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A time reversal algorithm in acoustic media with Dirac measure approximations

This article is devoted to the study of a photoacoustic tomography model, where one is led to consider the solution of the acoustic wave equation with a source term writing as a separated variables function in time and space, whose temporal component is in some sense close to the derivative of the Dirac distribution at t = 0. This models a continuous wave laser illumination performed during a short interval of time. We introduce an algorithm for reconstructing the space component of the source term from the measure of the solution recorded by sensors during a time T all along the boundary of a connected bounded domain. It is based at the same time on the introduction of an auxiliary equivalent Cauchy problem allowing to derive explicit reconstruction formula and then to use of a deconvolution procedure. Numerical simulations illustrate our approach. Finally, this algorithm is also extended to elasticity wave systems.

Introduction and motivations

This article is motivated by some recent applications for medical imaging purposes, namely the so-called photoacoustic tomography method. The main idea of the photoacoustic effect is simple: the tissue to be imaged is usually irradiated by a nanosecond-pulsed laser at a given optical wavelength. This energy is converted into heat. Absorption of light by molecules beneath the surface creates a thermally induced pressure jump that propagates as a sound wave, which can be detected. By detecting the pressure waves, we can localize their heterogeneities (i.e., the places where light has been absorbed) and recover important informations about the studied sample [START_REF] Ammari | Mathematical modeling in photoacoustic imaging of small absorbers[END_REF][START_REF] Cox | The challenges for quantitative photoacoustic imaging[END_REF][START_REF] Xu | Photoacoustic imaging in biomedicine[END_REF].

In the sequel, we chose to focus on the photoacoustic method but we mention a very similar hybrid imaging technique called thermoacoustic tomography [START_REF] Tanter | Time Reversing Waves For Biomedical Applications[END_REF][START_REF] Kowar | Integral equation models for thermoacoustic imaging of acoustic dissipative tissue[END_REF][START_REF] Kowar | Causality analysis of frequency-dependent wave attenuation[END_REF][START_REF] Kuchment | Tomography, Photoacoustic, and Thermoacoustic[END_REF] which is based on the generation of acoustic waves by illumination of a sample with a short electromagnetic pulse and for which the method investigated hereafter can be adapted.

A possible model is the following: let us denote by u 0 the pressure generated by the thermal expansion of tissues. Let Ω be a smooth bounded domain in R d with d = 2, 3. One considers the standard acoustic wave equation

∂ tt u 0 (t, x) -∆u 0 (t, x) = dδ0 dt H(x), (t, x) ∈ R × R d , u 0 (t, •) = ∂ t u 0 (t, •) = 0, t < 0, (1.1) 
where δ 0 stands for the Dirac measure with respect to the time variable t at t = 0 and H ∈ L 2 (R d , R) denotes the absorbed optical energy, in other words the initial source term resulting from the expansion of tissues [START_REF] Haltmeier | Filtered backprojection for thermoacoustic computed tomography in spherical geometry[END_REF][START_REF] Scherzer | Variational methods in imaging[END_REF].

Notice that the presence of the derivative of the Dirac term at t = 0 denoted dδ0 dt , models a short pulsed illumination at t = 0. From a practical point of view, such a model appears irrelevant in some experimental situations where one uses multiples ultrashort laser pulses with a minimal pulse energy to avoid laser damages, but with sufficiently high-energy deposition to ensure a satisfactory signal-to-noise ratio [START_REF] Liu | Photoacoustic generation by multiple picosecond pulse excitation[END_REF][START_REF] Wang | Application of laser pulse stretching scheme for efficiently delivering laser energy in photoacoustic imaging[END_REF]. In such a case, the right-hand-side in the p.d.e. model (1.1) has to be modified and leads to consider rather the equation

∂ tt u ε (t, x) -∆u ε (t, x) = df ε dt (t)H(x), (t, x) ∈ R d × R, u ε (t, •) = ∂ t u ε (t, •) = 0, t < -εT f , (1.2) 
where f ε is defined for a small parameter ε > 0 by

f ε (t) = 1 ε f t ε , (1.3) 
and f ∈ C 1 (R) is a known excitation function whose support is included in [-T f , T f ] with T f > 0. It is well-known that, with such a choice, the sequence of functions (df ε /dt) ε>0 converges to dδ 0 /dt in the sense of distributions. Furthermore, the source term H(•) ∈ L 2 (R d ) is assumed to have a support compactly included in a connected bounded domain Ω with dist(supp(H), ∂Ω) > 0.

Note that, in this work, we are not concerned with the so-called "quantitative part" of the photoacoustic technique (see e.g. [START_REF] Akhouayri | Quantitative thermoacoustic tomography with microwaves sources[END_REF][START_REF] Bal | Multi-source quantitative photoacoustic tomography in a diffusive regime[END_REF][START_REF] Bal | Inverse diffusion theory of photoacoustics[END_REF][START_REF] Bergounioux | An optimal control problem in photoacoustic tomography[END_REF]) but only with the issue of recovering the source term H.

Let us introduce the function g ε , standing for the information recorded by sensors on the boundary of Ω during a time T , defined by g ε (t, y) = u ε (t, y) for all t ∈ [0, T ] and y ∈ ∂Ω, (1.4) where T is supposed to be sufficiently large to satisfy u ε (t, •) 0 and ∂ t u ε (t, •) 0 in Ω, for every t > T whenever d = 2 or u ε (t, •) = ∂ t u ε (t, •) = 0, for every t > T whenever d = 3. Notice that the existence of such a time follows from the so-called Huyghens principle (see e.g. [START_REF] Evans | Partial differential equations[END_REF]Section 2.4]). The (imprecise) notation " " used above (for the sake of simplicity) will be commented at the beginning of Section 4 after.

