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Abstract

The global optimization of metallic clusters is an important topic because nan-

oclusters exhibit structure-dependent properties. In this paper, we present a

global optimization study of Ag
20

, Au
20

, Ag
55

and Au
55

in their neutral and

charge states (-1, 0, +1) conducted using a Parallel-Tempering Molecular Dy-

namics algorithm at the DFTB level without pre-screening. For Au
20

, Ag
20

and their ions, the present DFTB low energy structures are in good agreement

with previously published calculations and experimental data. In the case of

Ag�
55

and Au�
55

, the present study is consistent with photo-electron detachment

experiments suggesting highly symmetric icosahedral structures for silver and

more disordered morphologies for gold. The present results are also compati-

ble with trapped ion electron di↵raction experiments and calculations for Ag+
55

and Ag�
55

. We report low-energy isomers of Au
55

exhibiting cavities below their

external shell. This work quantitatively confirms the relevance of DFTB for

structure calculation of noble metal clusters. Furthermore, it also demonstrates

the feasibility of global optimization using DFTB, without pre-screening through

classical potential, for sizes up to a few tens of atoms and for di↵erent charge

states.
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1. Introduction

The prediction of the atomic structure of nanoclusters is of fundamental im-

portance as they often exhibit size-dependent properties. A deep knowledge of

the structural changes arising as a function of the nanocluster size and charge

can lead to the development of materials exhibiting desirable properties. Among5

nanoclusters, silver and gold ones display very specific optical [1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12, 13] and chemical [14, 15, 16, 17, 18, 19, 20, 21, 22] properties. A

variety of experimental and computational methods have thus been used to pre-

dict their structures in their neutral or charged states i.e. Ag�,0,+
n and Au�,0,+

n

[23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,10

44, 45, 46, 47, 48].

Among others, the structure of noble metal clusters has now become a very

topical theme with the possibility of monitoring directly their structural be-

haviors via STEM imaging [49]. For the medium-size silver and gold clusters15

with 20 and 55 atoms, the presently known structures are issued from either

theoretical studies or studies coupling experimental characterization with DFT

calculations [27, 28, 39, 50, 51, 52, 53]. However, to the best of our knowl-

edge, no full DFT exploration of the potential energy surface (PES) of such

clusters is mentioned in the literature. Indeed, despite fast progress in the20

derivation of accurate functionals and e�cient algorithms to be implemented

on high performance computers, DFT is not yet e�cient enough to be directly

used within global and extensive exploration of PES. Consequently, most global

explorations in the field of structure prediction of medium-size metallic clusters

use pre-screening, i.e. are performed by first exploring the energy landscapes25

using an empirical or a semi-empirical potential. This is followed by a subse-

quent optimisation of the lower-energy structures at a higher level of accuracy,

generally DFT.

To study such systems with an accuracy close to that of ab initio meth-30
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ods, parameterized quantum approaches o↵er an attractive alternative as they

preserve, with some approximations, the electronic description of the system

while displaying a significantly lower computational cost. An explicit quantum

description of the electronic structure is obviously desirable when one wishes

to describe several charge states within a unique scheme, which is almost im-35

possible when using classical force fields. Among the available options, the

Density-Functional based Tight-Binding method (DFTB) is considered as a

state-of-the-art parameterized method [54, 55, 56, 57, 58, 59]. It is derived

from DFT via several approximations and has proved to be particularly ef-

ficient for the description of complex molecular systems [60, 61, 62, 63]. Its40

accuracy depends significantly on the quality of the parameterization. In par-

ticular, it requires the use of tabulated integrals, referred to as the Slater-Koster

integrals, constructed for each atomic pair of the chemical system of interest.

These Slater-Koster integrals are not uniquely defined as they can be developed

using various methodologies and reference DFT functionals. In the particular45

case of silver and gold, several DFTB parameter sets have been proposed in the

literature [64, 65, 66]. In a recent study [67], we improved such parameters for

silver and gold clusters and showed that these modified parameters are satisfac-

tory in reproducing essential di↵erences between small silver and gold clusters.

In particular, their 2D-3D structural transition and its dependency upon clus-50

ter charge state is well reproduced as well as a variety of bulk properties. Our

DFTB results were also in agreement with previously reported DFT and exper-

imental data in the medium-size regime regarding the energetic ordering of the

various low-energy isomers already described in the literature. The satisfactory

behavior of these parameters regarding the modeling of middle-size silver and55

gold clusters now provides opportunities to perform global exploration of the

PES of such aggregates with an approach providing an explicit electronic struc-

ture description.

