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Micromechanics based framework with second-order damage tensors

Introduction

The damage anisotropy encountered in quasi-brittle materials is induced by the loading direction and multiaxiality. From a micro-mechanics point of view, it is the consequence of an oriented microcracking pattern. From the Continuum Damage Mechanics (CDM) point of view, the anisotropic damage state is represented by a tensorial thermodynamics variable, either an eightorder tensor [START_REF] Chaboche | Description thermodynamique et phénoménologique de la viscoplasticité cyclique avec endommagement[END_REF][START_REF] Chaboche | Le concept de contrainte effective appliqué à l'élasticité et à la viscoplasticité en présence d'un endommagement anisotrope[END_REF], a fourth-order damage tensor D [START_REF] Chaboche | Description thermodynamique et phénoménologique de la viscoplasticité cyclique avec endommagement[END_REF][START_REF] Chaboche | Le concept de contrainte effective appliqué à l'élasticité et à la viscoplasticité en présence d'un endommagement anisotrope[END_REF][START_REF] Leckie | Tensorial nature of damage measuring internal variables[END_REF][START_REF] Chaboche | Anisotropic creep damage in the framework of continuum damage mechanics[END_REF][START_REF] Lemaitre | Mécanique des matériaux solides[END_REF][START_REF] Andrieux | A model for microcracked material for concrete and rocks[END_REF][START_REF] Ju | On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects[END_REF][START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF][START_REF] Zheng | The relationship between damage variables and their evolution laws and microstructural and physical properties[END_REF][START_REF] Cormery | A stress-based macroscopic approach for microcracks unilateral effect[END_REF][START_REF] Dormieux | Micromechanics of fracture and damage[END_REF] or a symmetric second-order damage tensor d [START_REF] Vakulenko | Continuum theory of medium with cracks[END_REF][START_REF] Murakami | A constitutive equation of creep damage in polycrystalline metals[END_REF][START_REF] Cordebois | Endommagement anisotrope en élasticité et plasticité[END_REF][START_REF] Ladevèze | Sur une théorie de l'endommagement anisotrope[END_REF][START_REF] Murakami | Mechanical modeling of material damage[END_REF].

There exist many second-order anisotropic damage frameworks [START_REF] Murakami | Mechanical modeling of material damage[END_REF][START_REF] Kattan | A coupled theory of damage mechanics and finite strain elasto-plasticity -i. damage and elastic deformations[END_REF][START_REF] Ramtani | Orthotropic behaviour of concrete with directional aspects: modelling and experiments[END_REF][START_REF] Papa | Anisotropic damage model for the multi-axial static and fatigue behaviour of plain concrete[END_REF][START_REF] Halm | An anisotropic model of damage and frictional sliding for brittle materials[END_REF][START_REF] Steinmann | A framework for geometrically nonlinear continuum damage mechanics[END_REF][START_REF] Lemaitre | Anisotropic damage law of evolution[END_REF][START_REF] Carol | On the formulation of anisotropic elastic degradation. part i: Theory based on a pseudologarithmic damage tensor rate[END_REF][START_REF] Menzel | A theoretical and computational setting for anisotropic continuum damage mechanics at large strains[END_REF][START_REF] Menzel | Anisotropic damage coupled to plasticity: Modelling based on the effective configuration concept[END_REF][START_REF] Brunig | An anisotropic ductile damage model based on irreversible thermodynamics[END_REF][START_REF] Lemaitre | Engineering Damage Mechanics : Ductile, Creep, Fatigue and Brittle Failures[END_REF][START_REF] Desmorat | Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials[END_REF][START_REF] Badel | Application of some anisotropic damage model to the prediction of the failure of some complex industrial concrete structure[END_REF][START_REF] Desmorat | Cross-identification isotropic/anisotropic damage and application to anisothermal structural failure[END_REF][START_REF] Desmorat | Anisotropic damage modeling of concrete materials[END_REF], as their unification into Email addresses: desmorat@lmt.ens-cachan.fr (R. Desmorat), boris.desmorat@upmc.fr (B. Desmorat), marc.olive@math.cnrs.fr (M. Olive), boris.kolev@math.cnrs.fr (B. Kolev) a single model is partial [START_REF] Ladevèze | Sur une théorie de l'endommagement anisotrope[END_REF][START_REF] Ladevèze | Modeling and simulation of the mechanical behavior of cmcs[END_REF]. A link with the theory of second order fabric tensors has been made in [START_REF] Zysset | An alternative model for anisotropic elasticity based on fabric tensors[END_REF][START_REF] Voyiadjis | Damage mechanics with fabric tensors[END_REF]. From a theoretical point of view [START_REF] Leckie | Tensorial nature of damage measuring internal variables[END_REF][START_REF] Onat | Effective properties of elastic materials that contain penny shaped voids[END_REF], second order damage frameworks are usually seen to be restrictive compared to the fourth-order tensorial one. Nevertheless, the interpretation of a damage variable being simpler when a second-order tensor is considered (the three principal values 𝑑 𝑖 of d naturally correspond to 3 orthogonal families of microcracks), less damage parameters are introduced and the second-order frameworks have been widely used for either ductile or quasi-brittle materials.

The recent analysis of 2D cracked media with both open and closed microcraks has shown that the so-called irreducible (harmonic) part H 2𝐷 of the damage tensor can be decomposed by means of a second-order damage tensor [START_REF] Desmorat | Second order tensorial framework for 2D medium with open and closed cracks[END_REF]. More precisely, the standard second-order crack density tensor of [START_REF] Vakulenko | Continuum theory of medium with cracks[END_REF] still represents the open cracks contribution when a novel (deviatoric) second-order damage tensor represents the closed-sliding-cracks (previously represented by a fourth-order tensor, [START_REF] Andrieux | A model for microcracked material for concrete and rocks[END_REF]; [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF]). This can be achieved using Verchery's polar decomposition of 2D fourth-order tensors [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF][START_REF] Vannucci | Plane anisotropy by the polar method[END_REF], which includes both [START_REF] Desmorat | Tensorial polar decomposition of 2D fourth order tensors[END_REF]:

-the harmonic decomposition of considered tensor; -the harmonic factorization of its fourth-order irre-Preprint submitted to European Journal of Mechanics A/Solids (accepted, https://doi.org/10.1016/j.euromechsol.2017.11.014)December 18, 2017 ducible (harmonic) part H 2𝐷 , by means of a deviatoric second-order tensor h 2𝐷 :

H 2𝐷 = h 2𝐷 * h 2𝐷 .
The harmonic product between harmonic tensors, written as h 1 * h 2 , is defined as the projection of the (totally) symmetric tensor product h 1 ⊙ h 2 onto the space of harmonic tensors (see Sections 3 and 4.4).

The question arises then as how to extend these results in 3D ? We know from [START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF] that any 3D harmonic fourth-order tensor can be factorized into

H = h 1 * h 2 ,
i.e., represented by two (deviatoric) second-order tensors h 1 , h 2 . However, the factorization is far from being unique.

To overpass these difficulties, we point out that triaxial mechanical testing is of high complexity, both from the experimental set-up needed (a triaxial machine) and from the difficulty to measure mechanical properties in different space directions [START_REF] Calloch | Essais triaxiaux non proportionnels et ingénierie des modéles de plasticité cyclique[END_REF][START_REF] Calloch | Triaxial tension-compression tests for multiaxial cyclic plasticity[END_REF]. We propose, here, to restrict ourselves to a simpler, but still sufficiently general, situation: the case of measurements of a 3D crack density function on structures. Well-known cases are the thin walled structures, such as plates, tubes and shells for which the thinner direction is the normal 𝜈 𝜈 𝜈. But the present work also applies to 3D thick structures (as the cube of Section 8), as long as an out-of-plane normal can be locally defined.

Instead of considering the representation of crack density in any direction 𝑛 𝑛 𝑛, we shall then consider, in Section 5, its representation to a restricted set of directions ℛ(𝜈 𝜈 𝜈) := {𝜏 𝜏 𝜏 ; ‖𝜏 𝜏 𝜏 ‖ = 1 and 𝜏 𝜏 𝜏 • 𝜈 𝜈 𝜈 = 0} ∪ {𝜈 𝜈 𝜈} , i.e., the in-plane directions 𝜏 𝜏 𝜏 , orthogonal to 𝜈 𝜈 𝜈, and the out-of-plane direction 𝜈 𝜈 𝜈, normal to the structure itself. In the present work, we consider these directions as the mechanically accessible directions for measurements.

After recalling the required mathematical tools (harmonic decomposition, harmonic product and Sylvester's theorem), we revisit the link between crack density function and the tensorial nature of the damage variables. This will allow us to derive a general micro-mechanics based 3D framework with second-instead of fourth-order damage tensors.

