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Abstract: The objective of this paper is to propose a new semi-empirical radar backscattering 18 

model for bare soil surfaces based on the Dubois model. A wide dataset of backscattering 19 
coefficients extracted from SAR (synthetic aperture radar) images and in situ soil surface parameter 20 
measurements (moisture content and roughness) is used. The retrieval of soil parameters from SAR 21 
images remains challenging because the available backscattering models have limited 22 
performances. Existing models, physical, semi-empirical or empirical, do not allow for a reliable 23 
estimate of soil surface geophysical parameters for all surface conditions. The proposed model, 24 
developed in HH, HV and VV polarizations, uses a formulation of radar signals based on physical 25 
principles that validated in numerous studies. Never before has a backscattering model been built 26 
and validated on such an important dataset as the one proposed in this study. It contains a wide 27 
range of incidence angles (18°-57°) and radar wavelengths (L, C, X), well distributed geographically 28 
for regions with different climate conditions (humid, semi-arid and arid sites) and involving many 29 
SAR sensors.The results show that the new model shows a very good performance for different 30 
radar wavelength (L, C, X), incidence angles, and polarizations (RMSE about 2 dB). This model is 31 
easy to invert and could provide a way to improve the retrieval of soil parameters. 32 

Keywords: New backscattering model, Dubois model, SAR images, Soil parameters. 33 
 34 

1. Introduction 35 

Soil moisture content and surface roughness play an important roles in meteorology, 36 
hydrology, agronomy, agriculture, and risk assessment. These soil surface characteristics can be 37 
estimated using synthetic aperture radar (SAR). Today, several high-resolution SAR images can be 38 
acquired on a given study site with the availability of SAR data in L-band (ALOS-2), C-band (Sentinel-1), 39 
and X-band (TerraSAR-X, COSMO-SkyMed). In addition, it is possible to obtain SAR and optical 40 
data for global areas at high spatial and temporal resolutions with free and open access Sentinel-1/2 41 
satellites (6 days with the two Sentinel-1 and 5 days with the two Sentinel-2 satellites at 10 m spatial 42 
resolution). This availability of both Sentinel-1 satellites and Sentinel-2 sensors in addition to 43 
Landsat-8 (also free and open access) allows the combination of SAR and optical data to estimate soil 44 
moisture and vegetation parameters in operational mode. 45 
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The retrieval of soil moisture content and surface roughness requires the use of radar 46 
backscatter models capable of correctly modeling the radar signal for a wide range of soil parameter 47 
values. This estimation from imaging radar data implies the use of backscattering electromagnetic 48 
models, which can be physical, semi-empirical or empirical. The physical models (e.g., Integral 49 
Equation Model ʺIEM,” Small Perturbation Model ʺSPM,” Geometrical Optic Model ʺGOM,” 50 
Physical Optic Model ʺPOM,” etc.) based on physical approximations corresponding to a range of 51 
surface conditions (moisture and roughness) provide site-independent relationships but have 52 
limited validity depending upon the soil roughness. As for semi-empirical or empirical models, they 53 
are often difficult to apply to sites other than those on which they were developed and are generally 54 
valid only for specific soil conditions. The empirical models are often favored by users because the 55 
models are easier to implement and invert [1–7]. 56 

Among the numerous semi-empirical models reported in the literature, the most popular are 57 
those developed over bare soils by Oh et al. [8–11] and Dubois et al. [12]. The Oh model uses the 58 
ratios of the measured backscatter coefficients HH/VV and HV/VV to estimate volumetric soil 59 
moisture (mv) and surface roughness (Hrms), while the Dubois model links the backscatter 60 
coefficients in HH and VV polarizations to the soil’s dielectric constant and surface roughness. 61 
Extensive studies evaluated various semi-empirical models, but mixed results have been obtained. 62 
Some studies show good agreement between measured backscatter coefficients and those predicted 63 
by the models, while others have found great discrepancies between them (e.g., [13–16]). The 64 
discrepancy between simulations and measurements often reaches several decibels, making soil 65 
parameter estimates unusefull. 66 

