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Abstract

Dependence is an important issue in credit risk portfolio modeling and
pricing. We discuss a straightforward common factor model of credit risk
dependence, which is motivated by intensity models such as Duffie and
Singleton (1998), among others. In the empirical analysis, we study de-
pendence under the risk-neutral measure using credit default swap (CDS)
spread data of liquid large-cap U.S. obligors. The proxy for the common
factor is the DJ CDX.NA.IG index. We document that (i) the CDX fac-
tor is significant but has low explanatory power, (ii) factor sensitivities
show distinct time-varying nature and that (iii) systematic credit risk shows
asymmetric extreme factor dependence, where extreme dependence is pro-
nounced for upward CDX movements. This finding from an EVT-copula
approach is what is predicted by various intensity models of joint defaults.
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1. Introduction

Dependence, including correlation, is an important issue in credit risk portfolio
modelling and pricing. Credit portfolio derivatives such as collateralized debt obli-
gations and index tranches can not be priced without a precise characterization of
dependence, which allows for a derivation of portfolio loss distributions. Among
the dependence approaches to credit risk that are documented in the literature,!
copula and factor approaches are two dominant concepts. First, the statistical
copula approach as suggested for credit risk dependence modeling for example by
Li (1999) allows for general representations of dependence, offering a highly flexi-
ble method, while the choice of a suitable copula function often seems crucial, see
also e.g. Bluhm and Overbeck (2007). An empirical study on copula functions in
modeling default dependence is by Das and Geng (2004). Second, the statistical
factor approach as applied in credit risk modeling for example by Vasicek (1987),
is a simplified dependence approach that allows for parsimonious and robust im-
plementations, while it may suffer from over-simplification. While several authors
argue that factor approaches may not be able to match observed dependence, Yu
(2003) shows that factor approaches that take common risk factors of firm-specific
credit risks into account may not be subject to this shortcoming.

In this contribution we address systematic credit risk, which is probably the
most striking manifestation of credit risk dependence. Systematic credit risk
was previously studied in a different setting e.g. by Pedrosa and Roll (1998).
We discuss a straightforward common factor model of credit risk dependence.
The model follows from the class of intensity models of credit risk, which model
dependence in the driving intensity process. This is motivated in part by factor
approaches as in Duffie and Singleton (1998), Yu (2003) and van der Voort (2004),
for example.

A number of previous studies dealt with the phenomenon of dependent default
events in credit portfolios. To this aim, structural credit risk models typically
model dependence in latent underlying asset values (often proxied by equity val-
ues) of the obligors. While Lucas (1995) uses historical data whose availability
is limited, Zhou (2001) analyses dependence in a bivariate structural Merton-

1For overviews on default dependence modeling see for example Duffie and Singleton (2003),
Chapter 10, and Schlégl (2002). Using market variables, we may distinguish (i) rating and
default correlations, (ii) spread correlations, (iii) asset or equity correlations and (iv) implied
correlations. Since default events are rare events by definition, historical data are sparse. There-
fore, latent credit risk dependence modeling approaches dominate.



model. De Servigny and Renault (2002) study both equity-based and historical
default correlations. They conclude that there does not seem to be an obvious
link between the two. Das, Freed, Geng and Kapadia (2006) point out that in
the Merton-model, correlation and time-variation in single firm equity values and
equity volatilities will cause variation in default probabilities. Accordingly, they
find that joint default probabilities are related to varying debt ratios, but are es-
pecially driven by varying correlated volatilities. Das, Duffie, Kapadia and Saita
(2007) provide evidence that the majority of joint default risk is due to covariation
in firm-specific default probabilities. As their results suggest, observable macroe-
conomic variables (including e.g. a business cycle variable) and particularly latent
common variables play a major role in explaining correlated defaults.

We empirically study credit risk dependence under the risk-neutral measure,
i.e. we consider derivatives prices and study their dependence implications. As
pointed out in the preface to this volume, the market for credit default swap
(CDS) contracts has grown enormously during the last couple of years. Hence,
data for a study of credit risk dependence have recently become available through
the derivatives markets. A study of credit risk dependence under the risk-neutral
measure appears relevant as it reveals how credit risk is priced and traded in the
market and it also forms the building block for the risk-neutral distribution of
credit portfolios which serve as an underlying for other derivatives.

