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Abstract

This article is devoted to the study of a photoacoustic tomography model, where one is led to
consider the solution of the acoustic wave equation with a source term writing as a separated variables
function in time and space, whose temporal component is in some sense close to the derivative of
the Dirac distribution at t = 0. This models a continuous wave laser illumination performed during
a short interval of time. We introduce an algorithm for reconstructing the space component of the
source term from the measure of the solution recorded by sensors during a time T all along the
boundary of a connected bounded domain. It is based at the same time on the introduction of
an auxiliary equivalent Cauchy problem allowing to derive explicit reconstruction formula and then
to use of a deconvolution procedure. Numerical simulations illustrate our approach. Finally, this
algorithm is also extended to elasticity wave systems.

1 Introduction and motivations
This article is motivated by some recent applications for medical imaging purposes, namely the so-called
photoacoustic tomography method. The main idea of the photoacoustic effect is simple: the tissue to be
imaged is usually irradiated by a nanosecond-pulsed laser at a given optical wavelength. This energy is
converted into heat. Absorption of light by molecules beneath the surface creates a thermally induced
pressure jump that propagates as a sound wave, which can be detected. By detecting the pressure
waves, we can localize their heterogeneities (i.e., the places where light has been absorbed) and recover
important informations about the studied sample [3, 22, 45].

In the sequel, we chose to focus on the photoacoustic method but we mention a very similar hybrid
imaging technique called thermoacoustic tomography [43, 31, 32, 33] which is based on the generation of
acoustic waves by illumination of a sample with a short electromagnetic pulse and for which the method
investigated hereafter can be adapted.

A possible model is the following: let us denote by u0 the pressure generated by the thermal expansion
of tissues. Let Ω be a smooth bounded domain in Rd with d = 2, 3. One considers the standard acoustic
wave equation {

∂ttu0(t, x)−∆u0(t, x) = dδ0
dt H(x), (t, x) ∈ R× Rd,

u0(t, ·) = ∂tu0(t, ·) = 0, t < 0,
(1.1)

where δ0 stands for the Dirac measure with respect to the time variable t at t = 0 and H ∈ L2(Rd,R)
denotes the absorbed optical energy, in other words the initial source term resulting from the expansion
of tissues [28, 41].

Notice that the presence of the derivative of the Dirac term at t = 0 denoted dδ0
dt , models a short

pulsed illumination at t = 0. From a practical point of view, such a model appears irrelevant in some
experimental situations where one uses multiples ultrashort laser pulses with a minimal pulse energy to
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avoid laser damages, but with sufficiently high-energy deposition to ensure a satisfactory signal-to-noise
ratio [36, 44]. In such a case, the right-hand-side in the p.d.e. model (1.1) has to be modified and leads
to consider rather the equation{

∂ttuε(t, x)−∆uε(t, x) =
dfε
dt

(t)H(x), (t, x) ∈ Rd × R,
uε(t, ·) = ∂tuε(t, ·) = 0, t < −εTf ,

(1.2)

where fε is defined for a small parameter ε > 0 by

fε(t) =
1

ε
f

(
t

ε

)
, (1.3)

and f ∈ C1(R) is a known excitation function whose support is included in [−Tf , Tf ] with Tf > 0. It
is well-known that, with such a choice, the sequence of functions (dfε/dt)ε>0 converges to dδ0/dt in the
sense of distributions.

Furthermore, the source term H(·) ∈ L2(Rd) is assumed to have a support compactly included in a
connected bounded domain Ω with dist(supp(H), ∂Ω) > 0.

Note that, in this work, we are not concerned with the so-called “quantitative part” of the photoa-
coustic technique (see e.g. [1, 11, 12, 17]) but only with the issue of recovering the source term H.

Let us introduce the function gε, standing for the information recorded by sensors on the boundary
of Ω during a time T , defined by

gε(t, y) = uε(t, y) for all t ∈ [0, T ] and y ∈ ∂Ω, (1.4)

where T is supposed to be sufficiently large to satisfy uε(t, ·) ' 0 and ∂tuε(t, ·) ' 0 in Ω, for every t > T
whenever d = 2 or uε(t, ·) = ∂tuε(t, ·) = 0, for every t > T whenever d = 3. Notice that the existence
of such a time follows from the so-called Huyghens principle (see e.g. [24, Section 2.4]). The (imprecise)
notation “'” used above (for the sake of simplicity) will be commented at the beginning of Section 4 after.

The motivation of this work is to provide an algorithm allowing to reconstruct an approximation of
the source term H(·) from the knowledge of the given data gε on ∂Ω× [0, T ].
In many applications, the pulse is assumed to be a good approximation of the Dirac distribution derivative
at t = 0, so that the model (1.1) appears relevant. In this setting, one can prove that the acoustic wave
solution also solves the Cauchy problem{

∂ttu0(t, x)−∆u0(t, x) = 0, (t, x) ∈ R+ × Rd,
u0(0, x) = H(x), ∂tu0(0, x) = 0, x ∈ Rd. (1.5)

In this framework, the linear inverse problem which consists in reconstructing H from given data g0 as
defined by (1.4), can then be easily solved by using for instance the time reversal algorithm [13, 5, 26, 30]
or inversion formula such as the spherical Radon transform [7, 25, 35, 38, 39], or variational techniques
[15]. In particular, an error estimate is derived in [29] which shows the stability of the time reversal
imaging approach.

However, in many applications and typically when dealing with the photoacoustic tomography tech-
nique with a continuous pulse performed during a short time, the parameter ε is not small enough to
replace the right-hand side by the term dδ0/dt, so that System (1.2) has to be considered instead of
System (1.1). In such a case, the previous strategy cannot be used as well.

For instance, in the recent paper [18], the authors propose to correct the data gε by using a deconvo-
lution algorithm associated to the kernel fε and then to apply the time reversal imaging on the corrected
data. A difficulty of such an approach is that a deconvolution algorithm rests upon the regularity of the
data whereas gε is not smooth at ε = 0 even if the source H is smooth (see Figure 2).

In this article, we introduce an alternative approach which consists to apply the classical time re-
versal imaging on the uncorrected data gε to obtain an approximation Hε of the source H. We then
explain how we can correct the effect of ε on Hε by using a deconvolution algorithm where the kernel
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can be built explicitly and depends only on ε and f . One advantage of this approach is that a decon-
volution algorithm can be easily used on Hε as soon as the source H satisfies good smoothness properties.

