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Multi–dimensional shear shallow water flows : problems and
solutions

S. Gavrilyuk∗, K. Ivanova†, N. Favrie‡

May 25, 2017

Abstract

The mathematical model of shear shallow water flows of uniform density is studied. This is a
2D hyperbolic non-conservative system of equations which is reminiscent of a generic Reynolds-
averaged model of barotropic turbulent flows. The model has three families of characteristics
corresponding to the propagation of surface waves, shear waves and average flow (contact
characteristics). The system is non-conservative : for six unknowns (the fluid depth, two
components of the depth averaged horizontal velocity, and three independent components of
the symmetric Reynolds stress tensor) one has only five conservation laws (conservation of
mass, momentum, energy and mathematical ‘entropy’). A splitting procedure for solving such
a system is proposed allowing us to define a weak solution. Each split subsystem contains only
one family of waves (either surface or shear waves) and contact characteristics. The accuracy of
such an approach is tested on exact 2D solutions describing the flows where the velocity is linear
with respect to the space variables, and 1D solutions. The capacity of the model to describe the
full transition observed in the formation of roll waves : from uniform flow to one-dimensional
roll waves, and, finally, to 2D transverse ‘fingering’ of roll wave profiles is shown.

Key words : Non-conservative hyperbolic equations, Godunov–type methods, roll waves

1 Introduction

The Saint-Venant equations are of great importance both in hydraulic and oceanographic applica-
tions. The reason is that they are simpler compared to the n–dimensional Euler equations with a
free surface. Indeed, the Saint-Venant equations describe the evolution of the fluid depth and depth
averaged velocities defined in a fixed n− 1 dimensional domain. They form a hyperbolic system of
equations in conservative form for which standard numerical methods can be applied [22, 28, 48].
The derivation of Saint-Venant equations is based on the smallness of the parameter ε = H/L where
H and L are the vertical and horizontal scale lengths, respectively, and the hypothesis that the
dependence of the horizontal velocity on the vertical coordinate is very weak, i. e. the fluid flow is
almost potential (the flow is not sheared). Since the shear effects are completely neglected in the
model derivation, the Saint-Venant equations are not able to describe neither the formation of large
scale eddies (‘roller’) appearing in the hydraulic jumps near the free surface nor the form of the
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hydraulic jump. A natural extension of the Saint-Venant equations are integro-differential Benney’s
equations [6] describing shear shallow water flows of uniform density. They represent an infinite -
dimensional system of quasilinear equations, where the matrices are replaced by linear operators
acting in some functional spaces. The notion of hyperbolicity of such an ’infinite-dimensional’ sys-
tem can also be introduced [44, 45, 29, 8]. Benney’s equations admit, in particular, a linear vertical
shear with constant vorticity as an exact solution. A numerical approach based on such a linear
approximation was developed in [46] in 1D case. To the best of our knowledge, 2D computations of
the Benney equations are absent in the literature.

For shear flows with varying in space and time vorticity an intermediate model was recently
proposed where the governing equations are obtained by depth avergaing of Euler equations without
assuming potential flow [47, 37, 38, 39]. The hypothesis of smallness of the horizontal vorticity (the
hypothesis of weakly sheared flows) allows us to keep the second order depth averaged correlations
in the governing equations but neglect the third order correlations, and thus to close the governing
system. This approach was further extended to the case where the third-order correlations are taken
into account [13].

This intermediate multi-dimensional model is reminiscent of the classical Reynolds averaged
Euler equations for the compressible barotropic turbulent flows [21]. The model complemented by
friction terms was used for the study of 1D travelling waves down inclined plane (roll waves) and
hydraulic jumps. A strong physical adequacy of the model with the experimental observations was
found [37, 38, 39].

The multi-dimensional case is much more challenging. For the flows over a flat bottom without
friction effects, the system can be written in the form [47, 39, 20]:

ht + div(hu) = 0, (1)

(hu)t + div

(
hu⊗ u +

gh2

2
I + hP

)
= 0,

DP

Dt
+
∂u

∂x
P + P

(
∂u

∂x

)T
= 0,

D

Dt
=

∂

∂t
+ u · ∇.

Here t is the time, x = (x, y)T are the Cartesian coordinates, u = (u, v)T is the depth averaged
horizontal velocity, h is the fluid depth, g is the gravity, and P is the stress tensor which measures
the distortion of the instantaneous horizontal velocity profile ũ(t, x, y, z) depending of the vertical
coordinate z. The sign ⊗ means the tensor product, and I is the identity tensor. The definition of
the depth averaged horizontal velocity u(t, x) and shear stress tensor P is as follows :

u(t, x) =
1

h

∫ h

0

ũ(t, x, y, z)dz, P =
1

h

∫ h

0

(ũ− u)⊗ (ũ− u) dz.

The tensor P is symmetric and positive definite. The positive definiteness of P is a consequence of
the Cauchy–Schwarz inequality.

The striking mathematical analogy with the Reynolds averaging equations of barotropic com-
pressible turbulent flows [31, 51, 52, 20] allows us to call R = hP the Reynolds stress tensor, and P
the reduced Reynolds stress tensor. For mathematical reasons, the choice of P is more convenient
than that of R. For simplicity, both R and P will be further refereed to as the Reynolds stress
tensor. 1

1The evolution of P (the last equation of (1)) is not governed by any specific objective derivative, i.e. the equation
is not invariant under the change of variables t′ = t, x′ = O(t)x, u′ = O(t)u + Ȯx, P′ = OPOT . Here O(t)
is a time–dependent orthogonal transformation : OOT = I, ‘T’ means transposition, and ‘dot’ denotes the time
derivative. This is due to the fact that the tensor equation for the Reynolds stress tensor is not a geometric equation,
but a physical one, representing a sort of micro–Newton law derived from the Euler equations by depth averaging.
Thus, this equation should be only Galilean invariant, which is obviously the case.
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Equations (1) admit the energy conservation law:

∂

∂t

(
h

(
1

2
|u|2 + ei + eT

))
+ div

(
hu

(
1

2
|u|2 + ei + eT

)
+

(
gh2

2
I + hP

)
u

)
= 0, (2)

where

eT =
1

2
trP, ei =

1

2
gh,

and the conservation of ‘entropy’:

∂hΨ

∂t
+ div (huΨ) = 0, Ψ =

Det (P)

h2
. (3)

The variable Ψ is refereed to as ‘entropy’ because this quantity is transported along the mean flow as
the true entropy for the Euler equations of compressible fluids. Also, we will see that this quantity
will increase through the shocks in analogy with the conventional entropy (see [37, 38, 39] for the 1
D study of roll waves and hydraulic jumps).

The system is hyperbolic but not in conservative form. The hyperbolicity was established, for
example, in [7], for the equations of compressible turbulent flows, generalizing the system (1). How-
ever, the fact of the non-conservativity was just a ‘feeling’ which was not rigorously proved in the
literature. In Appendix A we have established that the system (1) admits only five conservation
laws written above : conservation of mass, momentum, energy and entropy. Since the number
of scalar unknowns is six (h, u and three independent components of P), the system is not in
conservative form. The definition and computation of discontinuous solutions for non-conservative
hyperbolic equations is a challenging problem (see examples of non-conservative systems in com-
pressible turbulence [7, 2], multi–layer shallow water flows [34, 4, 32, 5, 1, 30], multi–phase fluid
flows [3, 24, 40, 41, 42, 19, 14], solid-fluid systems [17, 33]).

Essentially, four approaches are used for numerical solving of non–conservative systems of equa-
tions. The most classical one is based on the Volpert path definition for non–conservative products
[15]. The second one is the formulation of an augmented system of ‘Rankine–Hugoniot relations’
through the study of travelling wave solutions of an extended system of equations approximating
a given system (formulation of kinetic relations) [50, 26]. The third one is based on the relaxation
technique where the studied system is approximated by a new hyperbolic system with all linearly
degenerate in the sense of Lax eigenfields [9, 14]. Finally, the additional relations can be formulated
from the compatibility between theoretical and experimental results [16, 42]. Excepting the first ap-
proach (more formal and hence less precise), all the approaches mentioned above are not universal
: they are usually specific to the model under study.

In [18], we proposed a new splitting approach to the equations of hyperelasticity. This system
in 3D case has three types of sonic waves (one longitudinal and two transverse) and contact char-
acteristics. The system was split into several subsystems each of which contained only one type
of sonic waves (only longitudinal or transverse). Each subsystem was hyperbolic and admitted a
weak formulation. Such an approach was extended to non-conservative multi-solid systems [33]. It
allowed us not only to define the non-conservative products, but also to increase the precision and
robustness of the numerical method. Such a philosophy will also be developed here.

