Varunya Attasena

Jérôme Darmont
email: jerome.darmont@univ-lyon2.fr

Nouria Harbi
email: nouria.harbi@univ-lyon2.fr

Secret Sharing for Cloud Data Security A Survey

Keywords: Cloud computing, Secret sharing, Data privacy, Data availability, Data integrity, Data access

Cloud computing helps reduce costs, increase business agility and deploy solutions with a high return on investment for many types of applications. However, data security is of premium importance to many users and often restrains their adoption of cloud technologies. Various approaches, i.e., data encryption, anonymization, replication and verification, help enforce different facets of data security. Secret sharing is a particularly interesting cryptographic technique. Its most advanced variants indeed simultaneously enforce data privacy, availability and integrity, while allowing computation on encrypted data. The aim of this paper is thus to wholly survey secret sharing schemes with respect to data security, data access and costs in the pay-as-yougo paradigm.

Introduction

Cloud computing is currently booming, with companies of all sizes adopting associated technologies to benefit from resource and cost elasticity. However, data security remains one of the top concerns for cloud users and would-be users. Security issues, both inherited from classical distributed architectures and specific to the new framework of the cloud, are indeed numerous, especially at the data storage level of public clouds [START_REF] Chow | Controlling Data in the Cloud: Outsourcing Computation without Outsourcing Control[END_REF].

Critical security concerns in cloud storage are depicted in Figure 1, which highlights the major issues in cloud data security, i.e., data privacy, availability and integrity. In particular, cloud architectures might not be sufficiently safeguarded from inside attacks. In virtual environments, a malicious user might be able to break into "neighboring" virtual machines located on the same hardware, and then steal, modify or delete the other users' data [START_REF] Khan | A survey of security issues for cloud computing[END_REF][START_REF] Ali | Security in cloud computing: Opportunities and challenges[END_REF][START_REF] Derbeko | Security and privacy aspects in mapreduce on clouds: A survey[END_REF][START_REF] Joshi | Security and privacy challenges in cloud computing environments[END_REF]104,102,[START_REF] Hashizume | An analysis of security issues for cloud computing[END_REF]. In such environments, users are indeed usually granted with superuser access for managing their virtual machines. A malicious superuser can access real network components and thus launch attacks [START_REF] Ali | Security in cloud computing: Opportunities and challenges[END_REF][START_REF] Bilal | Trends and challenges in cloud datacenters[END_REF]. Moreover, virtualization allows the rollback of a virtual machine to some previous state if necessary. Although this rollback feature provides flexibility to the users, it can also revert the virtual machine to previous security policies and configuration control [START_REF] Ali | Security in cloud computing: Opportunities and challenges[END_REF][START_REF] Hashizume | An analysis of security issues for cloud computing[END_REF]. Eventually, virtual machine migration is run to improve quality of service. During such migration processes, which typically do not shut down services, virtual machine contents are exposed to the network, and problems such as network transfer bottlenecks and data damage may occur [START_REF] Ali | Security in cloud computing: Opportunities and challenges[END_REF][START_REF] Hashizume | An analysis of security issues for cloud computing[END_REF][START_REF] Zhang | Security-preserving live migration of virtual machines in the cloud[END_REF].

Classical data security approaches, i.e., data encryption [START_REF] Bellare | Incremental cryptography: The Case of Hashing and Signing[END_REF][START_REF] Gentry | Fully Homomorphic Encryption Using Ideal Lattices[END_REF], data anonymization [START_REF] Cormode | Anonymized Data: Generation, Models, Usage[END_REF], replication [START_REF] Padmanabhan | A survey of data replication techniques for mobile ad hoc network databases[END_REF], data verification [START_REF] Wang | Enabling public verifiability and data dynamics for storage security in cloud computing[END_REF], data separation [START_REF] Zhang | Tagged-mapreduce: A general framework for secure computing with mixedsensitivity data on hybrid clouds[END_REF][START_REF] Oktay | Semrod: Secure and efficient mapreduce over hybrid clouds[END_REF]103] Fig. 1: Data security issues in the cloud differential privacy [START_REF] Dwork | Differential privacy[END_REF], can solve most data security issues within cloud computing environments (Figure 2), but usually one at a time. Many data-centric cloud applications do not only require data to be secure, but also efficiently accessed, sometimes through complex, analytical queries akin to on-line analysis processing (OLAP) operations. With users seeking to reduce costs in the cloud's pay-as-you-go pricing model, achieving the best tradeoff between data security and access power and efficiency is a great challenge [START_REF] Chow | Controlling Data in the Cloud: Outsourcing Computation without Outsourcing Control[END_REF][START_REF] Sion | Secure data outsourcing[END_REF].

Fig. 2: Features of data security approaches

Existing surveys about distributed data security list security services in distributed storage: authentication and authorization, availability, confidentiality and integrity, key sharing and management, auditing and intrusion detection, and finally useability, manageability and performance [START_REF] Kher | Securing distributed storage: challenges, techniques, and systems[END_REF][START_REF] Derbeko | Security and privacy aspects in mapreduce on clouds: A survey[END_REF]. Then, network file systems, cryptographic file systems and storage intrusion detection systems are discussed and compared. This precloud review is complemented by a thorough comparison of storage-centric data protection (i.e., network storage devices) in user-centric data protection systems (i.e., cryptographic storage systems and cloud-based storage) [START_REF] Xu | A Survey of Security Services and Techniques in Distributed Storage Systems[END_REF][START_REF] Derbeko | Security and privacy aspects in mapreduce on clouds: A survey[END_REF]. Finally, [START_REF] Wei | Enhancing Data Integrity and Privacy in the Cloud: An Agenda[END_REF][START_REF] Derbeko | Security and privacy aspects in mapreduce on clouds: A survey[END_REF] provide a short overview of what should be done in terms of data auditing and encryption in the cloud.

Although these surveys do mention secret sharing, they provide few details about this particular cryptographic technique, which was simultaneously introduced by Shamir [START_REF] Shamir | How to Share a Secret[END_REF] and Blakley [START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF] in 1979 and can be particularly useful nowadays in the context of cloud computing, e.g., to safely manage and analyze big data. Threshold secret sharing schemes indeed transform sensitive data into individually meaningless data pieces (called shares) that are distributed to n participants akin to CSPs. Computations can then be performed onto shares, but yield meaningless individual results. The global result can only be reconstructed knowing individual results from several participants (more than threshold t ≤ n). Moreover, some secret sharing variants simultaneously enforce data privacy, availability and integrity, which no other security scheme achieves. Eventually, secret sharing can be used by both CSPs, with data being shared within their cloud infrastructure, and users, who can dispatch sensitive data over several providers. Since some secret sharing schemes also support homomorphism, they allow data analysis on shares, thus allowing data access cost optimization.

To the best of our knowledge, secret sharing schemes (SSSs) up to 2008 have only been surveyed with respect to bounds on share size and global data volume [START_REF] Beimel | Secret-Sharing Schemes: A Survey[END_REF]. In this paper, we also include the most recent SSSs and complement [START_REF] Beimel | Secret-Sharing Schemes: A Survey[END_REF] by analyzing the objectives of each SSS, the security and data analysis features a user can expect, and the costs implied in a cloud computing environment.

The remainder of this paper is organized as follows (Figure 3). Section 2 describes the principles of secret sharing and classifies SSSs into eleven groups, whose properties are thoroughly detailed. SSSs in a given group are also positioned with respect to one an- A major drawback of initial SSSs is the multiplication of the initial data volume by the number of PTs. Multi secret sharing schemes (MSSSs) thus aim to reduce computation, storage and data transfer costs by sharing and reconstructing more than one secret at once. Some MSSSs achieve an overall shared data volume (i.e., at all PTs') that is close to that of original secret data. We categorize MSSSs into two types.

In MSSSs type I [START_REF] Yang | A (t,n) multisecret sharing scheme[END_REF][START_REF] Waseda | Consideration for multithreshold multi-secret sharing schemes[END_REF], data are shared with the help of keys. m secrets {d j } j=1,••• ,m and n keys

{k i } i=1,••• ,n are used to construct x shares {c h } h=1,••• ,x ,
where m ≤ x. Shares are stored in a news bulletin board (NB), whereas each key k i is stored at P T i (Figure 5(a)). To reconstruct the m secrets, all or some (depending on the MSSS) shares and t keys are used (Figure 5(b)).

In MSSSs type II [START_REF] Chan | A scheme for threshold multisecret sharing[END_REF][START_REF] Runhual | A threshold multi-secret sharing scheme[END_REF][START_REF] Liu | Efficient (n, t, n) secret sharing schemes[END_REF][START_REF] Takahashi | Secret sharing scheme suitable for cloud computing[END_REF], m secrets SSSs and MSSSs assume that all players, i.e., PTs and NB, are honest and always provide valid information (data and keys). However, in reality, they might not, intentionally or not. Thus, verifiable secret sharing schemes (VSSSs) [START_REF] Pedersen | A threshold cryptosystem without a trusted party[END_REF][START_REF] Chunming | A new (t,n) threshold secret sharing scheme[END_REF][START_REF] Shanyue | A secret sharing scheme based on ntru algorithm[END_REF][START_REF] Hwang | An on-line secret sharing scheme for multi-secrets[END_REF][START_REF] Zhao | A secret sharing scheme with a short share realizing the (t,n) threshold and the adversary structure[END_REF] and verifiable multi secret sharing schemes (VMSSSs) [START_REF] Eslami | A verifiable multi-secret sharing scheme based on cellular automata[END_REF][START_REF] Zhao | A practical verifiable multi-secret sharing scheme[END_REF][START_REF] Dehkordi | An efficient threshold verifiable multi-secret sharing[END_REF][START_REF] Dehkordi | New efficient and practical verifiable multi-secret sharing schemes[END_REF][START_REF] Wang | Verifiable threshold scheme in multi-secret sharing distributions upon extensions of ecc[END_REF][START_REF] Eslami | A new verifiable multi-secret sharing scheme based on bilinear maps[END_REF][START_REF] Chen | A distributed multi-secret sharing scheme on the (t,n) threshold[END_REF][START_REF] Li | Novel space efficient secret sharing for implicit data security[END_REF][START_REF] Hu | Verifiable multi-secret sharing based on lfsr sequences[END_REF][START_REF] Lin | t,n) threshold verifiable multi secret sharing scheme based on factorisation intractability and discrete logarithm modulo a composite problems[END_REF][START_REF] Chang | An improvement on the lin-wu (t,n) threshold verifiable multi-secret sharing scheme[END_REF][START_REF] Shao | A new efficient (t,n) verifiable multisecret sharing (vmss) based on ych scheme[END_REF][START_REF] Chen | A new dynamic threshold secret sharing scheme from bilinear maps[END_REF][START_REF] Das | An efficient multi-use multi-secret sharing scheme based on hash function[END_REF][START_REF] Bu | Novel and effective multi-secret sharing scheme[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF][START_REF] Shi | A (t, n)-threshold verified multi-secret sharing scheme based on ECDLP[END_REF] verify the correctness of data and/or keys before or after reconstruction. Therefore, VSSSs and VMSSSs enforce data integrity in addition to privacy and availability.

{d j } j=1,••• ,m are divided into n shares {e i } i=1,•
Eventually, some SSSs aim at specic goals. Proactive secret sharing schemes (PSSSs) are based on classical SSSs or VSSSs but, in addition, periodically refresh shares [START_REF] Herzberg | Proactive secret sharing or: How to cope with perpetual leakage[END_REF][START_REF] Cachin | Asynchronous verifiable secret sharing and proactive cryptosystems[END_REF][START_REF] Wong | Verifiable secret redistribution for archive systems[END_REF]101,[START_REF] Baron | Communication-optimal proactive secret sharing for dynamic groups[END_REF][START_REF] Dolev | Proactive secret sharing with a dishonest majority[END_REF][START_REF] Mashhadi | Secure publicly verifiable and proactive secret sharing schemes with general access structure[END_REF]. Refreshing consists in generating a random number at each PT's and sharing it at all other PTs' to modify existing shares. ln most PSSSs [START_REF] Herzberg | Proactive secret sharing or: How to cope with perpetual leakage[END_REF][START_REF] Wong | Verifiable secret redistribution for archive systems[END_REF][START_REF] Baron | Communication-optimal proactive secret sharing for dynamic groups[END_REF][START_REF] Dolev | Proactive secret sharing with a dishonest majority[END_REF][START_REF] Mashhadi | Secure publicly verifiable and proactive secret sharing schemes with general access structure[END_REF][START_REF] Mashhadi | Secure publicly verifiable and proactive secret sharing schemes with general access structure[END_REF] but there are also asynchronous refreshing protocols [START_REF] Cachin | Asynchronous verifiable secret sharing and proactive cryptosystems[END_REF]101] that allow share reconstruction at all times. All PSSSs include a share verification process that verifies whether shares are up-to-date when refreshing. If shares are obsolete, they may be safely deleted or recovered from other shares. Since shares are periodically refreshed even if secrets have not been updated, an intruder has little time to compromise them. However, the refreshing process in PSSSs induces extra costs, i.e., computing costs for periodically sharing random numbers among PTs and modifying shares (time complexity is O(mn 2) [START_REF] Herzberg | Proactive secret sharing or: How to cope with perpetual leakage[END_REF]); and high communication costs for commuting PTs with each other, whose cost is at least n times that of sharing secrets. Because of these costs, and since PSSSs reuse the data sharing and reconstruction processes of the classical SSSs that are detailed in this section, we do not survey PSSSs further.

