
HAL Id: hal-01529299
https://hal.science/hal-01529299v1

Submitted on 30 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity results and algorithms for an integrated
single machine scheduling and outbound delivery

problem with fixed sequence
Azeddine Cheref, Alessandro Agnetis, Christian Artigues, Jean-Charles Billaut

To cite this version:
Azeddine Cheref, Alessandro Agnetis, Christian Artigues, Jean-Charles Billaut. Complexity results
and algorithms for an integrated single machine scheduling and outbound delivery problem with
fixed sequence. Journal of Scheduling, 2017, 20 (6), pp.681-693. �10.1007/s10951-017-0540-2�. �hal-
01529299�

https://hal.science/hal-01529299v1
https://hal.archives-ouvertes.fr

Complexity results and algorithms for an integrated single machine

scheduling and outbound delivery problem with fixed sequence

Azeddine Cheref ∗ Alessandro Agnetis † Christian Artigues ‡

Jean-Charles Billaut §

Abstract

In this paper, we consider an integrated production and outbound delivery scheduling prob-
lem. In particular, we address the situation in which the scheduling sequence and the delivery
sequence are the same and predefined. A set of jobs are processed on a single machine and
finished jobs are delivered to the customers by a single capacitated vehicle. Each job has a
processing time and transportation times between customers are taken into account. Since the
sequence is given, the problem consists to form batches of jobs and our objective is to minimize
the sum of the delivery times or general functions of the delivery times. The NP-hardness of the
general problem is established and a pseudopolynomial time dynamic programming algorithm
is given. Some particular cases are treated, for which NP-hardness proofs and polynomial time
algorithms are given. Finally, a fixed-parameter tractability result is given.

1 Introduction

This paper deals with a model for coordinating production and delivery schedules. In many
production systems, finished products are delivered from the factory to multiple customer loca-
tions, warehouses, or distribution centers by delivery vehicles. An increasing amount of research
has been devoted, during the last twenty years, to devise integrated models for production and
distribution. These models have been largely analyzed and reviewed by [Chen, 2010], who pro-
posed a detailed classification scheme. The models reflect the variety of issues, including systems
structure, vehicle/transportation system characteristics, delivery modes, various types of time
constraints. In the large majority of the models in the literature, the coordination of production
and distribution is achieved through the creation of batches, i.e., several parts are shipped to-
gether and delivered to their respective destinations during a single trip. When forming batches,
one must therefore take into account both production information (such as processing time, re-
lease dates etc) and delivery information (such as customer location, time windows etc). Most
of the models presented in the literature explicitly take into account transportation times to
reach the customers’ location, but there are no proper routing decisions, since the number of
distinct customers is typically very small. Hence, the focus of the analysis is often on scheduling
and batching.

∗cheref@laas.fr

Université François-Rabelais Tours / CNRS, 64 av. J. Portalis, 37200 Tours, France
CNRS, LAAS-CNRS, Université de Toulouse, France
†agnetis@dii.unisi.it

Dipartimento di Ingegneria dell’Informazione, Universitá degli Studi di Siena, via Roma 56, 53100 Siena, Italy
‡artigues@laas.fr

CNRS, LAAS-CNRS, Université de Toulouse, France
§jean-charles.billaut@univ-tours.fr

Université François-Rabelais Tours / CNRS, 64 av. J. Portalis, 37200 Tours, France

1

Many studies consider delivery as a separate step after production, but do not model it in
details, e.g. assuming that a sufficiently large number of vehicles is available to deliver the
products at any time or assuming that it has only one customer. We briefly discuss some works
related to integrated scheduling and delivery decisions. Lee and Chen in [Lee and Chen, 2001]
consider delivery and scheduling problems for a situation in which jobs are transported be-
tween machines and another situation in which the jobs are transported to a single customer.
[Li et al., 2005] analyze the joint problem of production sequencing and batch formation, in
order to minimize total delivery time, given that delivery is performed by a single vehicle. Total
delivery time is a meaningful indicator of the overall efficiency of the delivery process. They
show that in general the problem is NP-hard, and then give polynomial time algorithms for
the problem with a fixed number of distinct destinations. In [Chen and Vairaktarakis, 2005],
the authors consider some particular cases of the integrated production and delivery problem in
which jobs are produced on a single machine or on parallel machines and delivered by several
vehicles to one or several customer locations. The authors minimize some objective functions
including the delivery costs and the delivery times. For each case, the authors propose a polyno-
mial dynamic programming algorithm or a heuristic with worst case analysis. This problem was
extended by [Chen and Pundoor, 2006] to the case where the machines are located in different
locations. In [Chen and Lee, 2008], there are various destinations but a batch can only contain
jobs of the same destination. [Fan et al., 2015], consider a non availability time interval on the
machine, several vehicles without capacity constraint and only transportation costs (no vehicle
routing problem associated to the delivery). A single vehicle with a storage area and one or
two customers is considered in [Chang and Lee, 2004]. The authors show that the problem is
NP-hard for the makespan objective. Other complexity results are provided as well as poly-
nomial time algorithms for special cases. For the same objective function, [Li and Ou, 2005]
study the pickup and delivery problem in which a single vehicle travels between the machine
and the warehouse, whereas [Wang and Cheng, 2009] study a similar problem in which three
different locations and two vehicles are considered. The first vehicle transports unprocessed jobs
between the warehouse and the factory and the second one transports finished jobs between the
factory and the customer. In [Hall et al., 2001] and [Leung and Chen, 2013], the problem in
which the delivery dates are fixed in advance is considered. In order to minimize the makespan,
[Gao et al., 2015] consider the problem on a single machine and a unique capacitated vehicle
with a no wait constraint, i.e., the batch must be delivered as soon as it is completed. They show
that the problem is NP-hard, and then give polynomial time algorithms for the special case with
constant travel times. In [Stecke and Zhao, 2007] and [Zhong et al., 2010], the authors study
an integrated single machine production and distribution scheduling problem in which various
shipping times and costs are specified.

Cases where the delivery problem is between machines (inbound delivery) are reported by
[Lee and Chen, 2001], [Hurink and Knust, 2001] and [Zhong and Chen, 2015], where the au-
thors consider multiple machines and transportation time between them. [Lee and Chen, 2001]
consider also the case where the finished jobs are delivered to one customer location. Some
complexity results are given. In [Agnetis et al., 2014], [Agnetis et al., 2015] there are two ma-
chines and the transportation is made between these machines, various cases are treated and
the objective is to minimize the total transportation cost.

Using the terminology of [Chen, 2010], the models presented in this paper concern batch
delivery with routing, i.e., orders going to different customers can be delivered together in the
same shipment (batch).