The objective of this paper is to propose a robust, empirical, radar backscattering model based 67 
on the Dubois model. First, the performance of the Dubois model is analyzed using a large dataset 68 
acquired at several worldwide study sites by numerous SAR sensors. The dataset consists of SAR 69 
data (multi-angular and multi-frequency) and measurements of soil moisture and surface roughness 70 
over bare soils. Then, the different terms of Dubois equations that describe the dependence between 71 
the SAR signal and both sensor and soil parameters have been validated or modified to improve the 72 
modelling of the radar signal. Ultimately, a new semi-empirical backscattering model has been 73 
developed for radar scattering in the HH, VV, and HV polarization from bare soil surfaces.  74 

After a description of the dataset in section 2, section 3 describes and analyzes the potential and 75 
the limitations of the Dubois model in radar signal simulations over bare soils. In section 4, the new 76 
model is described and its performance is evaluated for different available SAR data (L-, C- and 77 
X-bands, incidence angles between 20° and 45°). Conclusions are presented in section 5. 78 

2. Dataset description 79 

A wide experimental dataset was used, consisting of SAR images and ground measurements of 80 
soil moisture content and roughness collected over bare soils at several agricultural study sites 81 
(Table 1). SAR images were acquired by various airborne and spaceborne sensors (AIRSAR, SIR-C, 82 
JERS-1, PALSAR-1, ESAR, ERS, RADARSAT, ASAR, TerraSAR-X). The radar data were available in 83 
L-, C- and X-bands (approximately 1.25 GHz, 5.3 GHz and 9.6 GHz, respectively); with incidence 84 
angles between 18° and 57°; and in HH, VV and HV polarizations. For several reference plots, the 85 
mean backscatter coefficients have been obtained from radiometrically and geometrically calibrated 86 
SAR images by averaging backscatter coefficient values for each plot for all pixels within the plot. 87 

 88 
 89 
 90 
 91 
 92 
 93 
 94 
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Table 1. Description of the dataset used in this study. Fr: France, It: Italy, Ge: Germany, Be: 95 
Belgium, Lu: Luxembourg, Ca: Canada, Tu: Tunisia. 96 

Site SAR sensor Freq Year Number of data 

Orgeval (Fr) [17] 

Orgeval (Fr) [17–19] 

 

 

Orgeval (Fr) [19] 

Orgeval (Fr) [20] 

SIR-C 

SIR-C, ERS, 

ASAR 

 

PALSAR-1 

TerraSAR-X 

L 

C 

 

 

L 

X 

1994 

1994; 1995; 

2008; 2009; 

2010 

2009 

2008, 2009, 

2010 

 HH : 1569 measurements 

 144 in L-band 

 997 in C-band 

 428 in X-band 

 

 VV : 930 measurements 

 71 in L-band 

 640 in C-band 

 219 in X-band 

 HV : 605 measurements 

 7 in L-band 

 538 in C-band 

 60 in X-band 

 

Pays de Caux (Fr) [21–22] ERS; 

RADARSAT 

C 1998; 1999 

Villamblain (Fr) [23–25] 

Villamblain (Fr) [19,26] 

ASAR 

TerraSAR-X 

C 

X 

2003; 2004; 

2006 

2008; 2009 

Thau (Fr) [27] RADARSAT 

TerraSAR-X 

C 

X 

2010; 2011 

2010 

Touch (Fr) [23,28] ERS-2; ASAR C 2004; 2006; 

2007 

Mauzac (Fr) [26] TerraSAR-X X 2009 

Garons (Fr) [26] TerraSAR-X X 2009 

Kairouan (Tu) [29] 

Kairouan (Tu) [26,29, 30] 

ASAR 

TerraSAR-X 

C 

X 

2012 

2010; 2012; 

2013; 2014 

Yzerons (Fr) [31] TerraSAR-X X 2009 

Versailles (Fr) [26] TerraSAR-X X 2010 

Seysses (Fr) [26] TerraSAR-X X 2010 

Chateauguay (Ca) [21] RADARSAT C 1999 

Brochet (Ca) [21] RADARSAT C 1999 

Alpilles (Fr) [21] ERS; 

RADARSAT 

C 1996; 1997 

Sardaigne (It) [32] ASAR; 

RADARSAT 

C 2008; 2009 

Saint Lys (Fr) [33] PALSAR-1 L 2010 

Matera (It) [34] SIR-C L 1994 

Alzette (Lu) [35] PALSAR-1 L 2008 

Dijle (Be) [35] PALSAR-1 L 2008; 2009 

Zwalm (Be) [35] PALSAR-1 L 2007 

Demmin (Ge) [35] ESAR L 2006 

Montespertoli (It) [36]  