Weighted secret sharing schemes (WSSSs) extend classical SSSs by introducing a priority among PTs by assigning to each PT a weight, i.e., the number of shares it stores [START_REF] Benaloh | Generalized secret sharing and monotone functions[END_REF][START_REF] Morillo | Weighted threshold secret sharing schemes[END_REF][START_REF] Harn | Weighted secret sharing based on the chinese remainder theorem[END_REF][START_REF] Drgan | Distributive weighted threshold secret sharing schemes[END_REF]. More precisely, in these schemes, any secret d is divided into w shares such that w ≥ n. Each PT i holds w i shares such that w = n i=1 w i . If n = w or w i = 1 ∀i, we fall back to a classical SSS. Secret reconstruction is only possible by a group of PTs holding at least t shares, with w i < t ≤ w ∀i. One single PT cannot reconstruct the secret, since w i < t ∀i.

Social secret sharing schemes (SSSSs) extend from WSSSs by allowing weights to be adjusted depending on the situation, e.g., if some PTs are found insincere [START_REF] Nojoumian | Unconditionally secure social secret sharing scheme[END_REF][START_REF] Nojoumian | Socio-rational secret sharing as a new direction in rational cryptography[END_REF]100,[START_REF] Nojoumian | Social secret sharing in cloud computing using a new trust function[END_REF] . Even though WSSSs and SSSSs bring in a more flexible PT management, they induce a higher share volume, i.e., at least n times the original data volume vs. at most n times for previous SSSs, supposing that individual shares use up the same volume as secrets. Thus, we do not survey them further.

Finally, function secret sharing schemes (FSSSs) [START_REF] Boyle | Function secret sharing[END_REF][START_REF] Komargodski | Cutting-edge cryptography through the lens of secret sharing[END_REF][START_REF] Boyle | Function secret sharing: Improvements and extensions[END_REF] aim at protecting data transfers over networks when keyword search is performed on outsourced, repli-

cated data. A function f is shared into n functions f 1 , • • • , f n such that f = n i=1 f i . Each function f i
is associated with a data node akin to a participant PT i in classical secret sharing. When the user issues a search query with some keyword k, f i (k) is sent to PT i ∀i = 1 • • • n. Then data at each PT i are matched with f i (k). The local result R i is shared as f i (R i) and sent back to the user, who can finally reconstruct a global result with t ≤ n values of f i (R i). However, FSSSs do not fit in our data outsourcing scenario since data are replicated in clear form. Thus, we do not survey them further. Yet, FSSSs are quite recent and hybridizing them with other SSSs surveyed in this section could help solve this issue.

We categorize SSSs into eleven groups (Table 1) with respect to their basic type, i.e., SSSs and MSSSs types I and II, as well as eventual data or key verification. We survey all groups in the following subsections. Moreover, we introduce the parameters and notations used throughout this section in Table 2.

Group 1: Classical Secret Sharing Schemes

The very first (t, n) SSS [START_REF] Shamir | How to Share a Secret[END_REF] enforces data security by using a random polynomial (Equation 1). This polynomial is generated over a finite field such that coefficient c 0 is the secret and other coefficients c u=1,••• ,t-1 are ran- 7, where t = 4 and n = 6. The random polynomial of degree t -1 = 3 is

e i = f (i) = i 3 -5i 2 + 2i + 4, where 4 is the secret. The six shares {(i, e i)} i=1,••• ,6 (plotted in blue) are (1,2), (2,-4), (3,-8), (4,
-4), [START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF][START_REF] Boyle | Function secret sharing[END_REF] and [START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Hu | Verifiable multi-secret sharing based on lfsr sequences[END_REF]. In Blakley's SSS [START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF], each PT is associated with an hyperplane in a t-dimensional space over a finite field. Hyperplanes, i.e., shares, intersect in a point that is the secret, which can be reconstructed by solving the hyperplanes' equation system. A sample application of this scheme is given in Figure 8, where t = 2 and n = 3 (there are thus three hyperplans).

f (i) = t-1 u=0 c u × i u (1)
e i = f (i) (2)
G r ⊆ {P T i } i=1,••• ,n and G r = {P T r,1 , • • • , P T r,g } P T r,v PT number v of G r ID r,v Identifier of P T r,v of G r o Number of data blocks b l l th block of D such that b l = {d l,1 , • • • , d l,
y = d + u × p 0 (3)
d = y mod p 0 (4)
y ≡ e i mod m i

All subsequent SSSs extend the three foundation schemes above. [START_REF] Iftene | General secret sharing based on the chinese remainder theorem with applications in e-voting[END_REF] extends from [START_REF] Asmuth | A modular approach to key safeguarding[END_REF] to reduce the size of shares. Moreover, this SSS can reconstruct a secret from t or more shares, whereas previous schemes exploit exactly t shares. In the sharing process, the secret is split in t. Share creation from the t splits and secret reconstruction proceed as in [START_REF] Asmuth | A modular approach to key safeguarding[END_REF]. All other SSSs seek to improve polynomial interpolation. [START_REF] Parakh | Online data storage using implicit security[END_REF] 9, where A 2 is a t×t inverse matrix seeded from t rows of matrix

A 1 . [e 1 , • • • , e n] T = A 1 × [u 1 , • • • , u t] T (7) t a=1 (x -u a) ≡ 0 mod p (8) [u 1 , • • • , u t] T = A 2 × [e 1 , • • • , e t] T (9)
The second step enforces availability and is optional. A sample application of the first step is given in Figure 9, where d = 10 and t = 3. The polynomial equation of degree 3 (xu 1)(xu 2)(xu 3) ≡ x 3 -21x 2 + 1 Uniquely relatively primes are random prime numbers that are related to each other by some conditions.

x -10 ≡ 0 mod 31 is created with the help of prime p = 31 and random positive integers u 1 = 19, u 2 = 22 and u 3 = 11, where u 1 , u 2 , u 3 match with condition In [START_REF] Parakh | Space efficient secret sharing for implicit data security[END_REF], a secret d is split into t-1 smaller data units {u v } v=1,••• ,t-1 to reduce global share volume. Then, a polynomial equation of degree t-1 is created by running recursive functions t -1 times (Equation 10, where y is a random integer) to improve security. Next, n shares {e i } i=1,••• ,n are created by Equation 11. Finally, data are reconstructed through t -1 steps by Lagrange interpolation.

u 3 ≡ d × (u 1 × u 2) mod p. x f (x) p d u 1 . u 2 .
f v (x) = u v + y × x if v = 1 u v + v w=1 f v-1 (w) × x w otherwise (10
)
e i = f t-1 (i) (11)
[49] extends from [START_REF] Shamir | How to Share a Secret[END_REF] to guarantee the t-consistency of shares, i.e., any subset of t shares or more always reconstruct the same secret. A random polynomial function f (x) is created as in [START_REF] Shamir | How to Share a Secret[END_REF] (f (0) = d). However, k i,1 and k i,2 are random keys stored at P T i and k i,2 is do not need to be distinct from each other. Next, n shares {c i } i=1,••• ,n are created by Equation 12 and stored on the NB. Secret d can be reconstructed by Lagrange interpolation from t pairs {k i,1 , c i + k i,2 }.

c i = f (k i,1) -k i,2 (12)
[[START_REF] Harn | Strong (n, t, n) verifiable secret sharing scheme[END_REF][START_REF] Liu | Efficient (n, t, n) secret sharing schemes[END_REF] extend from [START_REF] Pedersen | A threshold cryptosystem without a trusted party[END_REF] (Section 2.4). However, none verifies the correctness of shares. In addition, both approaches verify a strong t-consistency property. The verification processes guarantee that any subset of t shares or more (created by summing n random polynomial functions of degree t-1 in [START_REF] Pedersen | A threshold cryptosystem without a trusted party[END_REF]) always reconstruct the same secret, but that any subset of t shares or fewer cannot. Verification time is slower in [START_REF] Harn | Strong (n, t, n) verifiable secret sharing scheme[END_REF] than in [START_REF] Liu | Efficient (n, t, n) secret sharing schemes[END_REF].

Eventually, in (t, L, n) threshold ramp SSSs (RSSSs) introduced by Blackley [START_REF] Blakley | Security of Ramp Schemes[END_REF], the secret cannot be reconstructed from t -L or less shares (vs. t -1 or less in above SSSs), with 1 ≤ ≤ L-1 shares being allowed to leak information about the secret. Thus, RSSSs propose a tradeoff between security and efficiency (measured by entropy) [START_REF] Iwamoto | Strongly secure ramp secret sharing schemes for general access structures[END_REF]. Let H(d) and H(e i) i=1,••• ,n be the entropy of the secret and its shares, respectively. In SSSs, H(e i) ≥ H(d), while in RSSSs, H(e i) = H(d) ÷ L. [START_REF] Iwamoto | Strongly secure ramp secret sharing schemes for general access structures[END_REF] also introduces the notion of strong and weak RSSSs, and shows that Shamir-based SSSs may be weak. Yet, most of the following RSSSs still extend Shamir's SSS.

Group 2: Multi Secret Sharing Schemes Type I

The first (m, t, n) MSSS type I [START_REF] Yang | A (t,n) multisecret sharing scheme[END_REF] extends from [START_REF] Shamir | How to Share a Secret[END_REF] to reduce share volume and execution time. All secrets are shared at once, with share volume being controlled to remain close to that of secrets. To share m secrets {d j } j=1,••• ,m among n PTs, n keys {k i } i=1,••• ,n are created with a two-variables one-way function. Then, a polynomial (Equation 1) is created over a finite field [START_REF] Shamir | How to Share a Secret[END_REF], with a degree w = max(m, t) -1.

Moreover, coefficients

{u j } j=1,••• ,m are secrets {d j } j=1,••• ,m and other coefficients {u j } j=(m+1),••• ,t are random integers. Next, m+n-t shares {c h } h=1,••• ,(m+n-t)
are generated by Equation 13and are published on a NB. Finally, secrets are reconstructed by Lagrange interpolation from t or more keys and w shares.

c h = f (k h) if 1 ≤ h ≤ n f (H(h)) if n + 1 ≤ h ≤ n + m -t (13)
[90] extends from [START_REF] Shi | A (t, n)-threshold verified multi-secret sharing scheme based on ECDLP[END_REF] (Section 2.11) by reducing execution time and dynamically adjusting data block size. In the sharing process, secrets are organized into o unfixed size blocks 15, where v is a random integer. Finally, each key k i is shared at P T i and {c l,h } l=1,••• ,o; h=1,••• ,t l , A and t l are published on the NB. In the reconstruction process, {u l,q } q=1,••• ,t l is created by solving Equation 14. Then, secrets are reconstructed by solving Equation 15.

{b l } l=1,••• ,o . Data block b l stores t l secrets {d l,q } q=1,••• ,t l . Next, keys k i are randomly se- lected and matrix A = [a x,y] n×max(t1,••• ,to) is created by Equation 14, where l = 1, • • • , o, u l,q is a random inte- ger and A l = [a x,y] n×t l such that A l is made of the first t l columns of A. Next, o×t l shares {c l,h } l=1,••• ,o;h=1,••• ,t l are created by Equation
[f l (k 1), • • • , f l (k n)] T = A l × [u l,1 , • • • , u l,t l] T (14)
c l,h = t l q=1 d l,q × v (q-1)(h-1 l=1 t l +h-1) + t l q=1 u l,q × v (t l +q-1)(h-1 l=1 t l +h-1t) (15)

Group 3: Multi Secret Sharing Schemes Type II

The first (m, t m , n) MSSS type II [START_REF] Chan | A scheme for threshold multisecret sharing[END_REF] extends [START_REF] Shamir | How to Share a Secret[END_REF] to share m secrets with different threshold access structures. In the sharing process, PT identifiers {ID i } i=1,••• ,n are randomly chosen from distinct integers. With respect to secret d j , t j and a prime p j are selected such that

t 1 ≤ t 2 ≤ • • • ≤ t m , p 1 < p 2 < • • • < p m , P = m j=1 p j and d j < p j .
Next, a polynomial of degree t m -1 (Equation 16) is created with coefficients {u v } v=1,••• ,t-1 being integers chosen by the Chinese remainder theorem [START_REF] Ding | Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography[END_REF] and the uniqueness theorem of interpolating polynomial.

∀ v ∈ [0, t -1], u v ≡ u j,v mod p j ∀j = 1, • • • , m where u j,v is a coefficient of a ran- dom polynomial function of degree t j -1 (f j (x) = tj -1 w=0 u j,v × x w [76]) and u j,0 = d j . Shares {e i } i=1,••• ,n
are generated by equation 17. Finally, ID i and e i are stored at P T i , whereas {t j } j=1,••• ,m and {p j } j=1,••• ,m are retained at the user's. Secret d j is reconstructed from p j and t j pairs (ID i , e i) by equations 18 and 19.

f (x) = tm-1 v=0 u v × x v (16)
e i = f (ID i) mod P (17)
f j (0) ≡ d j mod p j (18)
f j (x) ≡ f (x) mod p j (19)
[75] shares unfixed sized data blocks with a linear equation. There are t l secrets {d l,q } q=1, 20, where A l = [a x,y] n×t l and A l is built from the first t l columns of A. Next, o shares {e l,i } l=1,••• ,o are stored at P T i and matrix A is published on the NB. Finally, secrets from block b l are reconstructed from matrix A l and t l shares {e l,i } i=1,••• ,t l by solving linear Equation 20.