However, a distinctive feature of the problems is studied. We consider a fixed sequence
of production and delivery, i.e. the jobs must be delivered in the same order in which they
are produced. Examples of situations in which the customer sequence is fixed are reported
by [Armstrong et al., 2008] and [Viergutz and Knust, 2014]. For maximizing the total satisfied
demand in a single round trip, the authors consider that the products expire in a constant
time after their completion time and that a delivery time window exists for each product. In
[Lenté and Kergosien, 2014], the authors search for a batching of jobs where a single capacitated
vehicle is used for the delivery. Polynomial time algorithms are proposed for minimizing the

2

makespan, the maximum lateness and the number of tardy jobs but the sum of delivery times
is not treated. [Tsirimpas et al., 2008] minimize the overall distance traveled for the single
vehicle routing with a predefined customer sequence. This problem can be seen as one of
the problems treated in [Lenté and Kergosien, 2014] for the makespan minimization with zero
processing times (no scheduling problem). In [Agnetis et al., 2014] and [Agnetis et al., 2015]
and [Li and Ou, 2005], special cases with a predefined sequence are addressed and for each of
them, polynomial time algorithms are given.

Here we will mainly focus on the problem of deciding how to form batches with a given
production and delivery sequence (basic problem).

Our contributions are as follows. In Section 2, we present the problem formally, we give
the notations and we completely characterize the complexity of the basic problem, showing
that when the objective function Z is to minimize the total delivery time, it is NP-hard in
the ordinary sense. Then, we propose a pseudopolynomial time algorithm for any sum-type
function of the delivery times. In Section 3, we focus on two problem extensions: the case where
all transportation times are identical (constant travel times), and the case where the number of
delivery locations is fixed. Finally, some conclusions and future research directions are presented
in Section 4.

2 Problem definition and complexity

2.1 Problem definition and notation

The problem considered in this paper can be described as follows. A set of n jobs is given and
their production sequence is known. Each job Jj , j = 1, . . . , n, requires a certain processing
time pj on a single machine, and must be delivered to a certain location site. For the sake of
simplicity, when it does not create confusion, we use j to refer to the destination of job Jj . We
denote by ti,j the transportation time from destination i to destination j. For analogy with
vehicle routing problems, we refer to the manufacturer’s location as the depot. We use M to
denote the depot (manufacturer), hence tM,j = tj,M is the transportation time between the
depot and destination j. Unless otherwise specified, we assume that transportation times are
symmetric and satisfy the triangle inequality.

Deliveries are carried out by a single vehicle. The vehicle loads a certain number of jobs that
have been produced and departs towards the corresponding destinations. Once all the jobs have
been delivered, it returns to the depot, hence completing a round trip. The set of jobs delivered
during a single round trip constitutes a batch. The capacity c of the vehicle is the maximum
number of jobs it can load and hence deliver in a round trip (corresponding to the batch size).
The delivery sequence of jobs follows the fixed production sequence. In other terms, the jobs
must be delivered in the order in which they are produced. Notice that a more general case
consists in considering that a size is associated to each job, and that the vehicle capacity is a
maximum size. Because in our problem the sequences are fixed, the results that we propose in
this paper are also valid for this general case.

The problem consists in calculating a partition of all jobs into batches, i.e., a batching scheme.
Each batch will be routed according to the manufacturing sequence.

In general, the performance of the system depends on all the concurrent decisions: production
scheduling, batching and vehicle routing. This requires therefore an integrated model, allowing
one to coordinate all these aspects. A solution to our problem with fixed sequence, is the
specification of a batching scheme.

Given a solution, we denote by Cj the completion time of job Jj on the single machine,
which is also the time at which the job is released for delivery, i.e., the batch including job Jj
cannot start before Cj . We denote by Dj the delivery time of Jj , i.e., the time at which the job
Jj is delivered at its destination.

The performance measures we consider in this paper depend on such delivery times. In
particular, denoting with Z the performance measure, in this paper we consider:

• the total delivery time, i.e., Z =
∑n
j=1Dj

3

• a general sum-type performance index, i.e., Z =
∑n
j=1 fj(Dj), where fj(Dj) is a general,

nondecreasing function of Dj , j = 1, . . . , n.

Note that the latter case includes total (weighted) delivery time, total (weighted) tardiness,
etc.

The problem we consider can be described by the α|β|γ notation due to [Lee and Chen, 2001].
There is a single manufacturing machine serving several customers (1→ D), one vehicle (v = 1)
having capacity c, and production and delivery sequences are identical and fixed (fixed-seq).
In general, customers have different locations.

Problem 1 → D|v = 1, c, fixed-seq|
∑
Dj: Given n jobs of length pj, 1 ≤ j ≤ n, transporta-

tion times ti,j for all i, j ∈ {1, ..., n}, and a sequence σ of production and of delivery, find a
batching scheme B such that

∑
Dj is minimized.

2.2 Complexity of problem 1→ D|v = 1, c, fixed-seq|
∑

Dj

Since the production sequence is given, and since jobs are delivered to the respective customers
in the same given order, we assume that the job sequence is σ = (J1, J2, ..., Jn). Only travel
times tj,j+1 are relevant, as well as times tj,M = tM,j , representing the travel time between
customer j and the manufacturer and vice-versa.

For our purposes, we introduce the following problem.

Even-Odd Partition (EOP). A set of n pairs of positive integers (a1, b1), (a2, b2), . . . , (an, bn)
is given, in which, for each i, ai > bi. Letting H =

∑n
i=1(ai + bi), is there a partition (S, S̄) of

the index set I = {1, 2, . . . , n} such that∑
i∈S

ai +
∑
i∈S̄

bi = H/2? (1)

EOP is NP-hard in the ordinary sense [Garey et al., 1988]. In the following, we will actually
use the following slightly modified version of the problem.

Modified Even-Odd Partition (MEOP). A set of n pairs of positive integers (a1, b1), (a2, b2),
. . . , (an, bn) is given, in which, for each i, ai > bi. Letting Q =

∑n
i=1(ai−bi), is there a partition

(S, S̄) of the index set I = {1, 2, . . . , n} such that∑
i∈S

(ai − bi) = Q/2? (2)

Note that the two problems are indeed identical. In fact, suppose that EOP has a partition
(S, S̄). The corresponding instance of MEOP also admits the same partition. In fact, subtracting∑n
i=1 bi =

∑
i∈S bi +

∑
i∈S̄ bi from both sides of (1), one obtains

∑
i∈S

(ai − bi) = H/2−
n∑
i=1

bi (3)

Now, from the definitions of K and Q it turns out that

Q = H − 2

n∑
i=1

bi

and hence (3) is indeed (2). We next show the following result.

Theorem 2.1 Problem 1→ D|v = 1, c = 2, fixed-seq|
∑
Dj is NP-hard.

4

Proof. The problem is obviously in NP. Given an instance of MEOP, we build an instance to
our problem as follows. There are 3n+ 3 jobs. The processing times of the jobs are defined as
follows:

p1 = 0, p2 = 0, p3 = 0

p3i+1 = 1, p3i+2 = 1, p3i+3 = 4xi + bi − 2 for all i = 1, . . . , n− 1,

p3n+1 = 4xn + bn +Q/2, p3n+2 = 0, p3n+3 = 0

where the xi are defined as.

xi = (3ai − 2bi + 3(n− i)(ai − bi))/2 for all i = 1 . . . n (4)

and xn+1 = 0.
In the following, we refer to the set of jobs (J3i+1, J3i+2, J3i+3), i = 0, . . . , n, as the triple

Ti+1.
For what concerns the travel times, we let:

• for each i = 0, 1, . . . , n− 1, one has

– tM,3i+1 = t3i+1,M = tM,3i+2 = t3i+2,M = tM,3i+3 = t3i+3,M = xi+1,

– t3i+1,3i+2 = ai+1, t3i+2,3i+3 = bi+1, t3i+3,3i+4 = xi+1 + xi+2.