The rest of the paper is organized as follows. The main results of this article including the complete
description of the reconstruction algorithm are stated in Section 2.1. In section 2.2, we gather some tools
including useful identities about the Green function Γ associated to the wave equation. The proofs of the
main results are postponed to Section 3. Finally, we provide in Section 4 some numerical illustrations
highlighting the potential of our approach.

2 Description of the algorithm

2.1 Strategy and main results
The key point of the algorithm we will introduce rests upon the introduction of an equivalent Cauchy
problem to System (1.2) of the form{

∂ttvε(t, x)−∆vε(t, x) = 0, (t, x) ∈ Rd × R+,
vε(0, x) = Hε(x), ∂tvε(0, x) = Gε(x), x ∈ Rd, (2.1)

the wording equivalent meaning that, if uε denotes the solution of (1.2) and gε denotes the data measured
on the boundary:

gε(t, y) = uε(t, y) = vε(t, y), for all t > 0 and y ∈ ∂Ω.

In other words, the notion of equivalence of problems is related to the choice of the domain Ω and it
means that the data recorded on the boundary ∂Ω by using (2.1) and (1.2) are the same.

In the sequel, we will assume that the support of the source H in (1.2) is included in a compact
subset K of Ω. Using that the support of fε is contained in [−εTf , εTf ], we will show the existence of
an equivalent Cauchy problem provided that

4εTf ≤ dK , with dist(K, ∂Ω) = dK , (2.2)

that is the parameter ε is sufficiently small such that the boundary is quite far from the source compared
to the length of the support of fε.

Under such assumptions, we will build two operators L1 and L2 such that

Hε = L1[fε, H], Gε = L2[fε, H],

whose expressions will be fully explicit.

Then, the reconstruction procedure of the source term H from the data gε will be performed into
two steps:

Step 1. Knowing the pulse fε (approximating the Dirac measure δt=0), determination of the source term
Hε in (2.1) from the knowledge of gε by using an approach either based on a standard time reversal
algorithm or on a spherical radon transform. Notice that there is an abundant literature about the
aforementioned methods. One can refer for instance to [5, 7] for more explanations about them.

Step 2. Reconstruction of the source H from the knowledge of Hε. In this view, we use a deconvolution
algorithm combined with the knowledge of the operators Li, i = 1, 2 such that

Hε = L1[fε, H], Gε = L2[fε, H].

In what follows, we will focus on Step 2, by providing an explicit reconstruction formula. For that
purpose, we will use an explicit representation of the solution of (1.2) combined with the so-called time
reversal principle to exploit the data measured by the sensors (modeled by the function gε, see (1.4)).

The whole procedure is illustrated on Figure 1 and is described with more details at the end of this
section.
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Figure 1: Principle of the time reversal approach

Notations. The following notations will be used throughout the paper.

• | · |: euclidean norm in Rd;

• � := ∂tt −∆ (the d’Alembert operator);

• If f : R→ R is a function, the notation fo (resp. fe) stand for the odd (resp. even) part of f ;

• For x0 ∈ Rd (resp. t0 ∈ R), δ{x=x0} or simply δx0 when no confusion is possible (resp. δ{t=t0})
denotes the Dirac distribution at x = x0 (resp. at t = t0).

• The operator Ft (resp. Fx) stands for the Fourier transform in time (resp. in space), in other
words for every H ∈ L1(Rd) and f ∈ L1(R), one has

Ft[f ] : R 3 ω 7→
∫
R
f(t)e−itω dt and Fx[H] : Rd 3 ξ 7→

∫
Rd
H(x)e−ix·ξ dx.

• For S and T two distributions having a compact support, the convolution product S ∗ T is defined
by (with obvious notations)

∀ϕ ∈ D(Rd), 〈S ∗ T, ϕ〉 = 〈Sx〈Ty, ϕ(x+ y)〉〉.

• If X denotes a subset of Rd, χX stands for the characteristic function of X, that is the function
equal to 1 on X and 0 elsewhere.

Warning about notations and abuses of notation. In the sequel, to make the distinction between
space and time convolutions easier, we will denote by

∫
R f(s)g(t− s) ds the convolution product in time

between f and g, even if f and g are two (supported on a half line or on a compact set) distributions.

Main result. The main result of this article concerns the rewriting of the source terms Hε and Gε as
convolution products of H and a kernel, namely

Hε = H ∗K1,fε and Gε = H ∗K2,fε

where the expression of the two kernels K1,fε and K2,fε is fully explicit (see Theorem 2.1 below).

Let us introduce the Green function Γ of the wave equation, namely the solution in a distributional
sense of the following Cauchy problem{

∂ttΓ(t, x)−∆Γ(t, x) = 0 (t, x) ∈ Rd × R+,
Γ(0, ·) = 0, ∂tΓ(0, ·) = δ{x=0}.

(2.3)
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Theorem 2.1. Let Tf > 0, ε > 0, Ω be a connected bounded open set of Rd and K be a compact set such
that K ⊂ Ω. Under the condition (2.2) on ε and K, for all H ∈ L2(Rd) such that supp(H) ⊂ K, there
exists a Cauchy problem of the form (2.1) equivalent to (1.2) in the sense made precise above. Moreover,
Hε and Gε are given by

Hε = L1[fε, H] = H ∗K1,fε , and Gε = L2[fε, H] = H ∗K2,fε ,

where
K1,fε(·) =

∫
R
∂tΓ(s, ·)fε(s) ds and K2,fε(·) =

∫
R
∂ttΓ(s, ·)fε(s) ds,

these last expressions being understood as duality pairing of the space of Radon measures on R with
C0(R).

Furthermore if (fε)ε>0 converges to δ{t=0} in the sense of distributions, then K1,fε (resp. K2,fε)
converges to δ{x=0} (resp. 0) in the sense of distributions.

The proof of this theorem is postponed to Section 3.1.

We complete the theorem above by providing an explicit expression of the kernels K1,fε and K2,fε ,
which appears workable from a numerical point of view when performing all computations in the Fourier
space.

Proposition 2.2. Let f ∈ L2(R) be defined from its Fourier transform f̂ by

f̂(ω) =

+∞∑
n=0

αnω
n,

where (αn)n∈N is a sequence of real numbers.
Let us assume that:

(H) the Fourier transform f̂ is real-analytic in R.