The motivation of this work is to provide an algorithm allowing to reconstruct an approximation of the source term H(•) from the knowledge of the given data g ε on ∂Ω × [0, T ]. In many applications, the pulse is assumed to be a good approximation of the Dirac distribution derivative at t = 0, so that the model (1.1) appears relevant. In this setting, one can prove that the acoustic wave solution also solves the Cauchy problem

∂ tt u 0 (t, x) -∆u 0 (t, x) = 0, (t, x) ∈ R + × R d , u 0 (0, x) = H(x), ∂ t u 0 (0, x) = 0, x ∈ R d .
(1.5)

In this framework, the linear inverse problem which consists in reconstructing H from given data g 0 as defined by (1.4), can then be easily solved by using for instance the time reversal algorithm [START_REF] Bardos | Mathematical foundations of the time reversal mirror[END_REF][START_REF] Ammari | Time reversal in attenuating acoustic media[END_REF][START_REF] Fink | Time-reversal acoustics[END_REF][START_REF] Hristova | Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media[END_REF] or inversion formula such as the spherical Radon transform [START_REF] Ammari | Photoacoustic imaging for attenuating acoustic media[END_REF][START_REF] Finch | Inversion of spherical means and the wave equation in even dimensions[END_REF][START_REF] Kunyansky | Explicit inversion formulae for the spherical mean Radon transform[END_REF][START_REF] Nguyen | A family of inversion formulas in thermoacoustic tomography[END_REF][START_REF] Paltauf | Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors[END_REF], or variational techniques [START_REF] Belhachmi | A direct method for photoacoustic tomography with inhomogeneous sound speed[END_REF]. In particular, an error estimate is derived in [START_REF] Hristova | Time reversal in thermoacoustic tomography-an error estimate[END_REF] which shows the stability of the time reversal imaging approach. However, in many applications and typically when dealing with the photoacoustic tomography technique with a continuous pulse performed during a short time, the parameter ε is not small enough to replace the right-hand side by the term dδ 0 /dt, so that System (1.2) has to be considered instead of System (1.1). In such a case, the previous strategy cannot be used as well.

For instance, in the recent paper [START_REF] Brevis | A source time reversal method for seismicity induced by mining[END_REF], the authors propose to correct the data g ε by using a deconvolution algorithm associated to the kernel f ε and then to apply the time reversal imaging on the corrected data. A difficulty of such an approach is that a deconvolution algorithm rests upon the regularity of the data whereas g ε is not smooth at ε = 0 even if the source H is smooth (see Figure 2).

In this article, we introduce an alternative approach which consists to apply the classical time reversal imaging on the uncorrected data g ε to obtain an approximation H ε of the source H. We then explain how we can correct the effect of ε on H ε by using a deconvolution algorithm where the kernel can be built explicitly and depends only on ε and f . One advantage of this approach is that a deconvolution algorithm can be easily used on H ε as soon as the source H satisfies good smoothness properties.

The rest of the paper is organized as follows. The main results of this article including the complete description of the reconstruction algorithm are stated in Section 2.1. In section 2.2, we gather some tools including useful identities about the Green function Γ associated to the wave equation. The proofs of the main results are postponed to Section 3. Finally, we provide in Section 4 some numerical illustrations highlighting the potential of our approach.

2 Description of the algorithm

Strategy and main results

The key point of the algorithm we will introduce rests upon the introduction of an equivalent Cauchy problem to System (1.2) of the form

∂ tt v ε (t, x) -∆v ε (t, x) = 0, (t, x) ∈ R d × R + , v ε (0, x) = H ε (x), ∂ t v ε (0, x) = G ε (x), x ∈ R d , (2.1) 
the wording equivalent meaning that, if u ε denotes the solution of (1.2) and g ε denotes the data measured on the boundary:

g ε (t, y) = u ε (t, y) = v ε (t, y),
for all t > 0 and y ∈ ∂Ω.

In other words, the notion of equivalence of problems is related to the choice of the domain Ω and it means that the data recorded on the boundary ∂Ω by using (2.1) and (1.2) are the same.

In the sequel, we will assume that the support of the source H in (1.2) is included in a compact subset K of Ω. Using that the support of f ε is contained in [-εT f , εT f ], we will show the existence of an equivalent Cauchy problem provided that

4εT f ≤ d K , with dist(K, ∂Ω) = d K , (2.2) 
that is the parameter ε is sufficiently small such that the boundary is quite far from the source compared to the length of the support of f ε . Under such assumptions, we will build two operators L 1 and L 2 such that

H ε = L 1 [f ε , H], G ε = L 2 [f ε , H],
whose expressions will be fully explicit.

Then, the reconstruction procedure of the source term H from the data g ε will be performed into two steps:

Step 1. Knowing the pulse f ε (approximating the Dirac measure δ t=0 ), determination of the source term H ε in (2.1) from the knowledge of g ε by using an approach either based on a standard time reversal algorithm or on a spherical radon transform. Notice that there is an abundant literature about the aforementioned methods. One can refer for instance to [START_REF] Ammari | Time reversal in attenuating acoustic media[END_REF][START_REF] Ammari | Photoacoustic imaging for attenuating acoustic media[END_REF] for more explanations about them.

Step 2. Reconstruction of the source H from the knowledge of H ε . In this view, we use a deconvolution algorithm combined with the knowledge of the operators L i , i = 1, 2 such that

H ε = L 1 [f ε , H], G ε = L 2 [f ε , H].
In what follows, we will focus on Step 2, by providing an explicit reconstruction formula. For that purpose, we will use an explicit representation of the solution of (1.2) combined with the so-called time reversal principle to exploit the data measured by the sensors (modeled by the function g ε , see (1.4)).

The whole procedure is illustrated on Figure 1 and is described with more details at the end of this section. Notations. The following notations will be used throughout the paper.

• | • |: euclidean norm in R d ; • := ∂ tt -∆ (the d'Alembert operator);
• If f : R → R is a function, the notation f o (resp. f e ) stand for the odd (resp. even) part of f ;

• For x 0 ∈ R d (resp. t 0 ∈ R), δ {x=x0} or simply δ x0 when no confusion is possible (resp. δ {t=t0} ) denotes the Dirac distribution at x = x 0 (resp. at t = t 0 ).

• The operator F t (resp. F x ) stands for the Fourier transform in time (resp. in space), in other words for every H ∈ L 1 (R d ) and f ∈ L 1 (R), one has

F t [f ] : R ω → R f (t)e -itω dt and F x [H] : R d ξ → R d H(x)e -ix•ξ dx.
• For S and T two distributions having a compact support, the convolution product S * T is defined by (with obvious notations) ∀ϕ ∈ D(R d ), S * T, ϕ = S x T y , ϕ(x + y) .