Montespertoli (It) [37] 

Montespertoli (It) [38] 

AIRSAR 

SIR-C 

JERS-1 

L 

L; C 

L 

1991 

1994 

1994 
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In addition, in situ measurements of soil moisture (mv) were available for each reference plot. 97 
The soil water content was collected from the top 5 or 10 cm of each reference plot at several 98 
locations using the gravimetric method and a calibrated TDR (time domain reflectometry) probe. In 99 
practice, the soil moisture for each reference plot was assumed to be equal to the mean of all 100 
measurements carried out on the reference plot within a few hours of the SAR overpasses. In our 101 
experimental dataset, the soil moisture ranged from 2 to 47 vol.%. 102 

The roughness was defined by the standard deviation of surface height (Hrms) available for 103 
each reference plot. From roughness profiles sampled for each reference plot using mainly laser or 104 
needle profilometers (mainly 1 m and 2 m long and with 1 cm and 2 cm sampling intervals), the 105 
mean of all experimental autocorrelation functions was calculated to estimate the Hrms 106 
measurement. However, for some in situ measurement campaigns, meshboard technique was used 107 
for estimating the roughness parameters. In our dataset, Hrms surface height ranged from 0.2 to 9.6 108 
cm (k Hrms ranged from 0.2 and 13.4, k was the radar wave number). 109 

A total of 1569 experimental data acquisitions with radar signal, soil moisture content and 110 
roughness were available for HH polarization, 930 for VV polarization, and 605 for HV polarization. 111 

3. Validation and analysis of the Dubois model 112 

3.1. Description of the Dubois model 113 

Dubois et al. [12] proposed an empirical model to model radar backscatter coefficients in HH 114 

and VV polarizations (
0

HH  and 0
VV ) for bare soil surfaces. The expressions of 0

HH  and 0
VV  115 

depend on the radar wave incidence angle (, in radians), the real part of the soil dielectric constant 116 
(), the rms surface height of the soil (Hrms), the radar wavelength (=2/k, where k is the radar 117 
wavenumber): 118 

  7.04.1tan028.0

5

5.1
75.20 sin10
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cos
10 


















  HrmskHH  (1) 

  7.01.1tan046.0

3

3
35.20 sin10
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cos
10 


















  HrmskVV  (2) 

0
HH  and 0

VV  are given in a linear scale.  is in cm. The validity of the Dubois model is defined as 119 

follows: k Hrms  2.5, mv  35 vol. %, and   30°. 120 

3.2. Comparison between simulated and real data 121 

The Dubois model shows an overestimation of the radar signal by 0.7 dB in HH polarization 122 
and an underestimation of the radar signal by 0.9 dB in VV polarization for all data combined (Table 123 
2). The results show that the overestimation in HH is of the same order for L-, C- and X-bands 124 
(between 0.6 dB and 0.8 dB). For the L-band, a slight overestimation of approximately 0.2 dB of SAR 125 
data is observed in VV polarization. Also in VV polarization, Dubois model based simulations 126 
underestimate the SAR data in C- and X-bands by approximately 0.7 dB and 2.0 dB, respectively.  127 

The rms error (RMSE) is approximately 3.8 dB and 2.8 dB in HH and VV, respectively (Table 2). 128 
Analysis of the RMSE according the radar frequency band (L, C and X separately) shows in HH an 129 
increase of the RMSE with the radar frequency (2.9 dB in L-band, 3.7 dB in C-band, and 4.1 dB in 130 
X-band). In VV polarization, the quality of Dubois simulations (RMSE) is similar for L- and C-bands 131 
but is less accurate in X-band (2.3 dB in L-band, 2.6 dB in C-band, and 3.2 dB in X-band). 132 

  133 
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Table 2. Comparison between the Dubois model and real data for all data and by range of kHrms, soil 134 
moisture (mv) and incidence angle (). Bias = real data – model. 135 

 Dubois for HH Dubois for VV 

Bias (dB) RMSE (dB) Bias (dB) RMSE (dB) 