Then, one has

K1,fε(x) = F−1
x

[
f̂e(|ξ|ε)

]
and K2,fε(x) = iF−1

x

[
|ξ|f̂o(|ξ|ε)

]
,

where fe and fo denote respectively the even and odd parts of f .
In particular, if f : R 3 t 7→ 1

(4π)d/2
exp(− t

2

4 ), then

K1,fε(x) =
1

(4επ)d/2
exp

(
−|x|

2

4ε2

)
= F−1

x

[
exp(−|ξ|2ε2)

]
(x) and K2,fε(x) = 0.

Remark 2.3 (Comments on the assumption (H).). Writing this proposition, we had not in mind to look
for the sharpest assumptions ensuring the validity of this result, but rather to cover some standard cases,
such as the gaussian one. Notice that these equalities also holds whenever f denotes the characteristic
function of an interval. It is notable that the analyticity of Fourier transforms is closely related to the
speed of decreasing of the function f . One can refer to [37] or to [42] for issues related to the Paley-
Wiener theorem. Finally, it is notable that, if f is assumed to have an exponential decay, namely that
f(x) exp(α|x|) ∈ L1(R) for some α > 0, then its Fourier transform extends to an analytic function on a
strip of the complex plane and is therefore analytic on R. This covers in particular the case of pulses f
having compact support in R.

From these results, we derive an algorithm that will be introduced and commented in Section 4.

2.2 Some reminders about Green functions for the wave equation
It is notable that the Green function Γ defined by (2.3) coincides with the solution in a distributional
sense of the Cauchy problem{

∂ttΓ(t, x)−∆Γ(t, x) = δ{t=0}δ{x=0} (t, x) ∈ R+ × Rd,
Γ(t, ·) = ∂tΓ(t, ·) = 0, t < 0.

(2.4)
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Lemma 2.4. Let T > 0 and F ∈ L2(R, L2(Rd)) be such that F (t, ·) = 0 whenever t < −T . Then, the
distributional solution U of �U = F such that U = 0 whenever t < −T is

U(t, ·) =

∫
R
F (s, ·) ∗ Γ(t− s, ·) ds ∀t ≥ −T,

where the convolution product ∗ operates between functions of the space variable x.

Notice that the temporal Green function Γ(t, ·) can also be obtained as the inverse Fourier transform
of Γω

Γ(t, ·) = F−1
t [Γω(·)](t),

where Γω denotes the outgoing fundamental solution to the Helmholtz operator −(∆ + ω2) in Rd, that
is the distributional solution of the equation

(∆ + ω2)Γω(x) = −δ{x=0} x ∈ Rd

subject to the outgoing Sommerfeld radiation equation

lim
|x|→∞

|x|
d−1
2

(
∂

∂|x|
− ik

)
Γω(x) = 0.

Lemma 2.5. For H and G in L2(Rd) with compact support, if u solves the following wave equation in
a distributional sense{

∂ttu(t, x)−∆u(t, x) = H(x)
dδ{t=0}
dt +G(x)δ{t=0} (t, x) ∈ R× Rd,

u(t, ·) = ∂tu(t, ·) = 0 t < 0,
(2.5)

then, the restriction of u to positive times (still denoted by u with a slight abuse of notation) solves the
p.d.e. {

∂ttu(t, x)−∆u(t, x) = 0 (t, x) ∈ R+ × Rd,
u(0, ·) = H(·), ∂tu(0, ·) = G(·) (2.6)

and we have
∀t ≥ 0,

{
u(t, ·) = H ∗ ∂tΓ(t, ·) +G ∗ Γ(t, ·)
∂tu(t, ·) = H ∗ ∂ttΓ(t, ·) +G ∗ ∂tΓ(t, ·), (2.7)

where the convolution product ∗ operates between functions of the space variable x.

Remark 2.6. Notice that the regularity assumptions on H and G guarantee that they belong to L1
loc(Rd)

and therefore, define distributions. Moreover, the convolution products in (2.7) make sense since H and
G have compact support.

Proof. Let Y denote the Heaviside step function. Let us denote temporarily by ũ the restriction of u to
positive times, in other words u = Y ũ. Then, we get that ũ solves System (2.6) by plugging its expression
into (2.5).

Let us show the first equality of (2.7), the second one being proved by similar arguments. Introduce
the distribution z = H ∗ ∂tΓ(t, ·). There holds

�z(t, ·) = ∂tt(H ∗ ∂tΓ(t, ·))−∆(H ∗ ∂tΓ(t, ·))
= H ∗ ∂tt∂tΓ(t, ·)−H ∗∆∂tΓ(t, ·) = H ∗ ∂t�Γ(t, ·)

=
dδ{t=0}

dt
H ∗ δ{x=0} =

dδ{t=0}

dt
H.

Therefore, z solves the main equation of (2.6) and one checks that z(0, ·) = H(·) and ∂tz(0, ·) = 0.
Mimicking this reasoning with the distribution z̃ = G ∗ Γ(t, ·) yields that z̃ solves the main equation of
(2.6) and one checks that z̃(0, ·) = 0 and ∂tz̃(0, ·) = G(·). By uniqueness of the solution of (2.6), we
easily infer that u = z + z̃.

We then deduce the following rewriting of the Green function Γ and its time derivative.

6



Proposition 2.7. For all t ∈ [0, s], we have{
∂tΓ(t, ·) = ∂tΓ(s− t, ·) ∗ ∂tΓ(s, ·)− ∂ttΓ(t, ·) ∗ Γ(s− t, ·)
Γ(t, ·) = Γ(t, ·) ∗ ∂tΓ(s− t, ·)− ∂tΓ(t, ·) ∗ Γ(s− t, ·)

in D′(Rd).