• tM,3n+1 = 0, t3n+1,M = 0, tM,3n+2 = 0, t3n+2,M = 0, tM,3n+3 = 0.

• t3n+1,3n+2 = 0, t3n+2,3n+3 = 0.

The vehicle capacity is c = 2. The problem consists in determining whether a solution exists
such that the total delivery time does not exceed

f∗ =

n∑
i=1

(3C3i + 7xi + bi) + C3n+1 + C3n+2 + C3n+3 −Q/2. (5)

For shortness, we call feasible a schedule satisfying (5). The proof has the following scheme.

1. We first establish via Lemma 2.2 that if a feasible schedule exists, then there is one having
a certain structure, called triple-oriented,

2. We analyze some properties of this structure,

3. We show that a triple-oriented schedule of value f∗ exists if and only if the instance of
MEOP is a yes-instance.

Lemma 2.2 If a feasible schedule exists, then there exists one satisfying the following property:
for all i = 1, . . . , n, jobs J3i and J3i+1 are NOT in the same batch.

Proof. Suppose that a feasible schedule exists in which, for a certain i (1 ≤ i ≤ n), jobs J3i and
J3i+1 are in the same batch. Since c = 2, the batch contains no other job. As a consequence,
after delivering J3i+1, the vehicle must go back to M in order to load the next jobs and start
a new trip. If we denote by τ the start time of the round trip of jobs J3i and J3i+1, job J3i is
delivered at time D3i = τ + tM,3i and job J3i+1 is delivered at time D3i+1 = τ + tM,3i + t3i,3i+1.
Therefore we have D3i = τ + xi and D3i+1 = τ + xi + (xi + xi+1). The vehicle is back at M
at time τ + 2xi + 2xi+1. Now, if we replace this batch with two batches of one job each, the
delivery times of both jobs as well as the time at which the vehicle is back at M are unchanged.
Therefore, there is an equivalent solution where J3i and J3i+1 are not in the same batch. �

We call triple-oriented a schedule satisfying Lemma 2.2. The reason of this name is that
the schedule is decomposed according to triples. More precisely, since c = 2, for each triple
Ti+1 = (J3i+1, J3i+2, J3i+3), i = 0, . . . , n − 1, a consequence of Lemma 2.2 is that there are
exactly two batches, and only two possibilities, namely:

• either the first batch is {J3i+1, J3i+2} and the second is {J3i+3},
• or the first batch is {J3i+1} and the second is {J3i+2, J3i+3}.

5

option A

option B

ai − bi

3(i-1)+1 3(i-1)+2 3(i-1)+3

bi

3(i-1)+1 3(i-1)+2 3(i-1)+3

ai

J3i+1 J3i+2 J3i+3

J3i+3J3i+1 J3i+2

-�
Ti+1

� delivery of Ti

� delivery of Ti

Figure 1: Round trips with options A and B.

We call these two possibilities option A and option B respectively (see Fig. 1). Namely, let
us view option B as the Base option, and A as a variant to it.

Round trip length. Let MA
i and MB

i denote the round trip length of the jobs of Ti in the
two cases. One has:

MA
i = 4xi + ai (6)

MB
i = 4xi + bi (7)

Since ai > bi, option A implies a longer round trip length than the Base option. The difference
between the two (i.e., the additional time with option A with respect to B) is precisely ai − bi.
Note in Fig. 1 that in option B, the delivery time of Ti is precisely the production completion
time of Ti+1 as, by definition, p3i+1 + p3i+2 + p3i+3 = 4xi + bi. This remark yields the following
lemma.

Lemma 2.3 In any triple-oriented schedule, the vehicle is never idle, except possibly before
loading J3n+1.

Proof. Let us consider the first triple T1. The vehicle starts at time 0 (to deliver batch {J1}
or {J1, J2}), and is back at time 4x1 + b1 or at time 4x1 + a1. The completion time of T2 is

precisely equal to C6 =
∑6
j=1 pj = 1 + 1 + 4x1 + b1 − 2 = 4x1 + b1. Therefore, as a1 > b1, the

vehicle can immediately start the delivery of the jobs of T2 as soon as it is back to the depot.
For the same reasons, the delivery of the jobs of Ti cannot be smaller than, the duration of the
jobs of Ti+1, and the vehicle will be able to start immediately the delivery of the jobs of Ti+1.
This reasoning does not hold for the last triple Tn+1 because the duration of J3n+1 is different.

�

In view of Lemma 2.3, one can compute the total delivery time in the Base scenario, i.e.,
when option B is always chosen. From (7), one has that the vehicle delivering the last two jobs
of Ti always returns to M exactly at time C3i+3 (see Fig. 2). Therefore, the last time the vehicle
arrives at M (before delivering the jobs of Tn+1) is C3n + 4xn + bn. Because of the definition of
p3n+1, and because J3n+1 starts at time C3n, we have C3n + 4xn + bn = C3n+1 −Q/2. In this
case, the vehicle will stay idle from C3n+1−Q/2 to C3n+1, when job J3n+1 can be finally loaded
and delivered at time C3n+1. The three jobs of Tn+1 have zero travel times and the last two
jobs have also zero durations, so all jobs of Tn+1 can be delivered at C3n+1 = C3n+2 = C3n+3.
Finally, recalling that C1 = C2 = C3 = 0, the first job of each triple Ti, for i ≥ 1, is delivered at
C3i + xi, the second job is delivered at C3i + 3xi and the last job at time C3i + 3xi + bi + xi, as

6

illustrated in Fig. 2. Hence, we have:

fBASE =

n∑
i=1

(3C3i + 7xi + bi) + C3n+1 + C3n+2 + C3n+3 (8)

...

3(i− 1) + 1 3(i− 1) + 2
3(i− 1) + 3

bixi xi xi xi

Ti+1Ti
J3i+1 J3i+2 J3i+3

C3i C3i+3

...

Ti+2

Figure 2: The base schedule (i.e., B is always chosen).