Definitions

We denote by T s the totally symmetric part of a possibly non symmetric tensor T. More precisely

T s (𝑥 𝑥 𝑥 1 , . . . , 𝑥 𝑥 𝑥 𝑛 ) := 1 𝑛! ∑︁ 𝜎∈S𝑛 T(𝑥 𝑥 𝑥 𝜎(1) , . . . , 𝑥 𝑥 𝑥 𝜎(𝑛) ),
where S 𝑛 is the permutation group on the indices {1, . . . , 𝑛}. The symmetric tensor product of two tensors T 1 and T 2 , of respective orders 𝑛 1 and 𝑛 2 , is the symmetrization of T 1 ⊗T 2 , defining a totally symmetric tensor of order 𝑛 = 𝑛 1 + 𝑛 2 :

T 1 ⊙ T 2 := (T 1 ⊗ T 2 ) s .
Contracting two indices 𝑖, 𝑗 of a tensor T of order 𝑛 defines a new tensor of order 𝑛 -2 denoted as tr 𝑖𝑗 T. For a totally symmetric tensor T, this operation does not depend on a particular choice of the pair 𝑖, 𝑗. Thus, we can refer to this contraction just as the trace of T and we will denote it as tr T. It is a totally symmetric tensor of order 𝑛 -2. Iterating the process, we define

tr 𝑘 T = tr(tr(• • • (tr T))),
which is a totally symmetric tensor of order 𝑛 -2𝑘.

In 3D, a totally symmetric fourth-order tensor T has no more than 15 independent components, instead of 21 for a triclinic elasticity tensor (i.e. a tensor E having minor symmetry 𝐸 𝑖𝑗𝑘𝑙 = 𝐸 𝑗𝑖𝑘𝑙 = 𝐸 𝑖𝑗𝑙𝑘 and major symmetry 𝐸 𝑖𝑗𝑘𝑙 = 𝐸 𝑘𝑙𝑖𝑗 ). Totally symmetric elasticity tensors were called rari-constant in the nineteenth century [START_REF] Navier | Mémoire sur les lois de l'équilibre et du mouvement des solides élastiques[END_REF]Cauchy, 1828b,a;[START_REF] Poisson | Mémoire sur l'équilibre et le mouvement des corps élastiques[END_REF][START_REF] Love | A Treatise on the Mathematical Theory of Elasticity[END_REF][START_REF] Vannucci | Plane anisotropic rari-constant materials[END_REF].

Harmonic decomposition

The harmonic decomposition of tensors [START_REF] Schouten | Tensor Analysis for Physicists[END_REF][START_REF] Spencer | A note on the decomposition of tensors into traceless symmetric tensors[END_REF], introduced in geophysics by [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF], has been popularized by [START_REF] Leckie | Tensorial nature of damage measuring internal variables[END_REF] and [START_REF] Onat | Effective properties of elastic materials that contain penny shaped voids[END_REF] when deriving fourth-order damage tensor and later by [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] when classifying elasticity symmetries.

Harmonic tensors and corresponding polynomials

An harmonic tensor is a traceless, totally symmetric tensor, i.e. H = H s , and tr H = 0.

To every totally symmetric tensor H of order 𝑛, with components 𝐻 𝑖1𝑖2•••𝑖𝑛 , corresponds a unique homogenous polynomial (and conversely). More precisely,

h(𝑥 𝑥 𝑥) := H(𝑥 𝑥 𝑥, 𝑥 𝑥 𝑥, . . . , 𝑥 𝑥 𝑥) = 𝐻 𝑖1𝑖2•••𝑖𝑛 𝑥 𝑖1 𝑥 𝑖2 • • • 𝑥 𝑖𝑛 is a homogeneous polynomial h(𝑥 𝑥 𝑥) = h(𝑥 1 , 𝑥 2 , 𝑥 3 ),
of degree 𝑛 in the spacial coordinates 𝑥 1 , 𝑥 2 , 𝑥 3 . It is harmonic since ∇ 2 h = 0, due to the traceless property tr H = 0.

Harmonic decomposition of a symmetric tensor

Any totally symmetric tensor T of order 𝑛 can be decomposed uniquely as

T = H 0 + 1 ⊙ H 1 + • • • + 1 ⊙𝑟-1 ⊙ H 𝑟-1 + 1 ⊙𝑟 ⊙ H 𝑟 (2.1)
where 𝑟 = [𝑛/2] is the integer part of 𝑛/2, H 𝑘 is an harmonic tensor of degree 𝑛 -2𝑘 and 1 ⊙𝑘 = 1 ⊙ • • • ⊙ 1 means the symmetrized tensorial product of 𝑘 copies of the (second-order) identity tensor. For 𝑛 even (𝑛 = 2𝑟), one has:

H 𝑟 = H 𝑛 2 = 1 𝑛 + 1 tr 𝑛 2 T, (2.2) 
where H 𝑟 = 𝐻 𝑟 is a scalar in that case. Moreover, H 𝑟-1 , . . . , H 0 are obtained inductively [START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF] as follows:

H 𝑘 = 𝜇(𝑘, 𝑛) tr 𝑘 [︁ T - 𝑟 ∑︁ 𝑗=𝑘+1 1 ⊙𝑗 ⊙ H 𝑗 ]︁ (2.3) where 𝜇(𝑘, 𝑛) = (2𝑛 -4𝑘 + 1)!(𝑛 -𝑘)!𝑛! (2𝑛 -2𝑘 + 1)!𝑘!(𝑛 -2𝑘)!(𝑛 -2𝑘)! .
Remark 2.1. It is worth emphasizing the fact that this harmonic decomposition is just a generalization to higher order symmetric tensors of the well-known decomposition of a symmetric second-order tensor into its deviatoric/spheric parts:

d = d ′ + 1 3 (tr d)1.
Decomposition (2.1) is an orthogonal decomposition (relative to the natural Euclidean product on the space of symmetric tensors). The projection H 0 onto the space of highest order harmonic tensors (same order as T) will be called the harmonic part of T and denoted by (T) 0 :

(T) 0 := H 0 = T -1 ⊙ H 1 -• • • -1 ⊙𝑟 𝐻 𝑟 .
(2.4)

Harmonic decomposition of the elasticity tensor

The harmonic decomposition of an elasticity tensor E, a fourth-order tensor having both minor and major symmetries (𝐸 𝑖𝑗𝑘𝑙 = 𝐸 𝑗𝑖𝑘𝑙 = 𝐸 𝑖𝑗𝑙𝑘 and 𝐸 𝑖𝑗𝑘𝑙 = 𝐸 𝑘𝑙𝑖𝑗 ), was first obtained by [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF], as:

E = 𝛼 1⊗ (4) 1+𝛽 1⊗ (2,2) 1+1⊗ (4) a ′ +1⊗ (2,2) b ′ +H (2.5) where (•) ′ = (•) -1
3 tr(•) 1 denotes the deviatoric part of a second-order tensor.

In formula (2.5), the Young-symmetrized tensor products ⊗ (4) and ⊗ (2,2) , between two symmetric second-order tensors y, z, are defined as follows:

{︃ y ⊗ (4) z = 1 6 (︀ y ⊗ z + z ⊗ y + 2 y ⊗ z + 2 z ⊗ y )︀ , y ⊗ (2,2) z = 1 3 (︀ y ⊗ z + z ⊗ y -y ⊗ z -z ⊗ y )︀ , (2.6)
where (y ⊗ z) 𝑖𝑗𝑘𝑙 = 1 2 (𝑦 𝑖𝑘 𝑧 𝑗𝑙 + 𝑦 𝑖𝑙 𝑧 𝑗𝑘 ) so that ⊗ (4) is the same as the totally symmetric tensor product ⊙:

y ⊗ (4) z = y ⊙ z.
In the harmonic decomposition (2.5), H is a fourth-order harmonic tensor, 𝛼, 𝛽 are scalars, and a ′ , b ′ are secondorder harmonic tensors (deviators) related to the dilatation tensor di = tr 12 E and the Voigt tensor vo = tr 13 E by the formulas:

𝛼 = 1 15 (tr di + 2 tr vo) , 𝛽 = 1 6 (tr di -tr vo) , (2.7)
and

a ′ = 2 7 (︀ di ′ + 2vo ′ )︀ , b ′ = 2 (︀ di ′ -vo ′ )︀ . (2.8)
The harmonic part of E is defined as:

(E) 0 := H = E -1 ⊗ (4) a -1 ⊗ (2,2) b (2.9)
or similarly as:

(E) 0 := E -1 ⊙ a - 1 3 (1 ⊗ b + b ⊗ 1 -1 ⊗ b -b ⊗ 1) ,
where a = a ′ + 𝛼1 and b = b ′ + 𝛽1. The scalars 𝛼, 𝛽 and the second-order deviators a ′ , b ′ are given by (2.7) and (2.8).