••• ,t l in block b l (t l1 < t l2 if l 1 < l 2). Then, o × n shares {e l,i } l=1,••• ,o; i=1,••• ,n are created by multiplying b l with random ma- trix A = [a x,y] n×max(t1,••• ,to) by Equation
[e l,1 , • • • , e l,n] T = A l × [b l] T (20)
[61]'s MSSS extends from [START_REF] Liu | Efficient (n, t, n) secret sharing schemes[END_REF]'s SSS (Section 2.1) with a new sharing process. At P T i , shares {u i,a,j } a=1,••• ,n of secrets are computed and distributed to other PTs [START_REF] Pedersen | A threshold cryptosystem without a trusted party[END_REF] (Section 2.4). However, P T i 's actual share e i,j is computed by weighting the sum of other PTs' shares (Equation 21), where w a is a random integer (weight).

e i,j = n a=1 w a × u i,a,j (21)
In [START_REF] Takahashi | Secret sharing scheme suitable for cloud computing[END_REF], PTs are categorized into two groups:

G 1 = {P T i } i=1,••• ,γ and G 2 = {P T i } i=γ+1,••• ,n
, with the objective of reducing share volume. PTs of G 1 store only one key and one share. To share m secrets {d j } j=1,••• ,m , a key k i and an identifier ID i are defined for each P T i . Next, a first polynomial f 1 (x) is defined by Equation 22, where coefficients {u 22) are solved from m × γ pseudo shares 22 and23). Eventually, each P T i ∈ G 1 stores k i and one share e 1,i ; and each

1,v } v=1,••• ,t-1 are random integers. Then, n shares {e 1,i } i=1,••• ,n are cre- ated by Equation 23. Moreover, (m -1) × γ pseudo shares {e j,i } j=2,••• ,m;i=1,••• ,γ are generated with a pseudo- random number generator, keys {k i } i=1,••• ,γ and shares {e 1,i } i=1,••• ,γ . Next, m-1 polynomials f 2 (x), • • • , f m (x) (Equation
{e j,i } j=2,••• ,m;i=1,••• ,γ and m secrets {d j } j=2,••• ,m to con- struct the other (m -1) × (n -γ) shares {e j,i } j=2,••• ,m;i=γ+1,••• ,n (Equations
P T i ∈ G 2 stores shares {e j,i } j=1,••• ,m . f j (x) = d j + t-1 v=1 u j,v × x v (22) e j,i = f j (ID i) (23)
To reconstruct the secrets, t of n PTs in both G 1 and G 2 are selected. If P T i ∈ G 1 , pseudo shares {e j,i } j=2,••• ,m are generated as above. Then, secret data are reconstructed by Lagrange interpolation from their shares, m × t pseudo shares and t IDs.

Group 4: Data-Verifiable Secret Sharing Schemes

There are only three (t, n) VSSSs in this group. [START_REF] Pedersen | A threshold cryptosystem without a trusted party[END_REF] helps each PT verify other PTs' shares with the help of an RSA cryptosystem [START_REF] Perlner | Quantum resistant public key cryptography: a survey[END_REF]. To share secret d at P T i , a random polynomial function f i (Equation 24) is cre- 25, where p is a prime and d = log p n i=1 y i) and shared on the NB. Then, shares {u i,a } a=1,••• ,n are created by Equation 26and distributed to other PTs. P T i 's actual share e i is created by summing other PTs' shares (Equation 27) if they are correct (Equation 28). Secrets are reconstructed by Lagrange interpolation.

ated such that d = n i=1 w i,0 . Then, t signatures {s d i,v } v=0,••• ,t-1 are created (Equation
f i (x) = t-1 v=0 w i,v × x v (24)
s d i,v = y i if v = 0 p wi,v otherwise (25
)
u i,a = f i (a) (26)
e i = n a=1 u a,i (27)
p ua,i = t-1 v=0 (s d a,v) i v (28)
[23] extends from [START_REF] Shamir | How to Share a Secret[END_REF] by verifying the correctness of reconstructed secrets. To this aim, in the sharing process, a signature s d is created for each secret d (Equation 29, where u is a random integer). Then, s d is published on the NB.

s d = u d mod p (29)
In the reconstruction process, secret d is reconstructed from t shares by secure multi-party computation (SMC) [START_REF] Yao | How to generate and exchange secrets[END_REF] (Equation 30). Next, a multi-prover zero-knowledge argument [START_REF] Tang | Definition and construction of multi-prover zero-knowledge arguments[END_REF]

helps verify correctness. Secret d is cor- rect if u v 1 +•••+v n × s d v0 = n i=1 v i mod p, where {v i } i=1,••• ,n and {v i } i=1,••• ,
{v i } i=0,••• ,n and {w i } i=0,••• ,n are random integers such that d = n i=1 w i . d = i∈G   e i × j∈G,j =i j/ (j -i)   (30
)
v i = u vi mod p (31)
v i = v i -v 0 × w i mod p (32)
[77] exploits NTRU encryption [START_REF] Perlner | Quantum resistant public key cryptography: a survey[END_REF] and a hash function to verify the correctness of shares. First, n pairs of P T i keys (k i,1 , k i,2) i=1,••• ,n are randomly created with NTRU. Then, shares e i and signatures s d i are created by Equations 33 and 34, respectively, where {x i } i=1,••• ,n are random integers, w is a random polynomial called blinding value and f is a random polynomial [START_REF] Shamir | How to Share a Secret[END_REF]. Keys (k i,1 , k i,2) and shares e i are stored at P T i and {x i } i=1,••• ,n and signatures {s d i } i=1,••• ,n are published on the NB. Before reconstruction, each share e i is verified for correctness by Equations 35 and 36. Finally, t pairs of (e i , x i) i=1,••• ,n help reconstruct secrets from the polynomial by Lagrange interpolation.

e i ≡ (w × k i,1 + f (x i)) mod p 1 (33
)
s d i ≡ (w × k i,1 + H(f (x i))) mod p 1 (34
)
y i ≡ k i,2 × e i mod p 1 mod p 2 (35)
y i ≡ k i,2 × s d i mod p 1 mod p 2 (36
u × p 3 =a mod φ (p 2) (39
)
w r = d ⊕ (s k r,1) u mod p 2 ⊕ • • • ⊕ (s k r,g) u mod p 2 (40) e r = w r × t x=1
d = w r ⊕ v kr,1 mod p 2 ⊕ • • • ⊕ v kr,g mod p 2 (42)
w r = e r × t x=1 -IDr,x 1-IDr,x + t x=1 v kr,x mod p2× t y=1,y =x -IDr,y IDr,x -IDr,y IDr,x-1 mod p 4 (43)
2.6 Group 6: Key and data-verifiable secret sharing schemes Unlike other schemes, [START_REF] Zhao | A secret sharing scheme with a short share realizing the (t,n) threshold and the adversary structure[END_REF]'s (t, n) VSSS verifies the correctness of both keys and shares. Moreover, it achieves a smaller share size than that of secrets, by splitting secrets before the sharing process. In the sharing process, key k 0 and keys {k i } i=1,••• ,n are randomly selected from a prime and distinct positive integers, respectively. Key signatures {s k i } i=0,••• ,n are constructed by Equation 44, where z is a positive integer and ϕ(p) is Euler's totient function [START_REF]Totient function. Encyclopedia of Mathematics[END_REF]. Next, any secret d is split into t2 smaller pieces stored in Matrix D = [d x,y] t×t . Then, two types of shares are created (PTs' shares and NB's shares). PTs' shares

{E i = {e i,0 , • • • , e i,a }} i=1,••• ,n
are sets of randomly distinct positive integers such that e i,0 is the sum of all entries in E i (e i,0 = a h=1 e i,h) and e i,0 < p. To construct the NB's shares 45) is created from split secrets and PTs' shares by Equations

{c i } i=1,••• ,n , polynomial function f (x) (Equation
s k i = k -1 0 mod ϕ(p) if i = 0 z ki mod p if 1 ≤ i ≤ n (44) f (x)= t-1 i=1 u i × x i-1 (45)
u i =(((z) k0) ei,0) -1 y i mod p (46) D × [y 1 , • • • , y t] T =[y 1 , • • • , y t] T × A (47
)
c i =f (v i) (48
)
v i =((z) k0) ki mod p (49
)
s d i,j =z ei,j mod p (50)
In the reconstruction process, key k i is correct if ((z) ki) s kn+1 = s k i mod p. P T i 's share e i,j is correct if (((z) k0) ei,j) s kn+1 = s d i,j mod p. Next, polynomial function f (x) is reconstructed from t pairs of key and NB's share {k i , c i } by Lagrange interpolation and Equation 49. Then, {y a } a=1,••• ,t are created by Equation 51. Finally, secret d is reconstructed by solving Equation 47.

y i = u i a j=1 ((z) k0) ei,j (51)
2.7 Group 7: Data-Verifiable Multi Secret Sharing Schemes Type I

The only (m, t, n) VMSSS type I in this group shares and reconstructs all secrets at once with the help of a cellular automaton, to enhance computation performance. Moreover, the correctness of shares is verified before reconstruction [START_REF] Eslami | A verifiable multi-secret sharing scheme based on cellular automata[END_REF]. In the sharing process, a set of integers

u 1 , • • • , u max(m,t) , • • • , u w+n is created, where w is a random integer such that w ≥ max(m, t), u j = d j if 1 ≤ j ≤ min(t,
c h =d t+h + u t+h (mod2) (52
)
e i =u m+i (53)
s d i =v ei mod p (54)
Before reconstruction, share integrity is verified by Equation 54. Next, u 1 , • • • , u max(m,t) , • • • , u w+n are reconstructed from t shares with the cellular automaton. Finally, all secrets are regenerated by Equation 55.

d j = u j if 1 ≤ j ≤ min(t, m) c j-t + u j (modp)
i is correct if ((s k 0) ki) v ≡ u i mod p 1 . k i =(s k i) u0 mod p 1 (56)
s k i =(p 2) ui mod p 1 (57) v=(u 0) -1 mod φ(p 1) (58)
[27] also extends from [START_REF] Yang | A (t,n) multisecret sharing scheme[END_REF] with the same goal. Only key and signature generation actually varies. However, the verification process is more efficient. Key k i is created by Equations 59, 60 and 61, where u i=1,2,3 are random integers and f is any two-variable one-way function. Signature s k i of key k i is created by Equation 62, where u 4 is a random integer. Key k i is stored at P T i , while u 1 , • • • , u 4 and {s k i } i=1,••• ,n are published on the NB.

k i =f (u 1 , w i) (59
)
w i =((v i) u3) u2 mod p (60)
u 2 × u 3 ≡1 mod φ (p) (61)
s k i =(u 4) ki mod p (62)
[28] in turn extends from [START_REF] Dehkordi | An efficient threshold verifiable multi-secret sharing[END_REF] by proposing new secret sharing and reconstruction processes to reduce computation costs. After keys and signatures are created, shares {c j,1 } j=1,••• ,n and {c j,2 } j=1,••• ,m are generated by Equations 63, 64, 65 and 66, where u 0 is a random integer. Next, {c j,1 } j=1,••• ,n and {c j,2 } j=1,••• ,m are published on the NB. After key verification, secrets are reconstructed by Equations 67, 68 and 69. c j,1 =d jy j+n [START_REF] Muhil | Securing multi-cloud using secret sharing algorithm[END_REF] c j,2 =k jy j-1 (64)

y j = k j+1 if 0 ≤ j < t - t v=1 u v × y j-v mod p otherwise (65) (x -u 0) t =x t + u 1 × x t-1 + • • • + u t = 0 (66
)
d j =y j+n + c j,2 (67)
y j =      k j+1 if 0 ≤ j < t k j+1 -c j+1,1 if t ≤ j < n f (j) × (u 0) j mod p otherwise (68) f (x)= t v=1 y v-1 (u 0) v-1 t w=1&w =v x -w + 1 v -w mod p (69)
[89] extends from [START_REF] Chen | A new dynamic threshold secret sharing scheme from bilinear maps[END_REF] (Section 2.9) to improve the efficiency of the sharing and reconstruction processes. To this aim, secrets are split into blocks of size t that are each shared and reconstructed all at once. Block b l is divided into n shares {c l,h } h=1,••• ,n by Equation 70, where

A = [a i,w] t×n , a i,w = H(u l × k i × v) w-1 , and {u l } l=1,••• ,o and v are random integers. Key k i is stored at P T i , whereas key signatures {s k i } i=1,••• ,n , shares {c l,h } l=1,••• ,o;h=1,••• ,n and {x l = u l × v} l=1,••• ,o
are published on the NB. To reconstruct secrets, shares and keys are verified for correctness with a bilinear map f (u l × k i × v, v) = f (x l , s k i). Then, secrets are reconstructed by solving Equation 70.