Contribution to total delivery time. Before computing the contribution of a certain triple to
the total delivery time, let us consider schedules in which the deliveries of the last three jobs
J3n+1, J3n+2 and J3n+3 start exactly at their release time, i.e., at time C3n+1 = C3n+2 = C3n+3

(options A and B are equivalent). Let us call regular a schedule in which such a condition holds.
Expression (8) refers to the scenario in which for all triples, the option B is chosen. We

want now to compute the objective function of an arbitrary solution. Let us first consider the
contribution of triple Ti to the objective function in the Base schedule, i.e., assuming that the
delivery of Ti started at time C3i, and let us denote this contribution as TDTAi and TDTBi
depending on the selected option for Ti. One has:

TDTAi = (C3i + xi) + (C3i + xi + ai) + (C3i + 3xi + ai) = 3C3i + 5xi + 2ai

TDTBi = (C3i + xi) + (C3i + 3xi) + (C3i + 3xi + bi) = 3C3i + 7xi + bi

Note that

TDTBi − TDTAi = 2xi + bi − 2ai (9)

= (3ai − 2bi + 3(n− i)(ai − bi)) + bi − 2ai

= ai − bi + 3(n− i)(ai − bi)

which is positive, remembering that ai > bi. This means that choosing option A over B
brings a benefit in terms of total delivery time. However, such favorable situation for option A
is mitigated by the fact that, with option A, one has a longer round trip time than with option
B, by the amount (ai − bi) (see Fig. 3). In a regular schedule, such increased round trip time
will be ”paid” by all subsequent jobs, except the last jobs J3n+1, J3n+2 and J3n+3. Hence, in a
regular schedule the total effect (in favor of option B) on the subsequent jobs of choosing option
A for Ti is given by

3(n− i)(ai − bi) (10)

In conclusion, the net benefit of choosing option A over B for Ti in terms of objective
function value is obtained subtracting (10) from (9), and in view of the definition of xi (4), one
has therefore that

NetBenefiti = (2xi + bi − 2ai)− 3(n− i)(ai − bi)
= ai − bi (11)

In conclusion, it turns out that, when A is chosen over the Base option, one has a larger
round trip time, by (ai − bi), but also a smaller contribution to total delivery time (also by the
amount (ai − bi))(see Fig. 4). So, given any regular triple-oriented schedule in which the last
three jobs depart at their completion time, let TA be the set of triples for which the option A is
chosen. Then, from the above considerations, the value f of the objective function is given by

f = fBASE −
∑
i∈TA

(ai − bi) (12)

7

...

ai − bi

3(i-1)+1 3(i-1)+2 3(i-1)+3

aixi xi xi xi

Ti+1Ti
J3i+1 J3i+2 J3i+3

Figure 3: Ti is the first triple choosing option A.

On the other hand, the time at which the vehicle returns to M before loading the last three
jobs (J3n+1, J3n+2 and J3n+3) is given by

C3n + 4xn + bn +
∑
i∈TA

(ai − bi) (13)

....Ti+1

3(i-1)+1 3(i-1)+2 3i

bi

....Ti+1

∑i
j=1 aj − bj

3(i-1)+1 3(i-1)+2 3i

ai

T2

1 2 3

b1

J3n+1, J3n+2, J3n+3

3(n-1)+1 3(n-1)+2 3n

an

Q/2a1 − b1

T2

1 2 3

a1

J3n+1, J3n+2, J3n+3

3(n-1)+1 3(n-1)+2 3n

bn

Q/2

Figure 4: Round trips with option A only and option B only

Now, in a regular schedule the delivery of job J3n+1 (and also J3n+2 and J3n+3) starts at
time C3n+1 = C3n + 4xn + bn +Q/2. Hence, from (13), in a regular schedule, it must hold:∑

i∈TA

(ai − bi) ≤ Q/2

On the other hand, comparing (5), (8) it turns out that

f∗ = fBASE −Q/2

and hence, from (12), a regular schedule is feasible precisely if a subset TA of indices exists
such that

∑
i∈TA

(ai − bi) = Q/2, i.e., if and only if a feasible partition exists in the instance
of MEOP. To conclude the proof, it is left to show that f∗ can be attained only by a regular
schedule. In fact, if a schedule is not regular, the departure time of the last batch is delayed by
the amount (

∑
i∈TA

(ai− bi)−Q/2) with respect to C3n+1. As a consequence, the expression of
f in (12) must be modified to take account of such delay of the last three jobs, i.e. it comes

f = fBASE −
∑
i∈TA

(ai− bi) + 3(
∑
i∈TA

(ai− bi)−Q/2) = fBASE + 2
∑
i∈TA

(ai− bi)− 3Q/2 (14)

Since, in a nonregular schedule,∑
i∈TA

(ai − bi) > Q/2,

from (14) one has

f = fBASE + 2
∑
i∈TA

(ai − bi)− 3Q/2 > fBASE +Q− 3Q/2 = fBASE −Q/2

and hence it cannot be feasible.

8

End of proof of theorem 2.1

�

By very similar arguments, it can be shown that the 1→ D, k < n|v = 1, c, fixed-seq|
∑
Dj

problem is NP-hard, when the number of locations denoted k is not fixed (’k < n’ means that
some consecutive jobs may have the same destination, leading at the end to k < n). On the
other hand, we see in Section 3.2 that when the number of locations k is fixed (denoted K), the
problem is polynomially solvable.

Remark 2.4 Problem 1 → D, k < n|v = 1, c,fixed-seq, split-deliv|
∑
Dj is also NP-hard. In

this notation, ’split-deliv’ denotes that split delivery is allowed, i.e. one can deliver a part of
a job, come back to the depot, and take the reminder part of the job for another delivery. We
remark that in this case, this problem is equivalent to the NP-hard problem 1 → D, k = n|v =
1, c,fixed-seq|

∑
Dj. Indeed, suppose that split delivery is allowed on the instance used to prove

the complexity of 1→ D, k = n|v = 1, c,fixed-seq|
∑
Dj. One can see that each time the vehicle

returns to the depot, the number of jobs already completed and ready for delivery is higher than
the capacity c. Therefore, delivering a job in two successive trips has no interest and always
increases the value of the objective function. The result can be extended to the case where the
number of sites is fixed to K < n.

2.3 Pseudopolynomial time algorithm for
1→ D|v = 1, c, fixed-seq|

∑
fj(Dj)

Theorem 2.1 implies that no optimal polynomial time algorithm can be found for problem
1→ D|v = 1, c, fixed-seq|

∑
Dj , and hence for more general objective functions, unless P=NP.

In what follows, we show that problem 1 → D|v = 1, c, fixed-seq|
∑
fj(Dj) can be solved in

pseudopolynomial time, proving that the problem is ordinary NP-hard.

We denote by {i, j} the batch consisting of jobs Ji, . . . , Jj . As usual, Cj is the completion
time of job Jj (known because σ is known), and hence the release time for delivery. We denote
by M(i, j) the duration of the round trip of batch {i, j}, and, if the batch starts at time t, we
call K(i, j, t) its contribution to the objective function. Also, we assume that at the beginning,
the vehicle is at the manufacturing location.