In the present work, we use a Parallel-Tempering Molecular Dynamics al-60

gorithm (PTMD) to explore the PES of Agqn and Auqn with n = 20, 55 and

4



q = �1, 0,+1 computed at the DFTB level. The size regime of a few tens

is particularly interesting since it provides a transition between the small size

regime, where each atom and charge fluctuation matters, and the nanoparticle

regime in which the global morphology may be more determinant. The target is65

to present a systematic and consistent study of both sizes for the various charge

states. The size n=20 has been abundantly documented in both experimental

and theoretical studies and can be viewed as a test case for the present scheme.

Photo-electron detachment experimental data do also exist on silver and gold

anions for size 55, together with trapped ion electron di↵raction (TIED) data70

for Ag
55

anions and cations. Both indicate an icosahedral type structure for

Ag+/�
55

. In contrast, the most stable structures for Au+/�
55

are not yet clearly

established. Moreover, it is also interesting, beyond the determination of the

absolute minimum structure, to provide a picture of the structures and energy

distribution of the other low-energy isomers, and to rationalize their structural75

patterns. Indeed, these low energy isomers may be possibly observed depending

on the experiments, and will likely contribute to the aggregate properties at

finite temperature. The paper is organized as follows: in section 2, the DFTB

method and the global exploration scheme are briefly presented. In section 3, a

detailed description of the relevant isomers extracted from the global exploration80

is presented. In section 4, we discuss our results in the light of the previously re-

ported structures. Conclusions and perspectives are provided in the last section.

2. Computational Details

2.1. The DFTB and SCC-DFTB Methods85

DFTB [54, 55, 56, 57, 58, 59] is an approximation of DFT in its orbital

formulation proposed by Hohenberg, Kohn and Sham [68, 69]. In the DFTB

method: (i) the energy is derived from a Taylor series expansion of the DFT en-

ergy around a reference density, (ii) the Kohn-Sham orbitals 'i are expanded on

a set of minimal atom-centered basis, (iii) The first order expression in this basis90
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involves matrix elements of the overlap and Hamiltonian (Ĥ0) at the reference

density, retaining only one- and two-centers terms, (iv) the zeroth-order terms

are gathered in a repulsive term Erep expressed through pairwise contributions.

The two levels of DFTB used in this work are: the zeroth-order DFTB and

the Self-Consistent-Charge DFTB with the following expressions for the total95

energy:

First-order DFTB

EDFTB =
atomsX

↵,� 6=↵

Erep

↵� +
X

i

nih'i|Ĥ0|'ii (1)

Second-order DFTB, referred to as SCC-DFTB (Self-Consistent-Charge-100

DFTB)

ESCC�DFTB = EDFTB +
1

2

atomsX

↵,�

�↵�q↵q� (2)

where ni is the occupation number of molecular orbital 'i. Concerning the pa-

rameterization, Erep

↵� and the non-diagonal elements of the overlap and Hamilto-

nian matrices in the atomic basis are tabulated from DFT calculations on atomic105

dimers and expressed as a function of interatomic distances. The diagonal ele-

ments of Ĥ0 are the orbital energies of the isolated atoms. In the second order

formulation, which leads to a self consistent scheme, the q↵ are the Mulliken

atomic charges and �↵� is a diatomic function derived from Hubbard param-

eters. The DFTB hamiltonian used[67] is spanned on a valence atomic basis110

including explicitely nd,(n+ 1)s and (n+ 1)p atomic orbitals for silver (n = 4)

and gold (n = 5), thus allowing mixing of d,s and p valence electronic character

in the cluster DFTB orbitals. Its parametrization[67] was shown to correctly

describe the peculiar character of gold clusters, namely the persistence of planar

geometries in gold up to sizes 8-12. The spin-restricted version of DFTB was115

used for all calculations.
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2.2. Global Optimization Scheme

The currently most used global optimization techniques include: basin hop-

ping and derived techniques [70, 71], simulated annealing [72] and the develop-

ments concerned with ergodicity (multi-tempering, parallel-tempering in Molec-120

ular Dynamics or Monte Carlo schemes [73, 74]), genetic/evolutionary algo-

rithms [75], and particle swarm algorithms [76]. In this work, we chose to use

Parallel-Tempering Molecular Dynamics [73] (PTMD), also known as ”replica

exchange” algorithm, combined with periodic quenching. In the PTMDmethod,

R replicas of the original system under investigation are subject to evolutions125

in the canonical ensemble at di↵erent temperatures. The high temperature evo-

lutions are able to sample large volumes of the phase space. In contrast, the

low temperature simulations allow a more detailed sampling of the low energy

regions of the phase space but with the risk of being trapped in a local energy

basin. PTMD achieves an improved sampling by allowing the systems at di↵er-130

ent temperatures to exchange their configurations. The conditional inclusion of

higher temperature configurations in low temperature trajectories allows lowest

temperature evolutions to access larger representative sets of low-temperature

regions of the phase space.