The harmonic product and Sylvester's theorem

The harmonic product of two harmonic tensors of order 𝑛 1 and 𝑛 2 , defining an harmonic tensor of order 𝑛 = 𝑛 1 + 𝑛 2 , has been introduced in [START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF] as the harmonic part of the symmetric tensor product:

H 1 * H 2 := (H 1 ⊙ H 2 ) 0 .
Note that this product is associative:

H 1 * (H 2 * H 3 ) = (H 1 * H 2 ) * H 3 ,
and commutative:

H 1 * H 2 = H 2 * H 1 .
For two vectors 𝑤 𝑤 𝑤 1 , 𝑤 𝑤 𝑤 2 , we have

𝑤 𝑤 𝑤 1 * 𝑤 𝑤 𝑤 2 =(𝑤 𝑤 𝑤 1 ⊙ 𝑤 𝑤 𝑤 2 ) ′ = 1 2 (𝑤 𝑤 𝑤 1 ⊗ 𝑤 𝑤 𝑤 2 + 𝑤 𝑤 𝑤 2 ⊗ 𝑤 𝑤 𝑤 1 ) - 1 3 (𝑤 𝑤 𝑤 1 • 𝑤 𝑤 𝑤 2 ) 1,
where 𝑤 𝑤 𝑤 1 • 𝑤 𝑤 𝑤 2 = 𝑤 𝑤 𝑤 𝑇 1 𝑤 𝑤 𝑤 2 is the scalar product. For two second-order harmonic tensors (deviators) h 1 , h 2 , we have

h 1 * h 2 = h 1 ⊙ h 2 - 2 7 1 ⊙ (h 1 h 2 + h 2 h 1 ) + 2 35 tr(h 1 h 2 ) 1 ⊙ 1. (3.1)
Sylvester's theorem [START_REF] Sylvester | Note on spherical harmonics[END_REF][START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF][START_REF] Baerheim | Classification of symmetry by means of maxwell multipoles[END_REF] states that any harmonic tensor H of order 𝑛 can be factorized as

H = 𝑤 𝑤 𝑤 1 * 𝑤 𝑤 𝑤 2 * • • • * 𝑤 𝑤 𝑤 𝑛 ,
i.e. as the harmonic products of 𝑛 (real) vectors 𝑤 𝑤 𝑤 𝑘 , the so-called Sylvester-Maxwell multipoles. Note however, that this factorization is far from being unique, as discussed in [START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF].

Setting h 1 = 𝑤 𝑤 𝑤 1 * 𝑤 𝑤 𝑤 2 and h 2 = 𝑤 𝑤 𝑤 3 * 𝑤 𝑤 𝑤 4 which are harmonic second-order tensors (deviators), we obtain the non unique harmonic factorization of H by means of two second-order tensors:

H = h 1 * h 2 , (3.2)
as detailed in [START_REF] Desmorat | Second order tensorial framework for 2D medium with open and closed cracks[END_REF][START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF].

Link between fourth-order crack density and damage tensors

Before formulating our main result, Theorem 5.1, we summarize, in this section, the present state-of-theart in Continuum Mechanics leading to the representation of damage of cracked media by a fourth-order tensor [START_REF] Chaboche | Le concept de contrainte effective appliqué à l'élasticité et à la viscoplasticité en présence d'un endommagement anisotrope[END_REF]. We make an explicit link with the harmonic decomposition and we present, by comparison to the 2D case, the problem of representation of damage by second-order tensors in 3D.

Crack density function and tensors

The damage state of a microcracked material is classically defined by spatial arrangement, orientation and geometry of the cracks present at the microscale [START_REF] Kachanov | On continuum theory of medium with cracks[END_REF][START_REF] Leckie | Tensorial nature of damage measuring internal variables[END_REF][START_REF] Ladevèze | Sur une théorie de l'endommagement anisotrope[END_REF][START_REF] Onat | Effective properties of elastic materials that contain penny shaped voids[END_REF][START_REF] Lemaitre | Mécanique des matériaux solides[END_REF][START_REF] Murakami | Mechanical modeling of material damage[END_REF][START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF]. The crack density, related to any possible 3D direction defined by a unit vector 𝑛 𝑛 𝑛, refers to a dimensionless scalar property defined in a continuous manner at the Representative Volume Element scale as a spatial crack density function Ω = Ω(𝑛 𝑛 𝑛). Owing to the property Ω(𝑛 𝑛 𝑛) = Ω(-𝑛 𝑛 𝑛), it is expressed by means of a totally symmetric tensor F (the so-called fabric tensor ) of even order 𝑛 = 2𝑟 [START_REF] Kanatani | Distribution of directional data and fabric tensors[END_REF] as:

Ω(𝑛 𝑛 𝑛) = F • (𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ • • • ⊗ 𝑛 𝑛 𝑛) (4.1)
where • means the contraction over the 𝑛 subscripts. Note that Ω(𝑛 𝑛 𝑛) corresponds to a homogeneous polynomial (see section 2.2)

h(𝑛 1 , 𝑛 2 , 𝑛 3 ) = F(𝑛 𝑛 𝑛, 𝑛 𝑛 𝑛, . . . , 𝑛 𝑛 𝑛).
The fabric tensor F, which is totally symmetric, can be determined as the least square error approximation of an experimental (measured) density distribution Ω(𝑛 𝑛 𝑛), F being thus solution of min

F ⃦ ⃦ ⃦ ⃦ ⃦ 4𝜋 2𝑛 + 1 F • 1 ⊙𝑛 - ∫︁ ‖𝑥 𝑥 𝑥‖=1 Ω(𝑛 𝑛 𝑛) 𝑛 𝑛 𝑛 ⊗𝑛 d𝑆 ⃦ ⃦ ⃦ ⃦ ⃦ 2 ,
with solid angle 𝑆 and where

𝑛 𝑛 𝑛 ⊗𝑘 := 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ • • • ⊗ 𝑛 𝑛 𝑛.
Moreover, the following equality has been used:

1 4𝜋 ∫︁ ‖𝑥 𝑥 𝑥‖=1 𝑛 𝑛 𝑛 ⊗2𝑛 d𝑆 = 1 2𝑛 + 1 1 ⊙𝑛 .
Note that 𝑛 𝑛 𝑛 ⊗𝑘 = 𝑛 𝑛 𝑛 ⊙𝑘 is a totally symmetric tensor.

Comparative studies of the tensorial order, needed to represent given microcracking patterns, can be found in [START_REF] Lubarda | Damage tensors and the crack density distribution[END_REF][START_REF] Krajcinovic | Damage Mechanics[END_REF][START_REF] Tikhomirov | On three-dimensional microcrack density distribution[END_REF].

Expression (4.1) is often rewritten into the finite expansion [START_REF] Kanatani | Distribution of directional data and fabric tensors[END_REF][START_REF] Onat | Effective properties of elastic materials that contain penny shaped voids[END_REF][START_REF] Krajcinovic | Damage Mechanics[END_REF]:

Ω(𝑛 𝑛 𝑛) = F 4 • (𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛) + Ω Ω Ω 6 • (𝑛 𝑛 𝑛 ⊗6 ) + • • • • • • + Ω Ω Ω 2𝑘 • (𝑛 𝑛 𝑛 ⊗2𝑘 ) + • • • + Ω Ω Ω 𝑛 • (𝑛 𝑛 𝑛 ⊗𝑛 ) (4.2)
with fourth-order part

F 4 • (𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛) =Ω 0 + Ω Ω Ω 2 • (𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛) + Ω Ω Ω 4 • (𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛) (4.3)
with 𝑛 = 2𝑟 even and where Ω Ω Ω 2𝑘 are totally symmetric traceless (harmonic) tensors of order 2𝑘. The scalar term Ω 0 is the crack density within considered Continuum Mechanics representative volume element

Ω 0 = 1 4𝜋 ∫︁ ‖𝑥 𝑥 𝑥‖=1 Ω(𝑛 𝑛 𝑛) d𝑆.
Crack density tensors Ω Ω Ω 2 , Ω Ω Ω 4 , . . . , Ω Ω Ω 𝑛 are harmonic tensors of even order 2, 4, . . . , 𝑛. They constitute independent crack density variables representative of the microcraking pattern (and anisotropy), determined uniquely up to order 𝑛 from the knowledge of the 3D spatial crack density distribution Ω(𝑛 𝑛 𝑛).