[c l,1 , • • • , c l,n] T = A × [b l] T (70)
[38] also extends from [START_REF] Chen | A new dynamic threshold secret sharing scheme from bilinear maps[END_REF], pursuing the same goal as [START_REF] Wang | Verifiable threshold scheme in multi-secret sharing distributions upon extensions of ecc[END_REF]. The difference is that secrets are divided into n + mt shares to reduce the number of shares. Shares {c h } h=1,••• ,(n+m-t) are computed by Equation 71, where A = [a x,y] (m+n)×(m+n-t) , a x,y = (w)

x(y-1) , z i = H(u× v × k i), and u, v and w are random integers. Key k i is stored at P T i , whereas key signatures {s

k i } i=1,••• ,n , shares {c h } h=1,••• ,(n+m-t) , data signatures {s d j } j=1,••• ,m
and x = u × v are published on the NB. To reconstruct secrets, shares and keys are verified for correctness with a bilinear map f (u×k i ×v, v) = f (x, s k i). Then, secrets are reconstructed by solving Equation 71.

[c 1 , • • • , c n+m-t] T = A × [z 1 , • • • , z n , d 1 , • • • , d m] T (71)
Unlike in other schemes, PTs in [START_REF] Chen | A distributed multi-secret sharing scheme on the (t,n) threshold[END_REF] can be added or deleted. Moreover, threshold t can vary. To this aim, keys k i , key signatures s k i and PT identifiers ID i are randomly selected such that they are different from one PT to the other. Then, secrets are organized into unfixed-sized blocks, where block b l stores u l secrets. All secrets {d l,q } q=1,••• ,u l in block b l are divided into n+u lt l shares {c l,h } h=1,••• ,(n+u l -t l) by Equations 72, 73, 74, 75 and 76, where z l is a random integer. Each key k i is stored at P T i and identifiers

{ID i } i=1,••• ,n , signatures {s k i } i=1,••• ,n and shares {y l } l=1,••• ,n and {c l,h } l=1,••• ,o;
h=1,••• ,(n+u l -t l) are published on the NB. Before reconstruction, keys are verified for correctness with a discrete logarithm modulo and a one-way hash function. Finally, each secret d l,q in block b l is reconstructed by Lagrange interpolation.

c l,h =f l (n + u l + h) (72)
f l (x)= u l v=1 d l,v × ∆ 1 + n v=1 (s k v) z l × ∆ 2 mod p 1 (73)
∆ 1 = u l w=1&w =v x -(n + w) v -w × n i=1 x -ID i (n + v) -ID i (74)
∆ 2 = n i=1&i =v x -ID i ID v -ID i × u l w=1 x -(n + w) ID v -(n + w) (75)
y l =(p 2) z l mod p 1 (76)
[60] extends from [START_REF] Parakh | Space efficient secret sharing for implicit data security[END_REF] to reduce computation cost and verify key correctness. Secrets are organized into blocks of size t -1. Keys {k i } i=1,••• ,n are randomly selected and their signatures {s k i } i=1,••• ,n are created by Equation 77, where H is a hash function. In block b l , the first secret d l,1 is divided into two shares c l,1,1 and c l,1,2 by Equation 78, where u is a random integer. Other secrets in block b l are shared by Equations 79 and 80. Key k i is stored at P T i and {s

k i } i=1,••• ,n , {c l,q,h } l=1,••• ,o;q=1,••• ,t-2; h=1,••• ,q+1 and {c l,t-1,h } l=1,••• ,o;
h=1,••• ,n are published on the NB. Before reconstruction, each key k i is verified for validity by Equation 81. Then, all secrets in each block are reconstructed by Lagrange interpolation.

s k i =H H t-1 (k i) ⊕ k i (77) c l,1,h =u × h + d l,1 -(k q ⊕ H (k i)) (78)
c l,q,h =f l,q (h) -(k q ⊕ H q (k q)) (79
)
f l,q (x)= d l,q + u × x if q = 1 d l,q + q v=1 x v × f l,q-1 (x) otherwise (80)
s k i =H H t-1 (k i) ⊕ k i (81)
Finally, [START_REF] Hu | Verifiable multi-secret sharing based on lfsr sequences[END_REF] propose two schemes. They create keys and verify their correctness by using a one-way hash function and a LFSR public key cryptosystem [START_REF] Gong | Public-key cryptosystems based on cubic finite field extensions[END_REF][START_REF] Gong | The gh public-key cryptosystem. Selected Areas in Cryptography[END_REF]. The first scheme shares and reconstructs secrets as [START_REF] Yang | A (t,n) multisecret sharing scheme[END_REF], while the second scheme does as [START_REF] Dehkordi | New efficient and practical verifiable multi-secret sharing schemes[END_REF], while providing higher security than [START_REF] Yang | A (t,n) multisecret sharing scheme[END_REF][START_REF] Dehkordi | New efficient and practical verifiable multi-secret sharing schemes[END_REF] with keys of same lengths.

2.9 Group 9: Key and Data-Verifiable Multi Secret Sharing Schemes Type I

The other third of (m, t, n) VMSSSs type I belong to this group. [START_REF] Lin | t,n) threshold verifiable multi secret sharing scheme based on factorisation intractability and discrete logarithm modulo a composite problems[END_REF] prevents cheating from malicious PTs by verifying both shares and keys. Keys {k i } i=1,••• ,n and their signatures {s k i } i=1,••• ,n are created by Equations 82, 83, 84, 85 and 86, where {u v } v=0,••• ,t-1 are random integers and a 1 , • • • , a 5 are set as discrete logarithms. Let p 1 and p 2 be big primes. a 1 is a random integer, a 2 = (2 × p 1 + 1)(2 × p 2 + 1), a 3 = p 1 × p 2 and a 3 ×a 2 = φ(a 5), where φ is Euler's totient function [START_REF]Totient function. Encyclopedia of Mathematics[END_REF]. Key k i is stored at P T i , while signatures {s k i } i=1,••• ,n and {w v } v=0,••• ,t-1 are published on the NB. Key correctness is checked by Equation 87.

f (x)= t-1 v=0 u v × x v mod a 3 (82)
w v =(p 1) uv mod a 2 (83)
y i = ∀P Tv,v =i (ID i -ID v) mod a 3 (84
)
k i =(f (ID i)/y i) mod a 3 (85)
s k i =(a 1) ki mod a 2 (86)
((a 1) yi) ki = t-1 v=0 (w v) (IDi) v mod a 2 (87)
c j,3 =(a 1) -a5+cj,1 × (c j,2) 2×a5+cj,1+1 mod a 2 (88)
c j,4 =((c j,2) u0 -d j)(c j,3) -u0 mod a 2 (89)
((c j,3) ki) a4 ≡(s k i) a4×cj,1-1 × ((c j,2) ki) 2+a4(cj,1+1) mod a 2 (90)
d j = P Ti∈G ((c j,2) ki) i - c j,4 P Ti∈G ((c j3) ki) i mod a 2 (91
) i = ∀P Tv∈G -ID v × ∀P Tv∈G (ID i -ID v) (92)
[19] extends from [START_REF] Lin | t,n) threshold verifiable multi secret sharing scheme based on factorisation intractability and discrete logarithm modulo a composite problems[END_REF] to improve the efficiency of the sharing and reconstruction processes. To this aim, j 3-tuples of shares {c j,1 , c j,3 , c j,4 } j=1,••• ,m are created by Equations 93 and 94 and published on the NB. Before reconstruction, each PT must verify share and key correctness by Equation 95. If verification is positive, secrets are reconstructed by Equations 96 and 92. c j,3 =(a 1) a5×cj,1 mod a 2 (93)

c j,4 = (a 1) u0×a5×cj,1 mod a 2 ⊕ d j (94)
((c j,3) ki) a4 ≡(s k i) cj,1 mod a 2 (95)

d j =c j,4 ⊕ ∀P Ti∈G ((c j,3) ki) i mod a 2 (96)
[78] extends from [START_REF] Yang | A (t,n) multisecret sharing scheme[END_REF] by checking whether keys and shares are valid, with the help of a discrete logarithm. Signatures {s d j } j=1,••• ,max(m,t) are created after secrets are shared by Equation 97, where {u j } j=1,••• ,m are secrets (u j = d j) and {u j } j=(m+1),••• ,t are random integers. They are then published on the NB. Before reconstruction, keys are verified first, and then shares are, both by Equation 98. Signature s d j is also used to check share integrity.

s d j =(p 1) uj mod p 2 (97)
(p 1) ci = max(t,m) h=1 (c h+n+1) f (w,ki) h mod p 2 (98)
In [START_REF] Chen | A new dynamic threshold secret sharing scheme from bilinear maps[END_REF], each secret d j is divided independently into vary threshold t j . Keys {k i } i=1,••• ,n are randomly selected such that their signatures {s k i } i=1,••• ,n (Equation 99, where v is a random integer) are unique. Each secret d j is divided into n shares {c j,h } h=1,••• ,n by Equations 100 and 101, where A j = [a x,y] (n×ti) , a x,y = (u) x(y-1) ,

Z j = [w j × v, d j × (k 1) v , • • • , d j × (k n) v]
and u and w j are random integers. Signature s d j of d j is created by Equation 102. Keys k i are stored at P T i , whereas key signatures {s

k i } i=1,••• ,n , shares {w j , c j,1 , • • • , c j,n } j=1,••• ,m , signatures {s d j } j=1,••• ,m , u
and v are published on the NB. Before reconstruction, shares and keys are verified for correctness with a bilinear map f ((k i) s dj , v) = f (s d j , (k j) v). Then, secrets are reconstructed by solving linear Equations 100 and 101.

s k i =(k i) v (99) [c j,1 , • • • , c j,n] T =A j × [Z j] T (100)
d j =H(w j × v) (101) s d j =d j × v (102)
Unlike other schemes that compute integers over a finite field, [START_REF] Das | An efficient multi-use multi-secret sharing scheme based on hash function[END_REF] exploits binary strings in all processes to improve the efficiency of both sharing and reconstruction processes. In the sharing process, two kinds of keys are randomly created in binary string format: PT keys {k i } i=1,••• ,n and user keys {u j,v } j=1,••• ,m;v=1,••• ,t l . Then, each share c j,h is created by Equation 103, where H is a one-way hash function and is the concatenation operator. Finally, shares c j,h , H(d j), H (H(k i j h))

with j = 1, • • • , m; h = 1, • • • , t l and i = 1, • • • , n, are published on the NB. c j,h = d j ⊕ ⊕ i:P Ti∈uj,v H(k i j h) (103)
Secrets are reconstructed by Equation 104 if all keys pass the verification process, which is split in two steps. Before reconstruction, keys {k i } i=1,••• ,n are checked for correctness by comparison with signatures H (H(k i j h)). After reconstruction, secrets {d j } j=1,••• ,m are checked for correctness by comparison with signatures H(d j).

d j = c l,h ⊕ ⊕ i:P Ti∈uj,v H(k i j h) (104)
Finally, [START_REF] Bu | Novel and effective multi-secret sharing scheme[END_REF] extends from [START_REF] Shanyue | A secret sharing scheme based on ntru algorithm[END_REF] by sharing multiple secrets, to improve sharing/reconstruction efficiency and reduce share volume. To this aim, P T i 's identifier ID i is randomly selected and P T i 's key k i and signatures {s k v } v=0,••• ,(t-1) are created by Equations 105 and 106, respectively, where x and y are randomly created with NTRU [START_REF] Perlner | Quantum resistant public key cryptography: a survey[END_REF] and w is NTRU's blinding value. Each secret d j is divided into a 3-tuple of shares {c j,1 , c j,2 , c j,3 } by Equations 107 and 108, where c j,1 is a random integer. Key k i is stored at P T i , whereas identifiers

{ID i } i=1,••• ,n , signature {s k v } v=0,••• ,(t-
k i = t-1 v=0 u v × (ID i) v (105) s k v =w × x + u v mod p 1 (106) c j,2 =w × x + c j,1 mod p 1 (107) c j,3 =d j ⊕ H(u 0 × c j,2) (108)
Before reconstruction, keys and shares are verified for correctness by Equations 109 and 110, respectively. Finally, secrets are reconstructed by Equation 111.

k i = y t-1 v=0 s k v (ID i) v mod p 2 (109) y × k i × c j,2 = y t-1 v=0 (w v × (ID i) v × c j,1
) mod p 2 (110)

d j = c j,3 ⊕ H   i∈G k i × c j,2 × v∈G&v =i -ID v ID i -ID v   (111)
2.10 Group 10: Data-Verifiable Multi Secret Sharing Schemes Type II VMSSSs type II are recent. Unlike all previous SSSs, [START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF] verifies both PT honesty and share correctness with inner and outer signatures, respectively. Inner signatures are signatures that help verify secret correctness after reconstruction. If one or more shares are erroneous, then reconstructed secrets do not match with their inner signatures. Outer signatures are share signatures. The correctness of shares is checked before reconstructing secrets.

