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Abstract—The cooperation of heterogeneous unmanned sys-
tems, for instance, between aerial engines and terrestrial engines,
relies on reliable communication. Data delivery is ensured by
routing protocols, but traditional routing approaches, MANET
and DTN, are not efficient in such networks. In this paper, we
propose the S-ROGUE routing protocol combining the paradigms
MANET and DTN and switching between them according to the
network connectivity. On the one hand, the S-ROGUE MANET
algorithm relies on a proactive approach and a novel metric to
anticipate link disruptions and detect unidirectional links. On
the other hand, the S-ROGUE DTN algorithm uses on a rein-
forcement learning technique to select the best routing action. It
implements also a replication control and packet prioritization to
improve routing performances. We lead a performance evaluation
of S-ROGUE with similar routing protocols in realistic simulated
environments and conclude that S-ROGUE has the best routing
performance regardless the scenarios.

I. INTRODUCTION

Unmanned Systems are becoming an emerging topic and
found a wide range of applications. These systems have been
defined by the National Institute of Standards and Technology
(NIST) [1], which describes them as a powered physical
system, with no human operator aboard the principal compo-
nents, which acts in the physical world to accomplish assigned
tasks. It may be mobile or stationary and includes both the
vehicle and the associated components such as the control unit.
We consider only surface systems including, aerial, terrestrial
and surface maritime systems. We assume they share the
same type of network interface, unlike submarines which use
acoustic modems [2]. Each system is designed to ensure an
optimal accomplishment of its assigned mission. However,
complex missions such as the Rapid Environmental Assess-
ment (REA) [3] require the cooperation of heterogeneous
systems as depicted in figure 1.

Cooperation becomes effective only if data are delivered
correctly. This task is supported by routing protocols. Routing
paradigms can be classified into four categories according to
the node velocity and density as depicted by figure 2. MANET
routing protocols assume the existence of paths between
among all nodes in the network, unlike in Delay Tolerant
Networks (DTN) protocols, where nodes meet sporadically
each other. Assisted DTN (A-DTN) is a special type of DTN
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where the density and the velocity of nodes are low. The last
category includes the Hybrid routing approach merging both
MANET and DTN approaches to adapt the routing policy
according to the current network connectivity. Regarding the
speed of aerial, terrestrial and maritime vehicles and their
formations in fleet or in swarm, we assume that the density
is unpredictable and evolve in the course of time. From these
assumptions, the hybrid routing paradigm appears as the best
to ensure data delivery in networks of unmanned systems.
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Fig. 1. Examples of tasks assigned to vehicle during a REA mission

Several hybrid protocols have been proposed in the liter-
ature, but none takes into account all requirements of DTN
networks. In [4] and [5], authors extend proactive protocols
(BATMAN and OLSR) with a store and forward mechanism.
However, the proposed solutions delays only the transmission
if a destination is unreachable, without taking into account
sporadic meetings. In [6] authors extend the Dynamic MANET
On-demand Routing (DYMO), without taking into account the
delivery deadline related to each packet. Conan et Whitbeck
[7] have developed the HYMAD protocol. It relies on a
clustering technique to determine the routing strategy. Inside
a cluster, the routing is ensured by a MANET protocol,
meanwhile a DTN routing is used for inter-group commu-
nication. However, such an approach requires a low mobility
of the nodes in a cluster to guarantee a good performance



Nodes velocity

N
od

es
de

ns
ity

MANET

DTN
A-DTN

Hybrid

Fig. 2. Routing paradigm vs. nodes mobility and nodes density

of the MANET protocol. Azzuhri et al. [8] have extended
OLSR by including a DTN algorithm triggered when a path
is broken. Even if authors take into account the packet delivery
deadline and use a replication mechanism, they spread packets
regardless the capacity of the neighbor to meet the desired
destination.