Derivation of the crack density tensors from the harmonic decomposition

Let us point out that the harmonic tensors Ω Ω Ω 2𝑘 correspond to the tensors H 𝑟-𝑘 issued from the harmonic decomposition (2.1) of the fabric tensor F:

F = H 0 + 1 ⊙ H 1 + • • • + 1 ⊙𝑟-1 ⊙ H 𝑟-1 + 1 ⊙𝑟 𝐻 𝑟 ,
with 𝑟 = 𝑛/2, where 𝐻 𝑟 = 𝐻 𝑛 2 and the harmonic tensors H 𝑘 of degree 𝑛 -2𝑘 are given by (2.2) and (2.3). Observe, moreover, that:

(1 ⊙𝑘 ⊙ H 𝑘 ) • 𝑛 𝑛 𝑛 ⊗𝑛 = H 𝑘 • 𝑛 𝑛 𝑛 ⊗𝑛-2𝑘 ,
and we get thus:

Ω(𝑛 𝑛 𝑛) = 𝐻 𝑟 + H 𝑟-1 • (𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛) + H 𝑟-2 • (𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛) + • • • + H 0 • (𝑛 𝑛 𝑛 ⊗𝑛 ),
which is the finite expansion (4.2), where

Ω 0 = 𝐻 𝑛 2 , Ω Ω Ω 2𝑘 = H 𝑟-𝑘 .
4.3. Fourth-order damage tensor Using the decomposition (4.2) and assuming open microcracks in an initially 3D isotropic medium, [START_REF] Leckie | Tensorial nature of damage measuring internal variables[END_REF] and [START_REF] Onat | Effective properties of elastic materials that contain penny shaped voids[END_REF] have shown that the damage variable defined by the coupling microcraking/elasticity is at most a fourth-order tensor, built from F 4 only, see (4.2). This result holds for non interacting closed-sliding without friction-pennyshaped microcracks [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF] and, as pointed out by [START_REF] Cormery | A stress-based macroscopic approach for microcracks unilateral effect[END_REF], for many stress based homogenization schemes, as long as all the microcracks are in the same state, either open or closed. Setting:

J = I - 1 3 1 ⊗ 1,
the following general definition of a fourth-order damage tensor has then been derived for initially isotropic materials [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF][START_REF] Zheng | The relationship between damage variables and their evolution laws and microstructural and physical properties[END_REF][START_REF] Cormery | A stress-based macroscopic approach for microcracks unilateral effect[END_REF]:

D = 𝑝 0 Ω 0 1 ⊗ 1 + 𝑝 1 Ω 0 J + 𝑝 2 (1 ⊗ Ω Ω Ω 2 + Ω Ω Ω 2 ⊗ 1) + 𝑝 3 (1 ⊗ Ω Ω Ω 2 + Ω Ω Ω 2 ⊗ 1) + 𝑝 4 Ω Ω Ω 4 , (4.4)
where Ω 0 should be interpreted as a scalar damage variable, the symmetric deviator Ω Ω Ω 2 as a second-order damage variable, and the harmonic tensor Ω Ω Ω 4 as a fourth-order damage variable. The expression of the scalars 𝑝 𝑖 depends on the initial elasticity parameters, on the homogenization scheme and on the microcracks state (simultaneously open or simultaneously closed for all cracks).

Remark 4.1. The scalars 𝑝 𝑖 do not depend on Ω 0 , Ω Ω Ω 2 , Ω Ω Ω 4 .

Remark 4.2. (4.4) is the harmonic decomposition (2.5) of the fourth-order damage tensor D, which has the major and the minor indicial symmetries (𝐷 𝑖𝑗𝑘𝑙 = 𝐷 𝑘𝑙𝑖𝑗 = 𝐷 𝑗𝑖𝑘𝑙 ) as an elasticity tensor. The deviatoric parts of the dilatation and Voigt tensors are both proportional to the secondorder harmonic tensor Ω Ω Ω 2 , with the scalar factors 𝜅 di and 𝜅 vo depending only on the initial elastic parameters of the undamaged isotropic material:

di ′ (D) = (tr 12 D) ′ = 𝜅 di Ω Ω Ω 2 , vo ′ (D) = (tr 13 D) ′ = 𝜅 vo Ω Ω Ω 2 .
The traces of the dilatation and the Voigt tensors are both proportional to the scalar crack density Ω 0 , with scalar factors 𝑘 di and 𝑘 vo depending only on the elastic parameters of virgin (undamaged) isotropic material:

tr di(D) = tr(tr 12 D) = 𝑘 di Ω 0 , tr vo(D) = tr(tr 13 D) = 𝑘 vo Ω 0 .
Remark 4.3. An alternative framework is due to [START_REF] Voyiadjis | Damage mechanics with fabric tensors[END_REF]. These authors extend to anisotropic damage the framework of [START_REF] Zysset | An alternative model for anisotropic elasticity based on fabric tensors[END_REF] for the representation of microstructure morphology of granular materials (the considered framework neglects the fourth order contribution Ω Ω Ω 4 ). They propose, then, a nonlinear link between the second order fabric tensor Ω Ω Ω 2 and a fourth order tensorial damage variable D, setting for the effective (damaged) elasticity tensor

Ẽ = Ẽ = 𝜆 𝜑 𝜑 𝜑 ⊗ 𝜑 𝜑 𝜑 + 2𝜇 𝜑 𝜑 𝜑 ⊗ 𝜑 𝜑 𝜑, 𝜑 𝜑 𝜑 = (Ω 0 1 + Ω Ω Ω 2 ) -𝑘 (4.5)
This means that they replace the identity tensor 1 in the usual isotropic elasticity law by a negative power -𝑘 = -0.2 of the second order crack density tensor Ω 0 1 + Ω Ω Ω 2 (powers being taken in terms of the principal values, 𝜆, 𝜇 considered as Lamé-like constants). The crack density Ω 0 must have a non zero initial value. Due to the presence of quadratic terms in crack densities, this framework does not satisfy previous proportionality properties. Fourth order damage tensor D is such that Ẽ = (1 -D) : E.

2D case

In 2D, cracks are represented by 2D straight lines. Expression (4.2) for crack density holds, recovering a Fourier finite expansion [START_REF] Kanatani | Distribution of directional data and fabric tensors[END_REF][START_REF] Burr | Micro-mechanics and continuum damage mechanics[END_REF]:

Ω(𝑛 𝑛 𝑛) = 𝜔 2𝐷 + 𝜔 𝜔 𝜔 ′ 2𝐷 • (𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛) + H 2𝐷 • (𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛) + • • • , (4.6)
where the unit vector 𝑛 𝑛 𝑛 is related to the possible planar direction

𝜔 2𝐷 = 1 2𝜋 ∫︁ 2𝜋 0 Ω(𝑛 𝑛 𝑛) d𝜃
is the 2D crack density, and where 𝜔 𝜔 𝜔 ′ 2𝐷 , H 2𝐷 are respectively the 2D harmonic second and the fourth-order crack density tensors.

Verchery's decomposition [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF][START_REF] Vannucci | Plane anisotropy by the polar method[END_REF], and its rewriting into a tensorial form [START_REF] Desmorat | Tensorial polar decomposition of 2D fourth order tensors[END_REF], shows that any 2D harmonic fourthorder tensor is an harmonic square. Applied to H 2𝐷 , this gives:

H 2𝐷 = h 2𝐷 * h 2𝐷 , (4.7)
where h 2𝐷 is an harmonic second-order tensor (deviator), and the notation * denotes the harmonic product defined as the orthogonal projection of the symmetrized product h 2𝐷 ⊙ h 2𝐷 onto 2D fourth-order harmonic tensors' space:

h 2𝐷 * h 2𝐷 := (h 2𝐷 ⊙ h 2𝐷 ) 0 .
For second-order harmonic tensors, this reads:

h 2𝐷 * h 2𝐷 = h 2𝐷 ⊙ h 2𝐷 - 1 4 (tr h 2 2𝐷 ) 1 ⊙ 1.
This means that in 2D, any anisotropic microcracking pattern can be expressed, up to order 4, exactly by means of the scalar 𝜔 2𝐷 and the two independent second-order deviatoric damage variables 𝜔 𝜔 𝜔 ′ = Ω 2𝐷 2 and h 2𝐷 = h ′ 2𝐷 . This result is consistent with the fact that the micro-mechanics of 2D media with open and closed (sliding without friction) microcracks can be represented by two second-order damage tensors only [START_REF] Desmorat | Tensorial polar decomposition of 2D fourth order tensors[END_REF].

The question arises then whether the expansion (4.6)-(4.7) holds in 3D, i.e. with 𝜔 𝜔 𝜔 ′ and h (now 3D) deviatoric second-order tensors. The answer is negative in the general triclinic case for which we have only Ω Ω Ω 4 = h 1 * h 2 (3.2) with usually different second-order tensors h 1 , h 2 [START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF]. Furthermore, the factorization is not unique, forbidding to interpret h 1 and h 2 as damage variables.