In the sharing process of [START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF], n distinct random linear equations {f i } i=1,••• ,n (Equation 112, where coefficients u i,v are random positive integers) are created. Then, m secrets {d l,q } q=1,••• ,t-1 are organized into o blocks b l of size t -1. The inner signature s b l of block b l is created with the help of an homomorphic function (Equation 113). Next, n shares {e l,i } i=1,••• ,n are created by Equation 114. Their outer signatures {s out l,i } i=1,••• ,n are created with any hash function. Shares {e l,i , s out l,i } l=1,••• ,o are stored at P T i .

f i (x 1 , • • • , x t)=x t × u i,v + t-1 v=1 (x v + 2) × u i,v (112)
s b l =H(b l) (113) e l,i =f i (b l , s b l) (114)
Before reconstruction, shares from t out of n PTs are verified against their outer signatures. Then, blocks and their inner signatures are reconstructed by solving the linear equations. Finally, recovered blocks are verified against their inner signatures. If the test fails, erroneous blocks can be reconstructed from shares in a new PT group.

[5] extends from [START_REF] Shamir | How to Share a Secret[END_REF] by sharing each secret at fewer than n PTs'. PT failure is also allowed, more specifically by allowing data updates at remaining online PTs. Moreover, [START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] also protects from PT group cheating by imposing a new constraint: no PT group can hold enough shares to reconstruct the secret when n < 2t-2. PT honesty and share correctness are checked as in [START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF]. In addition, this scheme separates outer signature creation and verification from the sharing and reconstruction processes.

Although [START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] is an MSSS, each secret is shared and reconstructed independently. Inner signature s d j of secret d j is created with the help of an homomorphic function. Next, PTs are split into two groups: n-t+2 PTs in group G 1 and t+2 PTs in group G 2 . Then, t+2 pseudo shares {e j,i } P Ti∈G2 (G 2 's shares created to construct polynomial f 2 but not stored at P T i ∈ G 2) are created from d j 's identifier d id j and identifiers {ID i } P Ti∈G2 of PTs in G 2 with an homomorphic function (Equation 115).

e j,i =f 1 (d id j , ID i) (115)
Next, a polynomial f 2 of degree t-1 is created from d j , inner signature s d j , pseudo shares {e j,i } P Ti∈G2 and PT identifiers {ID i } P Ti∈G2 by Lagrange interpolation (Equation 116, where {(x 1 , y 2), . . . , (x t , y t)} = {(H(K d), d j), (H(K s), s d j)}∪{(H(ID i), e j,i) P Ti∈G2 }).

f 2 (x)= t u=1 1≤v≤t,u =v x -x v x u -x v × y u (116
)
Shares {e j,i } P Ti∈G1 are created by Equation 117 and stored at P T i ∈ G 1 . To reconstruct d j , t out of n PTs from G 1 and G 2 are selected. Secrets are reconstructed by Lagrange interpolation (Equation 116) from both shares and pseudo shares (Equation 115).

e j,i =f 2 (H(IDi)) (117)
2.11 Group 11: Key and Data-Verifiable Multi Secret Sharing Schemes Type II [START_REF] Shi | A (t, n)-threshold verified multi-secret sharing scheme based on ECDLP[END_REF] is the only (m, t, n) VMSSS type II. It exploits elliptic curve cryptography to verify the correctness of both shares and keys. In the sharing process, keys K = {k i,q } i=1,••• ,n,q=1,••• ,t are randomly chosen from small integers. Then, l × t secrets {d l,q } l=1, 118).

[e l,1 ,

• • • , e l,n] T =K × [b l] T mod p (118) s d l,q =u × d l,q (119) u × [e l,1 , • • • , e l,n] T =K × [s d l,1 , • • • , s d l,t] T (120
)

Discussion

In this section, we compare the SSSs presented in Section 2 along four axes. First, we provide a global view of the evolution of SSSs since their inception (Section 3.1). Second, we synthesize and account for the various sharing and verification techniques used in SSSs to enforce data security (Section 3.2). Third, we compare the features provided by SSSs beyond data privacy and integrity (Section 3.3). Finally, we study the factors that influence the cost of cloud SSS-based solutions in the pay-as-you-go paradigm (Section 3.4).

Evolution of Secret Sharing Schemes

To clarify the historical relationships between the SSSs reviewed in this paper and better visualize the improvements brought to Shamir's [START_REF] Shamir | How to Share a Secret[END_REF] and Blakley's [START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF] schemes since 1979, we refer the reader to Figure 10. In this flowchart, each scheme is identified by a bibliographical reference (in red), the group (in orange) and type (in yellow) it belongs to (Section 2), and whether it enforces key (represented by a green K) and/or data (represented by a blue D) verification. Moreover, a brief text describes the novelty brought by each scheme. Finally, an arrow from scheme S 1 to scheme S 2 indicates that S 1 extends from S 2 . For example, [START_REF] Shao | A new efficient (t,n) verifiable multisecret sharing (vmss) based on ych scheme[END_REF], proposed in 2005, is a VMSSS type I belonging to Group 9. This scheme can verify both data and key correctness and extends from [START_REF] Yang | A (t,n) multisecret sharing scheme[END_REF] to improve sharing and reconstruction efficiency. Figure 10 quite clearly shows that SSSs have been less studied for almost 25 years than since the 2000's, when they attracted new attention in conjunction with the development of new, on-line distributed systems, i.e., clusters, grids and the cloud. Moreover, research about secret sharing seems to have accelerated since 2012, with the wide spread of cloud computing and associated data security concerns.

Sharing, Reconstruction and Verification Methods

SSSs may be subdivided into five subprocesses, i.e., data sharing, data reconstruction, key creation, key verification and data verification. Of course, data sharing and reconstruction are the main processes for all groups of SSSs (Table 1). Key creation is always optional. Finally, data verification is the focus of groups 4, 6, 7, 9, 10 and 11; and key verification the focus of groups 5, 6, 8, 9 and 11. The methods supporting these processes in each studied SSS are summarized in Table 3.

Approximately half of the surveyed SSSs share secrets by polynomial interpolation and reconstruct them by Lagrange interpolation, as Shamir's [START_REF] Shamir | How to Share a Secret[END_REF]. Yet, other methods, such as homomorphic encryption, NTRU or RSA enhance security. Similarly, approximately half of the schemes necessitating keys generate them at random,while more elaborate methods such as hash functions, LFSR, NTRU or RSA help protect keys. Eventually, the same variety of methods is found in the key and data verification processes, although discrete logarithm modulo and hash functions are by far the most popular.

Given such variety, it is difficult to crisply rank the security level of all studied schemes. SSSs have indeed been continually addressing different issues over time, and thus adopted ad-hoc methods suited to their objectives. Moreover, the papers describing them typically do not compare to one another. Thence, we push the comparison of SSSs' features and cost in the following subsections.

Features of Secret Sharing Schemes

SSSs mainly aim at enforcing data security (privacy, availability and integrity). However, in the context of cloud data processing, efficient data access (update, search and aggregation operations) must also be made possible by SSSs. Thus, some SSSs allow computation (e.g., sums and averages [START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF][START_REF] He | Multistage secret sharing based on one-way function[END_REF][START_REF] Shamir | How to Share a Secret[END_REF][START_REF] Shi | A (t, n)-threshold verified multi-secret sharing scheme based on ECDLP[END_REF] and exact matches [START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF][START_REF] Das | An efficient multi-use multi-secret sharing scheme based on hash function[END_REF]) directly over shares, i.e., without reconstructing secrets. To provide a global overview, the features of all studied SSSs are synthesized in Table 4, where an X means a particular feature is supported by the corresponding SSS(s); NB means that data availability is supported, but only when the NB is accessible; G means that data availability is supported only when shares are replicated; IN and OUT stand for inner and outer code verification, respectively; B means that updates operate on data blocks instead of individual shares; and I means that exact matches are run on indices.

Data Privacy and Availability

Since all SSSs divide data into n shares such that each individual share is meaningless, they enforce data privacy by design. Moreover, data availability is guaranteed as long as t out of n PTs are available, since t PTs are enough to reconstruct secrets. However, a coalition of t or more malicious PTs can break any secret. Thus, [START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] provides further privacy by protecting data from PT group cheating, by having a number of shares at all PTs that is lower than t. Finally, since most (V)MSSSs type-I store all shares in the NB, they are vulnerable and can loose data access if the NB is compromised.

The privacy level of all SSSs mainly depends on parameter t. Provided PTs independently enforce sound

1979-2003

Polynomial interpolation

Lagrange interpolation [START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF] Hyperplane intersection [START_REF] Asmuth | A modular approach to key safeguarding[END_REF][START_REF] Iftene | General secret sharing based on the chinese remainder theorem with applications in e-voting[END_REF] Chinese remainder theorem Random

Features

Data access Data security measures, collecting at least t shares, i.e., compromising at least t PTs, is indeed harder and harder when t increases. High data protection is thus achieved when t is large [START_REF] Asmuth | A modular approach to key safeguarding[END_REF][START_REF] Dautrich | Security limitations of using secret sharing for data outsourcing[END_REF], but at the expense of computing overhead, especially when sharing and reconstructing data (Section 3.4). Moreover, some SSSs may be insecure for applications where t is limited in practice. For instance, when t is a number of CSPs or servers, budget constraints come into play. We discuss three frameworks for outsourcing data in the cloud that address this issue in Section 4.

The robustness of almost SSSs directly relies on the gap between the two parameters n and t. The secret can be recovered although up to nt PTs disappear. Nevertheless, computing time and storage costs become prohibitive when n t (Section 3.4). Thus, n should be only a little bigger than t to achieve data availability with acceptable costs.

Data Integrity

The reconstruction process in SSSs always produces the correct result if secrets, shares and sharing and reconstruction functions are defined over a finite field [START_REF] Beimel | Secret-Sharing Schemes: A Survey[END_REF]. However, if shares are altered, reconstructed secrets are mechanically incorrect. Thus, VSSSs and VMSSSs have been introduced to enforce data integrity. We categorize them into four classes: SSSs that verify keys, shares, secrets or both secrets and shares.

First, all schemes in groups 5, 6, 8, 9 and 11 verify keys before reconstructing shares. Hence, they can detect PT cheating and prevent transferring any data back to the user when incorrect keys are detected.

Second, most schemes in groups 4, 6, 7, 9, 10 and 11 verify the correctness of shares before reconstruction to reduce computation cost at the user's (no reconstruction occurs from incorrect shares). However, they require extra storage for signatures.

Third, [START_REF] Chunming | A new (t,n) threshold secret sharing scheme[END_REF][START_REF] Das | An efficient multi-use multi-secret sharing scheme based on hash function[END_REF] verify the correctness of reconstructed secrets. Their signature volumes are lower than that of the second class of VSSSs, since the number of shares is generally greater than that of secrets. However, incorrect secrets are detected only after they are already reconstructed.

Fourth, [START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] verify the correctness of both secrets and shares with inner and outer code verification, respectively. Thus, no erroneous share is transferred to the user. Moreover, any PT cheating is detected.

Finally, although VSSSs and MVSSSs guarantee integrity, they consume more storage to handle signatures and more CPU power to verify keys, shares, and/or secrets. Moreover, to achieve the best possible verification performance, i.e., the lowest possible false positive rate, signatures must be big [START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF]. A larger storage volume is thus required. We push the comparison of such costs in Section 3.4.

Data Access

SSSs manage data at two levels: data piece or data block. First, [START_REF] Takahashi | Secret sharing scheme suitable for cloud computing[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] and most schemes in groups 1, 4, 5, 6, 9 share secrets independently. Hence, they can directly update data. For example, any secret can be deleted by removing its shares at all PTs'. Second, [START_REF] Waseda | Consideration for multithreshold multi-secret sharing schemes[END_REF][START_REF] Runhual | A threshold multi-secret sharing scheme[END_REF][START_REF] Wang | Verifiable threshold scheme in multi-secret sharing distributions upon extensions of ecc[END_REF][START_REF] Chen | A distributed multi-secret sharing scheme on the (t,n) threshold[END_REF][START_REF] Li | Novel space efficient secret sharing for implicit data security[END_REF][START_REF] Shi | A (t, n)-threshold verified multi-secret sharing scheme based on ECDLP[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF] share secrets as blocks and support the homomorphic property. Thus, they allow updating shared blocks without reconstruction. Moreover, they update data faster because several shares in the same data block can be updated at once. In contrast, the schemes that share all secrets at once cannot perform updates on shares. The whole database must indeed be reconstructed, updated and then shared again. Thus, such schemes require longer execution times and use lots of memory when updating data. Some SSSs allow computing exact matches on shares. Since [START_REF] Shamir | How to Share a Secret[END_REF][START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF][START_REF] He | Multistage secret sharing based on one-way function[END_REF][START_REF] Shi | A (t, n)-threshold verified multi-secret sharing scheme based on ECDLP[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] use polynomial or linear equations to share data, they also allow sum and average operations on shares. Moreover, [START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF][START_REF] Das | An efficient multi-use multi-secret sharing scheme based on hash function[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF] allow exact matches on shares, because they use the same keys to share all secrets. In contrast, [START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] uses indices to achieve exact match queries. Indices indeed help perform faster exact matches than operating directly on shares, although at the expense of extra storage volume. Thus, the tradeoff between security and query efficiency must be carefully considered before choosing an SSS. We further discuss this issue in Sections 4 and 5.2.