In the present simulations, the PTMD scheme involved simultaneous DFTB MD135

runs at 60 temperatures equally distributed in the range 0-3000 K. Fragmenta-

tion was hindered by using a spherical box. The MD timestep was set to 3 fs

and exchanges were attempted using the Metropolis energy criterion every 100

timesteps. A chain of 5 Nose-Hoover thermostats [77, 78] with a unique fre-

quency of 80 cm�1 was used. The length of the trajectories were 3 ns (1 million140

PTMD steps). From each of the three MD runs at 50 K (low T ), 652 K (medium

T ) and 3000 K (high T ) of the PTMD process, over a thousand configurations

equally spaced in time were selected. They were subsequently locally optimized

with the SCC-DFTB conjugated gradient scheme, providing a wealth of stable

structures. High temperature trajectories were considered for quenches in order145

to (i) ensure a better sampling of the various low-energy regions of the phase

space and (ii) obtain minima higher in energy than the global minimum. This
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procedure generated a bunch of low energy isomers for each cluster size, and

was repeated separately for neutrals, anions and cations, in order to avoid any

bias. All calculations were performed using the deMonNano code [79], in which150

the PTMD scheme has recently been implemented [80]. The PTMD runs were

conducted with the non-SCC first-order version of DFTB, whereas the local

relaxations were achieved with the SCC-DFTB scheme. This restriction should

not be too drastic, since the charge levels under consideration are low (q=0,+1,-

1), the systems are metal clusters and the charge fluctuations are supposed to155

be weak.

3. Global Optimization Results

Clusters belonging to the same structural families were gathered on the ba-

sis of three criteria: (i) the total energy of the cluster ESCC�DFTB, (ii) the

three principal mass-less inertia moments I
1

,I
2

and I
3

, characterizing the over-160

all shape of the cluster (namely the usual inertia moments divided by the atom

mass) and (iii) the symmetry group of the cluster [81]. In order to bring to light

the structural di↵erences between some clusters, the radial atomic distribution

describing the variation of the density of atoms as a function of the distance

from the center of mass of the cluster was computed. To do that, the num-165

ber of atoms found in concentric spheres (with radius increments of 1 Å) was

counted. We also determined the coordination numbers of the atoms, defined

as the number of nearest neighbors. To do so, we used a threshold distance

between two atoms of 3 Å, which is relevant for both silver and gold clusters

as their nearest-neighbour distances in the bulk are almost identical, 2.889 and170

2.886 Å, respectively.

3.1. Global Exploration of 20-Atom Silver Clusters

The ten most stable structures identified for Ag�,0,+
20

clusters are represented

in Figure 2. The same compact C
3

structure is found to be the most stable for175
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System n(< 1 eV) System n(< 1 eV)

Ag�
20

165 Ag�
55

6

Ag
20

115 Ag
55

7

Ag+
20

122 Ag+
55

14

Au�
20

45 Au�
55

36

Au
20

2 Au
55

35

Au+
20

69 Au+
55

37

Table 1: Number of isomers found below 1 eV above the global minimum for silver and gold

clusters.

both the neutral and cationic form, whereas the most stable structure for Ag�
20

belong to the Cs group. We note that for the three charge states, the second

most stable isomer has a very weak structural excitation energy above the global

minimum (0.006, 0.119 and 0.081 eV for the anionic, neutral and cationic forms,

respectively) and that more than one hundred of di↵erent structures were iden-180

tified with energies lower than 1 eV above the global minimum (see Table 1,

note that the numbers given in this Table are indicators of the relative com-

plexities of the respective PES, but cannot be considered as the exact numbers

of minima on the di↵erent PES since they depend on the tolerance threshold

used to distinguish between isomer structures). These structures correspond to185

compact structures, mostly di↵ering by the distribution of hexagonal and pen-

tagonal cycles at the cluster surface. This explains the low level of symmetry

detected for these clusters (Table 2) and that the mean inertia moments only

weakly depend on the specific isomers as seen in Figure 1.

3.2. Global Exploration of 20-Atom Gold Clusters190

The most stable structures found for Au�,0,+
20

are close to the well-known

pyramidal Td isomer (Figure 3), possibly presenting Jahn-teller distorsion (see

below for the anion case). This pyramidal form is pretty stable as the second

most stable isomers lies 0.28, 0.69 and 0.34 eV above for the anion, neutral and

cation, respectively. Another di↵erence with silver clusters is the low number of195
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Isomer �E (eV) I
1