We study the dependence between index and component spread changes in our
common factor model using liquid quotes from the U.S. credit default swap market
during the years 2004 to 2006. In a first step we argue that CDS spread changes
show distinct time-series dynamics, which should be taken into account in advance
of studying dependence. As such we then consider factor dependence of unpre-
dictable spread changes. We find that the CDX factor is significant for the chosen
sample of large-cap U.S. obligors but has low explanatory power. Additionally, we
shed light on a heavily time-varying nature of factor sensitivities. Various inten-
sity models of joint defaults (see Section 2.2.4) predict positive jumps—i.e. large
positive changes—in credit spreads conditional on the default of one or several
obligors. In our setting, this translates into upper tail extreme factor dependence,
a feature which is observable for most of our obligors.

The remainder of this chapter is organized as follows. Section 2 presents our
methodology, which includes the derivation of the factor model, its implications
and the methods used for inference. Section 3 outlines our empirical findings.
The contribution ends with a brief conclusion in Section 4.



2. Methodology

Starting with the intensity based (or reduced form) approach to credit risk mod-
eling, this section outlines a straightforward empirical model specification of com-
mon factor systematic credit risk under a risk-neutral measure. For a compre-
hensive summary of the model background and further literature see for example
Duffie and Singleton (2003).

2.1. Factor Intensity Approach

In order to model default probabilities under risk-neutrality, where @Q denotes
the equivalent martingale measure, intensity models introduce a latent intensity
process (A;¢)o<t<r of the ith obligor. Under standard assumptions, it follows that
the conditional probability of default between time ¢ and 7' is given by

T
p%T =1-E,exp (—/ )\mds) ) (1)
¢

A typical simplifying assumption is that the risk-neutral expected loss given de-
fault rate, “loss given default” in short, is constant and denoted by [;. Then, the
credit spread is simply given as:

Sig = 1i Aig- (2)

In order to introduce credit risk dependence of the obligors, we apply a common
factor specification. A one-factor intensity model of credit risk dependence, in
parts related e.g. to Duffie and Singleton (1998), Yu (2003) and van der Voort
(2004), is given by

Aip = Arp + Ay, (3)
where Ap; and Aj, are two independent intensity processes. Assigning any time-
variation in the spread (2) to the time-varying intensity \;; only,? a simple model
of the credit spread dynamics follows. Fixing S;o and (App, Aig), we can define
the spread process (S;)o<t<r via the equation

dSi,t == lz dAF’t + lZ d)\:-’t. (4)

2This assumption can be made without loss of generality since the intensity process is latent.



Fixing also Sp, we obtain for the factor spread, dSp; = lp d\p;, and therefore
dSit =1;/lp dSps +1; dX; ;- (5)

We know from a broad body of empirical literature that observable spread
changes are driven by various additional factors which are not related to default
risk; see e.g. Collin-Dufresne, Goldstein and Martin (2001). However, equation
(5) forms a fundamental model, which (i) shows how spread changes are driven
by changes in intensity, (ii) models default dependence via a common factor in-
tensity A, and finally (iii) can easily be extended by taking other credit spread
determinants into account.

2.2. Factor Model Analysis

In a discrete-time empirical setting, (5) translates into a regression model of the
form
ASi,t = CLZ—f—bZ ASF,t—f-Ei’t, t= ]_,...,T, (6)

where the usual assumptions apply and the innovations are independent with
identical distribution, €;; ~ (0;0?).

In this setting, we see from (5) and (6) that systematic credit risk as measured
via b; relates to individual and factor loss given default [; and Ip, with b; = [;/lp.
Hence, systematic credit risk is related to the ith obligor’s relative expected loss
given default. There are various econometric approaches whose application can
be motivated by the simple model in equation (6). Of course, a straightforward
application is an ordinary least squares estimation of the model. In the following,
we discuss how we use the model as a starting point for our analysis of cross-
sectional credit risk dependence.

Following (6), our focus is on the dependence between changes in the factor
and the single obligor spreads. However, univariate analysis is a necessary and
important step in going beyond a standard regression application and also neces-
sary for a cross-sectional dependence study. Our following analysis considers four
areas:

e univariate time series dependence in spread changes AS;,
e univariate extreme behavior of spread changes AS;,

e time-varying factor sensitivity of spread changes AS,,,
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e extreme factor dependence of spread changes AS;;.