In particular, considering t = 0, we obtain the identity:

∀s > 0, δ{x=0} = ∂tΓ(s, ·) ∗ ∂tΓ(s, ·)− ∂ttΓ(s, ·) ∗ Γ(s, ·) (2.8)

Proof. For all s > 0 and t ∈ [0, s], the time reversal principle shows that, if u is the solution of (2.5), the
function v defined by v(s, ·) = u(s− t, ·) solves the wave equation{

∂ttv(t, x)−∆v(t, x) = 0 (t, x) ∈ [0, s]× Rd,
v(0, ·) = u(s, ·), ∂tv(0, ·) = ∂tu(s, ·). (2.9)

Let t ∈ [0, s]. According to Lemma 2.5,

u(t, ·) = v(s− t, ·)
= u(s, ·) ∗ ∂tΓ(s− t, ·)− ∂tu(s, ·) ∗ Γ(s− t, ·)
= (H ∗ ∂tΓ(s, ·) +G ∗ Γ(s, ·)) ∗ ∂tΓ(s− t, ·)− (H ∗ ∂ttΓ(s, ·) +G ∗ ∂tΓ(s, ·)) ∗ Γ(s− t, ·)
= H ∗ (∂tΓ(s− t, ·) ∗ ∂tΓ(s, ·)− ∂ttΓ(s, ·) ∗ Γ(s− t, ·))

+G ∗ (Γ(s, ·) ∗ ∂tΓ(s− t, ·)− ∂tΓ(s, ·) ∗ Γ(s− t, ·)) .

Moreover, since
u(t, ·) = H ∗ ∂tΓ(t, ·) +G ∗ Γ(t, ·)

and since these relations hold for any arbitray functions H and G, we get the expected result.

In the sequel, it will be useful to use the following identities about Green’s functions.

Proposition 2.8. For all p ∈ N,∫
R

(−1)pω2piωΓω(·) dω = ∆p(δ{x=0}) and
∫
R

(−1)pω2pΓω(·) dω = 0.

Proof. According to Eq. (2.3), one has

Γ(0, .) = 0, and ∂tΓ(0, .) = δ{x=0},

and by induction, we infer that

∀n ∈ N,
∂nΓ

∂tn
(0, ·) =

{
∆(n−1)/2(δ{x=0}), if n is odd
0 if n is even,

where the distribution ∆p(δ{x=0}) is defined for p ∈ N∗ by

〈∆p(δ{x=0}), ϕ〉 = ∆pϕ|{x=0} , ∀ϕ ∈ D(Rd).

The expected conclusion is obtained by reading these last identities in the Fourier space.

3 Proofs of the main results

3.1 Proof of Theorem 2.1
Equivalent Cauchy problem. Let us first introduce the solution wε of the acoustic wave equation{

∂ttwε(t, x)−∆wε(t, x) = 0, (t, x) ∈ [0, εTf ]× Rd,
wε(0, x) = uε(εTf , x), ∂twε(0, x) = −∂tuε(εTf , x), x ∈ Rd. (3.1)
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and consider Hε and Gε defined by

Hε(·) = wε(εTf , ·), and Gε(·) = −∂twε(εTf , ·).

Let us show that such choices of Hε and Gε as initial data for System (2.1) yield an equivalent problem
to (1.2). First, according to the time reversal principle (illustrated on Figure 1), we have

uε(x, t) = vε(x, t),∀x ∈ Rd,

for every t ≥ εTf .
Since 2εTf < dK , we infer that

uε(t, y) = 0, ∀(t, y) ∈ [0, εTf ]× ∂Ω.

by using the finite time propagation property of the wave equation.
Moreover, using now that 4εTf < dK and by (still) using the finite time propagation property of the

wave equation, we get that

dist(supp(uε(εTf , ·), ∂Ω) ≥ dK − 2εTf , dist(supp(∂tuε(εTf , ·), ∂Ω) ≥ dK − 2εTf ,

and
dist(supp(Hε), ∂Ω) ≥ dK − 3εTf , dist(supp(Gε), ∂Ω) ≥ dK − 3εTf .

This yields that
dist(supp(vε), ∂Ω) ≥ dK − 3εTf − t,

for all t ∈ [0, εTf ] which means that

vε(t, y) = 0, ∀(t, y) ∈ [0, εTf ]× ∂Ω.

Finally, we proved that
uε(t, y) = vε(t, y), ∀(t, y) ∈ R+ × ∂Ω.

Expression of L1[fε, H] and L2[fε, H]. Notice that the operator L1 can be also defined as

L1[fε, H] = Hε = wε(εTf , ·).

According to Lemma 2.5,

L1[fε, H] = uε(εTf , x) ∗ ∂tΓ(εTf , ·)− ∂tuε(εTf , ·) ∗ Γ(εTf , ·).

Moreover, by using Lemma 2.4, since uε solves the p.d.e. (1.2) (notice that in particular �uε = 0 as
t ≥ εTf ), one has for all t ≥ εTf ,

uε(t, x) = H ∗
(∫

R
fε(s)∂tΓ(t− s, ·) ds

)
and ∂tuε(t, x) = H ∗

(∫
R
fε(s)∂ttΓ(t− s, ·) ds

)
.

Combining the two previous facts and using Proposition 2.7 yields

L1[fε, H] = uε(εTf , ·) ∗ ∂tΓ(εTf , ·)− ∂tuε(εTf , ·) ∗ Γ(εTf , ·)

= H ∗
(∫

R
fε(s) (∂tΓ(εTf − s, ·) ∗ ∂tΓ(εTf , ·)− ∂ttΓ(εTf − s, ·) ∗ Γ(εTf , ·)) ds

)
,

= H ∗
(∫

R
fε(s)∂tΓ(s, ·) ds

)
.

We then infer that the operator L1[fε, H] is a Kernel operator, in other words that

L1[fε, H] = H ∗K1,fε ,
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where its associated kernel K1,fε reads

K1,fε(·) =

∫
R
fε(s)∂tΓ(s, ·) ds.

The derivation of the second operator L2 is similar. Indeed, one has

L2[fε, H] = Gε = −∂twε(x, ε Tf ),

and

L2[fε, H] = ∂tuε(εTf , ·) ∗ ∂tΓ(εTf , ·)− uε(εTf , x) ∗ ∂ttΓ(εTf , ·)

= H ∗
(∫

R
fε(s) [∂ttΓ(εTf − s, ·) ∗ ∂tΓ(εTf , ·)− ∂tΓ(εTf − s, ·) ∗ ∂ttΓ(εTf , ·)] ds

)
,

= H ∗
∫
R
fε(s)∂ttΓ(s, ·) ds,

which is a kernel operator associated to the kernel

K2,fε(·) =

∫
R
fε(s)∂ttΓ(s, ·) ds.

It remains to investigate the convergence properties of these operators.

