
HAL Id: hal-01529340
https://hal.science/hal-01529340v1

Submitted on 30 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monoidal Company for Accessible Functors
Henning Basold, Damien Pous, Jurriaan Rot

To cite this version:
Henning Basold, Damien Pous, Jurriaan Rot. Monoidal Company for Accessible Functors. CALCO,
Jun 2017, Ljubljana, Slovenia. �hal-01529340�

https://hal.science/hal-01529340v1
https://hal.archives-ouvertes.fr


Monoidal Company for Accessible Functors∗

Henning Basold1, Damien Pous2, and Jurriaan Rot3

1 Radboud University, Nijmegen, The Netherlands
henning@basold.eu

2 Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, France
Damien.Pous@ens-lyon.fr

3 Radboud University, Nijmegen, The Netherlands
jrot@cs.ru.nl

Abstract
Distributive laws between functors are a fundamental tool in the theory of coalgebras. In the
context of coinduction in complete lattices, they correspond to the so-called compatible functions,
which enable enhancements of the coinductive proof technique. Amongst these, the greatest com-
patible function, called the companion, has recently been shown to satisfy many good properties.

Categorically, the companion of a functor corresponds to the final object in a category of
distributive laws. We show that every accessible functor on a locally presentable category has a
companion. Central to this and other constructions in the paper is the presentation of distributive
laws as coalgebras for a certain functor. This functor itself has again, what we call, a second-
order companion. We show how this companion interacts with the various monoidal structures
on functor categories. In particular, both the first- and second-order companion give rise to
monads. We use these results to obtain an abstract GSOS-like extension result for specifications
involving the second-order companion.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases coalgebras, distributive laws, accessible functors, monoidal categories

Digital Object Identifier 10.4230/LIPIcs.CALCO.2017.5

1 Introduction

Coalgebras are an abstract tool for defining and studying the semantics of state-based
systems [6]. Distributive laws of various kinds play a crucial role in the theory of coalgebras
and coinduction. For instance, they are used in (structural) operational semantics [22, 3], for
automata constructions [19], and for coinductive proof techniques [5].

In the context of complete lattices, distributive laws for a given functor correspond to
functions compatible with a given function [14]. Those were introduced to obtain a modular
theory of enhancements of the coinductive proof method (up-to techniques): most of the
useful enhancements can be presented as compatible functions, and their class is closed
under union and composition. In particular, the union of all compatible functions is always
a compatible function, the greatest one. This greatest compatible function, called the
companion, subsumes all compatible functions and is a closure operator [15].

∗ This is the full version of the abstract to appear in Proc. CALCO 2017. This work was funded by the
European Research Council (ERC) under the Horizon 2020 programme (CoVeCe, No. 678157) and the
Seventh Framework Programme FP7/2007-2013 (QCLS, No. 320571), by the project ANR 12IS02001
PACE and the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program
“Investissements d’Avenir” (ANR-11-IDEX-0007).

© Henning Basold and Damien Pous and Jurriaan Rot;
licensed under Creative Commons License CC-BY

7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017).
Editors: Filippo Bonchi and Barbara König; Article No. 5; pp. 5:1–5:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


5:2 Monoidal Company for Accessible Functors

The last two authors recently gave a categorical account of the companion of a functor [16]:
it can be defined as the final object in the category of distributive laws over that functor;
if it exists it is a monad (and the underlying distributive law is that of a monad); and
under some conditions, it can be constructed explicitly as the codensity monad of the final
sequence of the starting functor. The latter existence result corresponds to a Kleene-like
fixpoint theorem, and yields a characterisation of the companion in complete lattices similar
to that from Parrow and Weber’s work [13]. It is also shown in [16] that the companion of a
polynomial functor can be characterised using an abstract notion of causal algebra.

Here we pursue this line of work in another direction, by investigating structural properties
and existence of the companion via a Knaster-Tarski-like theorem [9, 21]: accessible functors
on a locally presentable category have a final coalgebra [12, 1].

In Section 3 we establish an adjunction between coalgebras for an endofunctor B and
distributive laws over B, so that a final coalgebra for B can be obtained from the companion
of B. We also recover that the companion is a distributive law of a monad by observing
that the (strict) monoidal structure of composition in the category of endofunctors lifts to
the category of distributive laws. Monoids for this lifted monoidal structure are precisely
distributive laws of monads, and so is the companion (which is a monoid by finality).

Being defined as the largest compatible function, the companion in complete lattices
can be obtained as the greatest fixpoint of a carefully chosen functional [15]. We extend
this idea categorically in Section 4, by associating to a given endofunctor B a second-order
endofunctor B whose category of coalgebras is isomorphic to the category of distributive laws
over B. Slightly more generally, we have the following bijective correspondence:

FB ⇒ BG

F ⇒ B(G)

The second-order functor B is defined using right Kan extensions. It was used by Street to
establish another correspondence, between distributive laws of monads and monad maps [20].
We show that B is lax monoidal, so that the aforementioned isomorphism actually is an
isomorphism of monoidal categories.

To get the existence of the companion, it suffices to show that B exists and has a final
coalgebra; this is where we use accessibility (Section 5). There is a technical subtlety here.
Indeed, for size reasons, we restrict B to the sub-category of κ-accessible functors, for some
large enough regular cardinal κ. Doing so, the companion we obtain as a final B-coalgebra
depends on κ: it is κ-accessible, and it subsumes only those distributive laws that are
κ-accessible. By considering larger and larger cardinals, one can thus obtain a sequence of
companions relative to those cardinals. (In small categories, this sequence actually converges.)

Building on those results, we give a new account for some results in structural operational
semantics, where one usually considers more permissive notions of distributive laws. For
instance, one often works with natural transformations of the shape ρ : FB ⇒ BF ?, where
F ? is the free monad over F . This is fine because every such natural transformation can be
turned into a distributive law ρ] : F ?B ⇒ BF ?.

According to the previous bijection, natural transformations such as the above ρ are in
one-to-one correspondence with coalgebras for the composite functor B(−?), which can be
considered as coalgebras for B up to −?. This observation makes it possible to reuse the
theory of up-to techniques to propose a new format (Section 6). Indeed, the second-order
functor B being accessible, it admits a second order companion, T, and one can work with
distributive laws up to T, that is, natural transformations of type FB ⇒ BT(F ).

By lifting another monoidal structure, we prove that T produces monads: given any
functor F , T(F ) is always a monad (but not the free one). We show that starting from a



H. Basold and D. Pous and J. Rot 5:3

distributive law up to T as above, one obtains a distributive law of the monad T(F ) over B.
We illustrate the use of these distributive laws up to T in the stream calculus [18].

When starting with a natural transformation like the above ρ : FB ⇒ BF ?, for which
tools not requiring the second order companion already exist, we show that the two approaches
are consistent: they eventually lead to the same F -algebra on the final B-coalgebra. We
conjecture that a similar result holds with respect to abstract GSOS specifications [22].

Most omitted proofs can be found in appendix.

2 Preliminaries

Before we dive into the content of the paper, we introduce some notation and concepts that we
use throughout. We use capital, calligraphic letters like C,D, . . . to stand for general categories.
We write [C,D] for the category of functors from C to D with natural transformation α, β, . . .
as morphisms. Given a functor F : C → D, we denote by F ∗ : [D, E ]→ [C, E ] the functor that
pre-composes with F , and by F∗ : [E , C]→ [E ,D] the functor that post-composes with F . If X
is an object in D, then we write KX : C → D for the constant functor that maps every object
in C to X. For the sake of clarity, we denote general functors between functor categories by
blackboard letters F,G,H, . . . and refer to them as second-order functors. Consequently, we
call the category of functors between functor categories the second-order functor category.
Given an endofunctor B : C → C, we denote the category of B-coalgebras by coalg(B).

2.1 Locally Presentable Categories and Accessible functors
The construction of the companion in Section 5 crucially uses locally presentable categories
and accessible functors thereon. We recall these notions and some of their properties, see [2]
for an extensive treatment. Let us first describe locally κ-presentable categories for a regular
cardinal κ. A diagram D : I → C is said to be κ-filtered if the category I is κ-filtered, that
is, if every diagram in I smaller than κ has a cocone. Whenever the colimit of D exists, it
is called κ-filtered as well. Next, we say X ∈ C is a κ-presented object if the hom-functor
C(X,−) : C → Set preserves κ-filtered colimits. Finally, a category C is locally κ-presentable if
it is locally small, cocomplete, and there is a set S of κ-presented objects in C that generates
C: every object in C is a κ-filtered colimit of objects from S.