For all data -0.7 3.8 +0.9 2.8 

L-band -0.8 2.9 -0.2 2.3 

C-band -0.6 3.7 +0.7 2.6 

X-band -0.7 4.1 +2.0 3.2 

kHrms < 2.5 +0.4 3.4 +1.3 2.9 

kHrms > 2.5 -2.7 4.5 -0.1 2.5 

mv < 20 vol.% -2.0 4.3 +0.9 2.8 

mv > 20 vol. % +0.5 3.2 +0.9 2.8 

 < 30° -4.1 5.4 -0.6 2.9 

 > 30° +0.6 3.0 +1.5 2.7 

In addition, the agreement between Dubois model simulations and SAR data is analyzed 136 
according to soil roughness, moisture content and incidence angle (Figures 1 and 2). The results 137 
indicate a slight underestimation of the radar signal by the Dubois model in the case of kHrms lower 138 
than 2.5 (Dubois validation domain) for both HH and VV polarizations (Figures 1b, 2b; Table 2). For 139 
surfaces with a roughness kHrms greater than 2.5, an overestimation of the radar signal is obtained 140 
with the Dubois model in HH while the model works correctly in VV (Figures 1b, 2b; Table 2). Higher 141 
under- and overestimations are observed in HH than they are in VV (reach approximately 10 dB in 142 
HH). 143 

Analysis of the error as a function of soil moisture (mv) shows that for both VV-polarized data, 144 
whatever the mv-values, and HH-polarized data with mv-values higher than 20 vol.%, the observed 145 
bias between real and simulated data is small (Figures 1c, 2c; Table 2). However, a strong 146 
overestimation of the radar signal is observed by the Dubois model in HH for mv-values lower than 147 
20 vol.% (-2.0 dB, Table 2). 148 

Finally, the discrepancy between SAR and the model is larger in HH for incidence angles lower 149 
than 30° (outside of the Dubois validity domain) than for incidence angles higher than 30° (Table 2). 150 
The Dubois model strongly overestimates the radar signal in HH for incidence angles lower than 30° 151 
but agrees closely with the measured data for incidence angles higher than 30° (Figures 1d, 2d; Table 152 
2). In VV polarization, the Dubois model slightly overestimates the radar signal for incidence angles 153 
lower than 30° and underestimates the signal for incidence angles higher than 30° by +1.5 dB 154 
(Figures 1d, 2d; Table 2). 155 

In conclusion, the Dubois model simulates VV better than it does HH (RMSE=2.8 and 3.8 dB, 156 
respectively). The disagreements observed between the Dubois model and measured data are not 157 
limited to data that are outside the optimal application domain of the Dubois model. 158 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 1. For HH polarization, (a) comparison between radar backscattering coefficients calculated 159 
from SAR images and estimated from the Dubois model, (b) difference between the SAR signal and 160 
the Dubois model relative to soil roughness (kHrms), (c) difference between the SAR signal and the 161 
Dubois model relative to soil moisture (mv), (d) difference between the SAR signal and the Dubois 162 
model relative to incidence angle. The best regression model is ploted in gray. 163 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2. For VV polarization, (a) comparison between radar backscattering coefficients calculated 165 
from SAR images and estimated from the Dubois model, (b) difference between the SAR signal and 166 
the Dubois model relative to soil roughness (kHrms), (c) difference between the SAR signal and the 167 
Dubois model relative to soil moisture (mv), (d) difference between the SAR signal and the Dubois 168 
model relative to incidence angle. The best regression model is ploted in gray. 169 

4. New empirical model 170 

4.1. Methodology 171 

The disagreement observed between measured and modelled radar signal encouraged us to 172 
develop a new empirical backscattering model using SAR observations and soil in situ 173 
measurements. The new model is based on the Dubois model and uses the dependency observed 174 
between the SAR signal and soil parameters according to results obtained in various studies. For 175 
bare soils, the backscattering coefficient depends on soil parameters (roughness and moisture) and 176 
SAR instrumental parameters (incidence angle, polarization and wavelength). For bare soils, the 177 
radar signal in pq polarization (p and q = H or V, with HV=VH) can be expressed as the product of 178 
three components: 179 
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𝜎𝑝𝑞
° = 𝑓𝑝𝑞(𝜃) 𝑔𝑝𝑞(𝑚𝑣, 𝜃) Γ𝑝𝑞(𝑘𝐻𝑟𝑚𝑠, 𝜃) (3) 

The radar backscatter coefficient is related to the incidence angle () by the relation 𝑓𝑝𝑞(𝜃) =180 

𝛼(𝑐𝑜𝑠 𝜃)𝛽 ([39-41]). This relationship describes the decrease of ° with the incidence angle (decrease 181 
higher for low angles than for high angles). 182 