In section 2, the hyperbolicity of the system (1) is established. The Rankine -Hugioniot relations
compatible to the positive definiteness of the Reynolds stress tensor are proposed in section 3.
Dissipation terms are introduced in section 4. The splitting procedure and its numerical realisation
are presented in sections 5, 6, 7. The numerical results are shown in section 8. Technical details are
in Appendices A and B.
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2 Hyperbolicity study

The hyperbolicity study is analogous to that given in [7] for the compressible turbulent flows. For
the sake of completeness, we present here a specific case of shear shallow water flows. Denoting the
components of P by Pij, i, j = 1, 2, one can rewrite the system (1) in Cartesian coordinates in the
form :

ht + uhx + vhy + hux + hvy = 0, (4)

ut + uux + vuy + ghx +
1

h
(hP11)x +

1

h
(hP12)y = 0,

vt + uvx + vvy + ghy +
1

h
(hP12)x +

1

h
(hP22)y = 0,

P11t + uP11x + vP11y + 2P11ux + 2P12uy = 0,

P12t + uP12x + vP12y + P12 (ux + vy) + P11vx + P22uy = 0,

P22t + uP22x + vP22y + 2P12vx + 2P22vy = 0.

Or, in matrix form :
∂W

∂t
+ A

∂W

∂x
+ B

∂W

∂y
= 0,

where

W =



h

u

v

P11

P12

P22


, A =



u h 0 0 0 0

gh+ P11

h
u 0 1 0 0

P12

h
0 u 0 1 0

0 2P11 0 u 0 0

0 P12 P11 0 u 0

0 0 2P12 0 0 u



, (5)

B =



v 0 h 0 0 0

P12

h
v 0 0 1 0

gh+ P22

h
0 v 0 0 1

0 2P12 0 v 0 0

0 P22 P12 0 v 0

0 0 2P22 0 0 v



. (6)

The characteristic surfaces S(t, x, y) = 0 for (4) satisfy the relations :

det

(
I
∂S

∂t
+ A

∂S

∂x
+ B

∂S

∂y

)
= 0.
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It implies :
χ = 0, (7)

χ = ±
√

(∇S)T P∇S, (8)

χ = ±
√
gh|∇S|2 + 3 (∇S)T P∇S, (9)

where

χ =
∂S

∂t
+ u · ∇S, ∇S =

(
∂S

∂x
,
∂S

∂y

)T
.

The characteristic field (7) is double, while the fields (8) and (9) are simple. They are real since P is
positive definite. One can prove that the double field has two left linearly independent eigenvectors
of the corresponding characteristic matrix. Hence, the equations are hyperbolic. To understand the
structure of the eigenfields, consider the governing equations in x–direction. The eigenvalues of the
matrix A are :

λ1,2 = u, λ3,4 = u± b, b =
√
P11, λ5,6 = u± a, a =

√
gh+ 3P11. (10)

For the multiple eigenvalue λ1,2 = u we have two linearly independent right eigenvectors :

r1 = (0, 0, 0, 0, 0, 1)T , ∇Wλ1 · r1 = 0,

r2 = (−h, 0, 0, gh+ P11, P12, 0)T , ∇Wλ2 · r2 = 0,

(11)

For the eigenvalue λ3 = u+ b one has:

r3 = (0, 0, b, 0, b2, 2P12)T , ∇Wλ3 · r3 = 0, (12)

For the eigenvalue λ4 = u− b one has:

r4 = (0, 0,−b, 0, b2, 2P12)T , ∇Wλ4 · r4 = 0, (13)

For the eigenvalue λ5 = u+ a one has:

r5 =

{
h, a,

2aP12

a2 − b2
, 2b2,

a2 + b2

a2 − b2
P12,

4P 2
12

a2 − b2

}T
,

∇Wλ5 · r5 =
3

2a
(a2 + b2) > 0,

(14)

For the eigenvalue λ6 = u− a one has:

r6 =

{
h, −a, − 2aP12

a2 − b2
, 2b2,

a2 + b2

a2 − b2
P12,

4P 2
12

a2 − b2

}T
,

∇Wλ6 · r6 = − 3

2a
(a2 + b2) < 0.

(15)

The fields corresponding to the multiple eigenvalues λ1,2 = u and to λ3,4 = u±b are linear degenerate
in the sense of Lax, while the fields λ5,6 = u± a are genuinely non–linear. The family λ3,4 = u± b
(further on referred to as b–waves) is reminiscent of the shear waves in hyperelasticity, while the
family λ5,6 = u± a (further on referred to as a–waves) is reminiscent of the longitudinal waves. The
analogy with shear waves in hyperelasticity and b–waves was also noticed in [49] in incompressible
limit. An interesting analogy between the linearised equations of incompressible turbulence and
Maxwell’s equations was also underlined there.
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3 Rankine–Hugoniot relations

Since the number of scalar conservation laws is only five (mass, momentum, energy and ‘entropy’ ),
while the number of unknowns is six (h, u and three independent components of P), the system is
not in conservative form. The proof is given in Appendix A.

For discontinuous solutions, the Rankine–Hugoniot relations coming from the mass, momentum
and energy equations are :

[h(u · n−Dn)] = 0,[
hu(u · n−Dn) +

gh2

2
n + hPn

]
= 0,[

h(u · n−Dn)

(
1

2
|u|2 + ei + eT

)
+ nT

(
gh2

2
I + hP

)
u

]
= 0.

Here for any function f we denote [f ] = f+−f−, where f+, f− are the right and the left limit values
of f at the discontinuity surface, Dn is the normal velocity of the surface, and n is the normal unit
vector to the surface. We denote also by s the tangent unit vector to the surface such that (n, s)
form a Cartesian basis. The momentum equation implies:[

h(u · n−Dn)2 +
gh2

2
+ hnTPn

]
= 0,

[h(u · n−Dn)(u · s) + hsTPn] = 0.

As usually, we distinguish two types of discontinuities: contact discontinuities (interfaces) where
u · n−Dn = 0, and shock waves where u · n−Dn 6= 0.

3.1 Contact discontinuities

We consider first the interfaces u · n−Dn = 0. We obtain two relations following from the momentum
equation : [

gh2

2
+ hnTPn

]
= 0,

[sThPn] = 0,

and the energy equation:
[(u · s)sThPn] = 0.

So, we need to distinguish two types of contact discontinuities. The first type is determined by the
condition that at each side of the contact discontinuity the tangential component of the stress vector
sThPn vanishes. Then, a priori, the jump of the tangential velocity can be arbitrary:

[u · s] 6= 0. (16)

So, the sliding is admitted as in the case of contact discontinuities for the Euler equations of com-
pressible fluids.

For the second type of contact discontinuity where the tangential component of the stress vector
sThPn is continuous, but not necessarily vanishing, the sliding is forbidden :

[u · s] = 0. (17)

So, the full velocity vector should be continuous. This kind of interfaces is not admitted by the
Euler equations of compressible fluids.
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3.2 Shocks

We consider the discontinuity interfaces where u · n−Dn 6= 0. They are called shocks. The Rankine–
Hugoniot relations coming from the mass, momentum (two scalar relations) and energy equations
are :

[h(u · n−Dn)] = 0,[
h(u · n−Dn)2 +

gh2

2
+ hnTPn

]
= 0,

[
h(u · n−Dn)(u · s) + hsTPn

]
= 0,[

h(u · n−Dn)

(
1

2
|u|2 + ei + eT

)
+ (u · n)

(
gh2

2
+ hnTPn

)
+ (u · s)hsTPn

]
= 0.

Contrary to the Euler equations of compressible fluids, the momentum equation allows also a sliding
along the shocks surfaces. This system of Rankine–Hugoniot relations is obviously not sufficient
to describe the full structure of strong discontinuities. As it is proved in Appendix A all linearly
independent conservation laws admitted by the system (1) of the form :

∂f

∂t
+
∂g1

∂x
+
∂g2

∂y
= 0,

are only those of mass, momentum, energy and hΨ. Here f, g1, g2 are functions depending on h,
u and P. Thus, there is no hope to define a ‘classical’ weak solution to (1). Moreover, the shock
relation coming from the equation for

Ψ =
Det (P)

h2
.

implies the continuity of Ψ through the shocks :

[Ψ] = 0.

However, this condition is not physically acceptable. Indeed, for 1D flows the system of Rankine–
Hugoniot relations is closed. Moreover, the 1D system admits an analogue of Ψ having a clear
physical meaning. This quantity is associated with the enstrophy (squared vorticity) and plays the
role of ‘mathematical entropy’ : it increases through the shock. For example, for hydraulic jumps
the enstrophy increase corresponds to the vorticity creation : a roller appears at the forward slope
of the hydraulic jump [37, 38]. Also, in [19] a simplified model of multi–phase flows was proposed,
and a quantity caracterising the micro-energy of interaction between phases was introduced, that is
analogous to Ψ. This quantity was also increasing through the shock.