Central to working with locally presentable categories is the notion of accessible functors.
A functor F : C → C is κ-accessible if it preserves κ-filtered colimits. We denote the category
of κ-accessible endofunctors on C by [C, C]κ. Note that κ-accessible functors can be composed,
thus for a κ-accessible functor F : C → C, the pre- and post-composition functors F ∗ and F∗
restrict to endofunctors on [C, C]κ.

We shall mention some important results that we need later. For a locally κ-presentable
category C, we denote by Cκ the full subcategory of κ-presentable objects and the inclusion
functor by I : Cκ → C. By [12, Proposition 2.1.5], Cκ is essentially small, that is, Cκ is
equivalent to a small category. Lastly, by [12, Proposition 2.4.3] the pre-composition functor

I∗ has a left adjoint as in [C, C]κ [Cκ, C]
I∗

, which also is an adjoint equivalence, see [12,
Corollary 2.1.9]. This allows us to represent κ-accessible functors by functors on generators.

2.2 Monoidal Categories and Monads
Monoidal categories are categories that come with a notion of tensor product and a unit
for that tensor product. For the purpose of this exposition, we are only interested in strict
monoidal categories. These are triples (C,⊗, I), where C is a category, ⊗ : C × C → C is a

CALCO 2017



5:4 Monoidal Company for Accessible Functors

functor, the tensor, and I ∈ C is an object, the unit. This data is subject to the following
equations: X⊗ (Y ⊗Z) = (X⊗Y )⊗Z, X⊗I = X, I⊗X = X. Since we will only encounter
strict monoidal categories, we drop the adjective “strict”. A category D is said to be a
monoidal subcategory of C if D is a subcategory of C, and D is closed under the tensor product
and contains the unit I. Given a functor F : C → D between monoidal categories (C,⊗C , IC)
and (D,⊗D, ID), we say that F is a lax monoidal functor if there is a morphism β : ID → F (IC)
and a natural transformation α : ⊗D ◦ (F × F ) ⇒ F ◦ ⊗C. These morphisms must fulfil
the following three equations for all objects X,Y, Z ∈ C: αIC,X ◦ (β ⊗D idFX) = idFX ,
αX,IC ◦ (idFX ⊗D β) = idFX and αX⊗CY,Z ◦ (αX,Y ⊗D idFZ) = αX,Y⊗CZ ◦ (idFX ⊗D αY,Z). If
α and β are both identities, we say that F is a strict monoidal functor. Finally, we consider
monoidal categories to be isomorphic if there is a strict monoidal isomorphism between them.

The two relevant examples of monoidal structures are given by the different ways functors
can be composed. For any category C, there is an obvious monoidal structure on the
functor category [C, C], defined in terms of functor composition. We denote this structure by
([C, C], ∗, Id), where the tensor product on functors F,G ∈ [C, C] is defined by F ∗G = F ◦G,
and for natural transformations α and β the tensor α ∗ β is given by horizontal composition.
If (D,⊗, I) is itself a monoidal category, then there is a second way of turning [D,D] into a
monoidal category, by point-wise tensoring of functors. That is, one defines a tensor product
⊗′ by (F ⊗′G)(D) = F (D)⊗G(D) and on natural transformations by (α⊗′ β)D = αD⊗βD.
The identity is given by the constant functor KI with KI(D) = I. In this paper we will use
the particular instance with (D,⊗, I) = ([C, C], ∗, Id) on the second-order functor category;
we denote this instance by ([[C, C], [C, C]],~,KId).

2.3 Monads and Distributive Laws

We will make good use of the folklore phrase “a monad is just a monoid in the category
of endofunctors”. A monoid in a monoidal category (C,⊗, I) is a triple (X,m, e), where
X ∈ C, m : X ⊗X → X and e : I → X, such that m ◦ (id ⊗ e) = id, m ◦ (e ⊗ id) = id and
m ◦ (m ⊗ id) = m ◦ (id ⊗ m). Accordingly, a monad is a triple (F, µ, η),1 where F is an
endofunctor on C, and µ : F ∗F ⇒ F and η : Id⇒ F are natural transformations; the monoid
laws are then just the usual monad laws. A monad map from (F, µF , ηG) to (G,µG, ηG) is a
natural transformation F ⇒ G that makes the evident coherence diagrams commute. Finally
note that lax monoidal functors preserve monoids.

The central objects of study in this paper are distributive laws. Given endofunctors
B,F : C → C on a category C, a distributive law is a natural transformation FB ⇒ BF .
Such a distributive law induces a lifting of F to coalg(B). If (F, µF , ηF ) is a monad, we say
that ρ : FB ⇒ BF is a distributive law of a monad (over B), provided that ρ ◦ ηFB = BηF

and ρ ◦ µFB = BµF ◦ ρF ◦ Fρ hold. On rare occasions, we need to generalise distributive
laws to asymmetric distributive laws, which are natural transformations FB ⇒ BG for
another endofunctor G on C. Similarly, if G carries a monad structure (G,µG, ηG), we
say that ρ : FB ⇒ BG is an asymmetric distributive law of monads (over B), whenever
ρ ◦ ηFB = BηG and ρ ◦ µFB = BµG ◦ ρG ◦ Fρ hold.2

1 We divert from the usual order (F, η, µ) for denoting monads, since for monoids and monoidal categories
the multiplication comes first.

2 Note that Street [20] refers in this situation to (B, ρ) as a monad functor.



H. Basold and D. Pous and J. Rot 5:5

3 The Companion of a Functor

We define the notion of companion, and show several of its properties. Throughout this
section, let F be a full, monoidal subcategory of ([C, C], ∗, Id), and B : C → C a functor in
F . The reader can safely assume F = [C, C]. The slight generalisation to subcategories is
required for the material in Section 5, where we restrict to categories of accessible functors.

I Definition 1. The category DL(B) of distributive laws (w.r.t. the subcategory F) is defined
as follows. An object is a pair (F, λ) where F : C → C is a functor in F and λ : FB ⇒ BF is
a natural transformation. A morphism of distributive laws from (F, λ) to (G, ρ) is a natural
transformation δ : F ⇒ G such that ρ ◦ δB = Bδ ◦ λ, see [17, 23, 10, 8]. The companion
of B is the final object of DL(B), if it exists. We typically denote the companion of B by
(TB , τB), or (T, τ) if B is clear from the context. Given an object (F, λ) in DL(B), we write
λ† : F ⇒ T for the unique morphism obtained by finality.

3.1 Final Coalgebra from the Companion
Suppose the underlying category C has an initial object 0. Consider the functor ev0 : DL(B)→
coalg(B), defined on objects as ev0(F, λ) = λ0 ◦ F !B0 : F0→ BF0. In [16], we showed that
applying ev0 to the companion yields a final B-coalgebra. Here we generalise the situation
to subcategories of [C, C] and show a stronger result: the functor ev0 has a left adjoint.

A coalgebra f : X → BX is a distributive law of the constant functor KX over B. If KX

is an object of F , for each X, then this gives rise to a functor, which is left adjoint to ev0.

I Theorem 2. Suppose that F contains all constant functors KX for X in C. Then K

extends to a functor K : coalg(B)→ DL(B) which is a left adjoint of ev0.

coalg(B)
K

**

` DL(B)
ev0

kk

Hence, if (T, τ) is the companion, then ev0(T, τ) is a final B-coalgebra.

It follows from the above theorem that not every functor B has a companion.

3.2 Monoidal Structure of Distributive Laws
In [16], we showed that the companion, if it exists, is always a monad. It turns out that this
result can be phrased slightly more generally based on the monoidal structure of F given by
composition. The main observation is that the monoidal structure of [C, C] lifts to DL(B),
and that a monoid in DL(B) corresponds to a monad with a distributive law over B.

I Theorem 3. The category DL(B) is strict monoidal, with tensor product ∗ given by

(F, λ) ∗ (G, ρ) = (FG, λG ◦ Fρ)

and the unit by trivial distributive law (Id, id : B ⇒ B). An object (F, λ) is a monoid in
(DL(B), ∗, id) if and only if F is a monad and λ a distributive law of that monad over B.