2.2.1. Time Series Dependence

As univariate spread changes AS; are driven by various factors including liquidity
effects, 3 it appears promising to account for liquidity effects at least within a
linear time series model. Additionally, there is evidence that non-linear effects
of volatility clustering are observable in spread changes as well; see e.g. Wagner,
Hogan and Batten (2005). In order to allow for lagged responses to previous
innovations, we may assume a model of the ARMA(1,1)-form

ASt =M + QOASt,1 -+ ¢Ut71 -+ Ut7 t= 1, ceey T. (7)

Furthermore, the unpredictable spread changes, U;, may have a time-varying con-
ditional variance as given by a GARCH(1,1)-specification

U = oy,

Uf = Wwo —|—w1Ut2_1 —I—w20t2_1, wo >0, wy,wy >0, (8)
which is based on given start random variables (02, Zy); see e.g. Bollerslev et al.
(1992). The Z;’s are standardized iid random variables with common distribution
function F, where Z; ~ (0;1). They represent standardized unpredictable spread
changes.

2.2.2. Extreme Behavior

In order to characterize the extreme behavior of the univariate spread changes
AS;, we may assume that the distribution function F of the innovations Z; in
(8) is fat-tailed. Extreme value theory (EVT, see e.g. Embrechts, Kliippelberg
and Mikosch (1997) or Coles (2001)) shows that this is equivalent to assuming
that F; has Pareto-like upper and lower tail

1—Fy(z) ~ cpz Y, ¢y >0, & >0,
Fz(—z) ~ CLZ_l/gL, cr, > O, SL > 0, as 2z — 0oQ. (9)

The parameters &; and &, denote the tail index of the upper tail and the lower
tail, respectively.

3Note that liquidity effects typically relate to liquidity differentials between the treasury
bond, the corporate bond and the credit derivatives market.
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We specify Pareto tail approximations for excesses of a sufficiently high positive
threshold for example via the Generalized Pareto Distribution (GPD). Choos-
ing two thresholds in our case, namely vy > 0 and vy, > 0, we specify GPD-
distributions for a random number of positive excesses of the upper threshold,
Yu = Z — vy > 0, and the lower threshold, Y, = —Z — vy, > 0, respectively:

_ -1/¢u

1— Fy(z—vy) = (1 +ép 2 ﬁUUU> , Bu >0, (10)
_ —1/€

Fz(—Z — UL) = (1 — SLZ ﬁLUL> s ﬁL > 0. (11)

A characterization of the extreme behavior of spread changes allows for the
modeling of so-called “gapping risk” (or jump risk) in credit spreads. This denotes
the risk of large sudden spread changes, for example a sudden widening in spreads
of more than 20 basis points for an index or more than 100 basis points for a single
obligor; see e.g. Duffie and Singleton (2003, p. 138), and Bluhm and Overbeck
(2007, p. 301). Previous studies that apply EVT in credit risk modeling include
Phoa (1999), Campbell and Huisman (2002) and Lucas, Klaassen, Spreij and
Straetmans (2001).

2.2.3. Time-Varying Factor Sensitivity

Our model approach in equation (6) assumes for simplicity that systematic credit
risk, b; = l;/lr, is constant. One extension to the model which may prove suitable
in modeling credit risk, is to allow for a time-varying factor sensitivity, b;, of the
unpredictable spread changes Uy ;.

Allowing again for time-varying marginal spread change volatilities, o;; and
oFy, as in (8), multivariate autoregressive conditional heteroskedasticity offers a
convenient model approach. We choose the diagonal BEKK-specification by Engle
and Kroner (1995). In a bivariate setting, we can model individual and factor
spread changes simultaneously, where a generalization of the standard relation for
the correlation coefficient holds, yielding:

Oit

bit = pi,Ft (12)

OFt

Hence, the time-varying conditional factor sensitivity b;; is defined by the time-
varying conditional correlation as well as the conditional spread change volatilities.
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Supporting the above specification, the empirical credit risk literature finds ev-
idence of time-varying credit risk correlations. See for example the studies by
Zhou (2001), de Servigny and Renault (2002) and Das, Freed, Geng and Kapadia
(2006).