The non–conservative nature of the multi-dimensional equations of shear shallow water flows
represents an enormous difficulty from the mathematical and numerical point of view. Moreover,
when the shocks appear, we also should be aware about positive definiteness of P : this property
should be guaranteed on the weak solutions. If the solution is smooth, this property is easy to
establish. Indeed, the equation for Ψ can be integrated in the Lagrangian coordinates X related to
the mean flow. One can write in the Lagrangian coordinates :

Ψ(t,X) = Ψ(0,X),

or
λ1λ2

h2
=
λ10λ20

h2
0

,

where λi, i = 1, 2 are eigenvalues of P, and the index 0 corresponds to the initial state. It is then
clear that if P is initially positive, it will be positive for any time, if the solution is smooth.

We will establish below a set of additional Rankine–Hugoniot relations which guarantee the
positive definiteness of P even. Also, dissipative terms compatible with the positive definiteness of
P will also be introduced into the governing equations.
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3.2.1 Positive definiteness of the Reynolds stress through the shock : 1D case study

This case was already studied in [47, 37, 38]. Here, we present it for completeness. The governing
equations are :

∂h

∂t
+
∂hu

∂x
= 0, (18)

∂hu

∂t
+

∂

∂x

(
hu2 +

gh2

2
+ Φh3

)
= 0, (19)

∂

∂t

(
h

2

(
u2 + gh+ Φh2

))
+

∂

∂x

(
hu

(
u2

2
+ gh+

3

2
Φh2

))
= 0. (20)

Here Φ = P11/h
2 is the enstrophy which conserves along trajectories :

DΦ

Dt
= 0. (21)

The variable Φ is a one–dimensional analogue of Ψ (P11 is is a ‘one–dimensional’ determinant of
P.) The governing equations (18)–(20) are reminiscent of the Euler equations of compressible fluids
with the specific internal energy given by

e =
gh

2
+

Φh2

2
, (22)

and the pressure :

p =
gh2

2
+ Φh3. (23)

Finally, the Rankine–Hugoniot relations should be augmented by the inequality : the enstrophy Φ
increases through the shock. This is also equivalent the fluid depth increase. This is reminiscent of
standard Rankine–Hugoniot relations for the Euler equations of compressible fluids. Thus, P11 stays
positive.

3.2.2 Positive definiteness of the Reynolds stress through the shock : 2D case study

The previous 1 D example suggests us a hypothesis about the following set of Rankine–Hugoniot
relations. Let us suppose that [

sTPn

h

]
= 0, (24)

[sTP s] = 0. (25)

Then the ‘ entropy’ Ψ of the system is increasing through the shock if and only if the ‘normal’
entropy nTPn

h2
is increasing through the shock. Indeed, this fact follows from the identity :

Ψ =
(nTPn)(sTP s)− (sTPn)2

h2
=

(
nTPn

h2

)(
sTP s

)
−
(

(hsTPn)2

h4

)
(26)

=

(
nTPn

h2

)(
sTP s

)
0
−
(

(hsTPn)2

h4

)
0

>

(
nTPn

h2

)
0

(
sTP s

)
0
−
(

(hsTPn)2

h4

)
0

= Ψ0,

where the index ‘0’ denotes the state before the shock. The justification of the jump relations (24),
(25) which guarantees the inequality (26) will be done below by using a specific splitting procedure
in solving the non–conservative equations.
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4 Dissipative terms compatible with the positive definite-

ness of the Reynolds stress tensor

We add now dissipation effects in the model :

ht + div(hu) = 0, (27)

(hu)t + div(hu⊗ u +
gh2

2
I + hP) = −Cf |u|u,

DP

Dt
+
∂u

∂x
P + P

(
∂u

∂x

)T
= D, D = DT .

Here Cf is the Chézy coefficient, and D is the dissipation tensor to be defined. The equations (27)
should also satisfy the energy conservation law :

∂

∂t

(
h

(
1

2
|u|2 + ei + eT

))
+ div

(
hu

(
1

2
|u|2 + ei + eT

)
+

(
gh2

2
I + hP

)
u

)
= −Cf |u|3−Q, (28)

where the dissipative source term Q should be positive. The positivity of Q is an analogue of the
second low of thermodynamics. The compatibility of (27) and (28) implies the expression for Q in
terms of D:

tr (D) = −2

h
Q. (29)

The equations for the reduced stress tensor P can be written in Cartesian coordinates as follows :

DP11

Dt
+ 2P11ux + 2P12uy = D11,

DP12

Dt
+ P12 (ux + vy) + P11vx + P22uy = D12,

DP22

Dt
+ 2P12vx + 2P22vy = D22.

It implies the evolution equation for Ψ :

h2 D

Dt

(
P11P22 − P 2

12

h2

)
= D11P22 − 2P12D12 +D22P11.

Or, in an invariant form,

h2 D

Dt

(
detP

h2

)
= tr (P) tr (D)− tr (PD) .

By analogy with the Stokes hypotheses we assume that the dissipation tensor D is an isotropic tensor
function of P. Then, in two–dimensional case, D is linear in P :

D = −2

h
|u|3

(
αP +

δ

2
I

)
,

where α and δ are functions of invariants of P. The multiplier −2|u|3/h is for convenience only. So,
α has the dimension s2m−2, while δ is dimensionless. Consider the simplest case where δ = 0. This
choice allows us the reduction to the Saint-Venant equations in the limit P = 0. One has then :

D = −2α

h
|u|3P. (30)
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In particular, this implies the equation for Ψ in the form :

h2 D

Dt

(
det (P)

h2

)
= −4α

h
|u|3det (P) . (31)

Then (29) and (30) imply the following relation between Q and α :

Q = αtr (P) |u|3. (32)

We will finally choose Q as in [38] :

αtr (P) = max

(
0, Cr

tr(P)
h2
− ϕ

tr(P)
h2

)
. (33)

Here ϕ and Cr are the model constants. ϕ is associated to the enstrophy of small vortexes at
the vicinity of the bottom, and Cr is a dissipation coefficient associated to the roller formation
[37, 38, 39]. The coefficients ϕ and Cr were evaluated there from experimental data. We will
indicate these specific values below. The formula (33) allows us to recover 1D case studied in [38].
As it follows from (31) and (33), the ‘entropy’ Ψ is decreasing on continuous solutions, but always
stays positive. This means that the dissipation law also conserves the positive definiteness of P.

A simplified option for the dissipative term could also be as follows :

αtr (P) = Cr. (34)

Then
Q = Cr|u|3,

and

D = −2

h
Cr|u|3

P

tr (P)
.

Such a choice also guarantees the positive definiteness of P and thus is reasonable from the physical
point of view. However, the wave profile obtained with such a law does not correspond to the
experimental ones. Indeed, Brock [10, 11, 12] measured the stationary roll wave profiles in different
conditions (different slopes and wall roughness). He noticed that the roll wave profiles contain
always the following three essential parts: first, a sudden increasing of the depth since all waves
break i.e. acquire steeply sloping wave front, second, a continuous zone where the depth increases
progressively, and third, a slowly decreasing zone until a new hydraulic jump (see such a profile in
Figure 6). This is a reason to prefer the option (33) because it allows us to reproduce experimental
profiles.

5 Splitting method in Cartesian coordinates

For convenience, we write here once again the governing equations (1) in Cartesian coordinates (4) :

ht + uhx + vhy + hux + hvy = 0,

ut + uux + vuy + ghx +
1

h
(hP11)x +

1

h
(hP12)y = 0,

vt + uvx + vvy + ghy +
1

h
(hP12)x +

1

h
(hP22)y = 0,

P11t + uP11x + vP11y + 2P11ux + 2P12uy = 0,

P12t + uP12x + vP12y + P12 (ux + vy) + P11vx + P22uy = 0,
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P22t + uP22x + vP22y + 2P12vx + 2P22vy = 0.

As mentioned earlier, the system is hyperbolic but not in conservative form. We will define now an
almost conservative formulation of the governing equations based on a splitting procedure allowing
us to define the discontinuous solutions. A conventional geometric splitting of (4) is first applied
consisting in solving of the governing equations first in x and then in y direction. We will do two
steps more for each uni–directional subsystem referring to this as a ‘physical’ splitting. Roughly,
speaking, each uni–directional subsystem, describing two types of waves (surface and shear waves),
is split into two subsystems which are hyperbolic and contains only one type of waves (a or b waves).
Each physical subsystem admits its own energy conservation law, and its own ‘entropy’. In physical
terms, one can say that one performs a thermodynamically compatible splitting. An analogous
splitting was proposed earlier in [18] in hyperelasticity.

Consider first the subsystem in x–direction :

ht + uhx + hux = 0, (35)

ut + uux + ghx +
1

h
(hP11)x = 0,

vt + uvx +
1

h
(hP12)x = 0,

P11t + uP11x + 2P11ux = 0,

P12t + uP12x + P12ux + P11vx = 0,

P22t + uP22x + 2P12vx = 0.