We denote by F (i, j, t) the value of the optimal solution of the problem restricted to the first
j jobs, in which the first job of the last batch is Ji, and such that the delivery of the last batch
starts at time t. Then, F (i, j, t) can be computed by means of a simple recursive formula. In
the optimal solution of the subproblem, if the second last batch is {p, i− 1}, and if it starts at
time s, then we have:

F (i, j, t) = F (p, i− 1, s) +K(i, j, t)

Note that, if the vehicle starts at time s, it must be back before or at time t, i.e., the following
constraint must hold:

Ci−1 ≤ s ≤ t−M(p, i− 1)

In conclusion, the problem is solved by means of:

F (i, j, t) = min
max(i−c,1)≤p≤i−1

Ci−1≤s≤t−M(p,i−1)

{F (p, i− 1, s)}+K(i, j, t) (15)

Let T be an upper bound on the latest possible departure time for the last batch. As long as
the triangle inequality holds, this is given, for instance, by:

T = max

(
max

1≤i≤n−1
{Ci + 2

n−1∑
h=i

thM}, Cn

)

9

The optimal solution value is given by (assuming c ≤ n):

z∗ = min
n−c+1≤i≤n,Cn≤t≤T

(
F (i, n, t)

)
A few boundary conditions must be imposed:

F (i, j, t) = +∞ for all j < i (16)

F (1, j, t) = K(1, j, t) for all j, t (17)

Condition (16) is obvious. Condition (17) allows to initialize the algorithm.
Let us turn to complexity. First, consider the computation of values M(i, j) and K(i, j, t).

Both can be simply computed adding the contribution of the next job in the batch either to
the round trip time (for M(i, j)) or to the objective function (for K(i, j, t)). More precisely, the
transportation time dh of job Jh is simply given by:

dh =

{
dh−1 + th−1,h, if i < h ≤ j
tM,h, if h = i (in this case the vehicle starts from the depot)

Notice that the delivery time of Jh is equal to Dh = dh + t, with t the departure time of the
batch.

Hence, M(i, j) is simply given by dj + tj,M . Note that M(i, j+ 1) = M(i, j)− tj,M + tj,j+1 +
tj+1,M . This means that all M(i, j) can be computed in O(nc) assuming j ≤ i+c−1. Similarly,
if batch {i, j} starts indeed at time t, the contribution of job Jh to the objective function is
given by:

fh(t+ dh),∀i ≤ h ≤ j

K(i, j, t) is given by
∑j
h=i fh(t+dh). Again, assuming that fj(·) can be computed in constant

time, note that dj+1 = dj + tj,j+1 and K(i, j + 1, t) = K(i, j, t) + fj+1(dj+1). So, all values
K(i, j, t) can be computed in O(ncT).

Once all values M(i, j) and K(i, j, t) are known, one can compute formula (15) for all feasible
triples (i, j, t). Each such computation requires comparing nT values. Finally, O(cT) values are
compared to find the optimal solution. Since there are O(ncT) feasible triples, the computation
of all values F (i, j, t) clearly dominates the other phases, and the following result is proved.

Theorem 2.5 Problem 1→ D|v = 1, c, fixed-seq|
∑
fj(Dj) can be solved in O(nc2T 2).

Notice that c is bounded by n and that the pseudopolynomiality of the algorithm is due to
T .

3 Special cases

In this section we address the complexity of two special cases of 1→ D|v = 1, c, fixed-seq|
∑
Dj ,

namely:

• The case in which the travel times are constant, denoted by 1→ D|v = 1, c, fixed-seq, ti,j =
t|
∑
Dj .

• The case in which the number of locations is known and fixed, denoted by 1→ D,K fixed |v =
1, c, fixed-seq|

∑
Dj .

We show that these problems can be solved in polynomial time via dynamic programming
algorithms.

10

3.1 Problem 1→ D|v = 1, c, fixed-seq, ti,j = t|
∑

Dj

In this section we investigate the special case of 1→ D|v = 1, c, fixed-seq|
∑
Dj in which travel

times (including the travel times to and from the depot) are equal to a constant t. Such a
special case can be considered a reasonable approximation whenever the total time between two
locations is dominated by some fixed-time loading/unloading activities.

We start by analyzing some properties of an optimal solution. Clearly, every time the vehicle
is back at the depot, it can restart immediately with a new batch consisting of the jobs already
completed, or it can wait for the completion of some jobs to be delivered (see Fig. 5).

.....J1 Jj Jj′ Jn

Cj

j + 1

-

M

-

j

--

M j − 1M

-

.....

-�t

Figure 5: Start of a new round trip.

Following Li et al.(2005), we call NSS (Non Stop Shipment) a sequence of consecutive round
trips during which the vehicle is never waiting at the depot (see Fig. 6), followed by a waiting
time. We denote by NSS[i, ni, j] a NSS starting at time Ci, i.e. Ji is the last job of the first
round trip of the NSS containing ni jobs and ending strictly before Cj (when another NSS
will start).

Ji

Ci

- -....

Jj ...

-....

...

....

-� F (i, ni, j)

- --

Di

.... -
D`+1

-�

batch of Ji

-�
batch of Jj

-� NSS(i, ni, j)

J`

D`

ni jobs

...

Figure 6: Illustration of a NSS

Suppose that a vehicle starts a round trip at a certain time τ . Let J be the set of jobs
completed before τ (or at time τ) and not delivered. The round trip starting at time τ is called
maximal if (i) the batch contains the first c jobs of J , or (ii) it contains all the jobs of J . The
following proposition gives a key feature of an optimal solution.

Proposition 3.1 There exists an optimal solution in which all round trips are maximal.

Proof. Let us denote by Rq the round trip starting at τ . Let Ji, . . . , Jj be the jobs completed
at or before τ and not yet delivered. The round trip Rq is maximal if it contains min{c, j−i+1}
jobs. Suppose that Rq is not maximal, i.e. |Rq| = k − i + 1 < min{c, j − i + 1}, i.e., the last
job in Rq is job Jk, k ≤ j − 1 (see Fig. 7(a)). This means that job Jk+1 is delivered in the
next batch Rq+1. One can move job Jk+1 from Rq+1 to Rq because Rq is not maximal. As a
consequence, the delivery time of job Jk+1 decreases by t, without changing the delivery times
of all the subsequent jobs (see Fig. 7(b)). Hence, the new solution is better than the previous
one. Suppose that Rq is maximal, then we are done. One can repeat the whole process for
k + 2, . . . ,min{c, j − i+ 1}, and the proposition follows. �

11

... ...JjJi

-- ---t t

Jk... ...

τ

Jj+1

iM Mk k + 1 k + 2

... ...

... ...JjJi Jk... ... Jj+1

-- ---t t

iM Mk k + 1 k + 2

... ...

τ

Figure 7: Maximal round trips

From this, we can see that a solution of the problem is composed by successive NSS. How-
ever, a round trip may have to wait for some additional jobs, before starting its route.

Example: Let us consider an instance with n = 4 jobs, processing times equal to p =
(1, 1, 10, 6), a travel time equal to 5 and a capacity of 2. The solution without waiting times
where the vehicle starts after job J1 has a total delivery time of 79, the solution without waiting
times where the vehicle starts after job J2 has a total delivery time of 73. The optimal solution
consists in delivering {J1, J2} in the same batch and then to wait for the completion of J4 for
delivering {J3, J4} in a same batch too. The optimal solution has a total delivery time of 70.
The three solutions are illustrated in Fig. 8.

J1

J2

2 4 6 8 10 12 14 16 18

J3

- -

D1

- -

D2

- -

D3 D4

∑
Dj = 79

20 22 24 26 28 30 32

J4

- -

D1

- -

D2

- -

D3 D4

∑
Dj = 73

- -

D3 D4

∑
Dj = 70- -

D1

-

D2

Figure 8: Illustration of the example

From the previous properties, one can propose a polynomial time algorithm to build any
NSS.