Proof. For an object (F, λ) of DL(B), (F, µ, η) is a monoid iff
1. η is a morphism from (Id, id) to (F, λ), i.e., Bη = λ ◦ ηB;
2. µ is a morphism from (F, λ) ∗ (F, λ) to (F, λ), i.e., λ ◦ µB = Bµ ◦ λF ◦ Fλ;

CALCO 2017



5:6 Monoidal Company for Accessible Functors

3. (F, µ, η) is a monoid in F .
The first two items are the axioms of distributive laws of monad over functor, the third is
equivalent to (F, µ, η) being a monad. J

It is straightforward that the final object of any monoidal category, if it exists, is a monoid.
Instantiating this to DL(B) and applying Theorem 3, we obtain the following result. The
first item appeared in [16], for F = [C, C].

I Corollary 4. Suppose (T, τ) is the companion of B.
1. There are unique η : Id⇒ T and µ : TT ⇒ T such that (T, µ, η) is a monad and τ : TB ⇒

BT is a distributive law of this monad over B.
2. For any (F, λ) in DL(B), if F is a monad and λ a distributive law of that monad over B,

then λ† : F ⇒ T is a monad map.

4 Distributive Laws as Coalgebras

In this section we work again with an endofunctor B on a monoidal subcategory F of [C, C].
An important idea underlying the current paper is that distributive laws over B can be
characterised as coalgebras for a certain functor B : F → F . To obtain B, suppose that
B has a (global) right Kan extension RanB(−) : F → F , that is, a right adjoint to the
pre-composition functor B∗. This gives us a bijective correspondence

FB ⇒ G (Kan)
F ⇒ RanBG

natural in F and G. We obtain the correspondence between coalgebras and distributive laws
from (Kan) by taking G = BF . More precisely, we compose RanB and B∗ to the functor

B = RanB(B−) : F → F . (1)

We call this functor the familiar of B. From (Kan) we get the announced correspondence.

I Lemma 5. The category coalg(B) is isomorphic to DL(B).

Proof. The isomorphism is immediate by the natural bijection (Kan). Note that the functor
coalg(B)→ DL(B) is given by transposing along the adjunction, that is, it maps λ : F ⇒ B(F )
to εF ◦ λB : FB ⇒ BF , where εF is the counit of the Kan extension B(F ). J

In particular, the companion of B is the final B-coalgebra.

I Example 6. Let b : L→ L be a monotone function on a complete lattice L. The associated
B : [L,L] → [L,L] was given in [15] by B(f) =

∨
gb≤bf g. The correspondence in Lemma 5

means that f is b-compatible (i.e., fb ≤ bf) iff it is a post-fixed point of B. The standard
pointwise computation of right Kan extensions by limits gives another characterisation:

B(f)(x) =
∧

x≤b(y)

bf(y) .

Street [20] considers the functor B in the context of monads, to obtain the following corres-
pondence between monad maps and distributive laws. We use this result in Section 6.

I Lemma 7. If G is a monad, then B(G) is a monad as well. Moreover, given monads F,G
there is a one-to-one correspondence:



H. Basold and D. Pous and J. Rot 5:7

FB ⇒ BG asymm. d.l. of monads over B
(Street)

F ⇒ B(G) monad map

We complete the picture by showing that the familiar B is lax monoidal.

I Theorem 8. The functor B is a lax monoidal endofunctor on (F , ∗, Id).

Proof. To show that B is lax monoidal, we use that for each H : C → C, (B(H), εH) is a right
Kan extension of BH along B. This allows us to define for functors F,G : C → C the mediators
αF,G : B(F )B(G)⇒ B(FG) and β : Id⇒ B(Id) as the unique natural transformations such
that the following two diagrams commute.

B(F )B(G)B
αF,GB +3

B(F )εG

��

B(FG)B

εF G

��
B(F )BG

εFG
+3 BFG

B
βB +3 B(Id)B

εId

��
B

Naturality of α (in F and G) follows via the adjunction of the right Kan extension from
naturality of εFG ◦ B(F )εG (in F and G), we skip the details. It remains to prove the
coherence axioms for α and β. Given F,G,H : C → C, we thus need to prove:

B(F )B(G)B(H)
B(F )αG,H//

αF,GB(H)
��

B(F )B(GH)

αF,GH

��
B(FG)B(H)

αF G,H

// B(FGH)

B(F )
B(F )β // B(F )B(Id)

αF,Id

��
B(F )

B(F )
βB(F ) // B(Id)B(F )

αId,F

��
B(F )

All these diagrams commute by appealing to the universal property of the Kan extensions. J

The above theorem allows us to turn coalg(B) into a monoidal category, with tensor
product defined by (F, λ) ∗ (G, ρ) = (FG,αF,G ◦ (λ ∗ ρ)) and with unit Id = (Id, β). This
monoidal structure is the same, modulo an isomorphism, as the monoidal structure of DL(B)
given by composition, as we show in the following lemma.

I Lemma 9. The monoidal category (coalg(B), ∗, Id) is isomorphic to (DL(B), ∗, Id). Hence,
((F, λ), µ, η) is a monoid in DL(B) if and only if ((F, λ∗), µ, η) is a monoid in coalg(B),
where λ∗ is the coalgebra associated to λ by the isomorphism.

Proof. It suffices to prove that the functor from coalg(B) to DL(B) in Lemma 5 is strict
monoidal. Hence, we have to prove for λ : F ⇒ B(F ) and ρ : G ⇒ B(G) that transposing
(FG,αF,G ◦ (λ ∗ ρ)) is the same as the monoidal product of the transpose of (F, λ) and the
transpose of (G, ρ) in DL(B). In turn, this follows by a routine calculation. J

5 Constructing the Companion of an Accessible Functor

We show now that the companion of an accessible functor generally exists. More concretely,
we assume that B : C → C is a κ-accessible functor on a locally κ-presentable category C. We
instantiate the subcategory F of Section 3 to the category [C, C]κ of κ-accessible functors.
For the sake of clarity, let us denote the associated category of distributive laws by DLκ(B),
and refer to the companion, the final object in DLκ(B), as the κ-companion. Further, we
denote the associated familiar of B by Bκ, and call it the κ-familiar. The presentation
of distributive laws over B as coalgebras for Bκ allows us to construct in Theorem 12 the
κ-companion as a final Bκ-coalgebra. We begin by showing that the κ-familiar Bκ exists.

CALCO 2017



5:8 Monoidal Company for Accessible Functors

I Lemma 10. The functor B∗ : [C, C]κ → [C, C]κ has a right adjoint, given by RanBI(−I).

Proof. Recall the inclusion functor I : Cκ → C and consider the right Kan extension RanBI :

[C, C]κ

[C, C]κ [Cκ, C]
I∗B∗

RanBI

a

This Kan extension exists and is computed pointwise by the standard limit formula, see,
e.g., [11], using that Cκ is essentially small and C is complete [2, Corollary 1.28]. The desired
adjunction is given by the bijective correspondence below, which is natural both in F and G.

FB ⇒ G

FBI ⇒ GI (Kan)
F ⇒ RanBIGI

The upper correspondence (natural in FB and G) comes from the fact that I∗ is part of an
equivalence, and the lower one (natural in F and GI) from the above right Kan extension. J

Using Lemma 10, we can show that the familiar Bκ exists. Recall that we defined in
(1) the familiar as the composition of the right adjoint RanBI(−I) and B∗, thus we have
Bκ(F ) = RanBI(BFI). Lemma 5 asserts that coalg(Bκ) ∼= DLκ(B). The problem of finding
a κ-companion now reduces to finding a final Bκ-coalgebra, for which we can use standard
tools: any accessible functor on a locally presentable category has a final coalgebra.

I Lemma 11. The functor Bκ is accessible.

Proof. The functor B∗ is accessible since B is, and colimits in functor categories are computed
pointwise. The functor RanBI(−) is accessible, since it is a right adjoint on locally presentable
categories, which in turn follows from the adjoint functor theorem for locally presentable
categories [2, Theorem 1.66]. Since the composition of accessible functors is again accessible,
we obtain that Bκ is accessible. J

Note that the above lemma states that Bκ is accessible, and not that it is κ-accessible. The
adjoint functor theorem guarantees accessibility of RanBI(−) only for a cardinal that is
potentially larger than κ.