3D second-order damage tensors from walled structures

It was noticed by [START_REF] Lubarda | Damage tensors and the crack density distribution[END_REF] and [START_REF] Krajcinovic | Damage Mechanics[END_REF] that the fourth-order crack density tensor Ω Ω Ω 4 = (F 4 ) 0 (the harmonic part of the totally symmetric tensor F 4 ) induced by particular loadings is related, sometimes, as a square of the second-order harmonic contribution Ω Ω Ω 2 . More precisely, Ω Ω Ω 4 is proportional to the harmonic square Ω Ω Ω 2 * Ω Ω Ω 2 in the particular situation that occurs for a family of parallel penny shaped microcracks having identical-therefore coplanar-normal 𝑚 𝑚 𝑚 (induced for example by uniaxial tension on quasi-brittle materials).

An harmonic square is also present in the work of Voyiadjis and [START_REF] Voyiadjis | Damage mechanics with fabric tensors[END_REF]. Let us show that it corresponds to the fourth order harmonic tensor 𝜑 𝜑 𝜑 * 𝜑 𝜑 𝜑 with 𝜑 𝜑 𝜑 = (Ω 0 1 + Ω Ω Ω 2 ) -0.2 :

-The harmonic part ( Ẽ) 0 of the effective elasticity tensor (4.5) is

( Ẽ) 0 = (𝜆 (𝜑 𝜑 𝜑 ⊗ 𝜑 𝜑 𝜑) s + 2𝜇 (𝜑 𝜑 𝜑 ⊗ 𝜑 𝜑 𝜑) s ) 0 , (5.1) 
where (.) s means the totally symmetric part and (.) 0 is the harmonic projection defined in Eq. (2.9).

-By definition (𝜑 𝜑 𝜑 ⊗ 𝜑 𝜑 𝜑) s = (𝜑 𝜑 𝜑 ⊗ 𝜑 𝜑 𝜑) 𝑠 = 𝜑 𝜑 𝜑 ⊙ 𝜑 𝜑 𝜑.

-The harmonic fourth order part of Ẽ is thus

( Ẽ) 0 = (𝜆 + 2𝜇)(𝜑 𝜑 𝜑 ⊙ 𝜑 𝜑 𝜑) 0 = (𝜆 + 2𝜇) 𝜑 𝜑 𝜑 * 𝜑 𝜑 𝜑,
where * is the harmonic product (3.1). See also Appendix B.

The second and fourth-order crack density variables Ω Ω Ω 2 and Ω Ω Ω 4 are independent in general case. We prefer to keep the fourth order contribution Ω Ω Ω 4 in our further analyses and we will use next the standard expression (4.4) (for instance instead of Eq. (4.5) which neglects Ω 4 ).

In order to built a micromechanics based framework with second-order damage tensors, one considers as the general case-except for soils-that the measurements of 3D crack density Ω(𝑛 𝑛 𝑛) is performed on thin or thick walled structures, i.e. on thin or thick tubes or on 2D structures such as plates. This allows us to introduce the unit normal 𝜈 𝜈 𝜈 (‖𝜈 𝜈 𝜈‖ = 1) to the walled structure and the set ℛ(𝜈 𝜈 𝜈) := {𝜏 𝜏 𝜏 , ‖𝜏 𝜏 𝜏 ‖ = 1 and 𝜏 𝜏 𝜏 • 𝜈 𝜈 𝜈 = 0} ∪ {𝜈 𝜈 𝜈}, of directions 𝑛 𝑛 𝑛 restricted to so-called mechanically accessible directions for measurements.

As an extension of both the previous remark on fourthorder harmonic squares and the 2D result (4.6)-(4.7), we have in 3D the following theorem (the proof of which is given at the end of the present section):

Theorem 5.1. For a given unit vector 𝜈 𝜈 𝜈, any density function Ω(𝑛 𝑛 𝑛) is represented, up to fourth-order, for all directions 𝑛 𝑛 𝑛 ∈ ℛ(𝜈 𝜈 𝜈) by means of a scalar 𝜔 𝑚 and two harmonic (symmetric deviatoric) second-order tensors 𝜔 𝜔 𝜔 ′ and h as:

Ω(𝑛 𝑛 𝑛) = 𝜔 𝑚 + 𝜔 𝜔 𝜔 ′ • (𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛) + (h * h) • (𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛) + • • • (5.2)
for all 𝑛 𝑛 𝑛 ∈ ℛ(𝜈 𝜈 𝜈). This representation is unique, up to ±h, if (𝜔 𝜔 𝜔 ′ 𝜈 𝜈 𝜈) × 𝜈 𝜈 𝜈 = h 𝜈 𝜈 𝜈 = 0 0 0 . Remark 5.2. If we set 𝑒 𝑒 𝑒 3 = 𝜈 𝜈 𝜈, the conditions (𝜔 𝜔 𝜔 ′ 𝜈 𝜈 𝜈) ×𝜈 𝜈 𝜈 = 0 0 0 (which is equivalent to (𝜔 𝜔 𝜔 ′ 𝜈 𝜈 𝜈) = 𝜆 𝜈 𝜈 𝜈) and h 𝜈 𝜈 𝜈 = 0 0 0 mean that (5.4)

𝜔 𝜔 𝜔 ′ = ⎛ ⎝ 𝜔 ′ 11 𝜔 12 0 𝜔 12 𝜔 ′ 22 0 0 0 -(𝜔 ′ 11 + 𝜔 ′ 22 ) ⎞ ⎠ , (5.3) 
Applied to thinned walled structured, for which 𝑛 𝑛 𝑛 ∈ ℛ(𝜈 𝜈 𝜈) are the accessible directions for mechanical measurements, Theorem 5.1 states that any microcracking pattern, possibly triclinic, can be represented, up to order 4, by means of only two symmetric second-order crack density tensors, 𝜔 𝜔 𝜔 = 𝜔 𝜔 𝜔 ′ + 𝜔 𝑚 1 and h, the second one being a deviator. In that case, we can recast (5.2) as:

Ω(𝑛 𝑛 𝑛) = 𝜔 𝜔 𝜔 • (𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛) + (h * h) • (𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛) + • • •
for all 𝑛 𝑛 𝑛 ∈ ℛ(𝜈 𝜈 𝜈), where 𝜔 𝜔 𝜔 is the crack density tensor introduced by [START_REF] Vakulenko | Continuum theory of medium with cracks[END_REF] [START_REF] Kachanov | On continuum theory of medium with cracks[END_REF][START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF].

Practical formulas -Proof of Theorem 5.1

Recall that, up to order four, the crack density function Ω(𝑛 𝑛 𝑛) is represented by the fabric tensor F 4 (4.2)-(4.3). Consider now an orthonormal frame {𝑒 𝑒 𝑒 1 , 𝑒 𝑒 𝑒 2 , 𝜈 𝜈 𝜈} and let (𝜔 𝑚 , 𝜔 𝜔 𝜔 ′ , h) be a triplet as in (5.3)-(5.4). Set where 𝑖 = √ -1 is the pure imaginary number. It can be checked by a direct computation that (𝜔 𝑚 , 𝜔 𝜔 𝜔 ′ , h) is a solution of (5.2) in Theorem 5.1.

ℎ 11 + 𝑖ℎ 12 = 1 2 [︀ (F 4 ) 1111 + (F 4 ) 2222 -6(F 4 ) 1122 + 4𝑖 (︀ (F 4 ) 1112 -(F 4 ) 1222 )︀]︀ 1/2 (
Remark 5.3. Because of the square root in (5.5), both h and -h are solutions.