I
2

I
3

Symmetry

Ag�
20

1 0.000 146.6 135.6 123.7 Cs

2 0.006 142.6 134.9 131.6 C
1

3 0.036 151.1 139.2 120.3 C
1

4 0.040 139.7 139.7 137.8 C
1

5 0.052 160.2 148.3 106.1 Cs

6 0.064 139.6 138.2 126.3 Cs

7 0.075 147.6 136.2 125.8 C
1

8 0.087 154.0 133.5 122.3 C
2v

9 0.095 147.9 146.3 112.7 C
2v

10 0.102 145.5 141.1 118.6 C
1

Ag
20

1 0.000 141.7 131.8 131.8 C
3

2 0.119 139.1 139.1 134.7 C
3

3 0.157 140.0 135.0 125.4 Cs

4 0.186 142.2 138.3 123.1 C
1

5 0.201 135.4 133.6 129.7 Cs

6 0.233 143.3 133.6 127.2 C
1

7 0.238 145.7 136.6 121.7 C
1

8 0.259 145.5 131.3 130.4 C
1

9 0.301 143.4 141.1 124.9 C
2v

10 0.321 140.9 138.8 119.6 C
1

Ag+
20

1 0.000 142.5 129.8 129.8 C
3

2 0.081 141.0 133.3 122.7 Cs

3 0.090 143.8 137.2 120.8 C
1

4 0.127 135.2 132.4 127.8 C
2

5 0.134 140.5 138.8 117.3 C
1

6 0.139 144.0 130.5 122.5 C
1

7 0.159 145.9 131.3 125.7 C
1

8 0.163 147.1 129.3 129.0 C
1

9 0.170 150.4 131.9 120.1 C
1

10 0.174 146.0 140.0 116.5 C
1

Table 2: Energetics and principal mass-less moments of inertia (in Å2) of Ag20 clusters.
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Figure 1: Mean inertia moments for silver and gold clusters of 20 (left) and 55 (right) units.

On each plot, only the values of the mean inertia moments corresponding to isomers found

below 1 eV above the global minimum are depicted.

structures found below 1 eV (45, 2 and 69 for the anionic, neutral and cationic

states respectively, Table 1). For Au
20

, the second most stable is a structure

strongly distorted from the Td pyramid, while third isomer can be seen as a

pyramid with one apex atom displaced to the face opposite to its original po-

sition. The most stable isomer of Au+
20

is also a a pyramidal structure with Td200

symmetry. We have found no significant distorsion (if it exists, it is less than

0.01 Å). Many of the low energy isomers above the ground state significantly dif-

fer from the pyramidal structure. At higher energies, more compact structures

are found, which explains that the mean inertia moments significantly decrease

and reach values similar to those obtained for silver clusters (Figure 1). The205

most stable anion is also close to a Td pyramid, however Jahn-Teller deformed

towards D
2d (with distance distorsions of the order of 0.03 Å). The other low

energy isomers di↵er though defects from the pyramid, namely the removal of

one atom either from a face-center or an apex, transferred as an adatom on

top of a triangle or of two edge atoms. In the second lowest energy isomer, the210
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Figure 2: 10 lowest-energy minima obtained for Ag�20 (green, top), Ag20 (blue, middle) and

Ag+20 (red, bottom)
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removed and adatom locations correspond to the same face. When an atom

is removed from a face center, it leaves a small cavity. In many structures,

the removed and adatom positions belong to the same symmetry plane of the

initial Td structure, leading to Cs symmetries (Table 3). Remaining close to

Td-structures is at the origin of mean inertia moments generally larger than for215

the cationic forms (Figure 1).

3.3. Global Exploration of 55-Atom Silver Clusters

For the three charge states, the most stable structure found for Ag
55

is close

to an icosahedron. This icosahedron is however slightly distorted into lower

symmetry deformations namely D
3d, D2h and D

5d for the anion, the neutral220

and the cation respectively. Only 6, 7 and 14 local minima were obtained with

energies lower than 1 eV above the global minimum for anionic, neutral and

cationic forms, respectively (Table 1). All these optimized structures result

from defects created in the icosahedron basic form, consisting of the removal of

one atom on top of an hexagonal or pentagonal cycle and the addition of an225

atom either introduced inside a face modifying the surface constraint or added

on top of a face triangle or rhombus. If the removed and adatom locations belong

to the same symmetry plane, the structure is Cs and C
1

otherwise (Table 4).

The structures remaining close to the icosahedron, their mean inertia moments

also remain close to that of the icosahedron (Figure 1). Furthermore, very few230

changes are observed on the coordination numbers distributions with respect to

that of the icosahedron (Figure 5). Indeed, as can be seen on this figure, the

variation fluctuates mainly in the ranges 7-8 and 11-12 neighbors.