2.2.4. Extreme Factor Dependence

In order to characterize the joint extreme behavior of the spread changes AS,;
and AS; p, we may assume that the extreme behavior of the joint distribution
function F' of the innovations Z,; and Z, p can be characterized via the Pickands
EVT-copula approach; see e.g. Coles (2001).4

The Pickands representation theorem shows that a potential limiting distribu-
tion H, satisfying the required max-stability condition, has to be of the form

11 :
H(Zi,ZF):eXp{_(_+_>A< z )}, 2 > vy, 2r > vyrp. (13)

Z; ZF Zi+ZF

Here, H has a unique EVT-copula which is defined via the dependence function
A(w) : [0,1] + [0, 1], where w = z;/(2z;+2F). A(w) characterizes bivariate extreme
dependence. If A(w) = 1, the tails of the joint distribution are independent,
whereas A(w) = max(w, 1 — w) indicates perfect dependence. We choose three
different parametric models for A(w). A standard model is the symmetric logistic
model, which relates to the Gumbel copula, where

Aq(w) = {(1 — w)V> + wt/}e, (14)

with 0 < a < 1. Here, independence is reached when o = 1 and perfect depen-
dence when a@ — 0. A generalization of the Gumbel copula allows for asymmetric
dependence with

Agor0,(w) = (1= 0)(1 —w) + (1 — O)w + {(1 — w)*6;* + w6/ *}*, (15)

where 0 < o < 1 and 6; > 0, 6, < 1. Under this asymmetric model, symmetry
is obtained under 6; = 6, = 1 and independence is reached when either a = 1,
0, = 0 or O3 = 0. The asymmetric negative logistic model defines the Galambos-
Joe copula and is given by

Aagrop(w) =1 = {[(1—w)/01] 7 + [w/0y] "} 712, (16)

4For applications of the Pickands EVT-copula approach in finance see e.g. Longin and Solnik
(2001) and Marsh and Wagner (2000).




with a > 0 and 6; > 0, 3 < 1. Independence is reached when either &« — 0 or
01 i O, (92 — 0.

For each of the above candidate dependence functions, it is possible to derive
the limiting conditional exceedance probabilities

xuv = lim P(Zl > UU|ZF > ’UU),
vy — 0

XL = lim P)(—Zz >’UL|—ZF>UU).
v, —00

These limiting conditional probabilities, xy and xr, , indicate the presence of upper
and lower factor tail dependence, respectively. For example, we may interpret xy
as the probability of a significant jump in the spread of the ith obligor given that
the factor spread shows a significant jump, where both jump sizes exceed a very
high threshold.

On the theory side various models, including e.g. Davis and Lo (2001), Jar-
row and Yu (2001), Schénbucher and Schubert (2000) and Duffie, Eckner, Horel
and Saita (2006), predict that the default of one obligor may cause other oblig-
ors’ spreads to jump. Empirical evidence supporting this behavior is by Collin-
Dufresne, Goldstein and Helwege (2003) and Zhang (2004), for example. The risk
of individual spreads widening sharply in a state where spreads generally increase,
results in the presence of spread jump dependence between our common factor
and single spreads. For increasingly large jumps, this would predict upper factor
tail dependence in our setting.

3. Empirical Analysis

3.1. The CDS Data Set

We study the common factor model of Section 2 based on a sample of credit default
swap (CDS) data. The data comes from the Open Bloomberg system. The CDS
obligors that we pick are eleven large-cap U.S. corporations taken from the 6th
revision of the Dow Jones CDX Investment Grade (DJ CDX.NA.IG) index. The
latter index universe consists of 125 U.S. corporations where CDSs are actively
quoted. Hence, our sample assures a high level of market liquidity.

Our sample contains 625 CDS quotes for the index and for each corporation
during the period January 9, 2004 to July 7, 2006. The quoted CDX index
spread serves as a proxy for our common factor (CDX). The eleven individual



corporations in our sample are: Altria Group Inc. (MO), American International
Group Inc. (AIG), Boeing Co. (BA), Caterpillar Inc. (CAT), Dow Chemical
Co. (DOW), Honeywell International Inc. (HON), Hewlett-Packard Co. (HPQ),
International Business Machines Corp. (IBM), Mariott International Inc. (MAR),
Motorola Inc. (MOT) and Walt Disney Co. (DIS). The CDS quotes are averages
between quoted bid and ask prices as actual transaction prices are not publicly
available. All quote series with the exception of BA and HPQ were obtained as
complete series. In the case of BA and HPQ, there were two missing quotes,
respectively. These missing data were linearly interpolated.