As mentioned earlier, the system is hyperbolic and admits three types of waves : a contact discon-
tinuity propagating with the velocity u, surface gravity waves propagating with the velocity u± a,
and shear waves propagating with a smaller velocity u± b. The eigenfield corresponding to the con-
tact discontinuity and the b–waves are linearly degenerate in the sense of Lax, while the eigenfield
corresponding to a–waves is genuinely non–linear in the sense of Lax. The idea is to split (35) into
two subsystems treating separately a–waves and b– waves. The subsystem for a–waves is :

ht + uhx + hux = 0, (36)

ut + uux + ghx +
1

h
(hP11)x = 0,

vt + uvx = 0,

P11t + uP11x + 2P11ux = 0,

P12t + uP12x + P12ux = 0,

P22t + uP22x = 0.

The equations (36) admit the following conservative form :

ht + (uh)x = 0, (37)

(hu)t +

(
hu2 + g

h2

2
+ hP11

)
x

= 0,

(hv)t + (huv)x = 0,(
h

(
u2 + v2

2
+
gh

2
+
P11 + P22

2

))
t

+

(
hu

(
u2 + v2

2
+
gh

2
+
P11 + P22

2

)
+
gh2

2
u+ hP11u

)
x

= 0.

P12t + (uP12)x = 0,

11



(hP22)t + (huP22)x = 0.

They also admit the ‘entropy’ equation :

D

Dt

(
P11P22 − P 2

12

h2

)
= 0,

D

Dt
=

∂

∂t
+ u

∂

∂x
,

an the ‘enstrophy’ equation :
D

Dt

(
P11

h2

)
= 0.

One solves the 6 conservation laws (37) at this step. The ‘entropy’ will increase through the shock.
Indeed, the ratio P12/h and the component P22 are conserved through the shock, so we need only
the increase of P11/h

2 what is the case of 1 D flows [37, 38].
The subsystem for b–waves is :

ht = 0, (38)

(hu)t = 0,

(hv)t + (hP12)x = 0,

P11t = 0,

P12t + P11vx = 0,

P22t + 2P12vx = 0.

An ‘almost’ conservative form (38) for b–waves is :

ht = 0, (39)

(hu)t = 0,

(hv)t + (hP12)x = 0,

P11t = 0,

P12t + P11vx = 0,(
h

(
v2

2
+
P22

2

))
t

+ (hP12v)x = 0.

The shock relations for the equation for P12 are well defined because in this subsystem P11 is
continuous through shocks. The ‘entropy’ conservation law :

∂

∂t

(
P11P22 − P 2

12

h2

)
= 0,

and the ‘enstrophy’ conservation law :

∂

∂t

(
P11

h2

)
= 0.

are consequences of (39). Since the characteristic field corresponding to b–waves is linearly degen-
erate, the velocity of the shocks is equal to the corresponding eigenvalue. As a consequence, the
conservation of the energy is equivalent to the conservation of the ‘entropy’ through the shock. Thus,
the positive definiteness of P is guaranteed even in the presence of shocks.

The study of the system in y–direction is analogous. Indeed, this system is :

ht + vhy + hvy = 0, (40)
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ut + vuy +
1

h
(hP12)y = 0,

vt + vvy + ghy +
1

h
(hP22)y = 0,

P11t + vP11y + 2P12uy = 0,

P12t + vP12y + P12vy + P22uy = 0,

P22t + vP22y + 2P22vy = 0.

The equations for a–waves and b–waves in y–direction are obtained from the corresponding equations
(37) and (39) by the change of variables u→ v, x→ y, P11 → P22, P22 → P11.

6 Mathematical properties of split systems

6.1 Subsystem 1 for a–waves

The subsystem (37) can be rewritten in the following form:

∂W

∂t
+ A(W)

∂W

∂x
= 0, (41)

where the vector of unknowns W and matrix A are defined as:

W = (h, u, v, P11, P12, P22)T ,

A =



u h 0 0 0 0

(gh+ P11)/h u 0 1 0 0

0 0 u 0 0 0

0 2P11 0 u 0 0

0 P12 0 0 u 0

0 0 0 0 0 u


.

The eigenvalues of A are :

λ1,2,3,4 = u, λ5,6 = u± a, a =
√
gh+ 3P11. (42)

For the multiple eigenvalue λ1,2,3,4 = u we have 4 linearly independent eigenvectors:

r1 = (h, 0, 0,−(gh+ P11), 0, 0)T , ∇Wλ1 · r1 = 0,

r2 = (0, 0, 1, 0, 0, 0)T , ∇Wλ2 · r2 = 0,

r3 = (0, 0, 0, 0, 1, 0)T , ∇Wλ3 · r3 = 0,

r4 = (0, 0, 0, 0, 0, 1)T , ∇Wλ4 · r4 = 0.

For the eigenvalue λ5 = u+ a one has:

r5 = (h, a, 0, 2b2, P12, 0)T , ∇Wλ5 · r5 =
3

2a
(a2 + b2) > 0. (43)
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For the eigenvalue λ6 = u− a one has:

r6 = (h,−a, 0, 2P11, P12, 0)T , ∇Wλ6 · r6 = − 3

2a
(a2 + b2) < 0. (44)

The fields corresponding to λ = u are linearly degenerate in the sense of Lax. For λ = u ± a, the
fields are genuinely nonlinear in the sense of Lax (compare this result with the general 1 D case).

The eigenvectors are linearly independent. Indeed,

det [r1, r2, r3, r4, r5, r6] = −2a3h 6= 0. (45)

Hence, the subsystem (37) or (41) is hyperbolic.

6.2 Subsystem 2 for b–waves

The subsystem (39) can also be rewritten in the form

∂W

∂t
+ A(W)

∂W

∂x
= 0, (46)

where the matrix A is

A =



0 0 0 0 0 0

0 0 0 0 0 0

P12/h 0 0 0 1 0

0 0 0 0 0 0

0 0 P11 0 0 0

0 0 2P12 0 0 0


. (47)

It implies:
det(A− λI) = λ4(P11 − λ2) = 0. (48)

Hence, one has 6 real eigenvalues:

λ1,2,3,4 = 0, λ5,6 = ±b, b =
√
P11. (49)

For the multiple eigenvalue λ1,2,3,4 = 0 one has 4 linearly independent eigenvectors:

r1 =

(
1, 0, 0, 0,−P12

h
, 0

)T
, ∇Wλ1 · r1 = 0,

r2 = (0, 1, 0, 0, 0, 0)T , ∇Wλ2 · r2 = 0,

r3 = (0, 0, 0, 1, 0, 0)T , ∇Wλ3 · r3 = 0,

r4 = (0, 0, 0, 0, 0, 1)T , ∇Wλ4 · r4 = 0.

(50)

For λ5 = b one has :
r5 = (0, 0, b, 0, b2, 2P12), ∇Wλ5 · r5 = 0. (51)

For λ6 = −b one has :
r6 = (0, 0,−b, 0, b2, 2P12), ∇Wλ6 · r6 = 0. (52)
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The eigenvectors are linearly independent. Indeed:

det [r1, r2, r3, r4, r5, r6] = −2P11

√
P11 6= 0, if P11 6= 0. (53)

Hence, the subsystem (39) is hyperbolic. For this subsystem all eigenfields are linearly degenerate
in the sense of Lax.

7 Numerical scheme

The numerical approach for (4) consists in solving first the model in x–direction, and then in y–
direction. For each direction, the two subsystems for a– and b–waves are solved successively. A
Godunov–type scheme augmented by a correction step (see below) is used for this aim. Finally, the
source terms are integrated. The vector of unknowns for all subsystems is :

U = [h, hu, hv, hP11, P12, hP22, hE]T . (54)

Here
E = (u2 + v2 + gh+ P11 + P22)/2.

7.1 First subsystem : a–waves

The first subsystem (called ‘subsystem 1’) augmented with the energy conservation law for a–waves
is : 

ht + (uh)x = 0, (a)
(hu)t + (hu2 + p)x = 0, (b)

(hv)t + (huv)x = 0, (c)
(hP11)t + (huP11)x + 2hP11ux = 0, (d)

P12t + (uP12)x = 0, (e)
(hP22)t + (huP22)x = 0. (f)

(hE)t + (hEu+ pu)x = 0, (g)

(55)

with p = gh2/2 + hP11.
The equation (55.d) is not in conservative form, i.e. the product P11ux is not well defined

across discontinuities. Hopefully, this system is overdetermined and the correct value of P11 will be
obtained using the energy equation (55.g). This system is solved in 3 steps which can be summarized
as follows:

• Solve the Riemann problem using any Riemann solver.

• Evolve all the conservative variables using a classical Godunov scheme.

• Compute P11 from the energy equation

Each step is detailed hereafter.
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Figure 1: HLLC approximate Riemann solver for the subsystem 1 describing a–waves. Solution
in the ‘star’ region consists of two constant states separated by a middle wave of speed Sa0 = u∗.
The fastest and slowest waves denoted by SaL and SaR, respectively, are estimated by using Davis’
approximation.