Other Features

More features are included in some schemes. [START_REF] He | Multistage secret sharing based on one-way function[END_REF][START_REF] Harn | Strong (n, t, n) verifiable secret sharing scheme[END_REF][START_REF] Liu | Efficient (n, t, n) secret sharing schemes[END_REF] verify a strong t-consistency property. Thus, they guarantee that any subset of t shares or more always reconstruct the same data, but that any subset of t shares or fewer cannot. [START_REF] Hwang | An on-line secret sharing scheme for multi-secrets[END_REF][START_REF] Chen | A distributed multi-secret sharing scheme on the (t,n) threshold[END_REF] allow the user to add and remove PTs to/from the PT pool by updating the value of n. [START_REF] Waseda | Consideration for multithreshold multi-secret sharing schemes[END_REF][START_REF] Chan | A scheme for threshold multisecret sharing[END_REF][START_REF] Runhual | A threshold multi-secret sharing scheme[END_REF][START_REF] Chen | A distributed multi-secret sharing scheme on the (t,n) threshold[END_REF][START_REF] Chen | A new dynamic threshold secret sharing scheme from bilinear maps[END_REF] allow the user to assign different values of t to different secrets, to enforce different security levels for each secret. Eventually, [START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] allows inserting new data even if some PTs disappear.

Costs

In the cloud pay-as-you-go paradigm, the cost of securing data must be balanced with the risk of data loss or pilfering, and thus the level of data security must be balanced with its cost. This is a particularly important issue with secret sharing, which basically multiplies secret data volume by n in the worst case (provided individual share volume is not greater than secret data volume). We summarize the costs induced by SSSs in Table 5.

SSS time complexity and storage volume depend on a few parameters: m, n and t. To determine time complexity and storage volume, we suppose that only m is big. Other parameters n and t should remain quite small, because they relate to the number of PTs, i.e., the number of cloud service providers, which is limited in practice. Moreover, some SSSs such as [START_REF] Iftene | General secret sharing based on the chinese remainder theorem with applications in e-voting[END_REF][START_REF] Parakh | Space efficient secret sharing for implicit data security[END_REF][START_REF] Zhao | A secret sharing scheme with a short share realizing the (t,n) threshold and the adversary structure[END_REF] cannot assign a big value to parameters n and t because neither can be greater than the size of a secret.

Time Complexity

Data sharing and reconstruction complexity of most SSSs increases with n and t. In practice, n is a little bigger than t to guarantee data availability. Thus, the time complexity of sharing data is a little higher than that of reconstruction, e.g., O(mnt) > O(mt 2) in [START_REF] Shamir | How to Share a Secret[END_REF]. However, when availability is not enforced, data sharing and reconstruction complexity is the same.

In contrast, in most MSSSs type I, secret sharing time complexity is clearly lower than that of data reconstruction, e.g., O ((n + mt) t) < O(m 3) in [START_REF] Yang | A (t,n) multisecret sharing scheme[END_REF], because they share several secrets at once but reconstruct each secret independently.

Overall, time complexities to share/reconstruct data by [START_REF] Eslami | A verifiable multi-secret sharing scheme based on cellular automata[END_REF] are the lowest: O(max(m, t 2)). Execution time actually depends only on m, because m is large, while both t and n are small in the normal case (m n ≥ t). Moreover, VSSSs and VMSSSs must verify the correctness of keys and/or data. Thus, extra computation time is required. The time complexity of data/key verification is generally lower than that of data sharing/reconstruction. Moreover, the time complexity of key verification is generally lower than that of data verification. Several schemes achieve the lowest key verification complexity: O(t), but only [START_REF] Eslami | A verifiable multi-secret sharing scheme based on cellular automata[END_REF] achieves the lowest data verification complexity: O(n).

Storage Volume

Figure 11 plots the estimated global share volume of all SSSs with respect to n, with t = n -1 and original data volume is 1 GB. [START_REF] Li | Novel space efficient secret sharing for implicit data security[END_REF] is not plotted because global share volume grows very rapidly (about 252 GB when n = 7).

Almost all SSSs require a volume about n times that of secret data to store shares. Some SSSs propose solutions to minimize share volume. We categorize them

O (nt) if m ≤ t O ((n + m -t) t) otherwise O (max (m 3 , mt 2
))

n d if m ≤ t (n + m -t) d otherwise n k [90] O (max (ntβ, mt 2
)) O (max (t 3

)) O (max (γt, mt 2
))

O (t) O (t 2) γm d /t 2 mnγ d /t 2 n k (2γt + 2) k (mnγ + n + 1) s VMSSS Group 7 [37] O (max (m, t 2)) O (max (m, t 2)) O (n) n d (m -t) d if t > m n s Group 8 [99] O (nt) if m ≤ t O ((n + m -t) t) otherwise O (max (m 3 , mt 2
))

O (t) n d if m ≤ t (n + m -t) d otherwise n k k (n + 2) k (n + 1) s [27] O (nt) if m ≤ t O ((n + m -t) t) otherwise O (max (m 3 , mt 2
))

O (t) n d if m ≤ t (n + m -t) d otherwise n k 4 k n s [28] O (m + n) O (max (m, t 2
))

O (t) (m + n) d n k 4 k n s [89] O (mnt) O (mt 2) O (mt) mn d /t n k n s [38] O (max (m 2 , t 2
)) O (max (m 2 , t 2
))

O (mt) (n + m + t) d n k (n + m) s [20] O (mnt 2) O (mnt 2) O (t) mn d /t n k 2n k n s [52]-I O (nt) if m ≤ t O ((n + m -t) t) otherwise O (max (m 3 , mt 2
))

O (t) n d if m ≤ t (n + m -t) d otherwise n k 2n s [52]-II O (m + n) O (max (m, t 2
))

O (t) (m + n) d n k 4 k 2n s [60] O (mnt) O (mt 2) O (t 2) m (n -1) (t 2 -t) d / (2t) n k n s Group 9 [82] O (mt) O (mt 2) O (t) O (mt) 4m d n k (t + 3) k 2 k n s [19] O (mt) O (mt 2) O (t) O (mt) 3m d n k (t + 3) k 2 k n s [78] O (nt) if m ≤ t O ((n + m -t) t) otherwise O (max (m 3 , mt 2)) O (max (m 2 , mt)) n d if m ≤ t (n + m -t) d otherwise n k n s if m ≤ t (n + m -t) s otherwise [21] O (mnt) O (mt 2) O (mt) m (n + 1) d n k 2 k (n + m) s [25] O (mt 2) O (mt 2) O (mnt) O (m) mt d n k mt k (m + mnt) s [16] O (max (nt, m)) O (mt 2) O (t 2) O (mt) 3m D n k 3 k k t s Group 10 [6] O (mn) O (mt) O (m) mn d /(t -1) nt k mn s /(t -1) [5] O (mnt) O (mt 2) O (mt) m(n -t + 2) d (2n + 2) k log m(n -t + 2) s
Group 11 n + 1: [START_REF] Chen | A new dynamic threshold secret sharing scheme from bilinear maps[END_REF] n: Others t: [START_REF] Das | An efficient multi-use multi-secret sharing scheme based on hash function[END_REF] 4: [START_REF] Lin | t,n) threshold verifiable multi secret sharing scheme based on factorisation intractability and discrete logarithm modulo a composite problems[END_REF] 3: [START_REF] Bu | Novel and effective multi-secret sharing scheme[END_REF][START_REF] Chang | An improvement on the lin-wu (t,n) threshold verifiable multi-secret sharing scheme[END_REF], n -t + 2: [START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] n/(t -1): [START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF] n/t: [START_REF] Chen | A distributed multi-secret sharing scheme on the (t,n) threshold[END_REF][START_REF] Iftene | General secret sharing based on the chinese remainder theorem with applications in e-voting[END_REF][START_REF] Parakh | Space efficient secret sharing for implicit data security[END_REF][START_REF] Runhual | A threshold multi-secret sharing scheme[END_REF][START_REF] Shi | A (t, n)-threshold verified multi-secret sharing scheme based on ECDLP[END_REF][START_REF] Wang | Verifiable threshold scheme in multi-secret sharing distributions upon extensions of ecc[END_REF] 1: [START_REF] Dehkordi | An efficient threshold verifiable multi-secret sharing[END_REF][START_REF] Dehkordi | New efficient and practical verifiable multi-secret sharing schemes[END_REF][START_REF] Eslami | A verifiable multi-secret sharing scheme based on cellular automata[END_REF][START_REF] Eslami | A new verifiable multi-secret sharing scheme based on bilinear maps[END_REF][START_REF] Hu | Verifiable multi-secret sharing based on lfsr sequences[END_REF][START_REF] Shao | A new efficient (t,n) verifiable multisecret sharing (vmss) based on ych scheme[END_REF][START_REF] Waseda | Consideration for multithreshold multi-secret sharing schemes[END_REF][START_REF] Yang | A (t,n) multisecret sharing scheme[END_REF][START_REF] Zhao | A practical verifiable multi-secret sharing scheme[END_REF] Fig. 11: Global share volume comparison into three classes. First, [START_REF] Iftene | General secret sharing based on the chinese remainder theorem with applications in e-voting[END_REF][START_REF] Parakh | Space efficient secret sharing for implicit data security[END_REF][START_REF] Zhao | A secret sharing scheme with a short share realizing the (t,n) threshold and the adversary structure[END_REF] split data before sharing. Hence, share volume is only n/t times that of secrets. However, since the size of shares decreases when t increases, the value of t cannot be bigger than the size of a secret. Second, global share volumes in [START_REF] Waseda | Consideration for multithreshold multi-secret sharing schemes[END_REF] and [START_REF] Runhual | A threshold multi-secret sharing scheme[END_REF][START_REF] Wang | Verifiable threshold scheme in multi-secret sharing distributions upon extensions of ecc[END_REF][START_REF] Chen | A distributed multi-secret sharing scheme on the (t,n) threshold[END_REF][START_REF] Shi | A (t, n)-threshold verified multi-secret sharing scheme based on ECDLP[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF] are only 1 and n/t times that of secret data, respectively, because they construct t and n shares, respectively, per data block sizing t secrets.

Third, [START_REF] Eslami | A verifiable multi-secret sharing scheme based on cellular automata[END_REF][START_REF] Lin | t,n) threshold verifiable multi secret sharing scheme based on factorisation intractability and discrete logarithm modulo a composite problems[END_REF][START_REF] Chang | An improvement on the lin-wu (t,n) threshold verifiable multi-secret sharing scheme[END_REF][START_REF] Bu | Novel and effective multi-secret sharing scheme[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] share secrets independently, but they construct fewer than n shares per secret (1, 4, 3, 3 and nt + 2 shares, respectively). Hence, share volumes are only 1, 4, 3, 3 and nt + 2 times that of secret data, respectively.

Overall, [START_REF] Waseda | Consideration for multithreshold multi-secret sharing schemes[END_REF][START_REF] Eslami | A verifiable multi-secret sharing scheme based on cellular automata[END_REF] require the lowest storage volume (the same as secret data volume) to store shares. However, [START_REF] Waseda | Consideration for multithreshold multi-secret sharing schemes[END_REF] does not support data availability and [START_REF] Eslami | A verifiable multi-secret sharing scheme based on cellular automata[END_REF] supports data availability only when the NB is accessible. Share volumes of [START_REF] Iftene | General secret sharing based on the chinese remainder theorem with applications in e-voting[END_REF][START_REF] Parakh | Space efficient secret sharing for implicit data security[END_REF][START_REF] Shi | A (t, n)-threshold verified multi-secret sharing scheme based on ECDLP[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] are a little higher than that of the lowest-share-volume approaches [START_REF] Waseda | Consideration for multithreshold multi-secret sharing schemes[END_REF][START_REF] Eslami | A verifiable multi-secret sharing scheme based on cellular automata[END_REF] if n is close to t, but they do support data availability. Some SSSs require extra storage to store keys. Most of them use only n or nt keys to share all secrets. Thus, they only consume a small storage volume. However, key volumes of [START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF][START_REF] He | Multistage secret sharing based on one-way function[END_REF][START_REF] Das | An efficient multi-use multi-secret sharing scheme based on hash function[END_REF] are greater than the secret data volume (about t 2 [START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF], 2n [START_REF] He | Multistage secret sharing based on one-way function[END_REF] and t [START_REF] Das | An efficient multi-use multi-secret sharing scheme based on hash function[END_REF] times data volume) because they use different key sets to share a secret. Hence, their overall storage volume (shares, keys and signatures) are greater than that of other SSSs, and thus incurs a higher storage cost.

Finally, all VSSSs and VMSSSs require extra storage to store signatures. The number of signatures is about the number of keys or shares, depending on the verified data type. Thus, overall signature volume is lower than share volume in all VSSSs and VMSSSs. However, if signatures are too small, verification accuracy becomes weak.

Overall, [START_REF] Bu | Novel and effective multi-secret sharing scheme[END_REF] requires the lowest storage volume to store signatures. Hence, its overall storage volume is lower than n times that of secret data. In contrast, [START_REF] Pedersen | A threshold cryptosystem without a trusted party[END_REF][START_REF] Shanyue | A secret sharing scheme based on ntru algorithm[END_REF] require the greatest storage volume to store signatures. Hence, their overall storage volume turn to be greater than other SSSs, i.e., the same as [START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF][START_REF] He | Multistage secret sharing based on one-way function[END_REF][START_REF] Das | An efficient multi-use multi-secret sharing scheme based on hash function[END_REF], which construct a huge volume of keys.