Spread changes are modeled as relative spread changes, AS; = InCDS; —
InCDS;_4, due to resulting unbounded support and other statistical properties
(see also e.g. anote in Wagner, Hogan and Batten (2005)). A preliminary analysis
of the spread change series gives summary statistics results as presented in Table 1.
Mean values indicate that spreads were decreasing on average in the sample period.
Spread change standard deviations are in a range between 0.021 for MAR and
0.034 for AIG, with 0.023 for the CDX index, indicating a remarkable annualized
index volatility of 36.4 percent. Generally speaking, distributions tend to be
positively skewed with excess kurtosis and the spread change observations show
negative autocorrelation.

(Table 1 about here)

3.2. Results

The findings as summarized in Table 1 indicate that standard approaches to CDS
spread risk and factor dependence modeling are prone to failure and more detailed
time-series, tail and tail dependence analysis should apply. The presentation of
our estimation results refers to the methods of Section 2.2.

In the first step we estimate the time-series model of Section 2.2.1 for our eleven
obligors and the CDX via the standard maximum-likelihood (ML) method. It can
be noted that all GARCH parameter estimates (wy,ws) turn out to be significant
at the 99 percent level for all series. At least one of the ARMA parameter esti-
mates (¢, ¢) is significant at the 90 percent level for all but CAT, MO and CDX
index spread changes.’ This finding generally underlines the distinct time-series

5We therefore leave the results unreported and deliver them upon request.
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properties of CDS spread changes. We study unpredictable spread changes in the
sequel.

In the second step we postpone extreme behavior and consider the factor model
(6). We estimate least squares constant factor sensitivities and ML-BEKK time-
varying factor sensitivities as in Section 2.2.3. A summary of our results is given
in Table 2.

(Table 2 about here)

As we can see from Table 2, CDS spread changes are significantly related to
CDX index spread changes with all coefficient estimates positive and significant
at the 95 percent level. As our sample consists of high quality investment grade
obligors, the coefficients’ absolute values are relatively low and in a range between
0.082 (for IBM) and 0.205 (for DIS). Still, we have to attest that the results
document weak overall explanatory power of our simple one-factor model: R-
squared statistics are in a range between 0.7 percent (for IBM) and 4.2 percent
(for DIS). This finding illustrates that the model lacks additional covariates that
explain default risk dependence, see also Das, Duffie, Kapadia and Saita (2007).
To some extent the finding may also be explainable by a non-linear impact of
the factor on firm-specific credit risk: while common factor changes do hardly
affect single obligor spreads most of the time, they become a driving force in
some states of the economy. Time-varying factor sensitivities and the analysis of
extreme dependence can shed more light on such a scenario.

Table 2 also reports results on the ML-BEKK time-varying factor sensitivities.
The results show that factor sensitivities remarkably fluctuate for most of our
sample corporations, including DIS, MAR, DOW, BA and MOT. In contrast, MO
and HON show stable sensitivities. Figure 2 plots time-varying factor sensitivities
for two of our sample companies, AIG and DIS. As can be seen in the plot, factor
sensitivities heavily fluctuate around their mean values. As shown by the results
in Table 2, DIS has a higher average factor sensitivity than AIG. For short periods
of time, DIS sensitivity regularly jumps to values as high as 0.35 to 0.70 while
AIG sensitivity always remains below 0.21.

(Figure 1 about here)
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In the third step we consider extreme spread change behavior. We use ARMA-
GARCH standardized residuals and then perform a simultaneous ML-estimation
of the bivariate GPD model as described in Section 2.2.2 and 2.2.4. This method
yields the marginal parameter estimates (see Section 2.2.2) as well as the depen-
dence (or copula) parameter estimates (see Section 2.2.4), cf. Coles (2001). Based
on mean residual life plots (or mean excess function plots, see e.g. Embrechts,
Kliippelberg and Mikosch (1997)), we fix the marginal thresholds vy > 0 and
vy, > 0 for each series.