Limit as ε→ 0. By using the finite propagation speed property of solutions of the wave equation, we
claim that, for a given horizon time T > 0, the exists a bounded domain Ω such that the solution uε of
(1.2) also solves {

∂ttuε(t, x)−∆uε(t, x) =
dfε
dt

(t)H(x), (t, x) ∈ Ω× [0, T ],

uε(t, x) = 0 (t, x) ∈ [−T, T ]× ∂Ω

Notice that the function Uε defined by Uε(t, x) =
∫ t
−∞ uε(s, x) ds satisfies{

∂ttUε(t, x)−∆Uε(t, x) = fε(t)H(x), (t, x) ∈ Ω× [0, T ],
Uε(t, x) = 0 (t, x) ∈ [−T, T ]× ∂Ω

By using that fε ∈ L1([−T, T ]) and standard regularity results on the wave equation, we get in particular
that ‖Uε‖C1([0,T ],L2(Ω)) + ‖∂ttUε‖L1([0,T ],H−1(Ω)), and therefore ‖uε‖C0([0,T ],L2(Ω)) + ‖uε‖L1([0,T ],H−1(Ω))

is uniformly bounded with respect to ε. A standard variational analysis (see e.g. [34, Prop. 4.7])
yields in particular that uε(t, ·) (respectively ∂tuε(t, ·)) converges in a distributional sense to u0(t, ·)
(respectively ∂tu0(t, ·)) solution of (1.1), for all t ∈ [0, T ]. To conclude, let us write Hε(·) = wε(εTf , ·)
and Gε(·) = −∂twε(εTf , ·), where wε solves (3.1). Using the convergence result above yields that wε(t, ·)
also converges to u0(t, ·) in a distributional sense, for all t ∈ [0, T ]. It follows that

lim
ε→0
〈L1[fε, H], ϕ〉 = 〈H,ϕ〉 and lim

ε→0
〈L2[fε, H], ϕ〉 = 0.

for every function ϕ ∈ C∞c (Rd). The desired conclusion follows.

3.2 Proof of Proposition 2.2
In this section, we provide workable and explicit expressions of the kernels K1,fε and K2,fε . We first
start with the usual case of Gaussian functions and then we generalize to pulses in L2(R).
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Case of Gaussian functions. Let us assume that g(t) = 1
(4π)1/2

exp(− t
2

4 ). Then its Fourier transform
ĝ writes ĝ(ω) = exp(−ω2) and the operator L1[gε, H] can be identified from its kernel by

K1,gε(x) =

∫
R
gε(s)∂tΓ(s, x) ds =

∫
R
ĝ(εω)iωΓω(x) dω

=

∫
R

+∞∑
p=0

(−1)pε2pω2p

p!
iωΓω(x) dω =

+∞∑
p=0

(ε2∆)p

p!
δ{x=0} = eε

2∆
[
δ{x=0}

]
=

1

(4ε2π)d/2
exp

(
− x2

4ε2

)
= F−1

x

[
exp(−ε2|ξ|2)

]
(x) = F−1

x [ĝ(|ξ|ε)] (x),

according to Proposition 2.8.
On the other side, the kernel associate to L2[gε, H] vanishes since g is even. Indeed, it holds

K2,gε(x) =

∫
R
gε(s)∂ttΓ(s, x) ds = −

∫
R
ĝ(εω)ω2Γω(x) dω = 0.

Case of a pulse f such that f̂ is real analytic in R. According to the decomposition of f in terms
of its odd and even parts, to get the expected result, it is enough to consider the case where f is either
odd or even.

Let us assume that f is even and that its Fourier transform writes

f̂(ω) =

+∞∑
p=0

α2pω
2p.

Denote by S(R) the Schwartz space (of rapidly decreasing functions).
One computes formally for every ϕ ∈ S(Rd),

〈K1,fε , ϕ〉 =

∫
R
fε(s)〈∂tΓ(s, x), ϕ(x)〉 ds =

∫
R
f̂(εω)iω〈Γω(x), ϕ(x)〉 dω

=

∫
R

+∞∑
p=0

(
α2pε

2pω2p
)
iω〈Γω(x), ϕ(x)〉 dω =

+∞∑
p=0

α2p〈(−ε2∆)pδ{x=0}, ϕ〉

= 〈F−1
x

[
+∞∑
p=0

α2p(ε
2|ξ|2)p

]
, ϕ〉 = 〈F−1

x

[
f̂(|ξ|ε)

]
, ϕ〉

by following the same steps as in the gaussian case, and

〈K2,fε(x), ϕ(x)〉 =

∫
R
fε(s)〈∂ttΓ(s, x), ϕ(x)〉 ds = −

∫
R
f̂(εω)ω2〈Γω(x), ϕ〉 dω = 0.

This computation is formal. We have to justify the interchange between the sum and the integral. In
this view, we claim that it is enough to work with a truncation of the series defining f̂ . For that purpose,
let us introduce the kernel KP

1,fε
defined by

KP
1,fε :=

∫
R
fPε (s)∂tΓ(s, x)ds,

where fPε is defined by

fPε = fε ∗ gP with gP (t) =
P

(4π)1/2
exp(− (Pt)2

4
)
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One has for all ϕ ∈ S(Rd),

〈KP
1,fε , ϕ〉 = 〈

∫
R
fPε (s)∂tΓ(s, x), ϕ(x)〉 = 〈∂tΓ(t, x), fPε (t)ϕ(x)〉

= 〈iωΓω(x), exp(−ω2/P 2)f̂(εω)ϕ(x)〉 = lim
N→∞

〈iωΓω(x), f̂N (εω) exp(−ω2/P 2)ϕ(x)〉

= lim
N→∞

N∑
p=0

〈iωΓω(x), α2pε
2pω2p exp(−ω2/P 2)ϕ(x)〉

= lim
N→∞

N∑
p=0

〈α2p(−ε2∆)pe∆/P δ{x=0}, ϕ(x)〉,

by reproducing the computations made in the Gaussian case. Here, f̂N is also defined by

f̂N (ω) =

N∑
p=0

α2pω
2p, ∀ω ∈ R.

Finally, we have

〈KP
1,fε , ϕ〉 = = lim

N→∞
〈F−1

x

[
N∑
p=0

α2p(ε
2|ξ|2)p

]
, e∆/Pϕ〉 = 〈e∆/PF−1

x

[
f̂(|ξ|ε)

]
, ϕ〉.