• If X denotes a subset of R d , χ X stands for the characteristic function of X, that is the function equal to 1 on X and 0 elsewhere.

Warning about notations and abuses of notation. In the sequel, to make the distinction between space and time convolutions easier, we will denote by R f (s)g(t -s) ds the convolution product in time between f and g, even if f and g are two (supported on a half line or on a compact set) distributions.

Main result. The main result of this article concerns the rewriting of the source terms H ε and G ε as convolution products of H and a kernel, namely

H ε = H * K 1,fε and G ε = H * K 2,fε
where the expression of the two kernels K 1,fε and K 2,fε is fully explicit (see Theorem 2.1 below).

Let us introduce the Green function Γ of the wave equation, namely the solution in a distributional sense of the following Cauchy problem 

∂ tt Γ(t, x) -∆Γ(t, x) = 0 (t, x) ∈ R d × R + , Γ(0, •) = 0, ∂ t Γ(0, •) = δ {x=0} . (2.3) Theorem 2.1. Let T f > 0, ε > 0, Ω
H ε = L 1 [f ε , H] = H * K 1,fε , and G ε = L 2 [f ε , H] = H * K 2,fε , where K 1,fε (•) = R ∂ t Γ(s, •)f ε (s) ds and K 2,fε (•) = R ∂ tt Γ(s, •)f ε (s) ds,
these last expressions being understood as duality pairing of the space of Radon measures on R with C 0 (R).

Furthermore if (f ε ) ε>0 converges to δ {t=0} in the sense of distributions, then K 1,fε (resp. K 2,fε ) converges to δ {x=0} (resp. 0) in the sense of distributions.

The proof of this theorem is postponed to Section 3.1.

We complete the theorem above by providing an explicit expression of the kernels K 1,fε and K 2,fε , which appears workable from a numerical point of view when performing all computations in the Fourier space.

Proposition 2.2. Let f ∈ L 2 (R) be defined from its Fourier transform f by

f (ω) = +∞ n=0 α n ω n , where (α n ) n∈N is a sequence of real numbers.
Let us assume that:

(H) the Fourier transform f is real-analytic in R.
Then, one has

K 1,fε (x) = F -1 x fe (|ξ|ε) and K 2,fε (x) = iF -1 x |ξ| fo (|ξ|ε) ,
where f e and f o denote respectively the even and odd parts of f . In particular, if f : R t →

1 (4π) d/2 exp(-t 2 4 ), then K 1,fε (x) = 1 (4επ) d/2 exp - |x| 2 4ε 2 = F -1 x exp(-|ξ| 2 ε 2 ) (x) and K 2,fε (x) = 0.

Remark 2.3 (Comments on the assumption (H).

). Writing this proposition, we had not in mind to look for the sharpest assumptions ensuring the validity of this result, but rather to cover some standard cases, such as the gaussian one. Notice that these equalities also holds whenever f denotes the characteristic function of an interval. It is notable that the analyticity of Fourier transforms is closely related to the speed of decreasing of the function f . One can refer to [START_REF] Mandelbrojt | Quasi-analycité des séries de Fourier[END_REF] or to [START_REF] Schwartz | Transformation de Laplace des distributions[END_REF] for issues related to the Paley-Wiener theorem. Finally, it is notable that, if f is assumed to have an exponential decay, namely that f (x) exp(α|x|) ∈ L 1 (R) for some α > 0, then its Fourier transform extends to an analytic function on a strip of the complex plane and is therefore analytic on R. This covers in particular the case of pulses f having compact support in R.

From these results, we derive an algorithm that will be introduced and commented in Section 4.

Some reminders about Green functions for the wave equation

It is notable that the Green function Γ defined by (2.3) coincides with the solution in a distributional sense of the Cauchy problem

∂ tt Γ(t, x) -∆Γ(t, x) = δ {t=0} δ {x=0} (t, x) ∈ R + × R d , Γ(t, •) = ∂ t Γ(t, •) = 0, t < 0. (2.4) Lemma 2.4. Let T > 0 and F ∈ L 2 (R, L 2 (R d )) be such that F (t, •) = 0 whenever t < -T . Then, the distributional solution U of U = F such that U = 0 whenever t < -T is U (t, •) = R F (s, •) * Γ(t -s, •) ds ∀t ≥ -T,
where the convolution product * operates between functions of the space variable x.

Notice that the temporal Green function Γ(t, •) can also be obtained as the inverse Fourier transform of

Γ ω Γ(t, •) = F -1 t [Γ ω (•)](t)
, where Γ ω denotes the outgoing fundamental solution to the Helmholtz operator -(∆ + ω 2 ) in R d , that is the distributional solution of the equation

(∆ + ω 2 )Γ ω (x) = -δ {x=0} x ∈ R d
subject to the outgoing Sommerfeld radiation equation

lim |x|→∞ |x| d-1 2 ∂ ∂|x| -ik Γ ω (x) = 0.
Lemma 2.5. For H and G in L 2 (R d ) with compact support, if u solves the following wave equation in a distributional sense

∂ tt u(t, x) -∆u(t, x) = H(x) dδ {t=0} dt + G(x)δ {t=0} (t, x) ∈ R × R d , u(t, •) = ∂ t u(t, •) = 0 t < 0, (2.5) 
then, the restriction of u to positive times (still denoted by u with a slight abuse of notation) solves the p.d.e.

∂ tt u(t, x) -∆u(t, x) = 0 (t, x) ∈ R + × R d , u(0, •) = H(•), ∂ t u(0, •) = G(•) (2.6) 
and we have

∀t ≥ 0, u(t, •) = H * ∂ t Γ(t, •) + G * Γ(t, •) ∂ t u(t, •) = H * ∂ tt Γ(t, •) + G * ∂ t Γ(t, •), (2.7) 
where the convolution product * operates between functions of the space variable x.

Remark 2.6. Notice that the regularity assumptions on H and G guarantee that they belong to L 1 loc (R d ) and therefore, define distributions. Moreover, the convolution products in (2.7) make sense since H and G have compact support.