The second term represents the relationship between the radar backscatter coefficient and soil 183 
moisture (mv). The results obtained in several investigations show that, for bare soils, the radar 184 
signal (°) in decibels increases linearly with soil moisture (mv) when mv is in the range between 185 
approximately 5 and 35 vol.% (e.g., [5,6,19,42]). In linear scale 𝑔𝑝𝑞(𝑚𝑣, 𝜃) can be written as 186 

δ 10𝛾 𝑚𝑣 . The sensitivity of the radar signal to the soil moisture  depends on . Higher sensitivity is 187 
observed for low than for high incidence angles (e.g., [43,44]). To include this dependence on 188 
incidence angle, the soil moisture value is multiplied with the term 𝑐𝑜𝑡𝑎𝑛(𝜃). Thus, 𝑔𝑝𝑞(𝑚𝑣, 𝜃) can 189 

be written as δ 10𝛾 𝑐𝑜𝑡𝑎𝑛(𝜃) 𝑚𝑣 . 190 
The last term Γ𝑝𝑞(𝑘𝐻𝑟𝑚𝑠, 𝜃)  represents the behaviour of °  with soil roughness. An 191 

exponential or logarithmic function is often used to express the radar signal (in dB) in terms of 192 
surface roughness ([7,42,45-46]). For a logarithmic behaviour of °(dB) with k Hrms, Γ𝑝𝑞 in linear 193 

scale can be written as 𝜇(𝑘𝐻𝑟𝑚𝑠)𝜉. Baghdadi et al. [22] showed that at high incidence angles, radar 194 
return is highly sensitive to surface roughness and shows much larger dynamics than at a low 195 

incidence angle. In addition, the term 𝑠𝑖𝑛(𝜃) is intended to include this dependence with the 196 
incidence angle: Γ𝑝𝑞=𝜇(𝑘𝐻𝑟𝑚𝑠)𝜉 𝑠𝑖𝑛 (𝜃). 197 

Finally, the relationship between the radar backscattering coefficient (°) and the soil 198 
parameters (soil moisture and surface roughness) for bare soil surfaces can be written by equation 199 
(4): 200 

𝜎𝑝𝑞
° = 𝛿(𝑐𝑜𝑠 𝜃)𝛽  10𝛾 𝑐𝑜𝑡𝑎𝑛(𝜃) 𝑚𝑣 (𝑘𝐻𝑟𝑚𝑠)𝜉 𝑠𝑖𝑛 (𝜃)  (4) 

The coefficients , , , and  are then estimated for each radar polarization using the method of 201 
least squares by minimizing the sum of squares of the differences between the measured and 202 
modelled radar signal. The error in the modelling of radar backscatter coefficients by the new 203 
backscattering model was assessed for each polarization using a 5-fold cross-validation to validate 204 
the predictive performance of the new model. To do the 5-fold cross-validation, the dataset was first 205 
randomly divided into 5 equal size subsets. Next, 4 of the subsets are used to train the new model 206 
and one was retained to validate its predictive performance. The cross-validation process was then 207 
repeated 5 times, with each of the 5 sub-datasets used exactly once as the validation data. The final 208 
validation result combines the 5 validation results. The advantage of this method over repeated 209 
random sub-sampling is that all observations are used for both training and validation, and each 210 
observation is used for validation exactly once.  211 

The fitting of various coefficients parameter in the equation (4) was done using all dataset 212 
(fitting errors are about 2 dB for all polarizations). This fitting allows writing ° as a function of the 213 
rms surface height (Hrms) and incidence angle (), by equations (5), (6) and (7): 214 

𝜎𝐻𝐻
° = 10−1.287(𝑐𝑜𝑠 𝜃)1.227  100.009 𝑐𝑜𝑡𝑎𝑛(𝜃) 𝑚𝑣  (𝑘𝐻𝑟𝑚𝑠)0.86 𝑠𝑖𝑛 (𝜃), (5) 

𝜎𝑉𝑉
° = 10−1.138(𝑐𝑜𝑠 𝜃)1.528  100.008 𝑐𝑜𝑡𝑎𝑛(𝜃) 𝑚𝑣 (𝑘𝐻𝑟𝑚𝑠)0.71 𝑠𝑖𝑛 (𝜃) (6) 