Given jobs Ji, Jj , with j > i, and an integer ni, we letNSS[i, ni, j] denote the followingNSS.
The vehicle starts at Ci, carrying ni jobs (i.e., jobs {Ji−ni+1, Ji−ni+2, . . . , Ji}), and goes back to
the depot (first round trip). Thereafter, the vehicle performs a number of consecutive maximal
round trips, without ever waiting at the depot (successive round trips). We let Jl denote the last
job that can be delivered in the NSS, so that the vehicle is back at the depot before or at Cj
(see Fig. 6). Notice that once Ji, ni and Jj are known, Jl is uniquely determined and we denote
by νi,ni,j the number of undelivered jobs {Jl+1, . . . , Jj}, i.e., νi,ni,j = j− l. At time Cj , another
NSS starts in which the first round trip delivers the undelivered jobs {Jl+1, . . . , Jj}. We denote
by Bi,j the number of round trips of NSS[i, ni, j] (which is also uniquely determined). The
number of jobs delivered by the round trip number k (1 ≤ k ≤ Bi,j) is denoted by n′k (we have
n′1 = ni). The starting time of the first round trip of NSS[i, ni, j] is Ci, the starting time of the
second round trip of NSS[i, ni, j] is Ci+t(ni+1), of the third round trip is Ci+t(ni+1+n′2+1),

12

..., the starting time of the round trip number k is equal to Ci + t
∑k−1
k′=1(n′k′ + 1).

We denote by F (i, ni, j) the total contribution to the objective function of the second,
third,..., Bi,j-th round trip, i.e., the round trips in which jobs Ji+1, . . . , Jl (j − c ≤ l < j)
are delivered (see Fig. 6). Hence, we have:

F (i, ni, j) =

Bi,j∑
k=2

n′k∑
r=1

(
Ci + t

k−1∑
k′=1

(n′k′ + 1) + rt

)

=

Bi,j∑
k=2

(
n′k
(
Ci + t

k−1∑
k′=1

(n′k′ + 1)
)

+ t
n′k(n′k + 1)

2

)
(18)

Given ni, Ji and Jj , Proposition 3.1 enables one to construct each NSS[i, ni, j] in O(n), and
therefore also each F (i, ni, j) can be calculated in O(n).

We define F (0, n0, j) (∀j, 1 ≤ j ≤ c) as the contribution to the objective function of the
first n0 jobs J1, . . . , Jj , such that these jobs are delivered in the same first round trip, starting
at time Cj . We have:

F (0, n0, j) =

j∑
l=1

(Cj + lt), ∀j, 1 ≤ j ≤ c, n0 = j

=∞, otherwise

Two particular cases are identified, where NSS[i, ni, j] cannot exist:

1. Ci+t(ni+1) > Cj : in this case, the round trip delivering job Ji finishes after the completion
time of Cj and thus NSS[i, ni, j] cannot exist.

2. νi,ni,j > c: job Jj cannot be delivered in the first tour of the next NSS starting at time
Cj .

In both these cases we set F (i, ni, j) = +∞.
Let now f(j, nj) be the minimum total delivery cost of the problem restricted to jobs

{J1, ..., Jj}, under the condition that the batch delivering Jj contains nj jobs and starts at
time Cj :

f(j, nj) = min
0≤i<j

1≤ni≤c
νi,ni,j

=nj

{
f(i, ni) + F (i, ni, j) +

nj∑
r=1

(Cj + rt)
}

(19)

with

f(0, nj) = 0, if nj = 0

=∞, otherwise.

Since, in the optimal solution, the last round trip does not necessarily start at time Cn, we
introduce a dummy job Jn+1 in the last position with Cn+1 = Cn + 2tn. Since 2tn is the time
needed to deliver all the n jobs in n round trips, it is an upper bound on the time that may be
needed after Cn to deliver all remaining jobs. This implies that there exists an optimal solution
in which the last round trip delivers only this dummy job at time Dn+1 = Cn+1 + t. Hence, the
optimal solution value is equal to

z∗ = f(n+ 1, 1)−Dn+1 (20)

Theorem 3.2 The problem 1 → D|v = 1, c, fixed-seq, ti,j = t|
∑
Dj is solved to optimality by

the dynamic programming algorithm in time O(cn3).

Proof. Each F (i, ni, j) can be computed in O(n) by (18). Since there are O(cn2) non stop
shipments NSS(i, ni, j), all F (i, ni, j) can be computed in O(cn3). In turn, from (19) each
f(j, nj) can be computed in O(cn), and there are O(cn) values f(j, nj). Hence, the dynamic
programming algorithm can be implemented in O(c2n2) and since c < n the complexity is
dominated by the computation of all values F (i, ni, j). �

13

3.2 Problem 1→ D, k = K|v = 1, c, fixed-seq|
∑

Dj

In this section, we present a polynomial time algorithm to solve the special case where the jobs
going to the same location are produced consecutively, and the number of locations is fixed to
K (of course, the running time of the algorithm will be exponential in K). It means that for
two consecutive jobs Ji and Ji+1 having the same location, ti,i+1 = 0. This case occurs when a
manufacturer has to deliver consecutively produced parts to the same warehouse. The number
of warehouses is often small, which makes the study of this case particularly relevant.

As in the algorithm in Section 3.1, we introduce a dummy job Jn+1 in the last position with
Cn+1 = Cn+ 2

∑n
i=1 tiM and a location n+ 1 for Jn+1 with tn+1,M = 0. This implies that there

exists an optimal solution in which the last round trip delivers only the dummy job Jn+1.
In what follows, we denote by F (i, ni, j, nj) the contribution to the objective function

of the jobs {Ji+1, . . . , Jj−nj}. These jobs are delivered by a Non Stop Shipment (call it
NSS(i, ni, j, nj)) such that:

(i) The first round trip starts after the vehicle has delivered Ji in a batch with ni jobs and is
back at the depot

(ii) The last round trip returns to the manufacturer after the delivery of job Jj−nj
and strictly

before Cj .

We will show that the function F (i, ni, j, nj) can be computed in polynomial time. As in the
algorithm in Section 3.1, F (i, ni, j, nj) takes the value +∞ if NSS(i, ni, j, nj) does not exist.

We denote by f(j, nj) the value of an optimal solution of the problem restricted to the first
j jobs, in which the last batch contains nj jobs {Jj−nj+1, Jj−nj+2, . . . , Jj}, and such that this
batch starts at the completion time Cj of the job Jj . Then, f(j, nj) can be computed by the
following recursive formula.

f(j, nj) = min
1≤ni≤c

ni≤i≤j−nj

{f(i, ni) + F (i, ni, j, nj)}+K(j, nj) (21)

Where K(j, nj) is the contribution to the objective function of the jobs Jj−nj+1, . . . , Jj . These
jobs are delivered by a single round trip starting at Cj :

K(j, nj) =

j∑
r=j−nj+1

Dr, and Dr = tM,j−nj+1 +

r−1∑
s=j−nj+1

ts,s+1 (22)

The optimal solution value is given by:

z∗ = f(n+ 1, 1)−Dn+1 (23)

In order to establish the complexity of the algorithm, we first propose an enumeration al-
gorithm which returns the value F (i, ni, j, nj) and we show that this value can be obtained in
polynomial time. Let us first present the property on which the analysis is based, and suppose
initially that c =∞.