7.1.1 HLLC Riemann solver for subsystem 1

For the first subsystem (55) the wave scheme is shown in Figure 1. The Rankine–Hugoniot relations
read :

− [h]Sa + [hu] = 0,

−[hu]Sa + [hu2 + p] = 0,

−[hv]Sa + [huv] = 0,

−[P12]Sa + [uP12] = 0,

−[hP22]Sa + [huP22] = 0,

− [hE]Sa + [hEu+ pu] = 0.

Here Sa is the speed of the discontinuity, and [f ] means the jump of any variable f . The jump
relation for the mass equations can be written in the following form :

[h(u− Sa)] = 0, i.e. h(u− Sa) = m = const.

Let us denote
mL = hL(uL − SaL) = h∗L(u∗ − SaL)
mR = hR(uR − SaR) = h∗R(u∗ − SaR).

Here the speeds of the left and right facing waves are obtained by using Davis’ approximation :

SaR = max(uL + aL, uR + aR), SaL = min(uL − aL, uR − aR),

with a2
L,R = ghL,R + 3P11 L,R. The Rankine–Hugoniot relations imply the continuity of the following

parameters in the ‘star regions’:

u∗L = u∗R = u∗, v∗L = vL, v
∗
R = vR, p

∗
L = p∗R = p∗,

with

p =
gh2

2
+ hP11.
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The momentum conservation law implies :

u∗ =
pL − pR +mLuL −mRuR

mL −mR

,

and

p∗ =
mLmR(uR − uL) +mLpR − pLmR

mL −mR

.

Finally, the conservative variables in the ‘star region’ are:

h∗L,R = mL,R/(u
∗ − SaL,R),

h∗L,Ru
∗
L,R =

(
hL,RuL,R(uL,R − SaL,R) + pL,R − p∗

)
/(u∗ − SaL,R),

h∗L,Rv
∗
L,R = hL,RvL,R(uL,R − SaL,R)/(u∗ − SaL,R),

P ∗
12 L,R = P12 L,R

(
uL,R − SaL,R

)
/(u∗ − SaL,R),

h∗l,rE
∗
L,R =

(
hL,REL,R(uL,R − SaL,R) + pLuL − p∗u∗

)
/(u∗ − SaL,R).

These relations allow us to construct an approximate Riemann solver.

7.1.2 Evolution with the Godunov type method

The subsystem 1 can be rewritten in the following form :

∂U

∂t
+
∂F

∂x
= 0. (56)

Here the vector of conservative variables U and the vector of fluxes F are :

U = (h, hu, hv, P12, hP22, hE)T ,

F(U) = (hu, hu2 + p, huv, uP12, huP22, huE + pu)
T
.

(57)

For simplicity, we use here the same generic notation U for the vector of conservative variables, even
if this vector does not contain the component hP11. Using the flux solution obtained in section 7.1.1
at the edge of each cells (F ∗), it is possible to evolve the conservative variables with the following
scheme for the ith cell:

Un+1
i = Un

i −
∆t

∆x

(
F∗,n
i+1/2 − F∗,n

i−1/2

)
. (58)

Here ∆x is the discretisation step in the x-direction, ∆t is the time step verifiing the Courant–
Friedrichs–Lewy (CFL) condition (∆t ≤ ∆x/Smax). At this step the non-conservative equation for
hP11 is removed.

7.1.3 Computation of hP11

Since the system is overdetermined, the non–conservative term hP11 is obtained by using the total
energy equation :

hP11 = 2hE − gh2 − hP22 −
(hu)2 + (hv)2

h
.
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7.2 Subsystem 2 : b–waves

The subsystem for b–waves (called ‘subsystem 2’), augmented with the energy conservation law,
reads: 

ht = 0, (a)
(hu)t = 0, (b)

(hv)t + (hP12)x = 0, (c)
(hP11)t = 0, (d)

P12t + P11vx = 0, (e)
(hP22)t + 2hP12vx = 0. (f)
(hE)t + (hP12v)x = 0. (g)

(59)

Again, the system (59) is overdetermined. One can note that there are two nonconservative equations
(59.e) and (59.f). The product P11vx in (59.e) is well defined since P11 is conserved through the shock.
It is not the case for the term 2hP12vx in equation (59.f). Since the jump relation is not well defined,
there is no hope to obtain a good value of P22. In the first step, this equation will be removed.
Then, the energy conservation law will be again used to compute the value of hP22. The numerical
procedure will be similar to a–wave procedure :

• Solve the Riemann problem using any Riemann solver.

• Evolve all the conservative variables using a classical Godunov scheme.

• Compute hP22 from the energy equation.

These steps and some important remarks on the evolution of the entropy will be detailed hereafter.

7.2.1 HLLC Riemann solver for b–waves

UR

UL
*

UR
*

SL
b

SR
b

UL

S0
b

t

x0

subsystem 2

Figure 2: HLLC approximate Riemann solver for the subsystem 2 describing b–waves. Solution in
the ‘star’ region consists of two constant states separated by a middle wave of speed Sb0 = 0. The
fastest and slowest waves SbR and SbL, respectively, are estimated by using Davis’ approximation.

The subsystem 2 for b–waves can be rewritten in the following form:

∂U

∂t
+
∂F

∂x
+ K

∂v

∂x
= 0, (60)

with
U = (h, hu, hv, hP11, P12, hE)T ,

F = F(U) = (0, 0, hP12, 0, 0, hP12v)T ,

K = K(U) = (0, 0, 0, 0, P11, 0)T .

(61)
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Again, for simplicity, the generic notation U for the ‘conservative vector is used, even if this vector
does not contain now the component hP22. The wave scheme is shown in Figure 2. The set of jump
relations for the subsystem 2 is :

−[h]Sb = 0, −[u]Sb = 0, −[P11]Sb = 0, (62)

−[hv]Sb + [hP12] = 0, (63)

−
[
h

(
v2 + P22

2

)]
Sb + [hvP12] = 0, (64)

Through the contact discontinuity (Sb = 0) a priori one has :

[h] 6= 0, [u] 6= 0, [P11] 6= 0, (65)

but
h∗LP

∗
12 L = h∗RP

∗
12 R = (hP12)∗, v∗ = v∗L = v∗R.

Through the shocks (Sb 6= 0) one has from (62):

hL = h∗L, hR = h∗R, uR = u∗R, P11 R = P ∗
11 R. (66)

Equation (63) gives :

(hP12)∗ = hRhL
SbRP12L − SbLP12R − SbLSbR(vL − vR)

hRSbR − hLSbL
, (67)

and

v∗ =
hL(P12 L − SbLvL)− hR(P12 R − SbRvR)

hRSbR − hLSbL
.

The extreme wave speeds can be estimated by Davis’ approximation :

SbL = min(−
√
P11L,−

√
P11R), SbR = max(

√
P11L,

√
P11R),

Since the eigenfields is linearly degenerate, the wave speed on the right (left) only depend on the
right (left) state. Thus, another possibility is to use

SbL = −
√
P11 L, SbR =

√
P11 R. (68)

This choice, more precise, is used for all the numerical results presented here. These relations allows
us to construct an approximate Riemann solver.

7.2.2 Godunov type scheme for subsystem 2

The non–conservative equations for P12 and P22 necessitate a specific numerical treatment. For the
equations in conservative form, we use the folowing Godunov type scheme :

Un+1
i = Un

i +
∆t

∆x
(F∗,n

i+1/2 − F∗,n
i−1/2) + Kn

i (v∗,ni+1/2 − v
∗,n
i−1/2). (69)

7.2.3 Computation of hP22

The non–conservative term hP22 is obtained by using the total energy equation :

hP22 = 2hE − gh2 − hP11 −
(hu)2 + (hv)2

h
. (70)
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7.2.4 Conservation of the ‘entropy’

It is striking that the subsystem (59) conserves also the mathematical ‘entropy’. Indeed, consider
the Rankine–Hugoniot relations :

−[v]Sb + [P12] = 0,

−[(v2 + P22)/2] + [P12v]Sb = 0,
(71)

Here, for any f, [f ] = f − f0, where the index ‘0’ means the state before the shock. It implies :
P12 = (P12)0 + Sb(v − v0),

P22 = (P22)0 + [2P12v]/Sb − [v2],
(72)

We will show now that

detP− detP0 = P11P22 − P 2
12 −

(
(P11)0 (P22)0 − (P12)2

0

)
(73)

vanishes through the shock. Since h is continuous through the shock, it implies the conservation of
the ‘entropy’. As P11 is continuous, we obtain :

detP− detP0 = (P11)0 (P22 − (P22)0) + ((P12)0 − P12) ((P12)0 + P12) . (74)

The equalities (72) imply :

detP− detP0 = (P11)0

(
[2P12v]

Sb
− [v2]

)
− Sb[v]

(
2(P12)0 + Sb(v − v0)

)
=

= (P11)0

(
2

(
(P12)0 + Sb(v − v0)

)
v − (P12)0v0

S
− [v2]

)
− Sb(v − v0)

(
2(P12)0 + Sb(v − v0)

)
=

= (P11)0 (2(v − v0)v − [v2])− (Sb)2(v − v0)2.
(75)

As (Sb)2 = P11, we obtain :

detP− detP0 = (P11)0

(
2(v − v0)v − (v2 − v2

0)− (v − v0)2
)

= 0.