Then, by letting P tend to +∞, we get

K1,fε = lim
P→∞

KP
1,fε = lim

P→∞
e∆/PF−1

x

[
f̂(|ξ|ε)

]
= F−1

x

[
f̂(|ξ|ε)

]
,

the first equality being obtained by using the same reasoning as in the proof of Theorem 2.1 to compute
the limit as ε→ 0.

Let us now assume that f is odd, determined from its Fourier transform by

f̂(ω) =

+∞∑
p=0

α2p+1ω
2p+1.

Then, skipping the distributional pairing for notational simplicity and using the same reasoning as in
the case where f is even, one has

K1,fε(x) =

∫
R
fε(s)∂tΓ(s, x) ds =

∫
R
f̂(εω)iωΓω(x) dω = 0

and

K2,fε(x) =

∫
R
fε(s)∂ttΓ(s, x) ds = −

∫
R
f̂(εω)ω2Γω(x) dω

= i

∫
R

+∞∑
p=0

(
α2p+1ε

2p+1ω2p+2
)
iωΓω(x)dω = i

1

ε

+∞∑
p=0

α2p+1(−ε2∆)p+1δ{x=0}

= iF−1
x

[
+∞∑
p=0

1

ε
α2p+1(ε|ξ|)2p+2

]
= iF−1

x

[
|ξ|f̂(|ξ|ε)

]
.

4 Numerics and practical implementation of the algorithm
This section is devoted to the presentation of numerical experiments highlighting the potential and the
efficiency of our approach. All the numerical illustrations hereafter are restricted to the case d = 2. In
that case, according to the Huyghens principle, we know that there does not exist a time T such that
uε(t, ·) = ∂tuε(t, ·) for all t > T , where uε is the solution of (1.2). However, for each tolerance parameter
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η > 0, there exists Tη > 0 such that supt>Tη (‖uε(t, ·)‖L∞(Ω) + ‖∂tuε(t, ·)‖L∞(Ω)) ≤ η. By using standard
continuity results on the wave operator, one can show that, provided that η be small enough (and then
that Tη be large enough), the initial data Hε,η and Gε,η reconstructed by using the time reversal prin-
cipal are as close as wanted to Hε and Gε (see [29]). This remark legitimates the use of the following
algorithm, even in the case of even dimensions of space.

Time reversal algorithm for Dirac measure approximations

1. From the observation gε, determination of Hε by using (for instance) the time reversal ap-
proach;

2. Deconvolution of Hε to recover H(·) with the help of a deconvolution algorithm with a total
variation regularization by using the explicit expression of the kernels K1,fε(·) and K2,fε(·)
provided by Theorem 2.1.

Some practical informations on the implementation of this algorithm are provided in what follows.

4.1 Time reversal imaging and approximation
Recall that in the case where the source term is f0 = δ{t=0}, the function u0 satisfies{

∂ttu0(t, x)−∆u0(t, x) = 0, (t, x) ∈ R+ × Rd,
u0(0, x) = H(x), ∂tu0(0, x) = 0, x ∈ Rd. (4.1)

and the observed data g0 are defined by

g0(t, y) = u0(t, y) for all (t, y) ∈ [0, T ]× ∂Ω.

Then the reconstruction of the source term H from g0 can be obtained by noting that

H(·) = w(T, ·),

where w solves the wave equation
∂ttw(t, x)−∆w(t, x) = 0, (t, x) ∈ [0, T ]× Ω,

w(0, x) = ∂tw(0, x) = 0, x ∈ Ω,

w(t, y) = g0(T − t, y), (t, y) ∈ [0, T ]× ∂Ω.

As commented in [5], the discretization of this imaging functional requires to interpolate the data on the
boundary of Ω which generates smoothing effects on the reconstructed image. From a practical point of
view, it is more efficient to use an approximation version of H(·) reading as

I[g0](x) =

∫ T

0

vs(T, x)ds,

where vs solves the wave equation{
∂2
ttvs(t, x)−∆vs(t, x) = ∂t

(
δ{t=s}g(x, T − s)

)
δ∂Ω, (t, x) ∈ R× Rd

vs(t, x) = 0, ∂tvs(t, x) = 0, x ∈ Rd, t < s.

Here, δ{t=s} denotes the time Dirac distribution at time t = s and δ∂Ω is the surface Dirac measure on
the manifold ∂Ω.
In particular, by using the so-called Helmholtz-Kirchhoff identity 1, it is proven in [2] that when Ω is
close to a sphere in Rd with large radius, there holds

H(·) ' I[g0](·).
1Recall that, in a nutshell, this identity asserts that, for all x, z in Rd,∫

∂Ω
Γω(x, y)Γω(x, z) dσ(y) ' −

i

ω
Im Γ(x, z).
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4.2 Description of the numerical scheme
The wave equations involved in the algorithm are solved in the box Q = [−L/2, L/2]2 with periodic
boundary conditions, where the size L is assumed to be sufficiently large to prevent any reflection on the
boundary. Numerical integrations of each equation are then be performed exactly in the Fourier space.
Let us provide some precisions on them.

Fourier space discretization. Recall that the N -Fourier approximation of a 2D function u in the
box Q = [−L/2, L/2]2 is given by

uN (t, x) =

N/2∑
n1,n2=−N/2+1

cn(t)e2iπξn·x,

where n = (n1, n2) and ξn = (n1/L, n2/L). Here the coefficient cn represents the N2 first discrete
Fourier coefficients of u. Moreover, the inverse discrete Fourier transform of cn allows to write that
uNn = IFFT [cn] where uNn = u(xn) denotes the value of the function u at the point xn = (n1h1, n2h2)
where hα = Lα/N for α ∈ {1, 2}.

Conversely, cn can be computed by applying the discrete Fourier transform to uNn , namely

cn = FFT [uNn ].

Exact time integration We decide to approach the solution u of a generic wave equation

∂ttu(t, x)−∆u(t, x) = F (t, x) =

+∞∑
n1,n2=−∞

fn(t)e2iπξn·x in R× Rd

completed by two initial conditions, by uN , the solution of the “truncated system”

∂ttu
N (t, x)−∆uN (t, x) = FN (t, x) =

N/2∑
n1,n2=−N/2+1

fn(t)e2iπξn·x

with two approximated initial conditions; this system also reads

∂

∂t

(
uN

uNt

)
=

(
0 Id
∆ 0

)(
uN

uNt

)
+

(
0
FN

)
.