Proof. Let Y denote the Heaviside step function. Let us denote temporarily by ũ the restriction of u to positive times, in other words u = Y ũ. Then, we get that ũ solves System (2.6) by plugging its expression into (2.5).

Let us show the first equality of (2.7), the second one being proved by similar arguments. Introduce the distribution z = H * ∂ t Γ(t, •). There holds

z(t, •) = ∂ tt (H * ∂ t Γ(t, •)) -∆(H * ∂ t Γ(t, •)) = H * ∂ tt ∂ t Γ(t, •) -H * ∆∂ t Γ(t, •) = H * ∂ t Γ(t, •) = dδ {t=0} dt H * δ {x=0} = dδ {t=0} dt H.
Therefore, z solves the main equation of (2.6) and one checks that z(0,

•) = H(•) and ∂ t z(0, •) = 0.
Mimicking this reasoning with the distribution z = G * Γ(t, •) yields that z solves the main equation of (2.6) and one checks that z(0, •) = 0 and ∂ t z(0, •) = G(•). By uniqueness of the solution of (2.6), we easily infer that u = z + z.

We then deduce the following rewriting of the Green function Γ and its time derivative.

Proposition 2.7. For all t ∈ [0, s], we have

∂ t Γ(t, •) = ∂ t Γ(s -t, •) * ∂ t Γ(s, •) -∂ tt Γ(t, •) * Γ(s -t, •) Γ(t, •) = Γ(t, •) * ∂ t Γ(s -t, •) -∂ t Γ(t, •) * Γ(s -t, •) in D (R d ).
In particular, considering t = 0, we obtain the identity:

∀s > 0, δ {x=0} = ∂ t Γ(s, •) * ∂ t Γ(s, •) -∂ tt Γ(s, •) * Γ(s, •) (2.8)
Proof. For all s > 0 and t ∈ [0, s], the time reversal principle shows that, if u is the solution of (2.5), the function v defined by v(s, •) = u(s -t, •) solves the wave equation

∂ tt v(t, x) -∆v(t, x) = 0 (t, x) ∈ [0, s] × R d , v(0, •) = u(s, •), ∂ t v(0, •) = ∂ t u(s, •).
(2.9)

Let t ∈ [0, s]. According to Lemma 2.5, u(t, •) = v(s -t, •) = u(s, •) * ∂ t Γ(s -t, •) -∂ t u(s, •) * Γ(s -t, •) = (H * ∂ t Γ(s, •) + G * Γ(s, •)) * ∂ t Γ(s -t, •) -(H * ∂ tt Γ(s, •) + G * ∂ t Γ(s, •)) * Γ(s -t, •) = H * (∂ t Γ(s -t, •) * ∂ t Γ(s, •) -∂ tt Γ(s, •) * Γ(s -t, •)) +G * (Γ(s, •) * ∂ t Γ(s -t, •) -∂ t Γ(s, •) * Γ(s -t, •)) . Moreover, since u(t, •) = H * ∂ t Γ(t, •) + G * Γ(t, •)
and since these relations hold for any arbitray functions H and G, we get the expected result.

In the sequel, it will be useful to use the following identities about Green's functions. Proof. According to Eq. ( 2.3), one has Γ(0, .) = 0, and ∂ t Γ(0, .) = δ {x=0} , and by induction, we infer that

∀n ∈ N, ∂ n Γ ∂t n (0, •) = ∆ (n-1)/2 (δ {x=0} ), if n is odd 0 if n is even, where the distribution ∆ p (δ {x=0} ) is defined for p ∈ N * by ∆ p (δ {x=0} ), ϕ = ∆ p ϕ| {x=0} , ∀ϕ ∈ D(R d ).
The expected conclusion is obtained by reading these last identities in the Fourier space.

3 Proofs of the main results

Proof of Theorem 2.1

Equivalent Cauchy problem. Let us first introduce the solution w ε of the acoustic wave equation

∂ tt w ε (t, x) -∆w ε (t, x) = 0, (t, x) ∈ [0, εT f ] × R d , w ε (0, x) = u ε (εT f , x), ∂ t w ε (0, x) = -∂ t u ε (εT f , x), x ∈ R d . (3.1)
and consider H ε and G ε defined by

H ε (•) = w ε (εT f , •), and G ε (•) = -∂ t w ε (εT f , •).
Let us show that such choices of H ε and G ε as initial data for System (2.1) yield an equivalent problem to (1.2). First, according to the time reversal principle (illustrated on Figure 1), we have

u ε (x, t) = v ε (x, t), ∀x ∈ R d ,
for every t ≥ εT f . Since 2εT f < d K , we infer that

u ε (t, y) = 0, ∀(t, y) ∈ [0, εT f ] × ∂Ω.
by using the finite time propagation property of the wave equation. Moreover, using now that 4εT f < d K and by (still) using the finite time propagation property of the wave equation, we get that

dist(supp(u ε (εT f , •), ∂Ω) ≥ d K -2εT f , dist(supp(∂ t u ε (εT f , •), ∂Ω) ≥ d K -2εT f , and dist(supp(H ε ), ∂Ω) ≥ d K -3εT f , dist(supp(G ε ), ∂Ω) ≥ d K -3εT f . This yields that dist(supp(v ε ), ∂Ω) ≥ d K -3εT f -t, for all t ∈ [0, εT f ] which means that v ε (t, y) = 0, ∀(t, y) ∈ [0, εT f ] × ∂Ω.
Finally, we proved that

u ε (t, y) = v ε (t, y), ∀(t, y) ∈ R + × ∂Ω. Expression of L 1 [f ε , H] and L 2 [f ε , H].
Notice that the operator L 1 can be also defined as

L 1 [f ε , H] = H ε = w ε (εT f , •).
According to Lemma 2.5,

L 1 [f ε , H] = u ε (εT f , x) * ∂ t Γ(εT f , •) -∂ t u ε (εT f , •) * Γ(εT f , •).
Moreover, by using Lemma 2.4, since u ε solves the p.d.e. (1.2) (notice that in particular u ε = 0 as t ≥ εT f ), one has for all t ≥ εT f ,

u ε (t, x) = H * R f ε (s)∂ t Γ(t -s, •) ds and ∂ t u ε (t, x) = H * R f ε (s)∂ tt Γ(t -s, •) ds .
Combining the two previous facts and using Proposition 2.7 yields