3.4. Global Exploration of 55-Atom Gold Clusters

The icosahedron form is not competitive for gold clusters with 55 units for235

which the most stable structure obtained present lower symmetry, quasi C
3

for

the neutral, C
3

for the cation or no symmetry at all in the anion case, as can

be seen in Figure 6 and Table 5 (Note that the neutral shows a very small

C
1

distorsion from the C
3

structure, with deformations of the order of 0.01
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Figure 3: 10 lowest-energy minima obtained for Au�
20 (green, top), Au20 (blue, middle) and

Au+20 (red, bottom).
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Isomer �E (eV) I
1

I
2

I
3

Symmetry

Au�
20

1 0.000 151.3 151.3 150.9 Td (D
2d)

2 0.277 171.2 170.4 148.6 Cs

3 0.361 170.2 169.1 149.2 C
1

4 0.395 164.2 149.1 134.0 Cs

5 0.413 162.9 149.5 137.0 C
1

6 0.419 180.2 177.4 147.5 Cs

7 0.423 173.8 149.8 126.7 C
1

8 0.433 164.4 150.0 135.5 C
1

9 0.447 164.4 151.3 136.3 Cs

10 0.451 172.7 171.1 146.3 C
1

Au
20

1 0.000 150.3 150.3 150.3 Td

2 0.694 163.8 148.7 135.3 Cs

3 1.010 157.1 141.0 138.5 Cs

4 1.022 149.2 137.6 137.6 C
3

5 1.060 165.6 140.1 134.0 C
1

6 1.086 164.9 139.4 134.0 C
1

7 1.183 154.4 131.1 130.8 C
1

8 1.197 148.9 139.9 124.8 Cs

9 1.209 157.7 130.3 129.1 C
1

10 1.213 157.4 130.5 129.2 C
3

Au+
20

1 0.000 150.7 149.2 149.2 Td

2 0.340 165.0 147.2 133.6 C
1

3 0.350 166.4 148.8 133.7 Cs

4 0.371 165.1 149.1 134.4 Cs

5 0.416 165.8 139.3 133.1 C
1

6 0.474 136.3 123.4 123.4 C
3

7 0.524 144.1 128.9 112.1 C
1

8 0.547 154.7 131.0 124.2 C
1

9 0.551 154.2 130.5 124.4 C
1

10 0.569 163.9 146.4 133.2 Cs

Table 3: Energetics and principal mass-less moments of inertia (in Å2) of Ag55 clusters. The

parenthesis indicates the group corresponding to the Jahn-Teller distorsion
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Figure 4: 10 lowest-energy minima obtained for Ag�55 (green, top), Ag55 (blue, middle) and

Ag+55 (red, bottom).
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Isomer �E(eV ) I
1

I
2

I
3

Symmetry

Ag�
55

1 0.000 743.2 734.2 734.2 Ih (D
3d)

2 0.501 767.9 735.3 723.5 Cs

3 0.600 767.3 734.9 718.9 Cs

4 0.740 778.2 736.8 713.1 Cs

5 0.871 762.2 738.3 732.1 C
1

6 0.964 786.6 741.0 718.6 C
1

7 1.026 786.3 752.1 705.0 Cs

8 1.067 802.6 728.6 714.6 C
1

9 1.097 785.2 747.4 714.1 C
1

10 1.136 784.0 752.0 711.3 C1

Ag
55

1 0.000 742.0 734.2 732.5 Ih (D
2h)

2 0.509 768.1 732.0 724.0 Cs

3 0.599 766.0 731.1 720.8 Cs

4 0.701 764.3 745.8 715.9 C
1

5 0.732 760.7 739.3 724.3 Cs

6 0.843 764.9 735.9 729.9 C
1

7 0.950 784.5 743.5 715.0 C
1

8 1.018 801.6 728.7 712.5 C
1

9 1.048 785.9 753.6 706.8 C
1

10 1.078 792.2 732.5 718.5 C
1

Ag+
55

1 0.000 739.9 739.8 728.0 Ih (D
5d)

2 0.509 768.1 729.1 723.7 C
1

3 0.553 767.2 741.2 716.6 Cs

4 0.596 766.5 727.5 723.5 Cs

5 0.632 763.0 727.3 725.0 Cs

6 0.675 764.3 749.5 713.1 C
1

7 0.702 766.8 740.7 718.4 C
1

8 0.733 780.9 743.9 703.6 Cs

9 0.783 758.9 736.6 730.2 Cs

10 0.821 778.4 750.8 713.7 C
1

Table 4: Energetics and principal mass-less moments of inertia (in Å2) of Ag55 clusters. The

parenthesis indicates the group corresponding to the Jahn-Teller distorsion
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Figure 5: Top: Cumulated distributions of the coordination numbers of the atoms belonging

to the top ten Au55 (left) and Ag55 (right) isomers, respectively. Bottom: Di↵erences in the

distribution of the coordination numbers with respect to the corresponding global minima.
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Å). About 35 di↵erent isomers were identified with energies lower than 1 eV240

above that of the global minimum whatever the considered charge state (Table

1). Several patterns common to all charge states are observed. The first one

is the trend to form a cavity inside the cluster as can be seen in Figure 7.