Frameworks and Architectures for Sharing Secrets in the Cloud

Secret sharing-based cloud frameworks, such as the ones proposed by [START_REF] Takahashi | Secret sharing scheme suitable for cloud computing[END_REF][START_REF] Pal | Multilevel threshold secret sharing in distributed cloud[END_REF], are similar to classical data distribution frameworks [START_REF] Zhang | Security-preserving live migration of virtual machines in the cloud[END_REF][START_REF] Padmanabhan | A survey of data replication techniques for mobile ad hoc network databases[END_REF]104] in the cloud and distribute secrets over nodes at a single CSP's (Figure 12). They mostly differ in the SSSs they use. Unlike a classical data distribution framework, such frameworks guarantee data availability by default. Both secret sharing and data reconstruction processes run at a master server's (Figure 13). Although the master server may be a node in the cloud, to reduce privacy breaches in case of hacking, the master server usually stands at the user's side to hide all private parameters and keys from intruders collecting shares.

Two optional verification processes may be enforced by VSSSs. The first process helps verify the correctness of query results at PTs' so that no erroneous query results are transferred back to the master server. The second process runs at the master server's and verifies the correctness of reconstructed query results in case some PTs are not honest.

However, this framework bears a critical security weakness. Since all shares are stored at the same CSPs, if the CSP is hacked, all data can be easily collected and reconstructed by the intruder. In contrast, the frameworks such as the ones proposed by [START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF][START_REF] Dolev | Private and secure secret shared mapreduce[END_REF][START_REF] Muhil | Securing multi-cloud using secret sharing algorithm[END_REF] distribute secrets over multiple CSPs (Figure 14), thus providing better availability (it is unlikely that two or more all fail at the same As in the previous framework, storage and computation costs are still high. However, unlike global data volume, global storage monertary cost might not be n times that of original data because storage cost differs from CSP to CSP. In contrast, data access time is bounded to the slowest CSP. Yet, this problem may be alleviated by both balancing data access time and providing the lowest possible costs [START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF][START_REF] Attasena | Secret Sharing Approaches for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF]. Finally, an SSSS-based framework [START_REF] Nojoumian | Unconditionally secure social secret sharing scheme[END_REF][START_REF] Nojoumian | Socio-rational secret sharing as a new direction in rational cryptography[END_REF]100,[START_REF] Nojoumian | Social secret sharing in cloud computing using a new trust function[END_REF] generalizes the first two frameworks distributing secrets over multiple nodes at multiple CSPs' (Figure 15). CSPs play the role of PTs and a number of nodes at CSPs' are the weight of PTs (w i). Thus, security is not limited by the number of CSPs (n), but by the total number (w = i w i) of nodes at all CSPs, which can be large. Moreover, shares stored in nodes at any CSPs are not enough to reconstruct any secret since w i < t.

There are some applications, e.g., secure data storage, secure databases and data warehouses, private information retrieval, and data management in the cloud, use the above frameworks. Eventually, let us briefly present query functionality in secure data storage solutions for public clouds that use or extend Shamir's SSS [START_REF] Shamir | How to Share a Secret[END_REF]. Low-level data storage [START_REF] Shen | Towards secure and reliable data storage with multi-coefficient secret sharing[END_REF][START_REF] Dolev | Private and secure secret shared mapreduce[END_REF] handle pattern search, equijoins and range queries on shares. Table 6 summarizes the querying features of secure cloud databases and data warehouses [START_REF] Emekci | Abacus: A distributed middleware for privacy preserving data sharing across private data warehouses[END_REF][START_REF] Emekci | Privacy preserving query processing using third parties[END_REF][START_REF] Thompson | Privacy-preserving computation and verification of aggregate queries on outsourced databases[END_REF][START_REF] Agrawal | Database management as a service: challenges and opportunities[END_REF][START_REF] Hadavi | Secure data outsourcing based on threshold secret sharing: towards a more practical solution[END_REF][START_REF] Wang | A comprehensive framework for secure query processing on relational data in the cloud[END_REF][START_REF] Hadavi | Database as a service: towards a unified solution for security requirements[END_REF][START_REF] Hadavi | As5: A secure searchable secret sharing scheme for privacy preserving database outsourcing[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF][START_REF] He | Sdb: A secure query processing system with data interoperability[END_REF].

Conclusion

In this final section, we first draw a critical overview of all SSSs surveyed in this paper, including current challenges when using SSSs and in a cloud computing context. Finally, we present some sample applications that can benefit from SSSs.

Secret Sharing Schemes

Classic SSSs handle data security and availability with high sharing/reconstruction time and storage costs. MSSSs share data at once and reduce both costs. In addition, MSSSs type I support data availability by using a NB, but are vulnerable if the NB is attacked. Hence, to share data with MSSSs type I in the cloud, the NB should be located at a PT's that guarantees high security and availability. In contrast, PSSSs and [START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] enhance data privacy by periodically refreshing shares and protecting data from CSP group cheating, respectively.

In addition, VSSSs and VMSSSs can verify the correctness of either or both of data and keys, but these operations induce additional time overhead and require to store signatures in addition to shares. Outer code verification still necessitates to trust PTs, because it is done at PTs'. Moreover, since almost all VMSSSs are also MSSSs type I, their total storage volume (keys, shares and signatures) is still lower than n times that of secret data.

Only [START_REF] Shi | A (t, n)-threshold verified multi-secret sharing scheme based on ECDLP[END_REF] verifies the correctness of both data and keys. Although it is an MSSS type II, its total storage volume is only about twice that of secret data. Moreover, its data sharing complexity is also reasonable, i.e., O(mt), while most SSSs have a cubic sharing complexity.

Eventually, only [START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] verify the correctness of both data and shares. They also minimize global share volume to lower than n times that of secret data. Moreover, [START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] can insert new data even though some PTs disappear, i.e., even though some CSPs fail due to technical or economic reasons.

Moreover, PSSSs refresh shares and verify their correctness to improve data privacy. However, computation (to renew shares) and storage (to store signatures) costs induce extra overhead in the refreshment process. Communications to synchronous shares from PTs to PTs are also numerous, thus provoking network bottlenecks.

Some SSSs support features such as updates, search operations, aggregation operations, etc. These features help minimize computation cost at the user's side and reduce communication overhead. Only three SSSs [START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] support all three operation types: update, exact match and aggregation. However, none can handle composite operations on shares, e.g., simultaneous exact match and aggregation. Performing composite operations on shares remains a challenge in SSSs as of today. Among SSSs that support search and aggregation operations, again only [START_REF] Shi | A (t, n)-threshold verified multi-secret sharing scheme based on ECDLP[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] minimize storage cost. [START_REF] Shi | A (t, n)-threshold verified multi-secret sharing scheme based on ECDLP[END_REF] also optimizes data sharing time.

Finally, [START_REF] Hwang | An on-line secret sharing scheme for multi-secrets[END_REF][START_REF] Chen | A distributed multi-secret sharing scheme on the (t,n) threshold[END_REF] allow the user to add and remove PTs to/from the PT pool. In the cloud, users can thus add and remove CSPs on demand. However, estimating monetary storage cost and detecting attacks or CSP failures is difficult. Thus, taking (or worse, automating) a decision regarding the CSP pool under CSP pricing or privacy constraints is still an open issue.

Secure Applications in the Cloud

SSSs addressed various issues over time (Section 2). Let us describe below some applications that can benefit from secret sharing for data security.

Textual documents such as emails could be shared with [START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF][START_REF] Das | An efficient multi-use multi-secret sharing scheme based on hash function[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF], since these SSSs optimize cost and update and search performance by allowing updates and exact matches directly over shares. Moreover, [START_REF] Das | An efficient multi-use multi-secret sharing scheme based on hash function[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF] also guarantee data integrity with inner and both inner and outer code verification, respectively. Finally, only [START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF] optimizes both storage volume and data sharing and reconstruction time.

In databases and data warehouses, update, exact match and aggregation operators are casually used. To optimize query response time, such SSSs as [START_REF] Das | An efficient multi-use multi-secret sharing scheme based on hash function[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] can be used to leverage cloud databases and warehouses. All these SSSs indeed guarantee data integrity. Moreover, [START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] also optimize storage cost and [START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] allows inserting new data although some CSPs fail. Several secret sharing-based database or warehousing approaches [START_REF] Emekci | Abacus: A distributed middleware for privacy preserving data sharing across private data warehouses[END_REF][START_REF] Emekci | Privacy preserving query processing using third parties[END_REF][START_REF] Thompson | Privacy-preserving computation and verification of aggregate queries on outsourced databases[END_REF][START_REF] Agrawal | Database management as a service: challenges and opportunities[END_REF][START_REF] Hadavi | Secure data outsourcing based on threshold secret sharing: towards a more practical solution[END_REF][START_REF] Wang | A comprehensive framework for secure query processing on relational data in the cloud[END_REF][START_REF] Hadavi | Database as a service: towards a unified solution for security requirements[END_REF][START_REF] Hadavi | As5: A secure searchable secret sharing scheme for privacy preserving database outsourcing[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF][START_REF] He | Sdb: A secure query processing system with data interoperability[END_REF] exploit the above-mentioned SSSs.

To handle data streams, SSSs such as [START_REF] Iftene | General secret sharing based on the chinese remainder theorem with applications in e-voting[END_REF][START_REF] Lin | t,n) threshold verifiable multi secret sharing scheme based on factorisation intractability and discrete logarithm modulo a composite problems[END_REF][START_REF] Chang | An improvement on the lin-wu (t,n) threshold verifiable multi-secret sharing scheme[END_REF][START_REF] Bu | Novel and effective multi-secret sharing scheme[END_REF]] can be used, because they optimize sharing time and share secrets independently. Moreover, they require an overall storage volume that is lower than n times that of secret data. [START_REF] Iftene | General secret sharing based on the chinese remainder theorem with applications in e-voting[END_REF]'s storage volume is even close to the secret's volume if n and t are big and n is close to t. However, only [START_REF] Lin | t,n) threshold verifiable multi secret sharing scheme based on factorisation intractability and discrete logarithm modulo a composite problems[END_REF][START_REF] Chang | An improvement on the lin-wu (t,n) threshold verifiable multi-secret sharing scheme[END_REF][START_REF] Bu | Novel and effective multi-secret sharing scheme[END_REF] guarantee data integrity.

Since memory is still limited in practice, SSSs that share data at once [START_REF] Yang | A (t,n) multisecret sharing scheme[END_REF][START_REF] Chan | A scheme for threshold multisecret sharing[END_REF][START_REF] Eslami | A verifiable multi-secret sharing scheme based on cellular automata[END_REF][START_REF] Zhao | A practical verifiable multi-secret sharing scheme[END_REF][START_REF] Dehkordi | An efficient threshold verifiable multi-secret sharing[END_REF][START_REF] Dehkordi | New efficient and practical verifiable multi-secret sharing schemes[END_REF][START_REF] Hu | Verifiable multi-secret sharing based on lfsr sequences[END_REF][START_REF] Eslami | A new verifiable multi-secret sharing scheme based on bilinear maps[END_REF][START_REF] Shao | A new efficient (t,n) verifiable multisecret sharing (vmss) based on ych scheme[END_REF] cannot handle big data volumes. However, SSSs that share individual secrets [START_REF] Shamir | How to Share a Secret[END_REF][START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF][START_REF] Asmuth | A modular approach to key safeguarding[END_REF][START_REF] Iftene | General secret sharing based on the chinese remainder theorem with applications in e-voting[END_REF][START_REF] Parakh | Online data storage using implicit security[END_REF][START_REF] Parakh | Space efficient secret sharing for implicit data security[END_REF][START_REF] He | Multistage secret sharing based on one-way function[END_REF][START_REF] Harn | Strong (n, t, n) verifiable secret sharing scheme[END_REF][START_REF] Liu | Efficient (n, t, n) secret sharing schemes[END_REF][START_REF] Takahashi | Secret sharing scheme suitable for cloud computing[END_REF][START_REF] Pedersen | A threshold cryptosystem without a trusted party[END_REF][START_REF] Chunming | A new (t,n) threshold secret sharing scheme[END_REF][START_REF] Shanyue | A secret sharing scheme based on ntru algorithm[END_REF][START_REF] Hwang | An on-line secret sharing scheme for multi-secrets[END_REF][START_REF] Zhao | A secret sharing scheme with a short share realizing the (t,n) threshold and the adversary structure[END_REF][START_REF] Lin | t,n) threshold verifiable multi secret sharing scheme based on factorisation intractability and discrete logarithm modulo a composite problems[END_REF][START_REF] Chang | An improvement on the lin-wu (t,n) threshold verifiable multi-secret sharing scheme[END_REF][START_REF] Chen | A new dynamic threshold secret sharing scheme from bilinear maps[END_REF][START_REF] Das | An efficient multi-use multi-secret sharing scheme based on hash function[END_REF][START_REF] Bu | Novel and effective multi-secret sharing scheme[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF] or data blocks [START_REF] Waseda | Consideration for multithreshold multi-secret sharing schemes[END_REF][START_REF] Runhual | A threshold multi-secret sharing scheme[END_REF][START_REF] Chen | A distributed multi-secret sharing scheme on the (t,n) threshold[END_REF][START_REF] Wang | Verifiable threshold scheme in multi-secret sharing distributions upon extensions of ecc[END_REF][START_REF] Li | Novel space efficient secret sharing for implicit data security[END_REF][START_REF] Shi | A (t, n)-threshold verified multi-secret sharing scheme based on ECDLP[END_REF][START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF] allow the execution of the sharing process in main memory or even its parallelization, and thus can share huge data volumes efficiently.