I Theorem 12. The functor B has a κ-companion.

Proof. The category [C, C]κ is locally presentable, since it is equivalent to the category [Cκ, C],
which is locally presentable [2]. Since Bκ is accessible by Lemma 11, coalg(Bκ) has a final
object, see [12] or [1, Theorem 4.2.12]. This final object gives the κ-companion through the
isomorphism between coalg(Bκ) and DLκ(B). J

I Example 13. 1. Any complete lattice L is locally presentable, and any monotone function
b : L → L is accessible (both for a sufficiently large cardinal). Hence, we obtain the
companion for any such b, and thereby recover the corresponding result in [15].

2. The finite powerset functor Pω on Set is ω-accessible, hence it has an ω-companion. Of
course, ω can be replaced here by any regular cardinal.

3. More generally, define the class of Kripke-polynomial functors (on Set) as the least class
that contains Pω, the constant functors KA and exponent functors (−)A for every set A,
and which is closed under finite products, non-empty coproducts and composition. It is
well-known that every Kripke polynomial functor is accessible, see, e.g., [6, Lemma 4.6.8],
hence any Kripke-polynomial functor has a κ-companion, for some κ.



H. Basold and D. Pous and J. Rot 5:9

I Remark. Any constant functor KX , for X an object of C, is ω-accessible. By Theorem 2,
the κ-companion of B yields a final B-coalgebra by evaluation on an initial object of C.

6 Second-Order Companion and Distributive Laws Up-To

The construction of the previous section can be iterated to obtain “higher-order” companions:
By Lemma 11, Bκ is again an accessible functor on the locally presentable category [C, C]κ.
Hence, by Theorem 12, the functor Bκ itself has a companion Tκ. More generally, we assume
in this section that both the familiar B of B and the companion T of B exist. We refer in
the sequel to T as the second-order companion.

Such a second-order companion turned out to be a useful tool for proving soundness
of up-to techniques in the context of complete lattices [15]. Here, we use second-order
companions to propose general GSOS-type specifications presented by distributive laws in
Section 6.2. We first provide some background on such specifications.

In the theory of coalgebras, distributive laws ρ : FB ⇒ BF are frequently used as an
abstract specification format, where F represents the syntax (typically F is a polynomial
functor representing an algebraic signature), B the type of behaviour and ρ the semantics
(see [7] for an overview). For specific instances of B (and F ), such natural transformations
correspond to concrete syntactic rule formats. It is customary in this approach to start from
more permissive types of distributive laws, that also correspond to more general rule formats,
such as ρ : FB ⇒ B(F + Id), or ρ : FB ⇒ BF ?, where F ? is the free monad over F . An
even more general type is given by the celebrated abstract GSOS specifications, of the form
ρ : F (B × Id)⇒ BF ?, which are briefly discussed at the end of the paper.

Such natural transformations can typically be extended to distributive laws, possibly with
additional structure. In particular, a natural transformation ρ : FB ⇒ BF ? corresponds
uniquely to a distributive law ρ] : F ?B ⇒ BF ? of the free monad F ? over B. This is typically
proved by appealing to initiality of algebras, see, e.g., [3]. We can give an elegant proof by
using the familiar as follows, where the second step uses that B(F ?) is a monad (Lemma 7).

FB ⇒ BF ? (Kan)
F ⇒ B(F ?)

(Free)
F ? ⇒ B(F ?) monad map

(Street)
F ?B ⇒ BF ? d.l. of monad over functor

In the remainder of this section we consider a more general type of natural transformation:
that of the form ρ : FB ⇒ BT(F ). We refer to it as a distributive law up to T. The main
result is that T(F ) carries a monad structure, and that every such ρ extends to a distributive
law of this monad over B. The approach is at a high level similar to the one for the case
FB ⇒ BF ? (c.f. Theorem 15), but it is significantly more involved, as T(F ) is not a free
monad F in general (note, for instance, that it depends on B). Later in this section, we show
that distributive laws up to T properly generalise distributive laws of the form FB ⇒ BF ?.

Throughout this section, we let F be a full monoidal subcategory of ([C, C], ∗, Id) and S
be a full subcategory of [F ,F ] such that
1. S is a monoidal subcategory of ([F ,F ], ∗, Id), that is, S is closed under composition and

contains the identity functor;
2. S is a monoidal subcategory of ([F ,F ],~,KId), that is, S contains the constant functor

KId, and if F,G ∈ S, then the functor F~G given by F 7→ F(F )G(F ) is in S;
3. the familiar B exists and is an element of S;
4. the familiar B has a companion T.

CALCO 2017



5:10 Monoidal Company for Accessible Functors

The category DL(B) is given by distributive laws over B (with functors in F), and the
category DL(B) is given by distributive laws over B (with functors in S). The main instance
of interest is given by the accessible functors, for which B and T exist whenever B is accessible:

I Lemma 14. Let B : C → C be κ-accessible. Let F = [C, C]κ and S = [F ,F ]λ, where λ ≥ κ
is a regular cardinal such that Bκ is λ-accessible. These F and S meet assumptions 1.-4.

6.1 Second-Order Companion and Monads
An important feature of the companion is that it is a monad, which allows us to collapse
multiple uses of the companion. This result lifts to the second-order companion T in two
ways. First, by Theorem 3 the category DL(B) of distributive laws over B inherits a monoidal
structure from (S, ∗, Id). This gives rise to a monad structure (T, µ, η) on T, see Corollary 4.
We denote the associated distributive law of that monad over B by π : TB⇒ BT. Second,
more interestingly, T has a monoid structure in (S,~,KId). This is proved in Theorem 15 by
using that (S,~,KId) lifts to DL(B). The monoid structure neatly encapsulates the fact that
(T(F ), µ̇F , η̇F ) is a monad, for every functor F : C → C in F (Corollary 16).

I Theorem 15. The monoidal structure of (S,~,KId) lifts to DL(B). This yields a monoid
(T, µ̇ : T~ T→ T, η̇ : KId → T) on the second-order companion.

Proof. We use that B is lax monoidal (Theorem 8) with mediators β : Id ⇒ B(Id) and
αF,G : B(F )B(G)⇒ B(FG) (natural in F,G ∈ F). Now, given (F, λ) and (G, ρ) in S, for the
tensor (F, λ) ~ (G, ρ) we have to provide a distributive law of type (F~G)B⇒ B(F~G),
which we define on a component F as:

(F~G)B(F ) FB(F )GB(F ) λF ∗ρF +3 BF(F )BG(F )
αF(F ),G(F ) +3 B(F(F )G(F )) .

The distributive law for the unit KId is defined by:

KIdB(F ) Id β +3 B(Id) BKId(F )

Naturality and the axioms of monoidal categories are routine calculations. J

Given a functor F in F , we get a strict monoidal functor evF : S → F by letting evF (G) =
G(F ). Since monoidal functors preserve monoids, T(F ) is a monoid in F , i.e., a monad.

I Corollary 16. For every functor F in F , (T(F ), µ̇F , η̇F ) is a monad.

We now prove that any distributive law λ : FB ⇒ BF gives rise to a distributive law of the
monad (T(F ), µ̇F , η̇F ) over B (Corollary 18 below). To do so, we first extend evF to a strict
monoidal functor ev(F,λ) : DL(B)→ DL(B) (Theorem 17). Let ρ : GB⇒ BG be a distributive
law. We obtain a lifting G : coalg(B) → coalg(B) by Gρ(G, γ) = ρG ◦ T(γ). From this, we
construct a distributive law over B by applying the following transformation to λ:

FB ⇒ BF (Kan)
F ⇒ B(F )

(Lifting G)G(F )⇒ BG(F )
(Kan)

G(F )B ⇒ BG(F )

This construction gives rise to a functor ev(F,λ) : DL(B)→ DL(B).

I Theorem 17. The functor ev(F,λ) is strict monoidal, from (DL(B),~,KId) to (DL(B), ∗, Id).