Property 3.3 Whenever, during a NSS, a vehicle starts performing a round trip at time t, the
batch contains either all released jobs at t that are bound to the same location, or none of them.

Such property can be easily proved observing that, if there are no capacity restrictions, it
does not make sense to deliver only a few jobs going to a given location `, while others bound
to ` are available. Doing so would only force the subsequent round trip to also visit location
`, with no convenience. Hence, if the available jobs at time t span locations `, ` + 1, . . . , ` + q,
either the next batch will include all released jobs going to `, or all released jobs going to ` and
`+ 1, . . . , or all released jobs going to `, `+ 1, . . . , `+ q. If c <∞, the reasoning remains valid,
except that now the jobs bound to the same location included in the same batch are either 0 or
enough to fill vehicle capacity.

14

Algorithm 1 uses this property to list all batch partitions that give an NSS. For all l ∈
{i, . . . , j − nj}, we denote by N(l) the set of labels on Jl. A label (z, t) ∈ N(l) for l ≥ i + 1
corresponds to a partition of jobs Ji+1, . . . , Jl in batches, z represents the contribution to the
objective function of the jobs Ji+1, . . . , Jl and t is the vehicle return time after delivering job
Jl. An initial label is set in N(i), giving the contribution to the objective function of the first
batch with ni jobs and its return time, which are fixed. For each job Jl ∈ {Ji, . . . , Jj−nj−1},
the algorithm extends each label on N(l) according to Property 3.3. We denote by M(l + 1, l′)
the duration of the round trip of batch {Jl+1, . . . , Jl′}, and by Z(l + 1, l′, t) its contribution
to the objective function if the batch starts at time t. Finally, we consider the set A(l, t) of
relevant batches to consider (i.e., following Property 3.3), given that each of them starts at
time t after delivering job Jl. So, the next batch is either composed of (i) jobs going to the
same location as Jl+1, or (ii) all jobs going to the same location as Jl+1 and jobs going to the
next location, or (iii) all jobs going to the same location as Jl+1, all jobs going to the next
location and jobs going to the subsequent location, . . . and so on, until either we reach time t
or vehicle capacity limit. Given job Jl, we let A(l, t) denote the set of such dominant batches.
Since A(l, t) contains batches in which the first job is Jl+1, a batch of A(l, t) is completely
identified by its last job Jl′ . Note that the largest batch in A(l, t) is {Jl+1, . . . , Jl+s} where
s = min(c,max{s′|l + s′ ≤ j − nj , Cl+s′ ≤ t}).

Algorithm 1 Enumeration algorithm

N(i)← (Z(i− ni + 1, i, Ci), Ci +M(i− ni + 1, i))

For l = i to j − nj − 1 do

For (z, t) ∈ N(l) do

For l′ such that {Jl+1, . . . , Jl′} ∈ A(l, t) do

t′ = t+M(l + 1, l′)

z′ = z + Z(l + 1, l′, t)

N(l′)← (z′, t′)

End

End

End

Theorem 3.4 Algorithm 1 returns the value of F (i, ni, j, nj) by enumerating a polynomial num-
ber of labels.

The proof has the following scheme.

1. We first define an upper bound of the number of labels generated in N(j − nj), i.e., the
number of NSSs.

2. We give a polynomial expression of this bound for a capacity value c.

Point 1. Let h(l, z, t) the number of labels on N(j − nj) obtained by extension of the label
(z, t) ∈ N(l). Following the algorithm, we have the following relation.

h(l, z, t) =
∑

l′∈A(l,t)

h(l′, z′, t′), where t′ = t+M(l + 1, l′) and z′ = z + Z(l + 1, l′, t)

Let g(l) denote an upper bound of h(l, z, t) for any label (z, t) ∈ N(l). For all l ∈ {i, . . . , j −
nj − 1}, a valid upper bound can be given by the following recursive formula.

g(l) =

0 for l = j − nj
1 for l = j − nj − 1
max
∀τ≥Cl

∑
l′∈A(l,τ) g(l′) for l ∈ {i, . . . , j − nj − 2}

(24)

15

Indeed, there is only one way to extend a label in N(j − nj − 1) as only job Jj−nj
is available.

The recursion then comes from the definition of h(l, z, t). An upper bound of the total number
of generated labels by the NSS(i, ni, j, nj) on N(j − nj) is then given by g(i).

Point 2. For the sake of simplicity, we use `j to refer to the destination of job Jj .

Lemma 3.5 Let c ∈ {1, . . . , n}. The number of batching schemes to deliver the jobs Jl, . . . , Jj−nj

of NSS(i, ni, j, nj) such that l > i is not larger than 2`j−nj
−`l .

Proof. Note that g(l − 1) is by definition a valid upper bound on the number of batching
schemes to deliver the jobs Jl, . . . , Jj−nj of NSS(i, ni, j, nj). We want to prove that, for all
l > i,

g(l − 1) ≤ 2`j−nj
−`l . (25)

The proof of (25) is by induction on l. Following equation (24), g(j − nj − 1) = 1, so (25)
holds for l = j − nj .
Let us now assume that (25) is true for all q ∈ {l + 1, · · · , j − nj} (i.e., g(q − 1) ≤ 2`j−nj

−`q)
and we want to show that is true also for q = l. We have :

g(l − 1) = max
∀τ≥Cl−1

∑
l′∈A(l−1,τ)

g(l′)

≤ max
∀τ≥Cl−1

∑
l′∈A(l−1,τ)\{j−nj}

2`j−nj
−`l′+1 by induction, since l′ ≥ l and g(j − nj) = 0

In order to obtain the worst case, we assume that τ is such that c jobs are released at τ (or
Jj−nj is reached), which gives:

g(l − 1) ≤
∑

l′∈A(l−1,τ)\{j−nj}

2`j−nj
−`l′+1 (26)

Replacing `l′+1 by `l + (`l′+1 − `l) in equation (26), one has∑
l′∈A(l−1,τ)\{j−nj}

2`j−nj
−`l′+1 =

∑
l′∈A(l−1,τ)\{j−nj}

2`j−nj
−`l−(`l′+1−`l)

= 2`j−nj
−`l

∑
l′∈A(l−1,τ)\{j−nj}

1

2`l′+1−`l
(27)

In order to compute the equation (27), let us observe that the only case where we can have
2`l′+1−`l = 20 is the case where the set of dominant batches A(l− 1, τ) contains exactly one job
(identifying one batch) and such batch is bound to location `l. Let Je the job identifying this
batch. Note that this case is possible if all released jobs at τ are bound to the same location.
Following equation (27), one have.