The ‘entropy’ Ψ =
detP

h2
is thus conserved because the corresponding eigenfields are linearly degen-

erate in the sense of Lax. Finally, the entropy is increasing after solving the first subsystem, and
does not change in solving the second subsystem.

7.3 Integrating the source terms

To add the source terms, we integrate the ordinary differential equations :

dU

dt
= S(U) (76)

with the full unknown vector U = (h, hu, hv, hP11, P12, hP22, hE)T . The initial condition U|t=0 =
Ūn+1 are obtained from the previous splitting steps. Here the vector of source terms is :

S(U) =
(
0,−gh∇b− Cfu|u|, hD11, D12, hD22,−gh∇b · u− Cf |u|3 −Q

)T
, (77)
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where

|u| =
√
u2 + v2, Dij = −2α

h
|u|3Pij, Q = αtr(P)|u|3, α = max

0, Cr

tr(P)

h2
− ϕ

tr2(P)

h2

 , ∇b =

(
∂b

∂x
,
∂b

∂y

)T
.

We added here the bottom topography z = b(x, y). The equations are written in the reference frame
where the gravity is orthogonal to the (x, y)–plane. So, the case of a mild slop bottom is considered.
In applications, we will consider only the case of constant slope bottom. For example,

−∇b = (tanθ, 0) , θ > 0,

where θ is the inclination angle. Even if we have 7 equations for 6 variables, the equations are
compatible : the energy equation is a consequence of the equations of mass, momentum and stress
tensor.

This system of ordinary differential equation is solved by the first order scheme with the Euler
method. A second order Runge–Kutta method is used for the higher order extension.

7.4 Algorithm summary

First, the 2D system is split into two 1D systems along each spatial direction. Then, each 1D
system is successively split into two additional 1D subsystems. All the systems are hyperbolic. The
numerical algorithm can be summarized as follows:

1. Subsystem 1 in x–direction.

• Solve the Riemann Problem in x–direction for the subsystem 1 at each cell boundary
without source terms. The approximate HLLC solver was used for this aim.

• Evolve all flow variables with the Godunov–type method.

• Correction of the non–conservative variable (hP11) using the energy conservation law.

2. Subsystem 2 in x–direction.

• Solve the Riemann Problem in x–direction for the subsystem 2 at each cell boundary.

• Evolve for the conservative equations flow variables with the Godunov–type method.

• The correction of the non–conservative variable (hP22) using energy conservation law.

3. The same procedure is repeated in y–direction by changing u → v, x → y, P11 → P22,
P22 → P11.

4. Integration of the source terms

5. Start again for the next time step.

8 Numerical Results

In this section, we will present numerical results obtained with the splitting procedure described
above.
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8.1 1D shear test problem

We solve here the governing equations in the case of vanishing source term. The initial discontinuity
is located at x = 0.5 m. The initial depth h is 0.01 m, the normal velocity u is zero everywhere,
the components of the stress tensor are P11 = P22 = 10−4 m2/s2, P12 = 0 m2/s2, the tangential
velocity v is 0.2 m/s on the left, and −0.2 m/s on the right. Thus, the solution depends only on x/t.
The first order Godunov method is used, with CFL number 0.3. The tangential velocity, tangential
stress P12 and stress P22 are shown in Figure 3 at time instant 10 s for 500, 1000 and 10000 grid
cells. The other variables do not evolve in time, they are shown in Figure 4.
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Figure 3: Shear test problem. The initial discontinuity is located at x = 0.5 m. The tangential
velocity is 0.2 m/s on the left, and −0.2 m/s on the right. The tangential velocity, shear stress P12

and stress P22 are shown at time instant 10 s for 500, 1000 and 10000 grid cells. CFL number is 0.3.
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Figure 4: Shear test problem: initially, the discontinuity of the tangential velocity (0.2 m/s on the
left and −0.2 m/s on the right ) is at x = 0.5 m. The entropy, depth and normal velocity are shown
at time instant 10 s for 500, 1000 and 10000 grid cells. CFL number is 0.3.
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8.2 1D dam–break problem

We solve here the governing equations in the case of vanishing source term. The initial discontinuity
is located at x = 0.5 m. The initial normal and tangential velocities are zero everywhere, the
components of stress tensor are : P11 = P22 = 10−4 m2/s2, P12 = 0 m2/s2, the fluid depth is 0.02 m
at the left and 0.01 m at the right. The MUSCL extension of Godunov method is used. The results
are obtained by using Minmod limiter for the subsystem 1, and van Leer limiter for the subsystem
2. The solution for 100, 1000 and 10 000 grid cells is shown in Figure 5. The convergence is clearly
visible.
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Figure 5: Convergence test in dam–break problem: the initial discontinuity of the depth ( 0.02 m at
the left and 0.01 m at the right) is located at x = 0.5 m. The fluid depth, normal stress component
P11 and normal velocity u are shown at time instant 0.5 s with 100, 1000, 10000 grid cells. The
MUSCL extension of Godunov method is used. CFL number is 0.8.
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8.3 1D roll waves

We solve here the governing equations with source term. The bottom is inclined either in x–direction,
or in y–direction. Using periodic conditions in the direction of wave propagation, and the rigid wall
condition in the transverse direction, we observe the formation of roll waves as in [37, 23]. The
initial conditions are taken in the same form as in the above mentioned references. For example, for
the flow in x–direction, one takes :

h(x, y, 0) = h0

(
1 + asin

(
2πx

Lx

))
, u(x, y, 0) =

√
gh0tanθ

Cf
, v(x, y, 0) = 0,

P11(x, y, 0) = P22(x, y, 0) =
ϕh2(x, y, 0)

2
, P12 = 0.

Here θ = 0.05011 [rad] is the inclination angle, Cf = 0.0036 is the Chézy coefficient, h0 = 7.98 ×
10−3 m, a = 0.05, ϕ = 22.76 s−2, g = 9.81 ms−2, Cr = 0.00035, Lx = 1.3 m. For the flow in
y–direction the changes in initial conditions are obvious.
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Figure 6: Formation of roll waves : the depth and normal stress are shown at time instant 25 s
for flows both x –and y –direction (on the left and on the right, respectively). The results are
completely symmetric. The MUSCL extension of Godunov method was used with 1000 grid cells
for the parameter set mentioned above. CFL number is 0.6.

8.4 Comparison with a 2D analytical solution

Here we present analytical solutions to (1). This solution is a generalisation of solutions with linear
velocity profile in x an y found by Sedov (1953) and Ovsyannikov (1956) for the Euler equation (for
proof, see Appendix B ) :

h =
h0

1 + β2t2
,

U =
β

1 + β2t2

 βtx+ y

−x+ βty

 ,

P =
1

(1 + β2t2)2

 λ+ γβ2t2, (λ− γ)βt

(λ− γ)βt, γ + λβ2t2

 ,

(78)
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where h0 > 0, β, λ > 0, γ > 0 are constant. This solution describes the velocity field which is
linear in x and y. The stress tensor P is not spherical. We take here h0 = 1 m, λ = 0.1 m2/s2,
γ = 0.01 m2/s2, β = 10−3 s−1, CFL = 0.5. The error was calculated at time instant 10 s in the
following way :

error(P11) = maxx,y

(
|P11numerical − P11analytical|

λ

)
,

error(P12) = maxx,y

(
|P12numerical − P12analytical|

λ+ γ

)
,

error(P22) = maxx,y

(
|P22numerical − P22analytical|

γ

)
.

These errors are shown as a function of the grid cell size in the Figure 7. The calculation region
is a square of length Lx = Ly = 10 m. Different regular Cartesian grids were used (100 × 100,
200 × 200, 400 × 400, 800 × 800, 1600 × 1600) with first order Godunov method. This test shows
the convergence to the exact solution. The slope of the convergence lines are the same for all stress
components.

 

-11.5

-11

-10.5

-10

-9.5

-9

-8.5

-8

-7.5

-7

-15 -14 -13 -12 -11 -10 -9

Lo
g(

er
ro

r)
 

Log(∆x∆y/(LxLy) )

Log(errorp11)
Log(errorp12)
Log(errorp22)

Figure 7: The convergence lines for the stress tensor components as functions of the grid cell size
are shown. The number of grid cells was 100× 100, 200× 200, 400× 400, 800× 800, 1600× 1600.
The convergence to the exact solution is clearly visible.

