)
*** Optional

Master Server(s)

User

Fig. 15: SSSS-based framework [67,66,100,65]

Table 6: Query types allowed by secret sharing-based

cloud applications

Queries [1] [36] [35,44,43,42] [86] [88] [6,5,50]
Update N N Y Y Y Y
Exact match N Y Y N Y Y
Range N Y Y N Y Y
Aggregate Y Y Y Y N Y
Grouping N N N N N Y

Eventually, let us briefly present query functionality

in secure data storage solutions for public clouds that

use or extend Shamir’s SSS [76]. Low-level data stor-

age [79,32] handle pattern search, equijoins and range

queries on shares. Table 6 summarizes the querying fea-

tures of secure cloud databases and data warehouses

[35,36,86,1,43,88,44,42,6,5,50].

5 Conclusion

In this final section, we first draw a critical overview

of all SSSs surveyed in this paper, including current

challenges when using SSSs and in a cloud computing

context. Finally, we present some sample applications

that can benefit from SSSs.

5.1 Secret Sharing Schemes

Classic SSSs handle data security and availability with

high sharing/reconstruction time and storage costs. MSSSs

share data at once and reduce both costs. In addition,

MSSSs type I support data availability by using a NB,

but are vulnerable if the NB is attacked. Hence, to share

data with MSSSs type I in the cloud, the NB should be

located at a PT’s that guarantees high security and

availability. In contrast, PSSSs and [5] enhance data

privacy by periodically refreshing shares and protect-

ing data from CSP group cheating, respectively.
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In addition, VSSSs and VMSSSs can verify the cor-

rectness of either or both of data and keys, but these

operations induce additional time overhead and require

to store signatures in addition to shares. Outer code

verification still necessitates to trust PTs, because it is

done at PTs’. Moreover, since almost all VMSSSs are

also MSSSs type I, their total storage volume (keys,

shares and signatures) is still lower than n times that

of secret data.

Only [80] verifies the correctness of both data and

keys. Although it is an MSSS type II, its total storage

volume is only about twice that of secret data. More-

over, its data sharing complexity is also reasonable, i.e.,

O(mt), while most SSSs have a cubic sharing complex-

ity.

Eventually, only [6,5] verify the correctness of both

data and shares. They also minimize global share vol-

ume to lower than n times that of secret data. Moreover,

[5] can insert new data even though some PTs disap-

pear, i.e., even though some CSPs fail due to technical

or economic reasons.

Moreover, PSSSs refresh shares and verify their cor-

rectness to improve data privacy. However, computa-

tion (to renew shares) and storage (to store signatures)

costs induce extra overhead in the refreshment process.

Communications to synchronous shares from PTs to

PTs are also numerous, thus provoking network bottle-

necks.

Some SSSs support features such as updates, search

operations, aggregation operations, etc. These features

help minimize computation cost at the user’s side and

reduce communication overhead. Only three SSSs [12,

6,5] support all three operation types: update, exact

match and aggregation. However, none can handle com-

posite operations on shares, e.g., simultaneous exact

match and aggregation. Performing composite opera-

tions on shares remains a challenge in SSSs as of today.

Among SSSs that support search and aggregation op-

erations, again only [80,6,5] minimize storage cost. [80]

also optimizes data sharing time.

Finally, [53,20] allow the user to add and remove

PTs to/from the PT pool. In the cloud, users can thus

add and remove CSPs on demand. However, estimating

monetary storage cost and detecting attacks or CSP

failures is difficult. Thus, taking (or worse, automating)

a decision regarding the CSP pool under CSP pricing

or privacy constraints is still an open issue.

5.2 Secure Applications in the Cloud

SSSs addressed various issues over time (Section 2). Let

us describe below some applications that can benefit

from secret sharing for data security.

Textual documents such as emails could be shared

with [12,25,6], since these SSSs optimize cost and up-

date and search performance by allowing updates and

exact matches directly over shares. Moreover, [25,6]

also guarantee data integrity with inner and both inner

and outer code verification, respectively. Finally, only

[6] optimizes both storage volume and data sharing and

reconstruction time.

In databases and data warehouses, update, exact

match and aggregation operators are casually used. To

optimize query response time, such SSSs as [25,6,5] can

be used to leverage cloud databases and warehouses. All

these SSSs indeed guarantee data integrity. Moreover,

[6,5] also optimize storage cost and [5] allows insert-

ing new data although some CSPs fail. Several secret

sharing-based database or warehousing approaches [35,

36,86,1,43,88,44,42,6,5,50] exploit the above-mentioned

SSSs.

To handle data streams, SSSs such as [54,82,19,16]

can be used, because they optimize sharing time and

share secrets independently. Moreover, they require an

overall storage volume that is lower than n times that

of secret data. [54]’s storage volume is even close to the

secret’s volume if n and t are big and n is close to t.

However, only [82,19,16] guarantee data integrity.

Since memory is still limited in practice, SSSs that

share data at once [94,18,37,99,27,28,52,38,78] cannot

handle big data volumes. However, SSSs that share indi-

vidual secrets [76,12,3,54,71,72,49,46,61,83,73,23,77,

53,98,82,19,21,25,16,5] or data blocks [90,75,20,89,60,

80,6] allow the execution of the sharing process in main

memory or even its parallelization, and thus can share

huge data volumes efficiently.

Finally, potential users of database outsourcing should

be aware that even frameworks based on normally highly

secure SSSs might still be insecure because of inade-

quate architectural choices or a strong tradeoff in fa-

vor of query power [26]. To circumvent this problem,

(V)MSSSs that primarily protect multiple secrets are

a better choice than (V)SSSs for cloud applications. In

any case, users should carefully evaluate the limitation

of target SSSs before using them in any applicative con-

text. We hope this survey will help them for this sake.

References

1. Agrawal, D., Abbadi, A.E., Emekci, F., Metwally, A.:
Database management as a service: challenges and op-
portunities. In: 25th IEEE International Conference on
Data Engineering (ICDE 2009), Shanghai, China, pp.
1709–1716 (2009)

2. Ali, M., Khan, S.U., Vasilakos, A.V.: Security in cloud
computing: Opportunities and challenges. Information
sciences 305, 357–383 (2015)



Secret Sharing for Cloud Data Security 23

3. Asmuth, C., Bloom, J.: A modular approach to key safe-
guarding. IEEE Transactions on Information Theory
29(2), 208–210 (1983)

4. Attasena, V.: Secret Sharing Approaches for Secure
Data Warehousing and On-Line Analysis Processing in
the Cloud. Ph.D. thesis, Université Lumière Lyon 2,
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