𝜎𝐻𝑉
° = 10−2.325(𝑐𝑜𝑠 𝜃)−0.01  100.011 𝑐𝑜𝑡𝑎𝑛(𝜃) 𝑚𝑣 (𝑘𝐻𝑟𝑚𝑠)0.44 𝑠𝑖𝑛 (𝜃), (7) 

where  is expressed in radians and mv is in vol.%. Equations (5), (6), and (7) show that the 215 
sensitivity () of the radar signal to the soil moisture in decibel scale is 0.25 dB/vol.% in HH 216 
polarization, 0.22 dB/vol.% in VV polarization and 0.30 dB/vol.% in HV polarization for an incidence 217 
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angle of 20°. This sensitivity decreases to 0.09 dB/vol.% in HH, 0.08 dB/vol.% in VV and 0.11 218 
dB/vol.% for an incidence angle of 45°. As for the signal’s sensitivity to soil roughness, it is of the 219 
same order of magnitude in HH and VV and twice as large than that of the HV signal. The 220 
availability of a backscatter model for the cross polarization component is required because the most 221 
of spaceborne SAR acquisitions are made with one co-polarization and one cross-polarization in case 222 
of dual-polarization mode. 223 

4.2. Results and discussion 224 

4.2.1. Performance of the new model 225 

Results show that the new model provides more accurate results. The biases and the RMSE 226 
decrease for both HH and VV polarizations. The RMSE decreases from 3.8 dB to 2.0 dB for HH and 227 
from 2.8 dB to 1.9 dB for VV (Table 3). In addition, the high over- or underestimations of radar 228 
backscattering coefficients observed with the Dubois model according to soil moisture, surface 229 
roughness and radar incidence angle are clearly eliminated with the new model (Figures 3 and 4). 230 

Analysis of the new model’s performance for each radar wavelength separately (L-, C- and 231 
X-bands) shows that the most significant improvement is observed in X-band with an RMSE that 232 
decreases from 4.1 dB to 1.9 dB in HH and from 3.2 dB to 1.8 dB in VV. In L-band, the performance of 233 
the new model is not better than that of the Dubois model because the RMSE decreases slightly with 234 
the new model of 3.0 dB to 2.3 dB in HH and remains similar in VV (RMSE = 2.3 dB with the Dubois 235 
model and 2.7 dB with the new model). The improvement is also important for the C-band with an 236 
RMSE that decreases from 3.7 dB to 1.9 dB in HH and from 2.6 dB to 1.9 dB in VV. With respect to 237 
bias, the results show that it decreases with the new model for all radar wavelengths. In addition, the 238 
new model does not show bias according the range of soil moisture, surface roughness, and radar 239 
incidence angle. 240 

The comparison between the new model simulations in HV polarization (Equation 7) and the 241 
real data (SAR data) shows an RMSE of 2.1 dB (Table 3) (1.6 dB in L-band, 2.2 dB in C-band, and 1.9 242 
dB in X-band). The bias (°SAR - model) is -1.3 dB in L-band, 0.2 dB in C-band, and -1.3 dB in 243 
X-band. Figure 5 shows also that the new model correctly simulates the radar backscatter coefficient 244 
in HV for all ranges of soil moisture, surface roughness and radar incidence angle. 245 

Table 3. Comparison between the results obtained with the Dubois model and those obtained with 246 
the new model. Bias = real – model. 247 

 Dubois for HH and VV New model 

Bias (dB) RMSE (dB) Bias (dB) RMSE (dB) 

HH for all data -0.7 3.8 0.4 2.0 

VV for all data +0.9 2.8 0.0 1.9 

HV for all data - - 0.0 2.1 

HH, L-band -0.8 2.9 -0.1 2.3 

HH, C-band -0.6 3.7 +0.3 1.9 

HH, X-band -0.7 4.1 0.7 1.9 

VV, L-band -0.2 2.3 -0.1 2.7 

VV, C-band +0.7 2.6 +0.1 1.9 

VV, X-band +2.0 3.2 -0.4 1.8 

HV, L-band - - -1.3 1.6 

HV, C-band - - +0.2 2.2 

HV, X-band - - -1.3 1.9 
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Figure 3. (a) Comparison between ° modelled in the new model and ° measured (for all SAR 248 
bands) for HH polarization, (b) difference between SAR and the new model as a function of surface 249 
roughness (kHrms), (c) difference between SAR and the new model as a function of soil moisture 250 
(mv), (d) difference between SAR and the new model as a function of incidence angle. The best 251 
regression model is ploted in gray. 252 
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(d) 