8.5 2D roll waves

We solve here the 2D governing equations with source term. The bottom is inclined in x–direction. In
the direction of wave propagation we use periodic conditions for the vector of unknowns (U(0, y, t) =
U(Lx, y, t)), and in the transverse direction we use the rigid wall conditions (v(x, 0, t) = v(0, Ly, t) =
0, P12(x, 0, t) = P12(x, Ly, t) = 0, P22(x, 0, t) = P22(x, Ly, t) = 0, and the Neumann conditions for
other variables). The initial conditions are taken in the form :

h(x, y, 0) = h0

(
1 + asin

(
2πmx

Lx

)
+ asin

(
2πky

Ly

))
, u(x, y, 0) =

√
gh0tanθ

Cf
, v(x, y, 0) = 0, (79)

P11(x, y, 0) = P22(x, y, 0) =
ϕh2(x, y, 0)

2
, P12 = 0.
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Here θ = 0.05011 [rad] is the inclination angle, Cf = 0.0036 is the Chézy coefficient, h0 = 7.98 ×
10−3 m, ϕ = 22.76 s−2, g = 9.81 ms−2, Cr = 0.00035, Lx = 1.3 m, Ly = 0.5 m, and m and k
are numbers to be chosen. The set of physical parameters corresponds to that considered in [23]
to describe the formation of 1D roll waves from a uniform flow having the same structure as in
Brock’s experiments [10, 11, 12]. A necessary condition for the formation of such waves is that

the corresponding Froude number is larger than two : Fg =

√
gh0tan(θ)

Cf(gh0+3ϕh20/2)
> 2. For the flow

parameters taken above, this value is about 3.7.
The Figure 8 shows the results of multidimensional computations for a uniform flow perturbed

both in x and y direction corresponding to initial data (79) with m = 1 and k = 1. The existence
of a characteristic transverse wave length of the jump toe perimeter (the line where the gradient of
the layer thickness h jumps) is clearly visible. One can count approximately 7 transverse waves.

The transverse structure formation scenario is rather surprising. First, a one-dimensional roll
wave is forming, without any transverse structure. This 1D structure is formed in approximately 10 s
and corresponds to a standard 1D experimental profile [10, 11, 12] (see Figure 9). The transverse
structure starts to form in approximately 17 s and becomes stationary after approximately 35 s.
Thus, the whole scenario, from uniform unstable flow with the generalised Froude number Fg ≈
3.7, to 1D roll waves, and finally to the formation of transverse waves at the jump toe perimeter
(formation of ‘fingers’), is observed. Such a transverse structure of the bore toe perimeter was, in
particular, observed in field experiments [27].

Figure 8: Formation of a transverse structure of the jump toe perimeter consisting of seven waves
for the initial data (79) with m = 1 and k = 1. The results are obtained for the domain 1.3 m long
and 0.5 m wide and shown at time instant 39 s. The Godunov method was used with 600 × 600
grid cells for the parameter set mentioned above. CFL number is 0.1.

To understand if the number of transverse waves per unit length is independent on the initial
perturbations, we considered also the initial data (79) with m = 1 and k = 4. Thus, the initial
transverse perturbation contains four waves, and one could expect that the number of transverse
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Figure 9: The one-dimensional wave structure is formed in approximately 10 s (solid line) and
corresponds to the classical experilmental profile (dotes) measured in [10, 11, 12].

waves formed during the evolution will increase essentially. The result is rather surprising : the
number of waves is almost independent on the initial perturbation, only approximately eight waves
were formed instead of seven (see Figure 10).

An additional test was also performed to show that the number of transverse waves per unit
length is invariant with respect to the domain width. For this, we multiplied the length Ly by two
(Ly = 1 m), and took m = 1, k = 1. As a consequence, the number of transverse waves was also
multiplied by two (see Figure 11 and 12).

The form of the dissipation term defined by the coefficient α given by (33) is very important.
Indeed, this form was chosen to obtain the same dissipation source term Q as in 1D case studied in
[37, 38]. A simplified formula for α (34) will give us only 1D profile, without any transverse structure
(see Figure 13). Moreover, the corresponding 1D profile does not correspond to the experimentally
observed profiles in [10, 11, 12] shown in Figure 9.

9 Conclusion

We propose a numerical method consisting in ‘physical’ splitting of the hyperbolic non-conservative
equations for shear shallow water flows. Each split subsystem is hyperbolic, contains only one type of
waves, and admits the energy and ‘entropy’ conservation laws. Moreover, such a splitting allows us
to naturally define a weak solution to our system which is compatible to the positive definiteness of
the Reynolds stress tensor P. The dissipation is introduced in invariant form which also guarantees
the positive-definiteness of P. In the limit of one-dimensional flows, the roll waves solutions obtained
earlier in [37, 39] are recovered.

An interesting feature of the model is the formation of transverse structures at the jump toe
perimeter (‘fingers’) from one–dimensional initial data which are harmonically perturbed in the
transverse direction. The number of waves does not depend neither on the amplitude nor on the
number of transverse waves in the initial perturbation. Thus, the full transition scenario is observed
in the formation of roll waves : from uniform flow to one-dimensional roll waves, and, finally, to 2D
transverse ‘fingering’ of roll wave profiles.

The method can obviously be extended to the general 3D Reynolds averaged models of barotropic
flows, because the structure of the governing equations is exactly the same. The case of non-
barotropic turbulent flows demands an additional modelling because the both entropies, physical
and ‘mathematical’, will increase at the shock. Thus it will be necessary to separate such an increase
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Figure 10: Top view for the schlieren image of the fluid depth, horisontal velocity, and normal
stress components P11 and P22 for the initial perturbation (79) with k = 1, m = 1 (on the left)
and k = 1, m = 4 (on the right) at time instant 39 s. The computational domain is 1.3 m long
and 0.5 m wide. The Godunov method was used, with 600 × 600 grid cells for the parameter set
mentioned above. CFL number here is 0.1. Seven transverse waves are observed on the left, and
almost eight waves on the right.
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Figure 11: Formation of a transverse structure of the toe perimeter consisting of fourteen waves.
The results are obtained for the domain 1.3 m long and 1 m wide, and shown at time instant 39 s.
The Godunov method was used with 600 × 1200 grid cells for the parameter set mentioned above.
CFL number is 0.1.

into two parts : the thermodynamic and turbulent ones. One possibility could be analogous to that
introduced in [41] where the whole entropy production was only the turbulent one. This will be the
subject of our future work.

Acknowledgement The authors thank Boniface Nkonga for useful discussion. S. L. G. has
been partially supported by the ANR project BoND (ANR-13-BS01-0009-01).
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The result obtained is very surprising : transverse structures do not develop. The second fact, less
surprising, is that the one–dimensional profile is not that of Brock’s type.
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10 Appendix A : Conservation laws

We write down once again the governing equations of shear flows without right hand sides :

ht + uhx + vhy + hux + hvy = 0, (80)

ut + uux + vuy + ghx +
1

h
(hP11)x +

1

h
(hP12)y = 0,

vt + uvx + vvy + ghy +
1

h
(hP12)x +

1

h
(hP22)y = 0,

P11t + uP11x + vP11y + 2P11ux + 2P12uy = 0,

P12t + uP12x + vP12y + P12 (ux + vy) + P11vx + P22uy = 0,

P22t + uP22x + vP22y + 2P12vx + 2P22vy = 0.

We are looking for conservation laws admitting by (80) :

∂f

∂t
+
∂g1

∂x
+
∂g2

∂y
= 0, (81)

where the unknown functions f, g1, g2 depend on h, u and P. Developing (81) one obtains :

fhht + fuut + fvvt + fP11P11t + fP12P12t + fP22P22t + g1hhx + g1uux + g1vvx + g1P11P11x

+g1P12P12x + g1P22P22x + g2hhy + g2uuy + g2vvy + g2P11P11y + g2P12P12y + g2P22P22y = 0.

Substituting the time derivatives of unknowns from (80) we have :

fh (−hxu− hux − hyv − hvy) + fu
(
−uux − vuy − ghx − P11x − P12y − P11

h
hx − P12

h
hy
)

+fv
(
−uvx − vvy − ghy − P12x − P22y − P12

h
hx − P22

h
hy
)

+ fP11 (−uP11x − vP11y − 2P11ux − 2P12uy)

+fP12 (−uP12x − vP12y − P12ux − P22uy − P11vx − P12vy) + fP22 (−uP22x − vP22y − 2P12vx − 2P22vy)

+g1hhx + g1uux + g1vvx + g1P11P11x + g1P12P12x + g1P22P22x

+g2hhy + g2uuy + g2vvy + g2P11P11y + +g2P12P12y + g2P22P22y = 0.
(82)

As the space derivatives of unknowns are independent, and (82) should be satisfied, we obtain the
following overdetermined system of equations :

−ufh − gfu −
P12

h
fv −

P11

h
fu + g1h = 0, (83a)

−hfh − ufu − 2P11fP11 − P12fP12 + g1u = 0, (83b)

−ufv − 2P12fP22 − P11fP12 + g1v = 0, (83c)

−vfh −
P12

h
fu − gfv −

P22

h
fv + g2h = 0, (83d)

−hfh − vfv − 2P22fP22 − P12fP12 + g2v = 0, (83e)

−vfu − 2P12fP11 − P22fP12 + g2u = 0, (83f)

−fu − ufP11 + g1P11 = 0, (83g)

−fv − ufP12 + g1P12 = 0, (83h)

−ufP22 + g1P22 = 0, (83i)

−fu − vfP12 + g2P12 = 0, (83j)

−fv − vfP22 + g2P22 = 0, (83k)

−vfP11 + g2P11 = 0. (83l)
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A useful remark is that there is no conservation laws with the density f depending only on P. The
remark will allow us to neglect in determining f the integration ‘constants’ depending only on P.
Indeed, equations (83g) - (83l) imply that in this case up to an additive constant g1 = uf , g2 = vf .
The equations (83b), (83c), (83e) and (83f) form then a linear with respect to f overdetermined
system of equations. The analysis shows that the solution is only trivial.