We will now show the uniqueness of the solution, up to a sign, and under the assumption that:

(𝜔 𝜔 𝜔 ′ 𝜈 𝜈 𝜈) × 𝜈 𝜈 𝜈 = h 𝜈 𝜈 𝜈 = 0 0 0.
Suppose thus, that a second solution (𝜔 * 𝑚 , 𝜔 𝜔 𝜔 *′ , h * ) to (5.2) exists, with 𝜔 𝜔 𝜔 *′ and h * as in (5.3)-(5.4). Equaling, for different directions 𝑛 𝑛 𝑛 ∈ ℛ(𝜈 𝜈 𝜈), the density function Ω(𝑛 𝑛 𝑛) defined by (5.2), calculated first with (𝜔 𝑚 , 𝜔 𝜔 𝜔 ′ , h) and then with (𝜔 * 𝑚 , 𝜔 𝜔 𝜔 *′ , h * ), we obtain for 𝑛 𝑛 𝑛 = 𝜈 𝜈 𝜈: where

35(𝜔

𝑎 0 = 2(𝜔 𝑚 -𝜔 * 𝑚 ) + 𝜔 ′ 11 -𝜔 *′ 11 + 𝜔 ′ 22 -𝜔 *′ 22 + 3 35 (ℎ 2 11 -ℎ *2 11 + ℎ 2 12 -ℎ *2 12 ), 𝑎 2 = 𝜔 ′ 11 -𝜔 *′ 11 -𝜔 ′ 22 + 𝜔 *′ 22 , 𝑏 2 = 2(𝜔 12 -𝜔 * 12 ), 𝑎 4 = ℎ 2 11 -ℎ 2 12 -ℎ *2 11 + ℎ *2 12 , 𝑏 4 = 2(ℎ 11 ℎ 12 -ℎ * 11 ℎ * 12 ).
Since (5.7) holds for all 𝜃, we have

𝑎 0 = 𝑎 2 = 𝑏 2 = 𝑎 4 = 𝑏 4 = 0.
Since 𝑎 4 = 𝑏 4 = 0, we get and therefore that h * = ±h (in accordance with Remark 5.3). From (5.6) and 𝑎 0 = 𝑎 2 = 𝑏 2 = 0, we get

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 𝜔 𝑚 -𝜔 * 𝑚 + 𝜔 *′ 11 -𝜔 ′ 11 + 𝜔 *′ 22 -𝜔 ′ 22 = 0, 2(𝜔 𝑚 -𝜔 * 𝑚 ) + 𝜔 ′ 11 -𝜔 *′ 11 + 𝜔 ′ 22 -𝜔 *′ 22 = 0, 𝜔 ′ 11 -𝜔 *′ 11 -𝜔 ′ 22 + 𝜔 *′ 22 = 0, 𝜔 12 -𝜔 * 12 = 0,
i.e. 𝜔 * 𝑚 = 𝜔 𝑚 and 𝜔 𝜔 𝜔 *′ = 𝜔 𝜔 𝜔 ′ , which achieves the proof.

General micro-mechanics based framework with two second-order damage variables

Using the results from Section 4.3, we deduce from (5.2) that the representation by means of two symmetric secondorder tensors holds for the damage tensor itself, at least when the microcracks are all in the same state, all open or all closed. This means that, disposing from sufficiently many in-plane measurements (along directions 𝑛 𝑛 𝑛 orthogonal to 𝜈 𝜈 𝜈) and an out-of-plane measurement (along 𝑛 𝑛 𝑛 = 𝜈 𝜈 𝜈), the general fourth-order damage tensor of Chaboche-Leckie-Onat can be expressed by means of two symmetric second-order damage variables only, for example 𝜔 𝜔 𝜔 and h (the second-one being a deviator). A general damage framework using this feature is derived next, clarifying the link between [START_REF] Cordebois | Endommagement anisotrope en élasticité et plasticité[END_REF] and [START_REF] Ladevèze | Sur une théorie de l'endommagement anisotrope[END_REF][START_REF] Ladevèze | Modeling and simulation of the mechanical behavior of cmcs[END_REF] phenomenological second-order damage models and micro-mechanics based framework.

We shall assume that the homogenization result (4.4) holds, where the constants 𝑝 𝑖 are given (refer to the works of [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF] and [START_REF] Dormieux | Micromechanics of fracture and damage[END_REF] for comparison of different homogenization schemes). Gibbs free enthalpy density writes

𝜌𝜓 ⋆ = 1 18𝐾 (tr 𝜎 𝜎 𝜎) 2 + 1 4𝐺 𝜎 𝜎 𝜎 ′ : 𝜎 𝜎 𝜎 ′ + 1 2𝐸 𝜎 𝜎 𝜎 : D : 𝜎 𝜎 𝜎,
where 𝜌 is the density and 𝐸, 𝐺

= 𝐸 2(1+𝜈) , 𝐾 = 𝐸 3(1-2𝜈)
are, respectively, the Young, shear and bulk moduli. The elasticity law, coupled with the anisotropic damage, writes then as

𝜖 𝜖 𝜖 𝑒 = 𝜌 𝜕𝜓 ⋆ 𝜕𝜎 𝜎 𝜎 = 1 2𝐺 𝜎 𝜎 𝜎 ′ + 1 9𝐾 (tr 𝜎 𝜎 𝜎) 1 + 1 𝐸 D : 𝜎 𝜎 𝜎,
or, in a more compact form, as

𝜖 𝜖 𝜖 𝑒 = S : 𝜎 𝜎 𝜎,
where 𝜖 𝜖 𝜖 𝑒 is the elastic strain tensor and S, the effective fourth-order compliance tensor

S = 1 9𝐾 1 ⊗ 1 + 1 2𝐺 J + 1 𝐸 D, J = I - 1 3 1 ⊗ 1. (6.1)
Having many in-plane and possibly one out-of-plane measurements, allows us to use remark 4.1 and (5.2) instead of (4.4), within the considered homogenization scheme. We can thus recast the fourth-order damage tensor D by substituting the scalar Ω 0 by 𝜔 𝑚 , the secondorder tensor Ω Ω Ω 2 by the deviatoric tensor 𝜔 𝜔 𝜔 ′ and the fourthorder tensor Ω Ω Ω 4 by the harmonic (i.e totally symmetric and traceless) tensor h * h. More precisely, we get

D = 𝑝 0 𝜔 𝑚 1 ⊗ 1 + 𝑝 1 𝜔 𝑚 J + 𝑝 2 (1 ⊗ 𝜔 𝜔 𝜔 ′ + 𝜔 𝜔 𝜔 ′ ⊗ 1) + 𝑝 3 (1 ⊗ 𝜔 𝜔 𝜔 ′ + 𝜔 𝜔 𝜔 ′ ⊗ 1) + 𝑝 4 h * h. (6.2)
Using (3.1), the term h * h expands as

h * h = 1 3 h ⊗ h + 2 3 h ⊗ h - 2 21 (︀ 1 ⊗ h 2 + h 2 ⊗ 1 + 2(1 ⊗ h 2 + h 2 ⊗ 1) )︀ + 2 105 (tr h 2 ) (1 ⊗ 1 + 2 1 ⊗ 1),
so that the enthalpic contribution, due to the microcracks, writes

𝜎 𝜎 𝜎 : D : 𝜎 𝜎 𝜎 = 𝑝 0 𝜔 𝑚 (tr 𝜎 𝜎 𝜎) 2 + 𝑝 1 𝜔 𝑚 tr(𝜎 𝜎 𝜎 ′2 ) + 2𝑝 2 tr(𝜔 𝜔 𝜔 ′ 𝜎 𝜎 𝜎) tr 𝜎 𝜎 𝜎 + 𝑝 3 tr(𝜔 𝜔 𝜔 ′ 𝜎 𝜎 𝜎 2 ) + 𝑝 4 [︁ 1 3 (tr(h𝜎 𝜎 𝜎 ′ )) 2 + 2 3 tr(𝜎 𝜎 𝜎 ′ h𝜎 𝜎 𝜎 ′ h) - 8 21 tr(h 2 𝜎 𝜎 𝜎 ′2 ) + 4 105 tr h 2 tr 𝜎 𝜎 𝜎 ′2 ]︁ .
Again, as in Remark 4.2, (6.2) is nothing else but the harmonic decomposition of the fourth-order damage tensor D, but with the following particularities. Let Following [START_REF] Cormery | A stress-based macroscopic approach for microcracks unilateral effect[END_REF], who consider the scalar constants 𝑝 𝑖 as material parameters, conditions 1 to 3 above, are the conditions for a damage modelfor instance built in a phenomenological manner-which should be considered as micro-mechanics based.

A second-order anisotropic damage model in micro-mechanics based framework

Following [START_REF] Cordebois | Endommagement anisotrope en élasticité et plasticité[END_REF] and [START_REF] Ladevèze | Sur une théorie de l'endommagement anisotrope[END_REF], a symmetric second-order, unbounded damage variable Φ Φ Φ is introduced in the Gibbs free enthalpy (with initial value Φ Φ Φ = 1 for a virgin material, and with damage growth d d𝑡 Φ Φ Φ positive definite). The usual second-order damage tensor writes as:

d = 1 -Φ Φ Φ -2 (with initial value d = 0 0 0).
A general but phenomenological coupling of elasticity with second-order anisotropic damage is described in [START_REF] Desmorat | Positivity of intrinsic dissipation of a class of nonstandard anisotropic damage models[END_REF]. It reads

𝜌𝜓 ⋆ = 𝑔(Φ Φ Φ) 18𝐾 (tr 𝜎 𝜎 𝜎) 2 + 1 4𝐺 tr(Φ Φ Φ 𝜎 𝜎 𝜎 ′ Φ Φ Φ 𝜎 𝜎 𝜎 ′ ), (7.1) 
where 𝜎 𝜎 𝜎 ′ = 𝜎 𝜎 𝜎-1 3 (tr 𝜎 𝜎 𝜎)1 is the stress deviator. The function 𝑔 was chosen as

𝑔(Φ Φ Φ) := 1 1 -tr d = 1 tr Φ Φ Φ -2 -2 (7.2)
for metals in [START_REF] Lemaitre | Anisotropic damage law of evolution[END_REF], and as

𝑔(Φ Φ Φ) := 1 3 tr Φ Φ Φ 2
for concrete in [START_REF] Desmorat | Anisotropic damage modeling of concrete materials[END_REF]. In both models, the convexity with respect to 𝜎 𝜎 𝜎 and the positivity of the intrinsic dissipation are satisfied (see also [START_REF] Chambart | Intrinsic dissipation of a modular anisotropic damage model: Application to concrete under impact[END_REF]).