The structures are therefore less compact than in the case of Ag
55

clusters,

which results in larger values of the mean inertia moments (Figure 1). The245

presence of these cavities can also be highlighted by comparing the radial atomic

distribution of these clusters to the one of the compact icosahedron (Figure

8). The first atomic layer of the cluster is deserted, benefiting to the surface

layer. We also recognized the formation of planar patterns at the surface and

sometimes inside the clusters, for instance as separating walls between inside250

cavities. This trend can be related to the preference for 2D structures in small

gold clusters, previously observed at the DFT [46] and DFTB [65, 67] levels

and attributed to relativistic e↵ects [82]. Finally, we observed that the inside

separating plane is sometimes replaced by a central pillar (Figure 7), which in

some cases is a C
3

symmetry axis as for instance in the most stable structures255

of cationic and neutral forms. Note however that most of the isomers do not

present any symmetry. The variations of the coordination number distributions

with respect to those of the global minima have an amplitude much smaller

than in the case of silver. The most frequently observed variation is a significant

reduction in the number of atoms having 9 nearest neighbors. Indeed, in the260

global minima, 6 atoms correspond to the two bases of the central pillar (2x3

atoms) and the loss of the C
3

symmetry induces a change in the coordination

sphere of these atoms. Finally, we also report the presence of square patterns

located on the clusters surfaces as can be seen in Figure 6.
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Figure 6: 10 lowest-energy minima obtained for Au�
55 (green, top), Au55 (blue, middle) and

Au+55 (red, bottom).
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Isomer �E (eV) I
1

I
2

I
3

Symmetry

Au�
55

1 0.000 874.0 788.6 776.1 C
1

2 0.027 876.4 792.0 774.2 C
1

3 0.055 847.6 819.7 795.8 Cs

4 0.083 845.4 820.0 798.1 Cs

5 0.111 879.8 807.0 772.6 C
1

6 0.141 882.7 804.4 770.2 C
1

7 0.168 867.3 805.0 785.7 C
1

8 0.196 847.4 820.4 793.7 C
1

9 0.224 847.2 818.8 795.6 C
1

10 0.252 876.3 811.3 777.5 C
1

Au
55

1 0.000 832.4 828.2 777.5 C
3

(C
1

)

2 0.053 863.0 807.9 783.9 C
1

3 0.095 853.8 819.7 776.5 C
1

4 0.122 854.0 818.9 778.5 C
1

5 0.153 851.5 821.7 777.9 C
1

6 0.186 876.6 798.5 774.8 C
1

7 0.213 851.7 771.9 764.0 C
1

8 0.244 880.8 798.3 771.7 C
1

9 0.272 855.5 810.8 777.7 C
1

10 0.300 840.8 821.6 779.7 C
1

Au+
55

1 0.000 831.8 831.8 773.5 C
3

2 0.031 832.7 829.7 772.5 C
3

3 0.064 839.0 832.4 772.0 C
1

4 0.093 842.7 828.7 769.3 C
1

5 0.132 911.3 867.2 810.4 C
2

6 0.167 843.3 834.9 769.7 C
3

7 0.209 847.3 826.4 771.3 C
1

8 0.240 873.7 861.7 784.1 C
1

9 0.279 898.0 866.6 822.5 C
1

10 0.307 847.2 830.6 771.5 D
1

Table 5: Energetics and principal mass-less moments of inertia (in Å2) of Ag55 clusters.
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Figure 7: Perspective views of the cavities observed inside isomer number 5 of Au�
55 (top) and

isomer number 5 of Au+55 (bottom). The complete structures of the clusters are shown on the

left. The violet atoms are cleared to allow for visual observation of the cavities in the middle

plots. On the right plots, the clusters are oriented di↵erently to ease the visualization of the

atoms belonging to the plane (top, green) or to the pillar (bottom, green).
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Figure 8: Radial distribution function of a 55-atom icosahedron (green), for isomer number 5

of Au�55 (violet) (hollow structure with a separating plane) and for isomer number 5 of Au+55

(blue) (hollow structure with a central pillar).

4. Discussion265

The structure of 20-atom gold and silver clusters was addressed experimen-

tally via several techniques. The cationic and anionic clusters were addressed in

high resolution photo-electron spectroscopy experiments [35, 50, 30] and from

trapped ion electron di↵raction (TIED) measurements [52, 48, 53]. A very

detailed analysis of the structure of ions (cations and anions) using DFT calcu-270

lations combined with TIED experimental data for 20-atom metal clusters with

various charges was carried out by Letchke and coworkers [53]. A review was

given by Schoss et al. [83]. Assignment of the structures in those experiments

generally requires an interplay with theory, and a number of ab initio calcula-

tions, generally in the DFT framework, have been carried out either indepen-275

dently or in direct combination to support the experiments [44, 35, 51, 38, 53].