H. Basold and D. Pous and J. Rot 5:11

Proof. The functor ev(F,λ) decomposes as a functor DL(B) → coalg(B) followed by the
(monoidal) isomorphism coalg(B) ∼= DL(B) from Lemma 9. It is easy to check that the
functor DL(B)→ coalg(B) is strict monoidal as well. J

By applying this to the monoid on the second-order companion from Theorem 15, we obtain:

I Corollary 18. For an object (F, λ) in DL(B), ev(F,λ)(T, π) is a distributive law of the
monad (T(F ), µ̇F , η̇F ) over B.

6.2 Distributive Laws up to T
Now we show how to extend distributive laws of the form FB ⇒ BT(F ) to distributive
laws of the monad (T(F ), µ̇F , η̇F ) over B. The idea is to first transpose such a distributive
law to ρ : F ⇒ BT(F ), and then apply, by using the distributive law π : TB ⇒ BT of the
second-order companion, what is sometimes called the generalised powerset construction [19].
Lemma 20 shows how this extension interacts with the monad (T(F ), µ̇F , η̇F ). For its proof,
we need the following lemma, which relates the two monoid structures on T.

I Lemma 19. The following diagrams commute.

(TT) ~ (TT)

µ~µ

��

(T~ T)T µ̇T +3 TT

µ

��
T~ T

µ̇
+3 T

KIdT

η̇T
��

KId

η̇

��
TT

µ
+3 T

Proof. Use finality of T in DL(B) to prove that the axioms hold in DL(B). This follows once
we show distributivity (on the right) of composition over ~ in DL(B), i.e., the equalities in
the diagrams should hold in DL(B) as well. This is a straightforward exercise. J

I Lemma 20. Extend ρ : F ⇒ BT(F ) to the natural transformation ρ] : T(F ) ⇒ BT(F ),
which is given by the transformation in the top line in the following diagram.

T(F ) Tρ +3 TBT(F )
πT(F ) +3 BTT(F )

B(µF ) +3 BT(F )

F

ηF

KS

ρ

/7 .

Then ((T(F ), ρ]), µ̇F , η̇F ) is a monoid in coalg(B).

Proof. We only need to prove that η̇F and µ̇F are morphisms of the correct type in coalg(B).
This is given by commutativity of the upper and lower parts of the following diagram.

Id
η̇F

��

β +3
η̇BT(F )

%-

B(Id)
Bη̇T(F )

px
Bη̇F

��
T(F ) Tρ +3 TBT(F )

πT(F ) +3 BTT(F ) BµF +3 BT(F )

B(TT(F )TT(F ))
B(µ∗µ) +3

B(µT(F )∗µT(F ))
KS

B(T(F )T(F ))

Bµ̇F

KS

T(F )T(F ) Tρ∗Tρ +3

µ̇F

KS

TBT(F )TBT(F )
πT(F )∗πT(F )+3

µ̇BT(F )

KS

BTT(F )BTT(F )
B(µF )∗B(µF )+3

αTT(F ),TT(F )

KS

BT(F )BT(F )

αT(F ),T(F )

KS

The diagram commutes clockwise, starting from the triangle on the top left, by naturality of
η̇, definition of η̇, Lemma 19 twice, naturality of α, definition of µ̇ and naturality of µ̇. J

CALCO 2017



5:12 Monoidal Company for Accessible Functors

The following theorem states the main extension result.

I Theorem 21. Let ρ : FB ⇒ BT(F ) with F in F . There exists a distributive law
ρ̄ : T(F )B ⇒ BT(F ) of the monad (T(F ), µ̇F , η̇F ) over B such that ρ̄ ◦ ηFB = ρ.

Proof. We have the following inference.
FB ⇒ BT(F )

(Kan)
F ⇒ BT(F )

(Lemma 20)
T(F )⇒ BT(F ) monoid in coalg(B) with structure (µ̇F , η̇F )

(Lemma 9)
T(F )B ⇒ BT(F ) monoid in DL(B) with structure (µ̇F , η̇F )

The conclusion corresponds to a distributive law of the monad (T(F ), µ̇F , η̇F ) over B
(Theorem 3). The resulting natural transformation ρ̄ satisfies ρ̄ ◦ ηFB = ρ. J

6.3 A Toolkit for Distributive Laws up to T
As explained before, distributive laws of the shape FB ⇒ BF give rise to F -algebras on the
final B-coalgebra. A problem with such specifications is that they must define all the involved
operations. For instance, the definition of the convolution product on streams requires the
simultaneous definition of point-wise addition [18]. Theorem 21 above makes it possible to
work instead with distributive laws up to T, of the shape FB ⇒ BT(F ). This is convenient
in practice as it makes it possible to define distributive laws, and thus operations on the final
coalgebra, in a modular way. This is demonstrated in the example on streams below.

Given a functor F , which describes the signature of the operations to be defined, a
specification can often be given by finding another functor G and a natural transformation
FB ⇒ BG that directly describe the behaviour of the operations. To turn such a natural
transformation into a distributive law up to T, an explicit or extensional knowledge of T
is usually not required; it suffices to find a natural transformation G ⇒ T(F ). Below we
provide a small toolkit to construct such natural transformations in a modular way. This
toolkit should be seen as a first stepping stone for a typed calculus of specification up to T,
which allows the modular construction of coalgebraic specifications.

Recall that T denotes the (first-order) companion of B; we have the following natural
transformations:

t : T ⇒ T(F ) — If F has an initial object 0 and contains the constant functors KX for
all X. In that case T = T(0) (Theorem 2), and t = T(!F ) : T(0)⇒ T(F ).
b : B ⇒ T(F ) — Obtained as the composition of the unique distributive law morphism
B ⇒ T (from id : BB ⇒ BB to the companion T ) and t.
ηF : F ⇒ T(F ) — Unit of the monad on T.
η̇F : Id⇒ T(F ) — Unit of the monad on T(F ).
µ̇F : T(F )T(F )⇒ T(F ) — Multiplication of the monad on T(F ).

The monad multiplication µ̇F allows us to combine G⇒ T(F ) and H ⇒ T(F ) by composition:
GH ⇒ T(F )T(F )⇒ T(F ). Moreover, the monad on T(F ) allows us to extend any G⇒ T(F )
to a monad map G? ⇒ T(F ), if the free monad G∗ of G exists. In particular, we obtain:

s : F ? ⇒ T(F ) — the unique monad map such that s ◦ ι = ηF , where ι : F ⇒ F ? is the
canonical map from F to the associated free monad F ? and η is the unit of the monad T.

The natural transformation t allows us to reuse distributive laws up to T in a modular
fashion: Any distributive law λ : GB ⇒ BG (or even λ : GB ⇒ BT(G)) gives rise to a
natural transformation λ† : G⇒ T , which can be composed with t to get t ◦ λ† : G⇒ T(F ).



H. Basold and D. Pous and J. Rot 5:13

We can exploit the above toolkit to show that the following types of natural transforma-
tions are all (encodable as) instances of distributive laws up to T.

FB ⇒ BF — By using ηF : F ⇒ T(F ).
FB ⇒ B(F + Id) — By using [ηF , η̇F ] : F + Id⇒ T(F ).
FB ⇒ BF ? — By using s : F ? ⇒ T(F ).
FB ⇒ B(F +B)? — By using the unique monad map (F +B)? ⇒ T(F ) that extends
[ηF , b] : F +B ⇒ T(F ).
FB ⇒ B(F+B+T )? — Similar to the previous case but with [η̇F , b, t] : F+B+T ⇒ T(F ).

Each of the above natural transformations gives rise to a ρ : FB ⇒ BT(F ) and hence, by
Theorem 21, extends to a distributive law ρ : T(F )B ⇒ BT(F ).

In the beginning of the section, we recalled that any ρ : FB ⇒ BF ? extends to a
distributive law ρ] : F ?B ⇒ BF ?. We show in the following theorem that this is generalised
by the extension of distributive laws up to T from Theorem 21. To this end, we establish a
morphism of distributive laws. Intuitively, this means that the results of the two extensions
behave the same, as far as F ? is concerned.

I Theorem 22. Extend ρ : FB ⇒ BF ? to ρ] : F ?B ⇒ BF ? and (Bs ◦ ρ) : T(F )B ⇒ BT(F ).
Then s is a morphism of distributive laws: Bs ◦ ρ] = (Bs ◦ ρ) ◦ sB.