Regarding the lacks of current protocols, we propose the
S-ROGUE, a hybrid routing protocol dealing with the re-
quirements of MANET and DTN paradigms. The MANET
algorithm relies on a proactive approach to discover and assess
both local links and end-to-end paths. Beside, the DTN algo-
rithm relies on the reinforcement learning (Q-learning) in order
to select the best routing action and uses a replication control
and packet prioritization to improve routing performances.

The remainder of this paper is organized as follows. In
Section II, we describe the reinforcement learning approach
and detail the Q-learning algorithm. In Section III, we describe
carefully our proposed hybrid routing protocol. We detail
in Section IV simulation cases and settings to conduct our
performance evaluation. In Section V, we give simulation
results. At the end, we conclude our works and present
perspectives in Section VI.

II. REINFORCEMENT LEARNING APPROACHES AND
Q-LEARNING ALGORITHM

Optimizing the routing performances in an unknown and
dynamic environment is a key issue in mobile networks. Re-
inforcement Learning techniques (RL) provide an interesting
approach for solving such a problem. We introduce the concept
of RL and describe the Q-learning algorithm used in our
routing algorithm.

A. Reinforcement learning

In a RL approach a system learns how to solve a problem
from its experience [9]. A learning agent interacts with its
environment by performing actions and obtains a reward and
switches to another state as depicted in figure 3. Initially, the

learning agent has any experiences and ignores which action
provides the best reward. As a consequence, the learning agent
must explore the environment.
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Fig. 3. The agent environment interaction in reinforcement learning

A reinforcement learning task that satisfies the Markov
property is called a Markov Decision Process (MDP). We
consider a finite Markov decision process, the number of states
and actions spaces are finite. Formally, we describe the charac-
teristics of a MDP with the following tuples 〈S,A, P,R〉, each
one represents the set of states, actions, state transitions and
rewards, respectively. In each iteration, a learning agent is in
a state s ∈ S, and performs an action a ∈ A. The probability
to be in the next state s

′
is given by the transitions function

P as,s′ described by :

P a
s,s′

= Pr
{
st+1 = s

′
|st = s, at = a

}
,

with
∑
s′∈S

P a
ss′

= 1· (1)

The related expected reward function is given by the fol-
lowing equation:

Ra
s,s′

= E
{
rt+1|st = s, at = a, st+1 = s

′
}
· (2)

According to the state-action pairs, an agent can expect to
receive a reward according to its future actions. To define its
behavior we use a policy π, mapping from each state s ∈
S and action a ∈ A the probability π(s, a). The value of a
state s under the policy π is denoted V π(s) and is defined
as the total of expected rewards, Rt, obtained by the learning
agent starting from the state s and following the policy π. The
function V π(s) is defined as follows:

V π(s) = Eπ {Rt|st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}
,

(3)
with E the expected value under the policy π, γ the discount
factor that determines the importance of future rewards such
as 0 ≤ γ ≤ 1. We can also define from an action a for a
learning agent in a state s using a policy π the total value of
rewards denoted Qπ(s, a) such as:

Qπ(s, a) = Eπ {Rt|st = s, at = a} ,

= Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
·

(4)



It is possible to find an optimal solution to a given problem
with the Bellman equation [9]:

V π(s) = Eπ {Rt|st = s} ,

= Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}
,

= Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2|st = s

}
·

(5)

In praxis, finding such a solution in an unknown system is
impossible. This is why, we try to find a sub-optimal solution
with the Q-learning algorithm described in the next section.

B. Q-learning
Q-learning is a reinforcement learning algorithm based

on the state-action function Q(s, a), which approximates the
optimal state-action function and is given by:

Q(st, at)← (1−α)Q(st, at)+α[rt+γmax
a
Q(st+1, a)], (6)

with V ∗(s) = maxQ∗(s, a) the value of the given state
st+1 and α ∈ [0, 1] the learning rate determining how much
Q(st, at) weighs the reward at each iteration. We formulate
in section III-B the routing problem in an MDP and use the
Q-learning algorithm to find a sub-optimal solution. The Q-
learning algorithm is detailed in the algorithm 1.