Neutral Au
20

was characterized from IR spectroscopy[39] and assigned a

tetrahedral structure with high Td symmetry, while the ions structures were

probed in TIED experiments. The present lowest energy DFTB structures for

Au
20

and its ions are found to be tetrahedral-like fcc type structures. The280

neutral 20-mer and the cation have exact Td symmetry, while the anion is slightly
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deformed due to a Jahn-Teller distortion. In the case of neutrals, most higher

energy isomers retain the fcc character, although some defects appear. In the

case of the ions, the SCC-DFTB higher energy isomers display larger structural

fluctuations (mixing of fcc and icosahedral patterns), and, even when similar,285

do not appear in the same energetic ordering as in the neutral case. The present

results are in good agreement with the DFT calculations of Letchke and other

authors for the lowest-energy structures of Au
20

, Au+
20

and Au�
20

. Note that the

ionic clusters are both characterized at the DFT level by small D
2d distortions

of the tetrahedral Td geometry. As mentionned previously, this is also the case290

for the anion in the present DFTB calculation, not for the cation. For Au�
20

,

the experimental TIED data [53] show a very good correlation with the lowest

energy tetrahedral isomer and the same assignment had been found from photo-

electron spectra experiments [35]. For the cationic species, a mixing between

the lowest isomer and the two next ones was found to fit best the TIED data.295

The situation of Ag
20

and its ions is quite di↵erent. Most of the low en-

ergy structures found with the present SCC-DFTB scheme consist of variations

around an icosahedral-like core, completed or displaying defects. In all cases,

the tetrahedral structure is much higher in energy (�E = 0.97, 1.30 and 1.04

eV for the neutral, the cation and the anion, respectively [67]). The SCC-DFTB300

lowest-energy configurations of Ag
20

and Ag+
20

actually have C
3

symmetry and

display very small geometrical di↵erences as can be inferred from the principal

inertia moments. In contrast, the SCC-DFTB symmetry of Ag�
20

is found to be

Cs. The present results for the neutral are in good agreement with the DFT

results of Letchke et al. [53]. They di↵er in the case of the anion, although305

the global icosahedron core pattern is the same in both calculations. Let us

note that we find ten isomers for Ag
20

in a 0.1 eV range and a similar quasi-

degeneracy is found by Letchke et al. [53]. Moreover, the assignment of TIED

data strongly confirmed the presence of icosahedron-core isomers, but hardly

allowed for specific isomer discrimination. Let us also note the recent DFT cal-310

culations by Dhillon et al. [27] and Chen et al. [28], which, despite the use of

the same TPSS functional, find di↵erent results for Ag
20

. Indeed, the lowest
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isomer of Dhillon is based on an icosahedral pattern, while that of Chen et al.

displays a tetrahedral structure.

The situation is less documented for 55-atom clusters. Photo-electron spec-315

troscopy results [38] revealed a clear structuration and a high degeneracy of the

electronic energy levels in the case of Ag�
55

, consistent with a high symmetry

shape. In contrast, the photo-electron spectrum for gold was found to be much

less structured, suggesting a more intricate electronic structure, possibly corre-

sponding to a less ordered cluster morphology, or to a mixing of structures in the320

experiment. Hakkinen et al. [34, 51, 38] relaxed at the DFT/LDA level selected

geometries such as the icosahedron and cuboctahedron structures, or configura-

tions originating from optimal structures generated with Morse, Sutton-Chen,

Gupta and Glue potentials. They found the icosahedron to be the lowest-energy

configuration in the case of Ag�
55

while Sutton Chen and Glue structures were325

the lowest ones for Au�
55

, the very symmetric cuboctahedral and icosahedral

configurations lying at higher energy. The calculated DFT/LDA photo-electron

spectra for the lowest-energy isomers of Au�
55

appeared to be in line with a rather

disordered electronic structure, although the authors mentioned that none of

them fully matched the experimental spectra, and that other structures should330

be considered. Schoss et al. [48] provided TIED data for Ag+
55

and Ag�
55

, and

showed their correspondence with icosahedral structures, slightly distorted in

the case of the anion. The present SCC-DFTB investigation also presents very

contrasted results for Ag
55

and Au
55

. The lowest energy structure of Ag
55

,

Ag+
55

Ag�
55

are found to be Jahn-Teller slightly distorted Ih icosahedrons. In335

contrast, Au
55

clusters o↵er a completely di↵erent picture. Indeed, in gold,

due to the fact that the structures are more disordered, the SCC-DFTB lowest-

energy isomers show a strong dependence upon the charge state. Let us mention

a recent size-selected scanning transmission electron microscopy investigation of

Wang and Palmer [49], who report a better correspondence of the Au
55

STEM340

images with low symmetry structures vs icosahedra or cuboctahedra, among

which possibly chiral geometries. They also report possible structures mixing

ordered parts with disordered ones. Some of the higher energy isomers reported
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in the present study possess such dual structure, in particular isomer Au
55

(1).