The last system can be integrated coefficient by coefficient, by solving the N2 linear 2 × 2 systems of
ordinary differential equations

d

dt

(
cn(t)
c′n(t)

)
=

(
0 1

−4π2|ξn|2 0

)(
cn(t)
c′n(t)

)
+

(
0

fn(t)

)
, for n = (n1, n2) and nj = −N, . . . , N (j = 1, 2),

where c′n(t) = dcn
dt (t). Notice that this system is simple enough to be solved explicitly.

4.3 Application to photoacoustic imaging
All the numerical simulations of this section are performed with the following set of parameters:

• Ω is a two-dimensional ball of radius 1 whose boundary is discretized by 210 sensors;

• the box Q = [−L/2, L/2]d has size L = 2 and the record time is T = 2;

• we use a regular step discretization with parameters dt = T/210 and dx = L/29.

Time reversal Imaging using ideal data g0. On Figure 2, we use ideal data g0 and as expected,
one observes that the reconstructed source and the exact source are almost identical.
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Figure 2: Source reconstruction using time reversal imaging I ; Left - initial source H, middle - given
data g0, right - I[g0]

Time reversal Imaging using data gε. We now consider three different excitation functions f1, f2,
f3 (see Figure 3), defined by

f1(t) = exp(−5πt2)

f2(t) = χ[−1/2,1/2](t)

f3(t) = 3χ{−0.6,−0.2,0.2,0.6}+[−1/12,1/12](t).

On Figure 4, we observe the reconstructed source obtained by using the Imaging functional I[gε] with
ε = 0.1.

The quality of the reconstruction does not seem not as good as in the previous case where ε = 0.
Indeed, this is not surprising since the imaging functional I[gε] provides an efficient reconstruction of
Hε = L1[fε, H], which can strongly differ from the source H whenever the coefficient ε is too large.

On Figure 5, the image of Hε = L1[fε, H] has been plotted and we observe that all the pictures cor-
respond to the source imaging I[gε]. This is a numerical illustration of the truthfulness of Theorem 2.1.
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Figure 3: Plots of the three different excitation functions f1, f2 and f3

Deconvolution algorithm by using a total variation regularization. In this last step of the
algorithm, we reconstruct the source H from the numerical approximation H̃ε = I[gε] by solving the
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Figure 4: Time reversal imaging associated to the perturbed data gε ; First line : data gε ; second line :
Imaging functional I[gε] ; Left to right: use of f1, f2 and f3
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Figure 5: Kernel operator L1[fε, H]; First line : Spatial Fourier transform of the kernel K1,fε ; Second
line: L1[fε, H] = H ∗K1,fε ; Left to right: use of f1, f2 and f3
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optimization problem

H∗ = argmin
H
{J(H)} with J(H) =

1

2

∫
Ω

(I[gε]−K1,fε ∗H)
2

+ γ

∫
Ω

|∇H| dx,

where γ is a (positive) regularization parameter. Nevertheless, a direct computation of H∗ is sometimes
difficult to implement because of the non-smooth character the Total Variation (TV) term. This is
why we consider an approximation of H∗ with the help of an iterative shrinkage-thresholding algorithm
[23, 21]. This algorithm can be viewed as a splitting gradient descent iterative scheme:

(0) Initialization: data gε, initial solution H0 = 0 are known,

(1) Data link step: Hk+1/2 = Hk − τK1,fε ∗ [K1,fε ∗Hk − I[gε]],

(2) Regularization step: Hk+1 = Tγτ [Hk+1/2],

where τ > 0 is a virtual descent time step and the operator Tτ is defined by

Tτ [u] = argmin
v

{
1

2
‖v − u‖L2(Ω) + τ‖∇v‖L1(Ω)

}
.

The TV term is minimized implicitly by using the duality algorithm of Chambolle [20], which can be
considered as an advantage of this approach. It is notable that this algorithm converges [23, 21] under
a smallness assumption on the parameter τ , namely τ‖F [K1,fε ]‖2∞ ≤ 1. A possible variant consists in
considering the algorithm by Beck and Teboulle [14] to accelerate the convergence rate. On Figure 6,
the reconstructed source H∗ obtained for the three different functions f1, f2 and f3 are plotted.
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Figure 6: Correction of the source reconstruction using deconvolution algorithm with total variation
regularization; Left to right : using f1, f2 and f3

Influence of ε :
We finally present some numerical experiments using the pulse f3 and associated to different values
of ε. On Figure 7 and for ε = 0.075, ε = 0.1 and ε = 0.15, we plot respectively the data gε, the
reconstruction of the source using the classical Time Reversal Imaging and the reconstruction of the
source after applying the deconvolution algorithm. In particular, we can observe an influence of ε on the
localization of the waves and as expected, the reconstruction of the source is even better than ε is small.

5 Generalization to elasticity wave operators
The motivation of this section is to emphasize that our approach can be extended without special effort
to many kinds of wave equation involving homogeneous operators in space. In particular, having in mind
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Figure 7: Influence of the parameter ε on the reconstruction of the source in the case of the pulse f3

; First line : the data gε ; Second line : reconstruction using Time reversal imaging associated to gε
; Last line : correction of the source reconstruction using deconvolution algorithm with total variation
regularization ; Left to right : with respectively ε = 0.075, ε = 0.1 and ε = 0.15.

some recent advances on hybrid methods in biomedical imaging exploiting elastic properties of the soft
tissue [9, 10, 8, 16, 27, 40], we focus on the linear elastic wave equation. For the sake of clarity and since
all proofs follow exactly the same lines as those of Section 3, we will only provide the main steps allowing
to extend our results to the framework of elastic waves.

Let us now consider the homogeneous isotropic elastic wave equation in a d-dimensional open medium{
∂ttuε(t, x)− Lλ,µuε(t, x) = f ′ε(t)H(x), (t, x) ∈ R× Rd,
uε(x, t) = ∂tuε(t, x) = 0, x ∈ Rd, t < −εTf ,

where

Lλ,µu = µ∆u + (λ+ µ)∇(∇ · u).

Here (λ, µ) denote the Lamé coefficients of the medium. The inverse problem we consider here is to
reconstruct the source H from the data set

gε(t, y) = uε(t, y), t ∈ [0, T ], y ∈ ∂Ω.
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Case of ideal data: ε = 0. In the ideal case with ε = 0, we are led to consider the function u0 solution
of {

∂ttu0(t, x)− Lλ,µu0(t, x) = δ′t=0H(x), (t, x) ∈ R× Rd,
u0(t, x) = ∂tu0(t, x) = 0, x ∈ Rd, t < 0,

and

g0(t, y) = u0(t, y), t ∈ [0, T ], y ∈ ∂Ω.