Algorithm 1: Q-learning algorithm

1 Initialize Q(s, a);
2 while for each episode do
3 Initialize s;
4 while for each step of episode do
5 Choose a from s using policy derived from Q;
6 Done action a, observe r, s

′
;

7 Q(s, a)←
Q(s, a) + α[rt + γmax

a′
Q(s

′
, a
′
)−Q(s, a)];

8 s← s
′
;

9 end
10 end

III. S-ROGUE DESIGN

In this section, we describe the design of S-ROGUE. We
start with a description of its MANET strategy used to discover
local links and end-to-end paths. Then, we describe the DTN
algorithm relied on the Q-learning algorithm and its associated
mechanisms. In each section, we take care to describe how our
protocol switches between these strategies.

A. MANET routing algorithm
The use of the MANET paradigm allows us to discover end-

to-end paths. S-ROGUE uses a proactive routing algorithm
based on a controlled flooding technique to reduce the routing
overhead. Information about links is provided by the Fast-
ETX metric (F-ETX), which assesses both the quality and the
state of local links [10]. This information is also used by the
algorithm to assess the quality of end-to-end paths.

1) Local link discovery and assessment: The algorithm uses
a proactive scheme, wherein all nodes broadcast periodically
announcement messages to their neighborhood. These mes-
sages are also used by F-ETX metric to assess the quality and
the state of a link. This metric requires two information: (i)
the number of packets transmitted to a neighbor with success
and (ii) the number of acknowledgment returned by this one.
Such a technique requires the exchange of the first information,
but if a packet is lost, a node cannot determine if the last
transmitted is lost or received. As a consequence, a delay is
introduced during the assessment process. To avoid such a
situation, we propose another solution relied on the technique
used by the better approach to mobile ad-hoc networking
(BATMAN) routing protocol, by changing the transmission
process as depicted by the figure 4. The dr ratio indicates

(a) dr ratio (b) df ratio

Fig. 4. Local link assessment

the number of packets received from a neighbor, meanwhile
The df ratio indicates the number of forwarded packets by a
neighbor. This technique ensures the acquisition of informa-
tion required by the F-ETX metric and let to a same node
the computation of the ratios. In order to avoid an infinite
forwarding of announcement messages, a node receiving its
announcement message does not retransmit it. The local link
computation is giving is the algorithm 2 with SrcAddr the
address of the message creator and PrevAddr the address of
the last forwarder. In order to be identified an unique sequence
number is assigned to each packet.

Algorithm 2: Packet announcement policy
input: packet: received packet

addr: the node’s address
1 if packet.SrcAddr = packet.PrevAddr then
2 ComputeDr();
3 paquet.PrevAddr ← addr;
4 SendPacket(packet);
5 else if SrcAddr = addr then
6 ComputeDf();
7 RemovePacket(packet);
8 else
9 RemovePacket(packet);

10 end

2) Routing path discovery process: The forwarding process
ensures the path discovery, by propagating announcement
messages through the network. These messages contain in-
formation about the path quality (Qp), computed from three
information: (i) the announced path quality (Qap), (ii) the local
link quality (Qll) and (iii) the number of hops (Ph) such as,
Qp = Qap × Qll × Ps. In praxis information is coded on 8



bits. As a result, the path quality is computed by the following
equation.

Qp =
Qap ×Qll × Ph

(Qmax)2
, (7)

with Qmax the maximal link quality (255). When an an-
nouncement message is created, the information on the quality
is fixed at 255. Then, the announced quality decreases at
each forwarding according the quality of local link and the
number of hops. The aim of the hop count information is to
penalize the path quality according to a penalty P related to
the number of nodes presents in the path and is computed
as Ph = Qmax − P . We assume the maximal quality at 255
such as Qmax = 255, and fix empirically P at 10, like in
the BATMAN protocol. An example of the link quality path
assessment is given in the figure 5. The node A is directly
connected to B with a quality of 70%, as a result, it assesses
the local link with a quality of b 255×70100 c = 178. When A
receives the announcement message of C forwarded by B,
it assesses the quality of the routing path with a quality of
b 255×178×2452552 c = 171.