The GPD marginal parameter estimates yield estimated upper tail indices in
the range of —0.081 (DOW) and 0.334 (MOT). Lower tail indices are between
—0.233 (CAT) and 0.551 (DIS). These point estimate results do not obviously
support fatter upper than lower tails. For the overall market, as represented by
the CDX index we document moderate tail behavior (i.e. neither fat-tails nor
thin-tails) for the lower as well as upper tail. This is also documented by the
mean residual life plots in Figure 2 and Figure 3. Hence, our results support
the hypothesis that the GARCH model captures non-normality in market spread
changes. However, for some individual sample corporations, including AIG, DIS,
HON, HPQ, IBM and MOT, we find upper tail index point estimates above 0.20,
i.e. extreme risk for upward (adverse) spread residuals.

(Figure 2 about here)
(Figure 3 about here)

Our copula parameter estimation results for the upper tail are given in Table 3,
those for the lower tail are given in Table 4. We additionally report the conditional
asymptotic probabilities yy and x, for the Gumbel copula model (14).

(Table 3 about here)
(Table 4 about here)

The results from Table 3 allow for the following conclusions. With the ex-
ception of HON and IBM, where the estimates of the dependence parameter «
approach the limiting value of 1, upper tail extreme dependence in CDS spread
changes is present for the obligors. The corresponding conditional asymptotic

12



probabilities yy can be interpreted as default probabilities given a major credit
spread shock to the market: we see that AIG, DIS and MAR carry the largest
extreme systematic credit risk with yy estimated to be larger than 10 percent.
Evidence of an asymmetric dependence structure within the upper tail is weak.
Table 3 shows that the asymmetric Gumbel copula (15) yields theta-parameter
estimates close or equal to one in most cases and mostly estimates of similar
magnitude. Only the cases of HPQ and MO may indicate some asymmetry. The
Galambos-Joe copula (16) estimation results principally confirm our findings from
the Gumbel copula estimations while the results show remarkably less stability.

The results from Table 4 show that the dependence parameter « closely ap-
proaches the value of 1 for all of the obligors. Hence, lower tail dependence
is negligible and estimated factor dependence in large spread decreases for DIS
and HON is minor. We may generally assume that spread changes are asymp-
totically independent (as e.g. under the bivariate normal model) and that the
corresponding conditional asymptotic probabilities y; are zero. Again, evidence
of an asymmetric dependence structure within the individual tails is not given.

Comparing the Gumbel copula estimation results in Table 3 (upper tail) and
Table 4 (lower tail) suggests that extreme dependence is asymmetric when con-
sidering the upper versus the lower tail behavior. Extreme dependence appears
as an issue with upward shocks to CDX spreads.

4. Conclusion

Systematic credit risk is driven by credit risk dependence. In this contribution we
show that a common factor model of credit risk dependence has several interesting
features. While common factor changes may hardly affect single obligors’ spreads
most of the time, they may become a driving force in some states of the economy.
Time-varying factor sensitivities and the analysis of extreme factor dependence
shows that obligors will have varying exposures to the market not only cross-
sectionally (as e.g. given by their rating class) but also during time. We emphasize
that a time-varying nature of systematic credit risk goes along with asymmetric
extreme dependence. These findings are important for portfolio diversification
and for future research into asset pricing models of credit risk premia.
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Table 1
Summary statistics for daily logarithmic CDS spread changes AS;.

name mean std skew kurt corrgz_i corrgg_o
CDX 0.000 0.023 0.402 10.124 -0.018 -0.011
AIG 0.000 0.034 3.360 42.899 0.217 0.014
BA -0.002 0.030 -0.304 5.817 -0.190 0.111
CAT 0.000 0.028 0.381 6.867 -0.194 -0.024
DIS -0.001 0.032 0.044 16.606 -0.111 0.160
DOW -0.001 0.030 0.455 8.995 0.022 0.057
HON -0.001 0.028 0.992 11.002 -0.150 -0.029
HPQ 0.000 0.032 0.158 12.965 -0.196 0.119
IBM -0.001 0.027 2.277 26.671 -0.162 0.072
MAR 0.000 0.021 0.684 10.031 -0.084 0.078
MO -0.002 0.027 1.206 21.594 0.021 0.076
MOT -0.001 0.025 -0.429 11.846 0.134 0.123
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Table 2
Point estimates of factor sensitivities b; together with t-values and coefficients of
determination, statistics on the BEKK time-varying factor sensitivities b; ;.