It has been recently addressed in [19, 6, 4]. More precisely, it is proven that the natural imaging functional
I defined by

I[g0](x) =

∫ T

0

vs(T, x)ds, x ∈ Ω,

where the vector field vs is defined as the solution of{
∂ttvs(t, x)− Lλ,µvs(t, x) =

dδt=s
dt

g0(T − s, y)δy=∂Ω, (t, x) ∈ R× Rd,
vs(t, x) = ∂tvs(t, x) = 0, x ∈ Rd, t < s.

(5.1)

does not lead to a sufficiently good reconstruction of the source H. A more efficient reconstruction [6]
can then be obtained by considering the following modified version

Ĩ[g0] = cs∇× ψI + cp∇φI . (5.2)

Here cp =
√
λ+ 2µ and cs =

√
µ denote respectively the pressure and the shear wave speeds and ψI and

φI represent the compressional and the shear components of I respectively which are defined from the
Helmholtz decomposition of I:

I = ∇× ψI +∇φI . (5.3)

In the sequel, we define respectively the Helmholtz decomposition operator Hp and Hs by

Hp[I] = ∇φI and Hs[I] = ∇× ψI .

Green function and equivalent Cauchy problem. Let us also introduce the outgoing Green’s
tensor Gω,0 associated to the elastic wave equation

(Lλ,µ + ω2)Gω(x) = −δx=0I, x ∈ Rd.

and G, the temporal version of the previous Green tensor, defined as the range by the inverse Fourier
transform of Gω, in other words

G(t, ·) = F−1
t [Gω(·)](t).

Using the same arguments as in the acoustic case, we can show the equivalent of Proposition 2.7.

Proposition 5.1. For all t ∈ [0, s], there holds{
∂tG(t, ·) = ∂tG(s− t, ·) ∗ ∂tG(s, ·)− ∂ttG(t, ·) ∗G(s− t, ·)
G(t, ·) = G(t, ·) ∗ ∂tG(s− t, ·)− ∂tG(t, ·) ∗G(s− t, ·)

in D′(Rd).

In particular, considering t = 0, we obtain the identity:

∀s > 0, δx=0I = ∂tG(s, ·) ∗ ∂tG(s, ·)− ∂ttG(s, ·) ∗G(s, ·) (5.4)

Moreover, the proof of the following theorem follows exactly the same line as the one of Theorem 2.1.

Theorem 5.2. Let Tf > 0, ε > 0, Ω be a connected bounded open set of Rd and K be a compact set
such that K ⊂ Ω. Then, for all H such that supp(Hs) ⊂ K and supp(Hp) ⊂ K where Hs and Hp are
defined from the Helmoltz decomposition of H:

Hs = Hs[H], and Hp = Hp[H], (5.5)
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and for ε > 0 small enough, there exists a Cauchy problem{
∂ttvε(t, x)− Lλ,µvε(t, x) = 0, (t, x) ∈ R+ × Rd,
vε(0, x) = Hε(x) and ∂tvε(0, x) = Gε(x) x ∈ Rd

equivalent to (5.1) in the sense that

uε(t, y) = vε(t, y), ∀(t, y) ∈ [0, T ]× ∂Ω.

Moreover, Hε and Gε are given by

Hε = L1[fε,H] = K1,fε ∗H, and Gε = L2[fε,H] = K2,fε ∗H,

where
K1,fε(·) =

∫
R
fε(s)∂tG(s, ·) ds and K2,fε(·) =

∫
R
fε(s)∂ttG(s, ·)ds,

Explicit expression of the associated kernels. The reconstruction of H from the knowledge of
Hε can then be performed by using the Helmholtz decomposition of Hε as well as two deconvolution
procedures. In particular, the explicit expression of each kernel is derived from the proposition below.

Proposition 5.3. Let f ∈ L2(R) be defined from its Fourier transform f̂ given in Rd by

f̂(ω) =

+∞∑
n=0

αnω
n,

and let us introduce the four following scalar kernel

Kα
1,fε(x) = F−1

x

[
f̂e(|ξ|cαε)

]
and Kα

2,fε(x) = iF−1
x

[
|ξ|f̂o(|ξ|cαε)

]
, α ∈ {s, p},

where fe and fo denote the even and odd parts of f respectively. Then we have

K1,fε ∗H = Kp
1,fε
∗Hp +Ks

1,fε ∗H
s

and
K2,fε ∗H = Kp

2,fε
∗Hp +Ks

2,fε ∗H
s,

where Hp and Hs are given by (5.5).

The proof of this proposition is essentially based on the Helmholtz decomposition of Gω, namely
Gω = Gsω + Gpω, and on the following remark

Lλ,µ[Gpω] = c2p∆Gpω and Lλ,µ[Gsω] = c2s∆Gsω

and that, for α ∈ {s, p},∫
R

(−1)pω2piωGαω(·) dω = c2pα ∆p(Hα
[
δ{x=0}I

]
) and

∫
R

(−1)pω2pGαω(·) dω = 0.

Finally, the source ofH can be reconstructed by finding separately it compressional and shear components
which can be done for instance by using a TV-deconvolution approach :

Hα,∗ = argmin
H

{Jα(H)} with Jα(H) =
1

2

∫
Ω

(
H
[
Ĩ[gε]

]α
−Kα

1,fε ∗H
)2

+ γ

∫
Ω

|∇H| dx.
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6 Comments and conclusion
In this article, we have proposed a systematic method allowing to reconstruct the spatial component
of a source term whose temporal component cannot be approximated by a Dirac mass. The proposed
algorithm rests upon the use of an imaging technique based on a time reversal approach, and a correction
of the reconstructed source with the help of a TV regularization-deconvolution algorithm.

Some first numerical experiments allowed to validate the method in the acoustic framework and we
claim that our method is robust enough to be extended to many kinds of wave-like operators involving
homogeneous space operators, such as linear elasticity wave ones.

Finally, the approach developed in this article highlights a connexion between a regularization in time
and in space, where the respective kernels sizes are correlated to the wave velocity.

We are actually investigating the issue of exploiting/generalizing this approach to tackle inverse
problems in non-homogenous media where the main unknown is the wave velocity.
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