L 1 [f ε , H] = u ε (εT f , •) * ∂ t Γ(εT f , •) -∂ t u ε (εT f , •) * Γ(εT f , •) = H * R f ε (s) (∂ t Γ(εT f -s, •) * ∂ t Γ(εT f , •) -∂ tt Γ(εT f -s, •) * Γ(εT f , •)) ds , = H * R f ε (s)∂ t Γ(s, •) ds .
We then infer that the operator L 1 [f ε , H] is a Kernel operator, in other words that

L 1 [f ε , H] = H * K 1,fε ,
where its associated kernel K 1,fε reads

K 1,fε (•) = R f ε (s)∂ t Γ(s, •) ds.
The derivation of the second operator L 2 is similar. Indeed, one has

L 2 [f ε , H] = G ε = -∂ t w ε (x, ε T f ),
and

L 2 [f ε , H] = ∂ t u ε (εT f , •) * ∂ t Γ(εT f , •) -u ε (εT f , x) * ∂ tt Γ(εT f , •) = H * R f ε (s) [∂ tt Γ(εT f -s, •) * ∂ t Γ(εT f , •) -∂ t Γ(εT f -s, •) * ∂ tt Γ(εT f , •)] ds , = H * R f ε (s)∂ tt Γ(s, •) ds,
which is a kernel operator associated to the kernel

K 2,fε (•) = R f ε (s)∂ tt Γ(s, •) ds.
It remains to investigate the convergence properties of these operators.

Limit as ε → 0. By using the finite propagation speed property of solutions of the wave equation, we claim that, for a given horizon time T > 0, the exists a bounded domain Ω such that the solution u ε of (1.2) also solves

∂ tt u ε (t, x) -∆u ε (t, x) = df ε dt (t)H(x), (t, x) ∈ Ω × [0, T ], u ε (t, x) = 0 (t, x) ∈ [-T, T ] × ∂Ω Notice that the function U ε defined by U ε (t, x) = t -∞ u ε (s, x) ds satisfies ∂ tt U ε (t, x) -∆U ε (t, x) = f ε (t)H(x), (t, x) ∈ Ω × [0, T ], U ε (t, x) = 0 (t, x) ∈ [-T, T ] × ∂Ω By using that f ε ∈ L 1 ([-T, T ]
) and standard regularity results on the wave equation, we get in particular that

U ε C 1 ([0,T ],L 2 (Ω)) + ∂ tt U ε L 1 ([0,T ],H -1 (Ω))
, and therefore

u ε C 0 ([0,T ],L 2 (Ω)) + u ε L 1 ([0,T ],H -1 (Ω))
is uniformly bounded with respect to ε. A standard variational analysis (see e.g. [START_REF] Kunisch | Optimal control of the undamped linear wave equation with measure valued controls[END_REF]Prop. 4.7]) yields in particular that u ε (t, •) (respectively

∂ t u ε (t, •)) converges in a distributional sense to u 0 (t, •) (respectively ∂ t u 0 (t, •)) solution of (1.1), for all t ∈ [0, T ]. To conclude, let us write H ε (•) = w ε (εT f , •) and G ε (•) = -∂ t w ε (εT f , •)
, where w ε solves (3.1). Using the convergence result above yields that w ε (t, •) also converges to u 0 (t, •) in a distributional sense, for all t ∈ [0, T ]. It follows that

lim ε→0 L 1 [f ε , H], ϕ = H, ϕ and lim ε→0 L 2 [f ε , H], ϕ = 0. for every function ϕ ∈ C ∞ c (R d ).
The desired conclusion follows.

Proof of Proposition 2.2

In this section, we provide workable and explicit expressions of the kernels K 1,fε and K 2,fε . We first start with the usual case of Gaussian functions and then we generalize to pulses in L 2 (R).

Case of Gaussian functions. Let us assume that g(t) = 1 (4π) 1/2 exp(-t 2 4 ). Then its Fourier transform ĝ writes ĝ(ω) = exp(-ω 2 ) and the operator L 1 [g ε , H] can be identified from its kernel by

K 1,gε (x) = R g ε (s)∂ t Γ(s, x) ds = R ĝ(εω)iωΓ ω (x) dω = R +∞ p=0 (-1) p ε 2p ω 2p p! iωΓ ω (x) dω = +∞ p=0 (ε 2 ∆) p p! δ {x=0} = e ε 2 ∆ δ {x=0} = 1 (4ε 2 π) d/2 exp - x 2 4ε 2 = F -1 x exp(-ε 2 |ξ| 2 ) (x) = F -1 x [ĝ(|ξ|ε)] (x),
according to Proposition 2.8. On the other side, the kernel associate to L 2 [g ε , H] vanishes since g is even. Indeed, it holds

K 2,gε (x) = R g ε (s)∂ tt Γ(s, x) ds = - R ĝ(εω)ω 2 Γ ω (x) dω = 0.
Case of a pulse f such that f is real analytic in R. According to the decomposition of f in terms of its odd and even parts, to get the expected result, it is enough to consider the case where f is either odd or even. Let us assume that f is even and that its Fourier transform writes

f (ω) = +∞ p=0 α 2p ω 2p .
Denote by S(R) the Schwartz space (of rapidly decreasing functions). One computes formally for every ϕ ∈ S(R d ),

K 1,fε , ϕ = R f ε (s) ∂ t Γ(s, x), ϕ(x) ds = R f (εω)iω Γ ω (x), ϕ(x) dω = R +∞ p=0 α 2p ε 2p ω 2p iω Γ ω (x), ϕ(x) dω = +∞ p=0 α 2p (-ε 2 ∆) p δ {x=0} , ϕ = F -1 x +∞ p=0 α 2p (ε 2 |ξ| 2 ) p , ϕ = F -1 x f (|ξ|ε) , ϕ
by following the same steps as in the gaussian case, and