A

Node Quality
B 178
C 171

B

Node Quality
C 255
A 178

C

Node Quality
B 255
A 171

Quality: 70 % Quality: 100 %

Fig. 5. Assessment of the path quality

We define two mechanisms to enhance the path selection
process when a disruption occurs. The first one is triggered
when a path is no longer announced, the related quality is
decreased. The second one is triggered when the path is no
longer announced after two periods, the related routing entry in
the routing table is declared unreachable. All packets destined
to the destination are then managed by the DTN algorithm.

3) Integration of the F-ETX metric: We have developed
the Fast ETX (F-ETX) metric for assessing the quality and
determine the link state in mobile networks [10]. Unlike
other estimators, F-ETX uses a dynamic window size to
catch packets, in order to compute the couple of ratios (df
and dr). The estimator adapts its reactivity and its accuracy
according to the link stability, that makes it suitable for mobile
networks. F-ETX provides four types of information through
four estimators.

The first estimator gives a short-term assessment of the link
quality and is computed as follows:

χLQ =
1

(1− df )(1− dr)
· (8)

The second estimator gives a long-term assessment of the
link quality by computing the variation of the current and the
previous estimations to track the course of the link quality:

∆LQ
t = χLQt − χLQt−1,

χTrendt = β ·∆LQ
t + (1− β) · χTrendt−1 ·

(9)

The third estimator computes the link stability by taking
into account the absolute and relative size of the windows
maintained for computing the couple of ratios. Let Wmax the
maximum window size, Wn the current window size and Wi

the ith the element in the window. The windows maintained
to compute the df and dr respectively noted W df and W dr .
The link stability indicator is computed with an EWMA
(Exponentially Weighted Moving Average) filter tacking into
account the absolute Ξ and the relative stability ξ:

Ξ =

|z
df
n |∑
i=1

zdfi +
|zdr

n |∑
i=1

zdri

2|zmax|
,

ξ =

|z
df
n |∑
i=1

zdfi +
|zdr

n |∑
i=1

zdri

|zdfn |+ |zdrn |
,

χStabt = Ξt · γ + (1− γ) · ξt·

(10)

The fourth estimator observes the changes in the window
sizes maintained for the couple of the ratios. Let W be a
window and W t

n its size at time t. The variation of the
reception ratio provided by the window W at t is noted ∆Win

t .
This estimator determines the link as becoming unidirectional
if the assessed value becomes negative, and is computed as
follows:

∆Win =

|zn|∑
i=1

zi −
|zn−1|∑
i=1

zi,

χULLt = χULLt−1 · λ+ (1− λ) · ϕ(∆
df
t ,∆

dr
t ),

with ϕ(x, y) =

 −1 x < 0 ∧ y > 0
1 x > 0 ∧ y < 0
0 else

·

(11)

Each estimator assesses a specific property of a link. Current
approaches as proposed Baccour et al. [11] merge all estima-
tions into a single one. However, there is no silver bullet to
merge all estimations and provide a reliable information on
the link. In [10] we have proposed a framework, depicted
figure 6, to integrate the F-ETX to a routing protocol by
treating separately each estimation. The stability information
is treated in first by the routing algorithm since it determines if
a route is valid or not. Then, the algorithm checks if the link is
unidirectional by observing the values returned by the fourth
estimator and the df ratio. At the end, the algorithm merges
short and long-term estimations in order to penalize link with
decreasing quality and reward links with an increasing quality.