As a consequence, the F -algebra obtained on the final B-coalgebra from ρ] coincides with
that obtained from (Bs ◦ ρ).3

Example on streams

Let B : Set→ Set be BX = R×X, where R is the set of real numbers. The (carrier of the)
final B-coalgebra is given by the set of streams Rω. The head and tail of a stream σ are
denoted by σ(0) and σ′ respectively. The following equations define binary operations +, ×
a unary operation (−)∗ and constants [r] for each r ∈ R on streams [18]:

[r](0) = r [r]′ = [0]
(σ + τ)(0) = σ(0) + τ(0) (σ + τ)′ = σ′ + τ ′

(σ × τ)(0) = σ(0)× τ(0) (σ × τ)′ = σ′ × τ + [σ(0)]× τ ′

(σ∗)(0) = 1 (σ∗)′ = σ′ × σ∗

We model these using distributive laws up to T, starting with (−)∗. Let SX = X and
MX = X ×X be the functors that represent the arity of (−)∗ and ×. Then we define:

ρ∗ : SB ⇒ BM(Id + SB)
ρ∗X(r, x) = (1, (x, (r, x)))

Alternatively, one can use a natural transformation of the form SB ⇒ B(M + S + B)∗,
but the above type reflects more directly the concrete definition. Notice that the functor
B on the right hand side signals the occurrence of σ on the right-hand side of the concrete
definition of (σ∗)′. Using the toolkit, which we presented before, it is easy to give a natural
transformation κ : M(Id + SB)⇒MT(S), so we obtain

Bκ ◦ ρ∗ : SB ⇒ BMT(S) .

3 Assuming a final coalgebra (Z, z), every distributive law γ : GB ⇒ BG gives rise to a coalgebra
(GZ, γZ ◦Gz) and thus to a G-algebra by finality of (Z, z); when G is F ?, resp. T(F ), this G-algebra
can be turned into an F -algebra by precomposing with ιZ , resp. η̇F .

CALCO 2017



5:14 Monoidal Company for Accessible Functors

This natural transformation extends to a distributive law up to T once we provide semantics
of the product, in the form of a natural transformation M ⇒ T(S).

Again, we can give a precise type for the semantics of the product.

ρ× : MB ⇒ BP (M(Id +B) +M(KR + Id))
ρ×X((r, x), (s, y)) = (r × s, ((x, (s, y)), (r, y)))

Here, P (X) = X × X models the arity of the sum operator and KR that of the [r]’s for
r ∈ R. Also this semantics could also be presented as a natural transformation of the form
ρ× : MB ⇒ B(P +M +KR)?. Either way, we still need natural transformations KR ⇒ T(M)
and P ⇒ T(M) to complete the specification.

For the sum and constants, we define ρ+ : PB ⇒ BP and ρ[−] : KR ⇒ BKR by

ρ+
X((r, x), (s, y)) = (r + s, x+ y) ρ[−](r) = (r, 0)

Since these are plain distributive laws, we directly obtain natural transformations P ⇒ T

and KR ⇒ T that, by composing with t from the toolkit, extend to natural transformations
P ⇒ T(M) and KR ⇒ T(M). The toolkit allows us now to combine them into a natural
transformation δ : P (M(Id +B) +M(KR + Id))⇒ T(M), from which we obtain

Bδ ◦ ρ× : MB ⇒ BT(M) .

Since this is a distributive law up to T we obtain a natural transformation M ⇒ T from
Theorem 21 and finality of the companion T . Composing with t gives a natural transformation
of the form M ⇒ T(S), which we use to complete ρ∗ to a distributive law up to T of the
form SB ⇒ BT(S). Finally, again by Theorem 21, we get a distributive law of T(S) over B.

Abstract GSOS

An abstract GSOS specification is a natural transformation of the form ρ : F (B × Id)⇒ BF ?.
It is not directly clear how to encode abstract GSOS as a distributive law up to T, because
of the product with the identity functor in the domain. This problem is reflected in the
previous concrete example by the problem of modelling, for instance, the occurrence of σ
on the right-hand side of the equation for (σ?)′ as a distributive law. There, we solved the
problem by using that distributive laws up to T permit the use of B on the right-hand side,
because of the natural transformation b : B ⇒ T .

The following is an attempt to use this idea to encode an arbitrary abstract GSOS ρ as a
distributive law up to T:

FB
F 〈Bη,b〉+3 F (B × Id)T ρT +3 BF ?T

BsT +3 BT(F )T
BT(F )t+3 BT(F )T(F ) Bµ̇F +3 BT(F )

We conjecture that this distributive law up to T encodes the behaviour of ρ, in the sense
that they define the same F -algebras on the final B-coalgebra. Such a result has been shown
for stream systems (BX = A×X on Set) through an explicit construction of a distributive
law in [4], and more abstractly based on the companion for polynomial functors in [16]. The
current approach would generalise it to accessible functors. However, we do not currently
know if the above construction is indeed correct, and leave this as an open problem.

Acknowledgements. We thank Bart Jacobs for valuable comments on monoidal categories.



H. Basold and D. Pous and J. Rot 5:15

References
1 J. Adamek, S. Milius, and L. Moss. Initial algebras and terminal coalgebras: a sur-

vey. Preliminary version. Available at https://www.tu-braunschweig.de/Medien-DB/
iti/survey_full.pdf, 2010.

2 J. Adamek and J. Rosicky. Locally Presentable and Accessible Categories. Cambridge Tracts
in Mathematics. Cambridge University Press, 1994.

3 F. Bartels. On generalised coinduction and probabilistic specification formats. PhD thesis,
CWI, Amsterdam, April 2004.

4 F. Bonchi, M. Lee, and J. Rot. Bisimilarity of open terms in stream GSOS. In FSEN, 2017.
To appear.

5 F. Bonchi, D. Petrisan, D. Pous, and J. Rot. Coinduction up-to in a fibrational setting. In
CSL-LICS, pages 20:1–20:9. ACM, 2014.

6 B. Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,
volume 59 of Cambridge Tracts in T.C.S. Cambridge University Press, 2016.

7 B. Klin. Bialgebras for structural operational semantics: An introduction. Theoretical
Computer Science, 412(38):5043–5069, 2011.

8 B. Klin and B. Nachyla. Presenting morphisms of distributive laws. In CALCO, volume 35
of LIPIcs, pages 190–204. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

9 B. Knaster. Un théorème sur les fonctions d’ensembles. Annales de la Société Polonaise
de Mathématiques, 6:133–134, 1928.

10 M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors, pointed and co-
pointed endofunctors, monads and comonads. Electronic Notes in Theoretical Computer
Science, 33:230–260, 2000.

11 S. MacLane. Categories for the working mathematician. Springer, 1998.
12 M. Makkai and R. Paré. Accessible Categories: The Foundations of Categorical Model The-

ory, volume 104 of Contemporary mathematics - American Mathematical Society. American
Mathematical Society, 1989.

13 J. Parrow and T. Weber. The largest respectful function. Logical Methods in Computer
Science, 12(2), 2016.

14 D. Pous. Complete lattices and up-to techniques. In APLAS, volume 4807 of LNCS, pages
351–366. Springer, 2007.

15 D. Pous. Coinduction all the way up. In LICS, pages 307–316. ACM, 2016.
16 D. Pous and J. Rot. Companions, codensity and causality. In FoSSaCS, volume 10203 of

LNCS, pages 106–123, 2017.
17 J. Power and H. Watanabe. Combining a monad and a comonad. Theoretical Computer

Science, 280(1-2):137–162, 2002.
18 J. J. M. M. Rutten. A coinductive calculus of streams. Mathematical Structures in Com-

puter Science, 15(1):93–147, 2005.
19 A. Silva, F. Bonchi, M. M. Bonsangue, and J. J. M. M. Rutten. Generalizing determiniza-

tion from automata to coalgebras. Logical Methods in Computer Science, 9(1), 2013.
20 R. Street. The formal theory of monads. J. of Pure and Applied Algebra, 2(2):149–168,

1972.
21 A. Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific Journal

of Mathematics, 5(2):285–309, June 1955.
22 D. Turi and G. D. Plotkin. Towards a mathematical operational semantics. In LICS, pages

280–291. IEEE, 1997.
23 H. Watanabe. Well-behaved translations between structural operational semantics. Elec-

tronic Notes in Theoretical Computer Science, 65(1):337–357, 2002.