K 2,fε (x), ϕ(x) = R f ε (s) ∂ tt Γ(s, x), ϕ(x) ds = - R f (εω)ω 2 Γ ω (x), ϕ dω = 0.
This computation is formal. We have to justify the interchange between the sum and the integral. In this view, we claim that it is enough to work with a truncation of the series defining f . For that purpose, let us introduce the kernel K P 1,fε defined by

K P 1,fε := R f P ε (s)∂ t Γ(s, x)ds,
where f P ε is defined by

f P ε = f ε * g P with g P (t) = P (4π) 1/2 exp(- (P t) 2 4 )
One has for all ϕ ∈ S(R d ),

K P 1,fε , ϕ = R f P ε (s)∂ t Γ(s, x), ϕ(x) = ∂ t Γ(t, x), f P ε (t)ϕ(x) = iωΓ ω (x), exp(-ω 2 /P 2 ) f (εω)ϕ(x) = lim N →∞ iωΓ ω (x), fN (εω) exp(-ω 2 /P 2 )ϕ(x) = lim N →∞ N p=0 iωΓ ω (x), α 2p ε 2p ω 2p exp(-ω 2 /P 2 )ϕ(x) = lim N →∞ N p=0 α 2p (-ε 2 ∆) p e ∆/P δ {x=0} , ϕ(x) ,
by reproducing the computations made in the Gaussian case. Here, fN is also defined by

fN (ω) = N p=0 α 2p ω 2p , ∀ω ∈ R.
Finally, we have

K P 1,fε , ϕ = = lim N →∞ F -1 x N p=0 α 2p (ε 2 |ξ| 2 ) p , e ∆/P ϕ = e ∆/P F -1 x f (|ξ|ε) , ϕ .
Then, by letting P tend to +∞, we get

K 1,fε = lim P →∞ K P 1,fε = lim P →∞ e ∆/P F -1 x f (|ξ|ε) = F -1 x f (|ξ|ε) ,
the first equality being obtained by using the same reasoning as in the proof of Theorem 2.1 to compute the limit as ε → 0.

Let us now assume that f is odd, determined from its Fourier transform by

f (ω) = +∞ p=0 α 2p+1 ω 2p+1 .
Then, skipping the distributional pairing for notational simplicity and using the same reasoning as in the case where f is even, one has

K 1,fε (x) = R f ε (s)∂ t Γ(s, x) ds = R f (εω)iωΓ ω (x) dω = 0 and K 2,fε (x) = R f ε (s)∂ tt Γ(s, x) ds = - R f (εω)ω 2 Γ ω (x) dω = i R +∞ p=0 α 2p+1 ε 2p+1 ω 2p+2 iωΓ ω (x)dω = i 1 ε +∞ p=0 α 2p+1 (-ε 2 ∆) p+1 δ {x=0} = iF -1 x +∞ p=0 1 α 2p+1 (ε|ξ|) 2p+2 = iF -1 x |ξ| f (|ξ|ε) .

Numerics and practical implementation of the algorithm

This section is devoted to the presentation of numerical experiments highlighting the potential and the efficiency of our approach. All the numerical illustrations hereafter are restricted to the case d = 2. In that case, according to the Huyghens principle, we know that there does not exist a time T such that u ε (t, •) = ∂ t u ε (t, •) for all t > T , where u ε is the solution of (1.2). However, for each tolerance parameter η > 0, there exists

T η > 0 such that sup t>Tη ( u ε (t, •) L ∞ (Ω) + ∂ t u ε (t, •) L ∞ (Ω) ) ≤ η.
By using standard continuity results on the wave operator, one can show that, provided that η be small enough (and then that T η be large enough), the initial data H ε,η and G ε,η reconstructed by using the time reversal principal are as close as wanted to H ε and G ε (see [START_REF] Hristova | Time reversal in thermoacoustic tomography-an error estimate[END_REF]). This remark legitimates the use of the following algorithm, even in the case of even dimensions of space.

Time reversal algorithm for Dirac measure approximations 1. From the observation g ε , determination of H ε by using (for instance) the time reversal approach;

2. Deconvolution of H ε to recover H(•) with the help of a deconvolution algorithm with a total variation regularization by using the explicit expression of the kernels K 1,fε (•) and K 2,fε (•) provided by Theorem 2.1.

Some practical informations on the implementation of this algorithm are provided in what follows.

Time reversal imaging and approximation

Recall that in the case where the source term is f 0 = δ {t=0} , the function u 0 satisfies

∂ tt u 0 (t, x) -∆u 0 (t, x) = 0, (t, x) ∈ R + × R d , u 0 (0, x) = H(x), ∂ t u 0 (0, x) = 0, x ∈ R d . (4.1)
and the observed data g 0 are defined by

g 0 (t, y) = u 0 (t, y) for all (t, y) ∈ [0, T ] × ∂Ω.
Then the reconstruction of the source term H from g 0 can be obtained by noting that

H(•) = w(T, •),
where w solves the wave equation

     ∂ tt w(t, x) -∆w(t, x) = 0, (t, x) ∈ [0, T ] × Ω, w(0, x) = ∂ t w(0, x) = 0, x ∈ Ω, w(t, y) = g 0 (T -t, y), (t, y) ∈ [0, T ] × ∂Ω.
As commented in [START_REF] Ammari | Time reversal in attenuating acoustic media[END_REF], the discretization of this imaging functional requires to interpolate the data on the boundary of Ω which generates smoothing effects on the reconstructed image. From a practical point of view, it is more efficient to use an approximation version of H(•) reading as

I[g 0 ](x) = T 0 v s (T, x)ds,
where v s solves the wave equation

∂ 2 tt v s (t, x) -∆v s (t, x) = ∂ t δ {t=s} g(x, T -s) δ ∂Ω , (t, x) ∈ R × R d v s (t, x) = 0, ∂ t v s (t, x) = 0, x ∈ R d , t < s.
Here, δ {t=s} denotes the time Dirac distribution at time t = s and δ ∂Ω is the surface Dirac measure on the manifold ∂Ω.