name b; t-value R? min(b;;) max(b;;) std(bis)
AIG 0.121 3.05 0.015 -0.066 0.204 0.019
BA 0.113 2.84 0.013 -0.102 0.188 0.025
CAT 0.146 3.67 0.021 0.112 0.262 0.010
DIS 0.205 5.21 0.042 -0.134 0.707 0.068
DOW 0.159 4.03 0.025 -0.109 0.252 0.033
HON 0.088 2.19 0.008 0.061 0.084 0.003
HPQ 0.135 3.41 0.018 -0.098 0.138 0.013
IBM 0.082 2.04 0.007 -0.108 0.079 0.013
MAR 0.133 3.33 0.018 -0.152 0.251 0.037
MO 0.115 2.89 0.013 0.109 0.117 0.001
MOT 0.144 3.61 0.020 -0.048 0.323 0.024
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Table 3
Upper tail ML-estimation results for the bivariate GPD EVT-copula model. * denotes
parameter different from zero at the 95 percent level.

v Gumbel asy.-Gu. Galam.

name « X% (0% 61 (92 « 91 02
CDX 1.00

AIG 0.95 0.906* 12.6 0.911%* 0.999* 0.748 0.489%* 0.999* 0.313
BA 1.05 0.979%* 2.9 0.999* 0.745 0.787 15.00* 0.0316 0.260
CAT 1.25 0.939%* 8.3 0.956* 0.734 1.000* 7.25 0.0679 0.355
DIS 1.25 0.910%* 12.1 0.908* 1.000* 0.741* 15.00* 0.192* 0.0730
DOW 1.00 0.939* 8.3 0.961* 0.999* 0.762 13.50 0.489* 0.0335
HON 1.25 0.999* 0.1 0.999* 0.775 0.987 0.200%* 0.454 0.487
HPQ 1.50 0.945%* 7.5 0.550 0.149 0.340 1.174 0.144 0.332
IBM 1.50 1.000* 0.1 0.999* 0.763 0.984 0.201%* 0.454 0.631
MAR 1.50 0.911%* 12.0 0.457 0.264* 0.161 1.496 0.254%* 0.168
MO 0.85 0.961%* 5.3 0.986* 0.734 1.000* 1.572 0.0607 0.679*
MOT 1.25 0.929* 9.6 0.947* 0.734 1.000* 0.790 0.177 0.414

19



Table 4
Lower tail ML-estimation results for the bivariate GPD EVT-copula model. * denotes
parameter different from zero at the 95 percent level.

v Gumbel asy.-Gu. Galam.

name « X% (0% 61 (92 « 91 02
CDX 1.50

AIG 1.50 1.000%* 0.0 1.000* 0.789 0.782 0.201%* 0.561 0.553
BA 1.45 1.000%* 0.0 0.999* 0.944 0.797 0.349 0.0169 1.000*
CAT 1.50 1.000* 0.0 0.999* 0.811 0.801 0.200%* 0.595 0.606
DIS 1.95 0.964* 5.0 0.687* 0.053 0.999* 0.366 0.0985 1.000*
DOW 0.25 0.988%* 1.7 0.962* 0.001 0.941 0.200%* 0.0350 0.552
HON 1.50 0.969* 4.3 0.961* 0.712 1.000* 9.865 0.0572 0.119
HPQ 1.55 0.999%* 0.1 0.999* 0.706 0.955 0.200%* 0.610 0.705
IBM 1.00 0.999%* 0.1 1.000* 0.826 0.883 0.200%* 0.375 0.529
MAR 0.75 0.985%* 2.1 0.989* 0.999%* 0.728 0.285 0.999* 0.0937
MO 1.50 0.999* 0.1 1.000* 0.858 0.848 0.200%* 0.569 0.565
MOT 1.50 0.999* 0.1 1.000* 0.887 0.801 0.201%* 0.646 0.627
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Figure 1: BEKK conditional CDX factor correlation for American International
Group Inc. (AIG) and Walt Disney Co. (DIS).
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Figure 2: Mean excess function for upper tail CDX standardized unpredictable
spread changes.
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Figure 3: Mean excess function for lower tail CDX standardized unpredictable
spread changes.
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