Eliminating the functions g1 and g2 from the last 6 equations of (83) we obtain :

fuP11 = 0,

fuP22 = 0,

fuP12 = 0,

fvP11 = 0,

fvP12 = 0,

fvP22 = 0.

(84)

It implies :
f (h, u, v, P11, P12, P22) = f1 (h, u, v) + f2 (h, P11, P12, P22) ,

where fi, i = 1, 2, are arbitrary functions (in the following, several new arbitrary functions will
appear). Eliminating the functions g1 and g2 from the first 6 equations of (83) we obtain :

h2

(
f

h

)
hu

+ (P12fP12 + 2P22fP22)u − (P22fP12 + 2P12fP11)v = 0, (85a)

h2

(
f

h

)
hv

+ (P12fP12 + 2P11fP11)v − (P11fP12 + 2P12fP22)u = 0, (85b)(
P12

h
fu +

(
g +

P22

h

)
fv

)
u

− (P22fP12 + 2P12fP11)h = 0, (85c)(
P12

h
fv +

(
g +

P11

h

)
fu

)
v

− (P11fP12 + 2P12fP22)h = 0, (85d)(
P12

h
fu +

(
g +

P22

h

)
fv

)
v

− (P12fP12 + 2P22fP22)h − hfhh = 0, (85e)(
P12

h
fv +

(
g +

P11

h

)
fu

)
u

− (P12fP12 + 2P11fP11)h − hfhh = 0. (85f)

In particular, (84), (85a) and (85b) imply :(
f

h

)
hu

= 0,

(
f

h

)
hv

= 0. (86)

Then (84) and (86) imply :

f (h, u, v, P11, P12, P22) = hc1 (u, v) + f2 (h, P11, P12, P22) . (87)

Taking the difference (85c) and (85d), then (85e) and (85f), and differentiating these differences with
respect to u and v, one can immediately derive that c1(u, v) is quadratic with respect to u and v :

c1(u, v) = kuv + n1u
2 + n2u+m1v

2 +m2v,
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where k, n1, n2, m1, m2 are constants. The general form f is then :

f (h, u, v, P11, P12, P22) = h(kuv + n1u
2 + n2u+m1v

2 +m2v) + f2 (h, P11, P12, P22) . (88)

The next step is thus to determine the function f2(h, P11, P12, P22) from the overdetermined system
obtained by replacing (88) into (85c), (85d), (85e) and (85f):

2P12n1 + (gh+ P22) k − (P22f2P12 + 2P12f2P11)h = 0, (89a)

2P12m1 + (gh+ P11) k − (P11f2P12 + 2P12f2P22)h = 0, (89b)

P12k + 2 (gh+ P22)m1 − (P12f2P12 + 2P22f2P22)h − hf2hh = 0, (89c)

P12k + 2 (gh+ P11)n1 − (P12f2P12 + 2P11f2P11)h − hf2hh = 0. (89d)

Taking the difference of (89c) and (89d) and differentiating this difference with respect to h, one
obtains :

P11 (f2hh)P11
− P22 (f2hh)P22

= g (n1 −m1) .

The general solution of this equation is :

f2hh = φ (h, P12, x) + g (n1 −m1) lnP11, with x = P11P22. (90)

Taking now the difference of (89a) and (89b) and differentiating this difference with respect to h,
one obtains :

(P11 − P22) (f2hh)P12
+ 2P12

(
(f2hh)P22

− (f2hh)P11

)
= 0 (91)

Substituting (90) into (91) we obtain :(
P 2

11 − x
) ∂φ (h, P12, x)

∂P12

+ 2P12

(
P 2

11 − x
) ∂φ (h, P12, x)

∂x
− 2P12g (m1 − n1) = 0.

This is a polynomial of degree two in P11. Since the identity should be valid for any P11, the
coefficients of the polynomial vanish. This implies : φP12 + 2P12φx = 0 and m1 = n1. Integrating
two times in h, one obtains the general expression of f2 :

f2 = φ1(h, P11P22 − P 2
12) + hφ2(P) + φ3(P).

One can always take φ3(P) vanishing because there is no conservation law with f depending only
on P. With the condition m1 = n1 the difference (89c) -(89d) becomes :

P11φ2P11 − P22φ2P22 = (P11 − P22)n1.

Hence,
φ2 (P) = n1 (P11 + P22) + ν1 (P12, P11P22) ,

and
f2 (h,P) = φ1

(
h, P11 × P22 − P 2

12

)
+ n1h (P11 + P22) + hν1 (P12, P11P22) .

We substitute the function f2 (h,P) into the equation (89a) and obtain:

(gh+ P22)k − (P22ν1P12 + 2P12P22ν1x) = 0, x = P11P22 (92)

It is linear polynomial for P22. It identically vanishes if and only if :

k = 0, ν1P12 + 2P12ν1x = 0

Hence, ν1 is a function of only one argument ∆ = P11P22 − P 2
12. One can insert this function into

the general expression of f2. One has now :

f2 (h,P) = φ1

(
h, P11P22 − P 2

12

)
+ n1h (P11 + P22) . (93)
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The simplified form of (89) is now :

2P12n1 − (P22f2P12 + 2P12f2P11)h = 0, (94a)

2P12n1 − (P11f2P12 + 2P12f2P22)h = 0, (94b)

2 (gh+ P22)n1 − (P12f2P12 + 2P22f2P22)h − hf2hh = 0, (94c)

2 (gh+ P11)n1 − (P12f2P12 + 2P11f2P11)h − hf2hh = 0. (94d)

The equations (94a), (94b) are identically satisfied if we replace expression f2 given by (93). The
equations (94c), (94d) give us the same equation :

2∆ (φ1h)∆ + h (φ1h)h = 2ghn1.

Its solution is :

φ1h (h,∆) = A

(
∆

h2

)
+ 2gn1h,

with an arbitrary function A (s). Integration with respect to h gives us :

φ1 (h,∆) = hB

(
∆

h2

)
+ n1gh

2,

where B(s) is an arbitrary function. The final representation of the density function f is :

f (h,u,P) = hB

(
P11P22 − P 2

12

h2

)
+ n1(gh2 + h(P11 + P22) + hu2 + hv2) + n2hu+m2hv. (95)

The conservation of mass corresponds to the particular case where B = const.

11 Appendix B : Analytical solutions

Here we present analytical solutions to (1). This solution is a generalisation of solutions with linear
velocity profile found in Sedov (1953) and Ovsyannikov (1956) for the Euler equations. Thus, we
are looking for the solution of the type :

u = A(t)x, h = h(t), P = P(t).

Here A(t) is a time dependent matrix. System (1) becomes :
ḣ+ htr(A) = 0,

Ȧ + A2 = 0,

Ṗ + AP + PAT = 0.

(96)

Here ‘dot’ means the time derivative. The solution A(t) of the second equation of (96) is given in
the form :

A = A0 (I + A0t)
−1 , A0 = const.

Since the corresponding matrices commute, A can also be written as :

A = (I + A0t)
−1 A0.

Then P(t) verifies the equation :

Ṗ + A0 (I + A0t)
−1 P + P

(
I + AT

0 t
)−1

AT
0 = 0 (97)
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The solution P of (97) is :

P = (I + A0t)
−1 P0

(
I + AT

0 t
)−1

,

with a constant symmetric positive definite matrix P0 = PT
0 > 0. The solution is well defined for

all t > 0, if the matrix I + A0t is invertible for any t. This is a case, for example, of antisymmetric
matrix A0 : AT

0 = −A0. As an example, consider the initial data :

A0 =

 0 β

−β 0

 , P0 =

 λ 0

0 γ

 , h = h0,

with constants β, λ > 0, γ > 0 and h0 > 0. The solution is :

A(t) =
β

1 + β2t2

 βt 1

−1 βt

 , P =
1

(1 + β2t2)2

 λ+ γβ2t2 (λ− γ)βt

(λ− γ)βt γ + λβ2t2

 , h =
h0

1 + β2t2
.
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