The elasticity law writes

𝜖 𝜖 𝜖 𝑒 = 𝜌 𝜕𝜓 ⋆ 𝜕𝜎 𝜎 𝜎 = 𝑔(Φ Φ Φ) 9𝐾 (tr 𝜎 𝜎 𝜎)1 + 1 2𝐺 (Φ Φ Φ 𝜎 𝜎 𝜎 ′ Φ Φ Φ) ′ (7.3) with effective compliance tensor S = 1 9𝐾 1 ⊗ 1 + 1 2𝐺 J + 1 𝐸 D, (7.4) 
where 1 𝐸 D has for harmonic decomposition (proof given in Appendix B)

1 𝐸 D = 𝑔(Φ Φ Φ) -1 9𝐾 1 ⊗ 1 + 2𝛽 -1 2𝐺 J - 2 3𝐺 (1 ⊗ b ′ + b ′ ⊗ 1) + 1 𝐺 (1 ⊗ b ′ + b ′ ⊗ 1) + 1 2𝐺 Φ Φ Φ * Φ Φ Φ (7.5) with 𝛽 = 1 60 [︀ tr(Φ Φ Φ 2 ) + 3(tr Φ Φ Φ) 2 ]︀ , b ′ = 1 14 [︀ 3(tr Φ Φ Φ)Φ Φ Φ ′ -(Φ Φ Φ 2 ) ′ ]︀ .
The harmonic part of the fourth order damage tensor is the harmonic square,

(D) 0 = (1 + 𝜈) Φ Φ Φ * Φ Φ Φ, (7.6)
where 𝜈 is Poisson ratio of undamaged material. It satisfies the first condition on the effective compliance S to be of micro-mechanics based form (6.2), with

𝑝 4 = 1 + 𝜈, h = Φ Φ Φ ′ .
Moreover, we have

(tr 12 D) ′ = 0 0 0, (tr 13 D) ′ = 7(1 + 𝜈) 3 b ′ .
Both deviatoric parts (tr 12 D) ′ and (tr 13 D) ′ are obviously proportional, so that the phenomenological anisotropic damage model satisfies the second condition on the effective compliance S to be of micro-mechanics based form (6.2), with

𝑝 2 𝜔 𝜔 𝜔 ′ = 2(1 + 𝜈) 21 (︀ (Φ Φ Φ 2 ) ′ -3(tr Φ Φ Φ) Φ Φ Φ ′ )︀ , 𝑝 3 𝜔 𝜔 𝜔 ′ = - 3 2 𝑝 2 𝜔 𝜔 𝜔 ′ .
By identification of the isotropic part of the harmonic decomposition of D, we get

𝑝 0 𝜔 𝑚 = 1 -2𝜈 3 (𝑔(Φ Φ Φ) -1), 𝑝 1 𝜔 𝑚 =(1 + 𝜈) (︂ 1 10 (tr Φ Φ Φ) 2 + 1 30 tr Φ Φ Φ 2 -1 )︂ .
Recall that the material constants 𝑝 0 , 𝑝 1 are independent of Φ Φ Φ, they are considered as material parameters, so that the proportionality requirement 𝑝 0 𝜔 𝑚 ∝ 𝑝 1 𝜔 𝑚 can be satisfied if-following [START_REF] Burr | Micro-mechanics and continuum damage mechanics[END_REF] and [START_REF] Lemaitre | Anisotropic damage law of evolution[END_REF]-we define the hydrostatic sensitivity parameter 𝜂 as the material constant

𝜂 = 3𝑝 0 (1 + 𝜈) 𝑝 1 (1 -2𝜈) ,
and set

𝑔(Φ Φ Φ) = (1 -𝜂) + 𝜂 (︂ 1 10 (tr Φ Φ Φ) 2 + 1 30 tr Φ Φ Φ 2 )︂ . (7.7)
Condition 3 for the model (7.1) to be considered as micromechanics based is then fulfilled. For 𝜂 ≥ 0, the Gibbs free enthalpy density (7.1) is furthermore convex with respect to both the stress tensor 𝜎 𝜎 𝜎 and the damage tensor Φ Φ Φ. Note that a full anisotropic damage model-including damage evolution-for quasi brittle materials can be naturally derived following [START_REF] Desmorat | Anisotropic damage modeling of concrete materials[END_REF]. The hydrostatic sensitivity just obtained in Eq. (7.7) is quantified in next Section.

Hydrostatic sensitivity

Let us consider quasi-brittle materials such as concrete and the micro-mechanically based damage model just derived (Section 7, Gibbs free enthalpy density (7.1), elasticity law (7.3) and function 𝑔(Φ Φ Φ), given by Eq. (7.7)). The second order damage variable, which vanishes for virgin material, is

d = 1 -Φ Φ Φ -2 .
Even when the damage state is anisotropic, the constitutive equations considered in Section 7 is such that the dilatation tensor of the effective compliance tensor is null. This allows for the definition of an effective bulk modulus K for damaged materials (i.e. a modulus function of damage tensor and of material parameters of the undamaged material) such as tr 𝜎 𝜎 𝜎 = 3 K tr 𝜖 𝜖 𝜖 𝑒 Calculating the trace of elasticity law (7.3), we get

K = 𝐾 𝑔(Φ Φ Φ) = 𝐾 (1 -𝜂) + 𝜂 (︀ 1 10 (tr Φ Φ Φ) 2 + 1 30 tr Φ Φ Φ 2 )︀ , (8.1)
where 𝐾 = 𝐸 3(1-2𝜈) is the bulk modulus for the virgin (undamaged) material. Recall that 𝑔(1) = 1.

The measurement and therefore the identification of the material parameter 𝜂 are not easy tasks for quasi-brittle materials. This is why Discrete Elements [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF][START_REF] Herrmann | Statistical models for the fracture of disordered media[END_REF][START_REF] Schlangen | Fracture simulations of con-crete using lattice models: computational aspects[END_REF][START_REF] Van Mier | Fracture mechanisms in particle composites: statistical aspects in lattice type analysis[END_REF][START_REF] Olivier-Leblond | Modelling of three-dimensional crack patterns in deep reinforced concrete structures[END_REF] are often used as numerical experimentation for the tensile states of stresses of quasi-brittle materials. In such numerical tests the material is described as a particles assembly representative of the material heterogeneity, the particles being here linked by elastic-brittle beams. The size 16 × 16 × 16 mm 3 of Representative Volume Element of a micro-concrete is considered (Fig. 1); it is representative of a micro-concrete of Young's modulus 𝐸 = 30000 MPa and Poisson's ration 𝜈 = 0.2. The number of particles is 3,072 and the number of degrees of freedom 24,576. The crack pattern obtained at the end of the equi-triaxial loading (quasi-rupture) is the one given in Fig. 1, with a number of beams to break before failure of 8,000.

It has been shown from such computations (Fig. 2) that at low damage the dependence K(damage) is close to be the same linear function

K ≈ 𝐾(1 -1.2 𝑑 𝐻 ), 𝑑 𝐻 = 1 3 tr d, (8.2)
of the hydrostatic damage 𝑑 𝐻 whatever the stress triaxiality. For each mark of the Figures the components of the damage tensor d = 1 -Φ Φ Φ -2 have been measured by means of repeated numerical elastic loading-unloading sequences performed in uniaxial tension on the 16 × 16 × 16 mm 3 cube (even for the triaxial loading), using then the coupling of elasticity with anisotropic damage given by elasticity law (7.3) with one non zero principal stress 𝜎 𝑖 = 𝜎, the two others 𝜎 𝑗̸ =𝑖 = 0. Note that considering Eq. ( 8.2) at high damage level means that in uniaxial tension the bulk modulus K fully vanishes at tr d = 3/1.2 = 2.5, i.e. at maximum principal damage max 𝑑 𝑖 larger than 1 ( K cannot vanish then 
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Conclusion

The popularity and the use of a constitutive model depend on its robustness, its simplicity, and its easiness to implement in a numerical code. Concerning simplicity, the number, the physical meaning and the identification easiness of material parameters is an important feature to be considered. Both the discrete and anisotropic damage models have been developed with respect to these considerations with quite a reduced number of parameters introduced. as principal damages 𝑑 𝑖 -therefore here 𝑑 1 -are always bounded by 1, see also Fig. ( 5) for 𝜂 = 1.2). This corresponds to a quite high (spurious) elastic stiffness K which is kept at rupture (see Fig. 3). Enforcing then gradually K → 0 but allowing for damage tensor d to evolve up to second order unit tensor 1 in an adequate procedure for the numerical control of rupture is a solution which leads to numerical difficulties in Finite Element computations [START_REF] Badel | Application of some anisotropic damage model to the prediction of the failure of some complex industrial concrete structure[END_REF][START_REF] Ragueneau | Anisotropic damage modelling of biaxial behaviour and ruprure of concrete structures[END_REF][START_REF] Leroux | Modèle multiaxial dendommagement anisotrope : gestion numérique de la rupture et application la ruine de structures en béton armé sous impacts[END_REF].