An extremely interesting finding is that many isomers of Au
55

reported in the345

present study are less compact than those of silver and display cavities, and

even sometimes multiple cavities, below the external shell. The possibilities for

gold clusters to exhibit cage patterns have already been mentioned in a number

of theoretical studies, in particular for Au2�
16

and Au2�
34

, and also for various

clusters in the range 32-56 [84]. However, all previous studies did rely on DFT350

relaxation of a priori cage guesses, and not from a global optimization scheme.

Thus, to the best of our knowledge, it is the first time that cavities are obtained

directly from a global optimization procedure without a priori constraints for

clusters in this size range. In order to check the stability of such cavity display-

ing structure, DFT calculations have been achieved (PW91[85]/PAW[86, 87],355

see supplementary material for computational details). We present in table 4

the relative stability of selected Au
55

structures, including the most stable iso-

mer (Au
55

, isomer 1) obtained in this work and various structures reported in

reference [51]. Table 4 shows that isomer 1 is stable and remains the most

stable structure at the DFT level. The DFT and DFTB energetic orderings of360

the isomers are similar. The cavity structure (isomer 1) is particularly stable

at the DFTB level, which explains the largest structural excitation energies of

the other isomers. Note that Morse and Icosahedron structures experienced

significant geometrical changes in the DFT relaxation leading, respectively, to

internal cavities or local surface concavities. The latter being also observed in365

the DFTB relaxation of the Icosahedron structure.

One may also analyze the characteristics of the density of isomers from

the present calculations. It is seen that in the case of highly symmetric or

quasi-symmetric minimal energy isomers (such as the quasi-tetrahedral or quasi-

icosahedral), the gaps between the SCC-DFTB absolute minima and the second370

isomers are larger than for less symmetric structures. This is for instance the

case for Au
20

(�E = 0.694 eV) vs Ag
20

(�E = 0.119 eV). The same trend can

be observed for Ag
55

(�E = 0.509 eV) vs Au
55

(�E = 0.053 eV). The addition

or removal of an electron causes a lowering of this structural energy gap and,
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Structure DFT/PW91/PAW DFTB

Cuboctahedron 3.073 5.14

Decahedron 2.429 4.91

Icosahedron 1.587⇤ 4.36⇤

Glue 1.574 3.66

Sutton-Chen 1.110 3.33

Morse 0.394⇤ 3.37

Isomer 1, this work 0 0

Table 6: DFT and DFTB structural excitation energies (eV) for a sample of selected Au55

structures taken from the present work and from ref. [51]. ⇤ indicates a significant structural

variation during the optimization.

in general, an increase of the density of isomers. This can also be inferred from375

Table 1 at least for the 20-atom clusters. It is worth mentioning that in the case

of the 20-atom clusters, the present SCC-DFTB isomer gaps are in quite good

agreement with the DFT results of Letchke et al. [53].

Finally, Figure 5 shows a clear di↵erence in the cumulative coordination

numbers of the ten isomers investigated here for Ag
55

and Au
55

. A bi-modal380

distance distribution is observed in the case of silver in contrast to gold which is

characterized by a much broader distribution. This somewhat quantifies the or-

der di↵erence between 55-atom gold and silver clusters, not only for the minimal

energy structures, but also for the next low-lying isomers.

5. Conclusion385

There are several conclusions and perspectives to the present study: (i) It

demonstrates the feasibility of global optimization using DFTB without pre-

screening involving a classical potential for sizes up to a few tens of atoms.

DFTB is in particular able to deal with Jahn-Teller distorsions; (ii) It proves

that the DFTB structures obtained are consistent with previous calculations and390

available experimental assignments for Au
20

, Ag
20

or Ag
55

ions. It is also in
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qualitative agreement with the photo-electron detachment experiments, TIED

experiments and previous calculations based on relaxation of pre-selected con-

figurations for Ag�
55

and Au�
55

. If the nearly icosahedral character of the struc-

tures of Ag
55

and its ions seems now to be well grounded, final conclusion in395

the case of gold will require further investigations due to larger structural dis-

order. The present DFTB calculations reveal new disordered structures which

have not been previously reported, and may be consistent with the experimen-

tal findings in the case of Au
55

. We have validated the stability of the lowest

energy Au
55

isomer (cavity type), using a DFT+GGA functional. Obviously,400

this validation should be further credited by means of DFT with high level

functionals and by the calculation of the experimentally measured observables.

This is however beyond the scope of the present work; (iii) The present in-

vestigation opens direct perspectives such as unbiased optimization addressing

other interesting sizes (cages) and a range which covers the transition between405

clusters and nanoparticles, but also multiply charged clusters; (iv) Finally it

will be extremely convenient to use DFTB to investigate phase changes and

thermodynamical properties of noble metal clusters.

6. Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online410

version, at XXX . It contains details about DFT computational details, ener-

getics, structural properties and cartesian coordinates of the DFTB isomers.
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