CALCO 2017

https://www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf
https://www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf
https://books.google.nl/books?id=iXh6rOd7of0C
http://dx.doi.org/10.1145/2603088.2603149
http://dx.doi.org/10.1017/CBO9781316823187
http://dx.doi.org/10.1016/j.tcs.2011.03.023
http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.190
http://dx.doi.org/10.1016/S1571-0661(05)80350-0
http://dx.doi.org/10.1016/S1571-0661(05)80350-0
http://dx.doi.org/10.2168/LMCS-12(2:11)2016
http://dx.doi.org/10.1007/978-3-540-76637-7_24
http://dx.doi.org/10.1145/2933575.2934564
http://dx.doi.org/10.1007/978-3-662-54458-7_7
http://dx.doi.org/10.1016/S0304-3975(01)00024-X
http://dx.doi.org/10.1017/S0960129504004517
http://dx.doi.org/10.2168/LMCS-9(1:9)2013
http://dx.doi.org/10.2168/LMCS-9(1:9)2013
http://dx.doi.org/10.1016/0022-4049(72)90019-9
http://dx.doi.org/10.1109/LICS.1997.614955
http://dx.doi.org/10.1016/S1571-0661(04)80372-4


5:16 Monoidal Company for Accessible Functors

A Notation

Symbol Meaning
[C,D] Category of functors C → D and natural transformations between them
B,F,G,H, . . . Functors in [C,D]
F ∗ Pre-composition with F
F∗ Post-composition with F
([C, C], ∗, Id) Monoidal structure given by functor composition and horizontal composition

of natural transformations. If we need to compose the tensor ∗ with another
functor, then we write this as (_∗_) ◦ F

F Full, monoidal subcategory of ([C, C], ∗, Id), that is, F is closed under
composition and Id ∈ F – F stands for first-order

F,G,H, . . . Second-order functors in [F ,F ]
B The familiar of B
T The second-order companion of B, which is given as the companion of B
([F ,F ],~,KId) Monoidal structure given by point-wise composition
S Full, monoidal subcategory of ([F ,F ],~,KId) – S stands for second-order
DLF (B) Category of distributive laws, in which the possible functors are restricted

to F
DL(B) and DLκ(B) Special cases of DLF (B) with F = [C, C] or F = [C, C]κ

(TB , τB) or (T, τ) Companion of B
(T, π) Companion of B
λ : FB ⇒ BG (asymmetric) Distributive laws
ρ : FB ⇒ BT(F ) Distributive laws up-to
γ : F ⇒ B(F ) Coalgebra for B
α, β Mediators for lax monoidal functors
F ∗ Free monad over F
evF : S → F Evaluation of second-order functors on F (Section 6.1)
(T, µ̇, η̇) and
(T(F ), µ̇F , η̇F )

Monoid resp. point-wise monad structure on T (Theorem 15 and Corol-
lary 16)

B Omitted Proofs

Proof of Theorem 2. Once we prove the adjunction K a ev0, it immediately follows that
ev0(T, τ) is final, since the companion is a final object in DL(B), and is hence preserved by
the right adjoint ev0.

First of all, notice that ev0 is indeed a functor: if δ : (F, λ) ⇒ (G, ρ) is a morphism in
DL(B), then ev0(δ) = δ0 is a coalgebra morphism:

F0

δ0
��

F !B0 // FB0

δB0
��

λ0 // BF0

Bδ0
��

G0
G!B0

// GB0
ρ0
// BG0

The left square commutes by naturality, the right since δ is a morphism. Next, we prove that
for any B-coalgebra (X, f) there is a universal arrow ηf : (X, f)→ ev0(K(X, f)), i.e., such
that for each (F, λ) and coalgebra morphism h : (X, f) → ev0(F, λ) there exists a unique



H. Basold and D. Pous and J. Rot 5:17

h] : K(X, f)→ (F, λ) such that ev0(h]) ◦ ηf = h.

(X, f)
ηf //

h &&

ev0(K(X, f))

ev0(h])
��

ev0(F, λ)

K(X, f)

h]

��
(F, λ)

Note that ev0 ◦K = Id; we define (the natural transformation) η by η = id. We define h] on
a component Y as h]Y = F !Y ◦ h : X → FY . This is natural, since for any k : Y → Z, the
following commutes by uniqueness of morphisms from the initial object.

X
h //

h !!

F0 F !Y //

F id
��

FY

Fk
��

F0
F !Z

// FZ

Moreover, h] is a morphism in DL(B), which follows from commutativity of the following
diagram.

X

f

��

h // B0

B!F 0
��

B!F Y // BFY

λY

��

BF0

λ0
��

BF !Y

::

FX
Fh
// FB0

FB!Y

// FBY

The left rectangle commutes by the assumption h is a coalgebra morphism, the triangle by
uniqueness of arrows from the initial object, and the shape below the triangle by naturality.

We have ev0(h]) = h]0 = F !0 ◦ h = h : X → F0, hence ev0(h]) ◦ ηf = h. Finally, if
k, l : K(X, f) → (F, λ) are morphisms such that ev0(k) ◦ ηf = h = ev0(l) ◦ ηf then in
particular k, l are natural transformations X ⇒ T (the domain is the constant-to-X functor),
such that k0 = l0, since k0 = ev0(k) = ev0(k) ◦ ηf = h = ev0(l) ◦ ηf = ev0(l) = l0. This
implies that k and l agree on any component Y , by commutativity of the following diagram:

X
kY //

lY

��

l0=k0

%%

FY

FY F0
F !Y

oo

F !Y

OO

where the two triangles commute by naturality of k and l respectively. J

Proof of Lemma 9. It suffices to prove that the functor from coalg(B) to DL(B) in Lemma 5
is strict monoidal. Hence, we have to prove for λ : F ⇒ B(F ) and ρ : G ⇒ B(G) that
transposing (FG,αF,G ◦ (λ∗ρ)) is the same as the monoidal product of the transpose of (F, λ)
and the transpose of (G, ρ) in DL(B). Thus, we have to show that the two morphisms on the
outside of the following diagram are equal, which follows from commutativity of the diagram.
The top-left triangle commutes by definition of λ ∗ ρ, the upper rectangle by naturality of λ
and the lower rectangle by definition of α. J

CALCO 2017



5:18 Monoidal Company for Accessible Functors

Proof of Lemma 14. By Lemma 11, Bκ exists and is indeed λ-accessible for some λ ≥ κ. It
therefore has a companion T by Theorem 12. For F,G in S, the functor F~G : F → F is
well-defined since accessible functors are closed under composition, and the constant functors
are always accessible. It remains to show that F~G is λ-accessible. For a λ-filtered diagram
d : I → F we have:

(F(colimid(i)))(G(colimjd(j)))
= (colimiF(d(i)))(colimjG(d(j))) (F,G accessible)
= colimi(F(d(i))colimj(G(d(j)))) (colimits computed pointwise)
= colimi(colimjF(d(i))G(d(j))) (F(d(i)) (κ, hence λ)-accessible)
= colimi(F(d(i))G(d(i))) (follows since I is filtered)

J

Proof of Theorem 8. We prove the coherence axioms for α and β. By the universal property
of the Kan extension, it suffices to prove:
1. εFGH ◦ αFG,HB ◦ αF,GB(H)B = εFGH ◦ αF,GHB ◦ B(F )αG,HB:

B(FG)B(H)B
αF G,HB

((
B(FG)εH

��
B(FG)BH

εF GH

((

B(FGH)B

εF GH

��
B(F )B(G)B(H)B

B(F )B(G)εH//

αF,GB(H)B

55

B(F )αG,HB

))

B(F )B(G)BH
B(F )εGH

))

αF,GBH
55

BFGH

B(F )BGH

εFGH

66

B(FGH)B

εF GH

OO

B(F )B(GH)B

B(F )εGH

OO

αF,GHB

66

The top left part commutes by naturality of αF,G, and all other parts by definition of α.
2. εF ◦ αF,IdB ◦ B(F )βB = εF :

B(F )B
B(F )βB// B(F )B(Id)B

B(F )εId

��

αF,IdB // B(F )B

εF

��
B(F )B

εF

// B(F )

The triangle commutes by definition of β, the square by definition of α.
3. εF ◦ αId,FB ◦ βB(F )B = εF :

B(F )B
βB(F )B//

εF

��

B(Id)B(F )B
αId,FB //

B(Id)ε(F )
��

B(F )B

εF

��
BF

βB(F ) // B(Id)BF εIdF // BF

The left square commutes by naturality of β, the right square by definition of α, and the
crescent by definition of β. J



H. Basold and D. Pous and J. Rot 5:19

The following Lemma is used in the proof of Theorem 15.