The relation (8.1) relates the effective bulk modulus to damage tensor Φ Φ Φ and hydrostatic sensitivity parmeter 𝜂 (obtained from proposed micro-mechanically based second order damage framework by function 𝑔 defined in Eq. (7.7)). This relation implies that the effective (damaged) bulk modulus K vanishes exactly when the maximum eigenvalue of damage tensor d = 1 -Φ Φ Φ -2 is equal to 1, whatever the stress multiaxiality and without the need of a procedure bounding the damage eigenvalues to 1.

To illustrate this property, we describe below the three particular cases of uniaxial, equi-biaxial and equi-triaxial tension loadings. It is shown that, at low damage in those three loading cases, one recovers the expression K = 𝐾(1 -𝜂𝑑 𝐻 ) due to [START_REF] Lemaitre | Anisotropic damage law of evolution[END_REF].

-In uniaxial tension the damage tensor of quasi-brittle materials is classically d [START_REF] Lubarda | Damage tensors and the crack density distribution[END_REF][START_REF] Krajcinovic | Damage Mechanics[END_REF] and Φ 1 = (1 -𝑑 1 ) -1/2 ≥ 1, Φ 2 = Φ 3 = 1 so that the effective bulk modulus (8.1) has for expression

= diag[𝑑 1 , 0, 0] (Lubarda
K = 5𝐾(1 -3𝑑 𝐻 ) 5 -(15 -8𝜂)𝑑 𝐻 -2𝜂 (︀ 1 - √ 1 -3𝑑 𝐻 )︀ . (8.3)
In this uniaxial loading, the maximum principal damage is 𝑑 1 = 3𝑑 𝐻 .

-The equi-triaxial tension case corresponds to spherical damage tensors d = 𝑑 𝐻 1, Φ Φ Φ = Φ 𝐻 1 = (1-𝑑 𝐻 ) -1/2 1, with thus tr Φ Φ Φ 2 = 1 3 (tr Φ Φ Φ) 2 = 3/(1 -𝑑 𝐻 ), and so Eq. (8.1) rewrites as

K = 𝐾(1 -𝑑 𝐻 ) 1 -(1 -𝜂)𝑑 𝐻 . (8.4)
In this equi-triaxial loading, the maximum principal damages are 𝑑 𝑖 = 𝑑 𝐻 . Note that, then, the value 𝜂 = 1 leads to the linear law K = 𝐾(1 -𝑑 𝐻 ) over the whole range of damage.

-We can also consider equi-biaxial tension for which 𝑑 1 = 𝑑 2 ≥ 0, 𝑑 3 = 0, Φ 1 = Φ 2 = (1 -𝑑 1 ) -1/2 ≥ 0, Φ 3 = 1. The effective bulk modulus (8. η cannot be noticed (it does not affect compression).

The sensitivity to η is shown in Fig. 15, with as different values considered η = 0, η = 1.25, η = 3. As expected, the response in uniaxial tension is not much influenced by this parameter. On the other hand, tritension response strongly depends of η. Note that the value η = 0 corresponds to unphysical response with no damage developed in tritension.

Conclusion

The popularity and the use of a constitutive model depend on its robustness, its simplicity, and its easiness to implement in a numerical code. Concerning simplicity, the number, the physical meaning and the identification easiness of material parameters is an important feature to be considered. Both the discrete and anisotropic damage models have been developed with respect to these considerations with quite a reduced number of parameters introduced. Figure 4 shows that, for the whole range of hydrostatic damage, the loss of bulk modulus (8.1) with 𝜂 = 1.2 behave in a similar manner as the one of Fig. 2 obtained from Discrete Element computations.

As expected, the effective (damaged) bulk modulus K vanishes exactly when maximum principal damage(s) are equal to 1 (solid lines in Fig. 5) in all these loading cases. The first order expansions in 𝑑 𝐻 (at small damage) of the three Equations (8.3), (8.4) and (8.5) gives for all threeuniaxial, equi-biaxial and equi-triaxial-loading cases K ≈ 𝐾(1 -𝜂𝑑 𝐻 ) (8.6) (dashed lines in Fig. 5) i.e. the exact expression introduced by [START_REF] Lemaitre | Anisotropic damage law of evolution[END_REF] in a fully phenomenological manner (recovering Eq. ( 8.2) when 𝜂 = 1.2 is set).

Conclusion

Some mathematical tools such as the harmonic product and the harmonic factorization into lower order tensors have been presented. Together with the notion of mechanically accessible directions for measurements, this has allowed us to derive, at harmonic order 4, both a crack density expansion Ω(𝑛 𝑛 𝑛) and a micro-mechanics based damage framework that makes use of second-order tensorial variables only, instead of fourth-order in standard micromechanics based approaches. The hydrostatic sensitivity obtained from such a second-order damage framework is shown to have the sought property of leading to the vanishing of the effective (damaged) bulk modulus at maximum principal damage max 𝑑 𝑖 exactly equal to 1.

  di(D) := (tr 12 D) be the dilatation tensor of D and vo(D) := (tr 13 D) be the Voigt tensor of D. Then: -the harmonic part H = h * h of D is factorized as an harmonic square; -the following proportionality relations hold between the deviatoric parts of di(D) and vo(D): di ′ (D) ∝ vo ′ (D) ∝ 𝜔 𝜔 𝜔 ′ , (6.3) which is equivalent for the effective compliance tensor S to satisfy the same conditions: di ′ ( S) ∝ vo ′ ( S) ∝ 𝜔 𝜔 𝜔 ′ ; (6.4) -the following proportionality relations hold between the traces of di(D) and vo(D): tr di(D) ∝ tr vo(D) ∝ 𝜔 𝑚 .(6.5) 
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 11112 Figure 1: Discrete Element sample considered as Representative Volume Element (16 × 16 × 16 mm 3 cube, from Delaplace and Desmorat (2008)) and crack pattern at the end of equi-triaxial loading (high damage level).
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 13 Fig. 13 Crack patterns for the two samples (left 8 × 8 × 8, right 16 × 16 × 16)
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 21113 Figure 2: Effective bulk modulus K from Discrete Element computations as a function of hydrostatic damage 𝑑 𝐻 (from Delaplace and Desmorat (2008)).
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 1112 Fig. 11 Evolution of K/K = 1/h(D) versus hydrostatic damage (left, in fact versus √ 3DH for and versus the norm ∥D∥ (right) for the 16-cube sample

Fig. 13
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 45 Figure 4: Effective bulk modulus K from (8.1) as a function of hydrostatic damage 𝑑 𝐻 with d = -Φ Φ Φ -2 (for value 𝜂 = 1.2 representative of a micro-concrete).

Appendix A. Spherical/Deviatoric harmonic decomposition Different practical expressions of the harmonic decomposition of a fourth order tensor of elasticity type exist [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF][START_REF] Onat | Effective properties of elastic materials that contain penny shaped voids[END_REF][START_REF] Auffray | Géométrie des espaces de tenseurs, application à l'élasticité anisotrope classique et généralisée[END_REF]. We use here the spherical/deviatoric harmonic decomposition introduced by [START_REF] Auffray | Géométrie des espaces de tenseurs, application à l'élasticité anisotrope classique et généralisée[END_REF] of a fourth order tensor T of the elasticity type

where, di and vo being the dilatation and voigt tensors of T and di ′ and vo ′ their deviatoric parts, di = tr 12 T, vo = tr 13 T,

Introducing two second symmetric second order tensors y and x such that y = T : x, the following equalities are obtained :

Appendix B. Harmonic decomposition of D

From equation (7.1), the elasticity law is obtained as

with fourth order tensor

Noting that

A straightforward calculation leads to the property (tr 12 D) ′ = 0 0 0, (tr 13 D)