1

2`e+1−`l
=

{
1 if `e+1 = `e
1/2 if `e+1 = `e + 1

Then in any case, we have∑
l′∈A(l−1,τ)\{j−nj}

1

2`l′+1−`l
≤ 1, (28)

and following equations (26)-(28), one has

g(l − 1) ≤ 2`j−nj
−`l .

16

This proves that the number of labels on N(j − nj) (i.e., g(i)) is not larger than by 2K−1.
As we have n label sets N(l), the total number of generated labels is upper bounded by n2K−1,
which yields the worst-case time complexity of Algorithm 1. �

Finally, z∗ can be computed through formulas (21) and (23) inO(n3c22K−1), which is polynomial
for K fixed. We note here that this result shows that problem 1→ D|v = 1, c, fixed-seq|

∑
Dj

is fixed-parameter tractable, when parameterized by the number of different locations.

4 Conclusion

In this paper, we focus on the coordination of a single machine production scheduling problem
and a single vehicle delivery problem. The jobs are processed on a single machine and delivered in
batches to customers by a single vehicle with limited capacity. It is assumed that the production
sequence is given, and is supposed to be the same as the delivery sequence. Therefore, the
problem is to form batches of jobs and the objective function is to minimize the sum of the
delivery times. We prove that the problem is NP-hard and propose a pseudopolynomial time
dynamic programming algorithm. Some particular cases of the problem are studied. The case
where transportation times are constant is solved in polynomial time by a dynamic programming
algorithm, as well as the case where the number of locations is fixed. The latter result also shows
that the problem is fixed-parameter tractable.

More cases can be investigated in the future under the hypotheses of fixed sequences, as for
example the case where processing times of jobs are identical. We propose also to investigate
the general case where the sequence is not fixed and has to be determined.

ACKNOWLEDGEMENT

This work was supported by the financial support of the ANR ATHENA project, grant ANR-
13-BS02-0006 of the French Agence Nationale de la Recherche.

References

[Agnetis et al., 2014] Agnetis, A., Aloulou, M. A., and Fu, L.-L. (2014). Coordination of pro-
duction and interstage batch delivery with outsourced distribution. European Journal of
Operational Research, 238(1):130 – 142.

[Agnetis et al., 2015] Agnetis, A., Aloulou, M. A., Fu, L.-L., and Kovalyov, M. Y. (2015). Two
faster algorithms for coordination of production and batch delivery: A note. European Journal
of Operational Research, 241(3):927 – 930.

[Armstrong et al., 2008] Armstrong, R., Gao, S., and Lei, L. (2008). A zero-inventory produc-
tion and distribution problem with a fixed customer sequence. Annals of Operations Research,
159(1):395–414.

[Chang and Lee, 2004] Chang, Y.-C. and Lee, C.-Y. (2004). Machine scheduling with job deliv-
ery coordination. European Journal of Operational Research, 158(2):470 – 487. Methodological
Foundations of Multi-Criteria Decision Making.

[Chen and Lee, 2008] Chen, B. and Lee, C.-Y. (2008). Logistics scheduling with batching and
transportation. European Journal of Operational Research, 189(3):871 – 876.

[Chen, 2010] Chen, Z.-L. (2010). Integrated production and outbound distribution scheduling:
Review and extensions. Operations Research, 58(1):130–148.

[Chen and Pundoor, 2006] Chen, Z.-L. and Pundoor, G. (2006). Order assignment and schedul-
ing in a supply chain. Operations Research, 54(3):555–572.

[Chen and Vairaktarakis, 2005] Chen, Z.-L. and Vairaktarakis, G. L. (2005). Integrated schedul-
ing of production and distribution operations. Management Science, 51(4):614–628.

17

[Fan et al., 2015] Fan, J., Lu, X., and Liu, P. (2015). Integrated scheduling of production
and delivery on a single machine with availability constraint. Theoretical Computer Science,
562:581 – 589.

[Gao et al., 2015] Gao, S., Qi, L., and Lei, L. (2015). Integrated batch production and distribu-
tion scheduling with limited vehicle capacity. International Journal of Production Economics,
160:13 – 25.

[Garey et al., 1988] Garey, M. R., Tarjan, R. E., and Wilfong, G. T. (1988). One-processor
scheduling with symmetric earliness and tardiness penalties. Mathematics of Operations Re-
search, 13(2):330–348.

[Hall et al., 2001] Hall, N. G., Lesaoana, M., and Potts, C. N. (2001). Scheduling with fixed
delivery dates. Operations Research, 49(1):134–144.

[Hurink and Knust, 2001] Hurink, J. and Knust, S. (2001). Makespan minimization for flow-
shop problems with transportation times and a single robot. Discrete Applied Mathematics,
112(13):199 – 216. Combinatorial Optimization Symposium, Selected Papers.

[Lee and Chen, 2001] Lee, C.-Y. and Chen, Z.-L. (2001). Machine scheduling with transporta-
tion considerations. Journal of Scheduling, 4(1):3–24.

[Lenté and Kergosien, 2014] Lenté, C. and Kergosien, Y. (2014). Problème de livraison a
séquence fixée. In 10ème conférence internationale de modélisation, optimisation et simu-
lation (MOSIM’14), Nancy.

[Leung and Chen, 2013] Leung, J. Y.-T. and Chen, Z.-L. (2013). Integrated production and
distribution with fixed delivery departure dates. Operations Research Letters, 41(3):290 –
293.

[Li and Ou, 2005] Li, C.-L. and Ou, J. (2005). Machine scheduling with pickup and delivery.
Naval Research Logistics (NRL), 52(7):617–630.

[Li et al., 2005] Li, C.-L., Vairaktarakis, G., and Lee, C.-Y. (2005). Machine scheduling with
deliveries to multiple customer locations. European Journal of Operational Research, 164(1):39
– 51.

[Stecke and Zhao, 2007] Stecke, K. E. and Zhao, X. (2007). Production and transportation
integration for a make-to-order manufacturing company with a commit-to-delivery business
mode. Manufacturing & Service Operations Management, 9(2):206–224.

[Tsirimpas et al., 2008] Tsirimpas, P., Tatarakis, A., Minis, I., and Kyriakidis, E. (2008). Single
vehicle routing with a predefined customer sequence and multiple depot returns. European
Journal of Operational Research, 187(2):483 – 495.

[Viergutz and Knust, 2014] Viergutz, C. and Knust, S. (2014). Integrated production and distri-
bution scheduling with lifespan constraints. Annals of Operations Research, 213(1):293–318.

[Wang and Cheng, 2009] Wang, X. and Cheng, T. (2009). Production scheduling with supply
and delivery considerations to minimize the makespan. European Journal of Operational
Research, 194(3):743 – 752.

[Zhong and Chen, 2015] Zhong, W. and Chen, Z.-L. (2015). Flowshop scheduling with inter-
stage job transportation. Journal of Scheduling, 18(4):411–422.

[Zhong et al., 2010] Zhong, W., Chen, Z.-L., and Chen, M. (2010). Integrated production and
distribution scheduling with committed delivery dates. Operations Research Letters, 38(2):133
– 138.

18