I Lemma 23. Let (D,⊗, I) be a monoidal category and S a full monoidal subcategory of
([D,D],⊗′,KI) and ([D,D], ∗, Id). If B : (D,⊗, I)→ (D,⊗, I) is a lax monoidal functor with
B ∈ S, then B∗ is also a lax monoidal functor on (S,⊗′,KI).

Proof. First of all, we note that B∗ is indeed a functor on S, because B ∈ S and S
closed under composition (that is what it means for S to be a monoidal subcategory of
([D,D], ∗, Id). Suppose B now that is lax monoidal with mediating morphisms β : I → BI

and α : ⊗ ◦ (B × B) ⇒ B ◦ ⊗. To show that B∗ is lax monoidal, we need mediators
β′ : KI → B∗(KI) and α′ : ⊗′ ◦ (B∗ × B∗) ⇒ B∗ ◦ ⊗′. Note that B∗(KI)(X) = BI. Thus,
we can define β′ to be constantly β, that is, β′X = β. Next, we note that F ⊗′G = ⊗◦ 〈F,G〉.
Therefore, we can put

α′F,G = α ∗ id〈F,G〉.

This definition gives us immediately that α′F,G is natural. More explicitly, we have that α′F,G
is given on objects by α′F,G,X = (α ∗ id〈F,G〉)X = α〈F,G〉X ◦B(id〈F,G〉,X) = αFX,GX . To show
that α′ is natural in F and G, let σ : F ⇒ F ′ and τ : G ⇒ G′ be natural transformations.
The following diagram expresses component-wise naturality of α′ and commutes because α
is natural.

(B∗(F )⊗′ B∗(G))(X) B∗(F ⊗′ G)(X)

BFX ⊗BGX B(FX ⊗GX)

BF ′X ⊗BG′X B(F ′X ⊗G′X)

(B∗(F ′)⊗′ B∗(G′))(X) B∗(F ′ ⊗′ G′)(X)

α′F,G,X

αF X,GX

BσX⊗BτX B(σX⊗τX )
αF ′X,G′X

α′
F ′,G′,X

Next, we need to check that the mediators β′ and α′ fulfil the necessary equations. Unsur-
prisingly, these are checked point-wise for objects X ∈ C:

(α′KI ,F ◦ (β′ ⊗′ idB∗(F )))X = α′KI ,F,X ◦ (β′X ⊗ idB∗(F ),X)
= αKIX,FX ◦ (β ⊗ idBFX)
= αI,FX ◦ (β ⊗ idBFX)
= idBFX B lax monoidal
= idB∗(F ),X

Similar for α′F,KI
◦ (idBF ⊗′ β′) = idBF . Finally, we have

(α′F⊗′G,H ◦ (α′F,G ⊗′ idB∗(H)))X = α′F⊗′G,H,X ◦ (α′F,G,X ⊗ idB∗(H),X)
= α(F⊗′G)X,HX ◦ (αFX,GX ⊗ idB∗(H)(X))
= αFX⊗GX,HX ◦ (αFX,GX ⊗ idBHX)
= αFX,GX⊗HX ◦ (idBFX ⊗ αGX,HX) B l.m.
= (α′F,G⊗′H ◦ (idB∗(F ) ⊗′ α′G,H))X .

Thus, B∗ is lax monoidal with β′ and α′. J

CALCO 2017



5:20 Monoidal Company for Accessible Functors

I Lemma 24. For all functors F,G,H : [F ,F ]→ [F ,F ], we have (F~G)H = FH~GH.

Proof. For all functors F ∈ F , we have ((F~G)H)(F ) = (F~G)(H(F )) = FH(F )~GH(F ).
Similarly for morphisms. J

Proof of Theorem 15. First of all, we note that B∗ is lax monoidal on (S,~,KId) by
Lemma 23 and because B is lax monoidal (Theorem 8). We shall refer to the mediat-
ors for B∗ by β′ : KId ⇒ B∗(KId) and α′F,G : BF ~ BG ⇒ B(F ~ G). Now, given (F, λ) and
(G, ρ) in S, for the tensor (F, λ) ~ (G, ρ) we have to provide a distributive law of type
(F~G)B⇒ B(F~G). We use Lemma 24 and α′ to obtain this distributive law by

(F~G)B = FB~GB BF~ BG B(F~G).λ~ρ α′F,G

The tensor of morphisms δ1 : (F, λ) → (F′, λ′) and δ2 : (G, ρ) → (G′, ρ′), is just given by
the tensor product δ1 ~ δ2 of the underlying natural transformations. Finally, note that
KIdB = KId, thus we can use I = (KId, β

′) as unit for ~.
Given these definitions, we need to check a couple of things:

1. ~ is a functor DL(B)×DL(B)→ DL(B). This is immediate by ~ being a functor S2 → S.
2. ~ is associative. For (F, λ), (G, ρ), (H, γ) ∈ DL(B), this is given by

((F, λ) ~ (G, ρ)) ~ (H, γ) = α′F~G,H ◦ ((α′F,G ◦ (λ~ ρ)) ~ γ)
= α′F~G,H ◦ (α′F,G ~ idBH) ◦ (λ~ ρ~ γ)
= α′F,G~H ◦ (idBF ~ α′G,H) ◦ (λ~ ρ~ γ) B∗ lax monoidal
= α′F,G~H ◦ (λ~ (α′G,H ◦ (ρ~ γ)))
= (F, λ) ~ ((G, ρ) ~ (H, γ).

3. I is left and right unit for ~. This is similar to the proof of associativity, only that we
use the two laws involving the mediator β that make B∗ a lax monoidal functor.

This shows that DL(B) is a (strict) monoidal category. J

Proof of Theorem 22. The second item amounts to commutativity of the diagrams below.

F ∗BT(F )
ρ]T(F )

#+
F ∗F ∗B

F∗ρ]

+3

µF∗B

��

F ∗BF ∗
ρ]F∗

+3

F∗Bs

3;

BF ∗F ∗

BµF∗

��

BF∗s
+3 BF ∗T(F )

BsT(F )
+3 BT(F )T(F )

Bµ̇F

��
F ∗B

ρ]

+3 BF ∗
Bs +3 BT(F )

B

ηF∗B

KS
BηF∗

/7

Bη̇F

-5

The upper triangle commutes by naturality, the left rectangle and triangle since ρ] is a



H. Basold and D. Pous and J. Rot 5:21

distributive law of monad over functor, and the rest since s as a monad map.

F ∗BT(F )
sBT(F )

$,
F ∗F ∗B

F∗sB
+3

µF∗B

��

F ∗T(F )B
sT(F )B

+3

F∗(Bs◦ρ)
3;

T(F )T(F )B

µ̇FB

��

T(F )(Bs◦ρ)
+3 T(F )BT(F )

(Bs◦ρ)T(F )
+3 BT(F )T(F )

Bµ̇F

��
F ∗B

sB +3 T(F )B
(Bs◦ρ) +3 BT(F )

B

ηF∗B

KS
η̇FB

/7

Bη̇F

-5

The upper triangle commutes by naturality, the left rectangle and triangle since s is a monad
map, and the rest since (Bs ◦ ρ) is a distributive law of monad over functor. J

CALCO 2017


	Introduction
	Preliminaries
	Locally Presentable Categories and Accessible functors
	Monoidal Categories and Monads
	Monads and Distributive Laws

	The Companion of a Functor
	Final Coalgebra from the Companion
	Monoidal Structure of Distributive Laws

	Distributive Laws as Coalgebras
	Constructing the Companion of an Accessible Functor
	Second-Order Companion and Distributive Laws Up-To
	Second-Order Companion and Monads
	Distributive Laws up to T
	A Toolkit for Distributive Laws up to T

	Notation
	Omitted Proofs