In particular, by using the so-called Helmholtz-Kirchhoff identity 1 , it is proven in [START_REF] Ammari | An Introduction to Mathematics of Emerging Biomedical Imaging[END_REF] that when Ω is close to a sphere in R d with large radius, there holds

H(•) I[g 0 ](•).
1 Recall that, in a nutshell, this identity asserts that, for all x, z in R d ,

∂Ω

Γω(x, y)Γω(x, z) dσ(y) -i ω Im Γ(x, z).

Description of the numerical scheme

The wave equations involved in the algorithm are solved in the box Q = [-L/2, L/2] 2 with periodic boundary conditions, where the size L is assumed to be sufficiently large to prevent any reflection on the boundary. Numerical integrations of each equation are then be performed exactly in the Fourier space.

Let us provide some precisions on them.

Fourier space discretization. Recall that the N -Fourier approximation of a 2D function u in the box Q = [-L/2, L/2] 2 is given by

u N (t, x) = N/2 n1,n2=-N/2+1 c n (t)e 2iπξn•x ,
where n = (n 1 , n 2 ) and ξ n = (n 1 /L, n 2 /L). Here the coefficient c n represents the N 2 first discrete Fourier coefficients of u. Moreover, the inverse discrete Fourier transform of c n allows to write that

u N n = IF F T [c n ] where u N n = u(x n ) denotes the value of the function u at the point x n = (n 1 h 1 , n 2 h 2 ) where h α = L α /N for α ∈ {1, 2}.
Conversely, c n can be computed by applying the discrete Fourier transform to u N n , namely

c n = F F T [u N n ].
Exact time integration We decide to approach the solution u of a generic wave equation

∂ tt u(t, x) -∆u(t, x) = F (t, x) = +∞ n1,n2=-∞ f n (t)e 2iπξn•x in R × R d
completed by two initial conditions, by u N , the solution of the "truncated system"

∂ tt u N (t, x) -∆u N (t, x) = F N (t, x) = N/2 n1,n2=-N/2+1 f n (t)e 2iπξn•x
with two approximated initial conditions; this system also reads

∂ ∂t u N u N t = 0 I d ∆ 0 u N u N t + 0 F N .
The last system can be integrated coefficient by coefficient, by solving the N 2 linear 2 × 2 systems of ordinary differential equations

d dt c n (t) c n (t) = 0 1 -4π 2 |ξ n | 2 0 c n (t) c n (t) + 0 f n (t)
, for n = (n 1 , n 2 ) and n j = -N, . . . , N (j = 1, 2), where c n (t) = dcn dt (t). Notice that this system is simple enough to be solved explicitly.

Application to photoacoustic imaging

All the numerical simulations of this section are performed with the following set of parameters:

• Ω is a two-dimensional ball of radius 1 whose boundary is discretized by 2 10 sensors;

• the box Q = [-L/2, L/2] d has size L = 2
and the record time is T = 2;

• we use a regular step discretization with parameters dt = T /2 10 and dx = L/2 9 .

Time reversal Imaging using ideal data g 0 . On Figure 2, we use ideal data g 0 and as expected, one observes that the reconstructed source and the exact source are almost identical. Time reversal Imaging using data g ε . We now consider three different excitation functions f 1 , f 2 , f 3 (see Figure 3), defined by

f 1 (t) = exp(-5πt 2 ) f 2 (t) = χ [-1/2,1/2] (t) f 3 (t) = 3χ {-0.6,-0.2,0.2,0.6}+[-1/12,1/12] (t).
On Figure 4, we observe the reconstructed source obtained by using the Imaging functional

I[g ε ] with ε = 0.1.
The quality of the reconstruction does not seem not as good as in the previous case where ε = 0. Indeed, this is not surprising since the imaging functional I[g ε ] provides an efficient reconstruction of

H ε = L 1 [f ε , H],
which can strongly differ from the source H whenever the coefficient ε is too large.

On Figure 5, the image of H ε = L 1 [f ε , H] has been plotted and we observe that all the pictures correspond to the source imaging I[g ε ]. This is a numerical illustration of the truthfulness of Theorem 2.1. optimization problem

H * = argmin H {J(H)} with J(H) = 1 2 Ω (I[g ε ] -K 1,fε * H) 2 + γ Ω |∇H| dx,
where γ is a (positive) regularization parameter. Nevertheless, a direct computation of H * is sometimes difficult to implement because of the non-smooth character the Total Variation (TV) term. This is why we consider an approximation of H * with the help of an iterative shrinkage-thresholding algorithm [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]. This algorithm can be viewed as a splitting gradient descent iterative scheme:

(0) Initialization: data g ε , initial solution H 0 = 0 are known,

(1) Data link step:

H k+1/2 = H k -τ K 1,fε * [K 1,fε * H k -I[g ε ]],
(2) Regularization step:

H k+1 = T γτ [H k+1/2 ],
where τ > 0 is a virtual descent time step and the operator T τ is defined by

T τ [u] = argmin v 1 2 v -u L 2 (Ω) + τ ∇v L 1 (Ω) .
The TV term is minimized implicitly by using the duality algorithm of Chambolle [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF], which can be considered as an advantage of this approach. It is notable that this algorithm converges [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] under a smallness assumption on the parameter τ , namely τ F[K 1,fε ] 2 ∞ ≤ 1. A possible variant consists in considering the algorithm by Beck and Teboulle [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] to accelerate the convergence rate. On Figure 6, the reconstructed source H * obtained for the three different functions f 1 , f 2 and f 3 are plotted. Influence of ε : We finally present some numerical experiments using the pulse f 3 and associated to different values of ε. On Figure 7 and for ε = 0.075, ε = 0.1 and ε = 0.15, we plot respectively the data g ε , the reconstruction of the source using the classical Time Reversal Imaging and the reconstruction of the source after applying the deconvolution algorithm. In particular, we can observe an influence of on the localization of the waves and as expected, the reconstruction of the source is even better than ε is small.