Figure 4. (a) Comparison between ° in the new model and ° measured (for all SAR bands) for VV 253 
polarization, (b) difference between SAR and the new model as a function of surface roughness 254 
(kHrms), (c) difference between SAR and the new model as a function of soil moisture (mv), (d) 255 
difference between SAR and the new model as a function of incidence angle. The best regression 256 
model is ploted in gray. 257 
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Figure 5. (a) Comparison between ° in the new model and ° measured (for all SAR bands) for HV 259 
polarization, (b) difference between SAR and the new model as a function of kHrms, (c) difference 260 
between SAR and the new model as a function of mv, (d) difference between SAR and the new model 261 
as a function of incidence angle. The best regression model is ploted in gray. 262 

4.2.2. Behaviour of the new model 263 

The physical behaviour of the new radar backscatter model was studied in function of incidence 264 
angle (), soil moisture (mv) and surface roughness (kHrms). 265 

Figure 6 shows that the radar signal is strongly sensitive to surface roughness, especially for 266 
small values of kHrms. In addition, this sensitivity increases with the incidence angle. Concerning the 267 
influence of polarization, the new model shows, as do many theories and experimental studies, that 268 
a given soil roughness leads to slightly higher signal dynamics with the soil moisture in HH than in 269 
VV polarization [17,47]. The radar signal ° increases with kHrms. This increase is higher for either 270 
low kHrms values or high -values than it is for either high kHrms values or low -values. For =45°, 271 
° increases approximately 8 dB in HH and 6.5 dB in VV when kHrms increases from 0.1 to 2 272 
compared with only 3 dB when kHrms increases from 2 to 6 (for both HH and VV). This dynamic of 273 
° is only half for =25° in comparison to that for =45°. In HV, the dynamic of ° to kHrms is half 274 
that observed for HH and VV. 275 

The behaviour of ° according to soil moisture shows a larger increase of ° with mv for low 276 
incidence angles than for high incidence angles. Figure 6 shows that °HH and °VV increase 277 
approximately 6 dB for =25° compared with only 3 dB for =45° when mv increases from 5 to 35 278 
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vol.%. In HV, the signal increases approximately 7.5 dB for =25° and 3.5 dB for =45° when mv 279 
increases from 5 to 35 vol.%. 280 

As mentioned in Dubois et al. [12], the ratio 
𝜎𝐻𝐻

°

𝜎𝑉𝑉
°⁄ should increase with kHrms and remain 281 

less than 1. The new model shows that this condition is satisfied when 20°<  <45°, kHrms < 6 and 282 
mv < 35 vol.%. 283 
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Figure 6. Behavior of the new model as a function of incidence angle, surface roughness (k Hrms) and 284 
soil moisture (mv) in HH, VV and HV polarizations. 285 

5. Conclusion 286 

This investigations objective is to propose a new empirical model for radar backscatter from 287 
bare soil surfaces. The new model is based on the formulation made in the Dubois model where the 288 
radar signal in HH and VV polarizations is described according to radar wavelength, incidence 289 
angle, soil moisture and roughness. This new model is based on the formulation made in the Dubois 290 
model. A large dataset was used, composed of ground measurements and SAR images over bare 291 
agricultural soils. 292 

Results show that the new model provides improved results in comparison to the Dubois 293 
model (in the case of HH and VV). Biases and RMSE have decreased for both HH and VV 294 
polarizations. In addition, the high over- or under-estimations observed with the Dubois model for 295 
some ranges of soil moisture, surface roughness and radar incidence angle were clearly eliminated 296 
with the new model. Analysis of the new model’s performance for each radar wavelength separately 297 
(L, C and X) shows that in the L-band, the performance of the new model was similar to that of the 298 
Dubois model. The model shows significant improvement in C- and X-bands (RMSE approximately 299 
1.9 dB with the new model and between 2.6 and 4.1 dB with the Dubois model).  300 

Based on the same equation as that used for HH and VV, a radar signal in HV polarization was 301 
also proposed. Finally, the new empirical model proposed in the present study would allows more 302 
accurate soil moisture estimates using the new Sentinel-1A and -1B SAR data. 303 
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