Finally, potential users of database outsourcing should be aware that even frameworks based on normally highly secure SSSs might still be insecure because of inadequate architectural choices or a strong tradeoff in favor of query power [START_REF] Dautrich | Security limitations of using secret sharing for data outsourcing[END_REF]. To circumvent this problem, (V)MSSSs that primarily protect multiple secrets are a better choice than (V)SSSs for cloud applications. In any case, users should carefully evaluate the limitation of target SSSs before using them in any applicative context. We hope this survey will help them for this sake.

Fig. 4 :

 4 Fig. 4: Classical secret sharing

Fig. 6 :

 6 Fig. 6: Multiple secret sharing type II

yFig. 7 :

 7 Fig. 7: Secret sharing by polynomial interpolation

Fig. 9 :

 9 Fig. 9: [71]'s secret mapping step

A 4 -

 4 tuple of shares {c j,1 , • • • , c j,4 } is created by Equations 88 and 89, where c j,1 and c j,2 are random integers. Shares {c j,h } j=1,••• ,m;h=1,••• ,4 are published on the NB. Before reconstruction, each P T i must verify share and key correctness by Equation 90. If verification is positive, secrets are reconstructed by Equations 91 and 92, where G is any group of t PTs.

 1) and shares {c j,h } j=1,••• ,m;h=1,••• ,3 are published on the NB.

Fig. 10 :

 10 Fig. 10: Evolution of SSSs

Table 5 :

 5 Scheme(s)

O (mt 2) or O (bnt 3)≥

 23 mn d /t or bn d

Fig. 12 :

 12 Fig.12: Architecture from[START_REF] Takahashi | Secret sharing scheme suitable for cloud computing[END_REF][START_REF] Pal | Multilevel threshold secret sharing in distributed cloud[END_REF]

Fig. 13 :

 13 Fig. 13: Cloud SSS framework

Fig. 14 :

 14 Fig.14: Architecture from[START_REF] Attasena | A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud[END_REF][START_REF] Attasena | fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses[END_REF][START_REF] Dolev | Private and secure secret shared mapreduce[END_REF][START_REF] Muhil | Securing multi-cloud using secret sharing algorithm[END_REF]

Fig. 15 :

 15 Fig.15: SSSS-based framework[START_REF] Nojoumian | Unconditionally secure social secret sharing scheme[END_REF][START_REF] Nojoumian | Socio-rational secret sharing as a new direction in rational cryptography[END_REF] 100,[START_REF] Nojoumian | Social secret sharing in cloud computing using a new trust function[END_REF]

 and

		Cloud Computing			Intruders
	Service provider policies		Characteristics of cloud architectures	Inside intruders	Outside
							Service provider staffs	intruders
							& other customers
	Policies for taking benefits e.g., rollback feature,	Control & modification policies e.g., Data & system migration	Grid technology	Virtual machine technology	Virtual network technology	Network presence
	super-user access					
		+		+			+	+
	Data loss, damage,	Data loss and damage ;	Data loss, damage, alteration and pilfering ;
	alteration and pilfering		Service down ;		Service down ;
			Data transfer bottlenecks		Data transfer bottlenecks
		Data privacy		Data integrity	Data availability

 In Section 3, we compare all surveyed SSSs with respect to data security, queries over shares, and storage and computing costs. Moreover, we present SSS-based frameworks that provide secure storage, e.g., databases or data warehouses, in the cloud in Section 4. Finally, Section 5 concludes this paper, recaps open research issues and describes sample applications in the cloud.

	1 Introduction	3 Discussion	4 Frameworks and Architectures for Sharing Secrets in the Cloud
		3.1 Evolution of SSSs
	2 Secret Sharing Schemes	3.2 Sharing and Reconstruction	5 Conclusion
	Describes SSS types:	3.3 Features of SSSs
	classic SSSs, MSSSs, VSSSs, VMSSSs, PSSSs, WSSSs, SSSSs, RSSSs	3.3.1 3.3.2 3.3.3	Data Privacy and Availability Data Integrity Data Access
	2.1-2.11 SSS groups	3.3.4	Other Features
		3.4 Costs
		3.4.1 Time Complexity 3.4.2 Storage Volume
		Fig. 3: Schematic map of the paper
	other.		

2 Secret Sharing Schemes

The threshold SSSs we survey in this paper are primarily aimed at enforcing privacy. Individual secret d is divided into n so-called shares {e i } i=0,••• ,n , each share e i being stored by a different participant (PT) P T i (Figure

4(a)

). Each share e i is meaningless to P T i . A subset of t ≤ n PTs is required to reconstruct the secret (Figure

4(b)

). Thence, a convenient side effect of SSSs is data availability, since up to nt PTs may disappear without preventing secret reconstruction. Classical SSSs

[START_REF] Shamir | How to Share a Secret[END_REF][START_REF] Blakley | Safeguarding Cryptographic Keys[END_REF][START_REF] Asmuth | A modular approach to key safeguarding[END_REF][START_REF] He | Multistage secret sharing based on one-way function[END_REF][START_REF] Iftene | General secret sharing based on the chinese remainder theorem with applications in e-voting[END_REF][START_REF] Parakh | Online data storage using implicit security[END_REF][START_REF] Harn | Strong (n, t, n) verifiable secret sharing scheme[END_REF][START_REF] Parakh | Space efficient secret sharing for implicit data security[END_REF][START_REF] Liu | Efficient (n, t, n) secret sharing schemes[END_REF]

mainly differ in sharing methods, which bear different security properties with different data storage and CPU requirements.

], refreshing is synchronous, i.e., shares cannot be reconstructed during the process,

	d 1	d 2	...	d m	Data owner
	(m, t, n) MSSS type I
	k 1 ... k n	c 1 ... c x
	P T 1	P T 2		NB
		(a) Sharing process
	k 1 ... k n P T 1 P T 2	c 1 ... c x NB
	select t from n			
	(m, t, n) MSSS type I
	d 1	d 2	...	d m	Data owner
	(b) Reconstruction process
	Fig. 5: Multiple secret sharing type I
	d 1	d 2	...	d m	Data owner
	(m, t, n) MSSS type II
	e 1	e 2	...	e n
	P T 1	P T 2		P T n
		(a) Sharing process
	e 1 P T 1	e 2 P T 2	...	e n P T n
	(m, t, n) MSSS type II
	d 1	d 2	...	d m	Data owner

select t from n (b) Reconstruction process

Table 1 :

 1 Classification of secret sharing schemes

			SSSs	MSSSs type I MSSSs type II	
		None	Group 1 [76, 12, 3] [49, 54, 46] [71, 72] [61] SSS	Group 2 [94, 90]	Group 3 [18, 75, 83] [61] MSSS	SSSs/MSSSs
	Verification	Data Keys Data &	Group 4 [73, 23, 77] Group 5 [53] Group 6 [98]	Group 7 [37] Group 8 [99, 27, 28] [89, 38, 20] [60],[52]-I&II Group 9 [82, 19, 78]	Group 10 [6, 5] Group 11 [80]	VSSSs/VMSSSs
		keys		[21, 25, 16]		
	dom integers. Then, each share e i is created by Equa-
	tion 2 and stored at P T i . A number t ≤ n of PTs can reconstruct the original polynomial by Lagrange inter-
	polation over a finite field, which enforces data avail-
	ability even if n -t PTs fail. A sample application of this scheme is given in Figure

Table 2 :

 2 Secret sharing schemes' parameters

	Parameter	Definition
	m	Number of secrets
	D	Secret data such that D = {d 1 , • • • , d m }
		and D = {b 1 , • • • , b o }
	d	Secret in integer format
	d	Storage size of d
	d j	j th element of D in integer format
	n	Number of PTs
	t	Number of shares necessary for recon-
		structing the secret
	γ	Number of PTs of the first group in [83]
	P T i	PT number i
	ID i	Identifier of P T i
	g	Number of groups of PTs
	G r	r th	group of PTs such that

] exploits the Chinese remainder theorem[START_REF] Ding | Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography[END_REF]. First, n + 1 uniquely relatively primes1 {p i } i=0,••• ,n are determined such that p 0 < p 1 < • • • < p n and

	from: http://en.wikipedia.org/wiki/Secret sharing	
	Fig. 8: Secret sharing through hyperplan intersection	
	[3t i=1 p i > t-1 i=1 p n-i+1 . Then, n shares {e l } l=1,••• ,n are created by Equations 3 and 4, where u is a random positive p 0	
	integer. Finally, secret d is reconstructed from t shares	
	by Equations 5 and 6.	
	e i = y mod p i	
		t } with fixed-sized blocks
		and b l = {d l,1 , • • • , d l,t l } with variable-
		sized blocks
	t l	Number of shares necessary for recon-
		structing the secret in b l (in case of
		variable-sized blocks)
	d l,q	q th element of b l in integer format
	e i	Share stored at P T i
	e j,i	j th share stored at P T i
	e l,i	Share of b l stored at P T i
	c h	h th share stored at the NB
	k	Storage size of keys
	s d i	Signature stored at P T i
	s d l	Signature of d l
	s d l,i	Signature of b l stored at P T i
	s d l,q	Signature number q of b l
	s k i	Signature of P T i 's key
	s k r,v	Signature of P T r,v 's key of G r
	s	Storage size of signatures
	p, p 1 , p 2 . . .	Big prime numbers
	A, A 1 , A 2 . . .	Matrices
	f, f 1 , f 2 . . .	Functions
	H, H 1 , H 2 . . . Hash functions

 proceeds in two steps. First, secret d is divided into t intermediate shares {u v } v=1,••• ,t by mapping d to the x-axis of a random polynomial. Second, these t shares are divided again into n actual shares {e i } i=1,••• ,t by Equation 7, where A 1 is an n × t random matrix. Secret d is reconstructed from a polynomial of degree t created by Equation 8. {u v } v=1,••• ,t are reconstructed by Equation

 n are generated by Equations 31 and 32, respectively, and

 Equation 37). Then, key k i is stored at P T i , while identifiers and key signatures (ID i , s k i) i=1,••• ,n are published on the NB. For sharing secret d, several groups of PTs {G r } r=1,••• ,g are selected, and then shares {e r } r=1,••• ,g are created by Equations 38, 39, 40 and 41, where u is a random integer, p 4 > p 3 and p 4 > p 2 > p 1 . Next, v, w, {G r } r=1,••• ,g and {e r } r=1,••• ,g are published on the NB. Before reconstruction, the key signature of P T i ∈ G r is verified to check whether s k i = v ki mod p 2 . If this is true, secrets are reconstructed by Equations 42 and 43.

	s k i =(p 1) ki mod p 2	(37)
	v=(p 1) u mod p 2	(38)
)
		2.5 Group 5: Key-Verifiable Secret Sharing Schemes
		In [53], the only (t, n) VSSS in this group, PT keys and
		signatures are independent. Hence, if some PTs come

or go, the keys of other PTs do not change. PT keys {k i } i=1,••• ,n and identifiers {ID i } i=1..n are randomly chosen. On the other hand, key signatures {s k i } i=1,••• ,n are generated with the help of an RSA cryptosystem

(

 46 and 47, where A is a Jordan normal form of D 2 . Finally, NB's shares {c i } i=1,••• ,n are constructed from Equations 48 and 49; and share signatures {s d i,j } i=1,••• ,n;j=1,••• ,m are created from Equation 50. Keys k i and shares E i are stored at P T i ; shares {c i } i=1,••• ,n , share signatures {s d i,j } j=1,••• ,n;j=1,••• ,m , key k 0 , key signatures {s k i } i=0,••• ,n , p and A are published on the NB.

 m) and u j is a random integer when m < j ≤ t. Others values of u j are created with the help of the cellular automaton. Then, shares{c h } h=1,••• ,m-tare generated by Equation 52. Shares {e i } i=1,••• ,n and their signatures {s d i } i=1,••• ,n are created by Equations 53 and 54, where v is a random integer. Finally, each share e i is shared at P T i and shares {c h } h=1,••• ,m-t and signatures {s d h } h=1,••• ,n are published on the NB.

Table 3 :

 3 Sharing, Reconstruction and Verification Methods in SSSs

	Type
	Group
	Scheme

Table 4 :

 4 Features of SSSs

	Scheme(s)
	Group
	Type

Table

 Query types allowed by secret sharing-based cloud applications

	Update	N	N	Y	Y	Y	Y
	Exact match	N	Y	Y	N	Y	Y
	Range	N	Y	Y	N	Y	Y
	Aggregate	Y	Y	Y	Y	N	Y
	Grouping	N	N	N	N	N	Y

Queries [1] [36] [35, 44, 43, 42] [86] [88] [6, 5, 50]

A is a Jordan normal form of D if DY = Y A, where Y is a row matrix and A is a square, upper triangular matrix whose entries are all the same integer values on the diagonal, all 1 on the entries immediately above the diagonal, and 0 elsewhere.

Data