Generalization to elasticity wave operators

The motivation of this section is to emphasize that our approach can be extended without special effort to many kinds of wave equation involving homogeneous operators in space. In particular, having in mind 

∂ tt u ε (t, x) -L λ,µ u ε (t, x) = f ε (t)H(x), (t, x) ∈ R × R d , u ε (x, t) = ∂ t u ε (t, x) = 0, x ∈ R d , t < -εT f , where L λ,µ u = µ∆u + (λ + µ)∇(∇ • u).
Here (λ, µ) denote the Lamé coefficients of the medium. The inverse problem we consider here is to reconstruct the source H from the data set

g ε (t, y) = u ε (t, y), t ∈ [0, T ], y ∈ ∂Ω.
Case of ideal data: ε = 0. In the ideal case with ε = 0, we are led to consider the function u 0 solution of

∂ tt u 0 (t, x) -L λ,µ u 0 (t, x) = δ t=0 H(x), (t, x) ∈ R × R d , u 0 (t, x) = ∂ t u 0 (t, x) = 0, x ∈ R d , t < 0, and 
g 0 (t, y) = u 0 (t, y), t ∈ [0, T ], y ∈ ∂Ω.
It has been recently addressed in [START_REF] Catheline | Time reversal of elastic waves in soft solids[END_REF][START_REF] Ammari | Time-reversal algorithms in viscoelastic media[END_REF][START_REF] Ammari | Mathematical Methods in Elasticity Imaging[END_REF]. More precisely, it is proven that the natural imaging functional I defined by

I[g 0 ](x) = T 0 v s (T, x)ds, x ∈ Ω,
where the vector field v s is defined as the solution of

∂ tt v s (t, x) -L λ,µ v s (t, x) = dδ t=s dt g 0 (T -s, y)δ y=∂Ω , (t, x) ∈ R × R d , v s (t, x) = ∂ t v s (t, x) = 0, x ∈ R d , t < s.
(5.1)

does not lead to a sufficiently good reconstruction of the source H. A more efficient reconstruction [START_REF] Ammari | Time-reversal algorithms in viscoelastic media[END_REF] can then be obtained by considering the following modified version Green function and equivalent Cauchy problem. Let us also introduce the outgoing Green's tensor G ω,0 associated to the elastic wave equation

I[g 0 ] = c s ∇ × ψ I + c p ∇φ I . ( 5 
(L λ,µ + ω 2 )G ω (x) = -δ x=0 I, x ∈ R d .
and G, the temporal version of the previous Green tensor, defined as the range by the inverse Fourier transform of G ω , in other words

G(t, •) = F -1 t [G ω (•)](t).
Using the same arguments as in the acoustic case, we can show the equivalent of Proposition 2.7.

Proposition 5.1. For all t ∈ [0, s], there holds

∂ t G(t, •) = ∂ t G(s -t, •) * ∂ t G(s, •) -∂ tt G(t, •) * G(s -t, •) G(t, •) = G(t, •) * ∂ t G(s -t, •) -∂ t G(t, •) * G(s -t, •) in D (R d ).
In particular, considering t = 0, we obtain the identity:

∀s > 0, δ x=0 I = ∂ t G(s, •) * ∂ t G(s, •) -∂ tt G(s, •) * G(s, •) (5.4)
Moreover, the proof of the following theorem follows exactly the same line as the one of Theorem 2.1.

Theorem 5.2. Let T f > 0, ε > 0, Ω be a connected bounded open set of R d and K be a compact set such that K ⊂ Ω. Then, for all H such that supp(H s ) ⊂ K and supp(H p ) ⊂ K where H s and H p are defined from the Helmoltz decomposition of H:

H s = H s [H], and 
H p = H p [H], (5.5) 
and for ε > 0 small enough, there exists a Cauchy problem ∂ tt v ε (t, x) -L λ,µ v ε (t, x) = 0, (t, x) ∈ R + × R d , v ε (0, x) = H ε (x) and ∂ t v ε (0, x) = G ε (x) x ∈ R d equivalent to (5.1) in the sense that u ε (t, y) = v ε (t, y), ∀(t, y) ∈ [0, T ] × ∂Ω.

Moreover, H ε and G ε are given by Explicit expression of the associated kernels. The reconstruction of H from the knowledge of H ε can then be performed by using the Helmholtz decomposition of H ε as well as two deconvolution procedures. In particular, the explicit expression of each kernel is derived from the proposition below. Finally, the source of H can be reconstructed by finding separately it compressional and shear components which can be done for instance by using a TV-deconvolution approach :

H ε = L 1 [f ε , H] = K 1,
H α, * = argmin H {J α (H)} with J α (H) = 1 2 Ω H I[g ε ] α -K α 1,fε * H 2 + γ Ω |∇H| dx.

Comments and conclusion

In this article, we have proposed a systematic method allowing to reconstruct the spatial component of a source term whose temporal component cannot be approximated by a Dirac mass. The proposed algorithm rests upon the use of an imaging technique based on a time reversal approach, and a correction of the reconstructed source with the help of a TV regularization-deconvolution algorithm. Some first numerical experiments allowed to validate the method in the acoustic framework and we claim that our method is robust enough to be extended to many kinds of wave-like operators involving homogeneous space operators, such as linear elasticity wave ones.

Finally, the approach developed in this article highlights a connexion between a regularization in time and in space, where the respective kernels sizes are correlated to the wave velocity.

We are actually investigating the issue of exploiting/generalizing this approach to tackle inverse problems in non-homogenous media where the main unknown is the wave velocity.
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 2 Figure 2: Source reconstruction using time reversal imaging I ; Left -initial source H, middle -given data g 0 , right -I[g 0 ]
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 31345 Figure 3: Plots of the three different excitation functions f 1 , f 2 and f 3
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 6 Figure 6: Correction of the source reconstruction using deconvolution algorithm with total variation regularization; Left to right : using f 1 , f 2 and f 3
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 7 Figure 7: Influence of the parameter ε on the reconstruction of the source in the case of the pulse f 3 ; First line : the data g ε ; Second line : reconstruction using Time reversal imaging associated to g ε ; Last line : correction of the source reconstruction using deconvolution algorithm with total variation regularization ; Left to right : with respectively ε = 0.075, ε = 0.1 and ε = 0.15.
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  be a connected bounded open set of R d and K be a compact set such that K ⊂ Ω. Under the condition (2.2) on ε and K, for all H ∈ L 2 (R d ) such that supp(H) ⊂ K, there exists a Cauchy problem of the form (2.1) equivalent to (1.2) in the sense made precise above. Moreover, H ε and G ε are given by
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