B. The DTN routing algorithm

When nodes cross sporadically each other, MANET routing
strategies become inefficient. In this case, DTN approaches
appear as the best. We have developed a routing DTN algo-
rithm to support the MANET algorithm, when any paths are
available. In order to perform an optimal routing, we map
the Q-learning algorithm to the routing problem. In addition,
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Fig. 6. Framework suggested by Bindel et al. [10]

the protocol quantifies meeting occurrences and uses packet
prioritization and a replication mechanism to increase the
Packet Delivery Ratio (PDR) and reduce the end-to-end delay.

1) Routing algorithm: Our DTN algorithm relies on the Q-
learning algorithm. We define the state in the Q-learning as a
pair of nodes S(a, b) such as a node a holds a packet and is in
contact with b. Routing decisions are mapped to a couple of
actions: either transmitting the packet to the node or keeping
it. We define also two rewards, rt the reward related to the
transmission and rk related to the storing action.

Rewards are the key points of the Q-learning algorithm,
since they determine the behavior of the learning agent.
Rewards must take into account the capacity of a node to
cross the desired destination and its lifetime determining
its capacity to hold a packet. The end-to-end delay can be
estimated according the meeting occurrences between nodes.
Such information is given by contact metrics, described in the
section III-B2. Let n a node holding a packet to a desired
destination d and meeting a node m. The node n compares
its meeting interval with d and that provided by m, denoted
P (n, d) and P (m, d) respectively. The reward function related
to the capacity of a node to cross the destination is computed
as follows:

D(n,m) =

 0 P (n, d) < P (m, d)
−0.5 P (n, d) = P (m, d)
−1 P (n, d) > P (m, d)

· (12)

We consider also in the routing decision the residual energy
of a node. Let a node n, the reward function related to the
residual energy is computed as follows:

E(n) = −
(

1− Eres(n)

Einit(n)

)
, (13)

with Eres(n) and Einit(n) are the residual energy and the
initial energy of the node n, respectively. Combining equations
12 and 13, we define the reward rt related to the packet
transmission from a node n to a node m as:

rt = αE(m) + βD(n,m), (14)

with α and β weighting the reward functions. Beside, the
reward rk related to the packet storing by a node n is computed
as follows:

rk = αE(n) + βD(n,m)· (15)

2) Metrics: Assessing meeting occurrences gives informa-
tion on the capacity of a node to cross a desired destination.
Our DTN routing algorithms relies on this information to
determine if a packet has to be transmitted or stored. We
have extended prediction contact techniques used in [12] by
developing four metrics presented in the following paragraphs.

a) Average contacts metric: The assessment of average
contacts, ρ, gives an information on the percentage of nodes
encountered during a time interval. Let nT the total number
of cross nodes, computed from the time interval T and N
the number of cross nodes from a set of time intervals. If we
assume that the contacts occurrences are independents, ρ is
given by:

ρ =
nT
N
× 100· (16)

We pay an attention to the interpretation of this metric,
which can be only considered at the end of the second interval.
Indeed, ρ is always fixed at 100% at the end of the first
interval.

b) Long-term contacts metric: This metric assesses the
average number of long-term meetings with a node. It uses
also the EWMA filter to give more importance to recent values
than older, avoiding a lag effect on the assessment. Let Plgtu,v
the average number of long-term meeting computed from a set
of time intervals T , each meeting occurrences between nodes
u and v during a period t is denoted nut such as:

Plgtu,v = α · nut + (1− α)nut−1· (17)

To avoid a lag effect, α must be 0 < α < 0.5 in order to give
more importance to the newest values than older.

c) Recent contacts metric: We are now interested to
assess recent contact occurrences. This third metric computes
from a Short Time Interval (STI) (< T ) the average number of
short-term meetings. Let Prtv,u the average number of short-
term meetings between the couple of nodes u and v at time t.
Such as nu,v is the number of exclusive meeting occurrences
during a time interval, so Prtv,u is computed as follows:

Prtv,u =
nu,v

n
· (18)

d) Indirect contacts metric: The last metric assesses the
average number of indirect short-term meetings. We assume
that if a node encounters often two nodes v and u during
the same time interval, there is a high probability that this
couple of the nodes cross each other during the same time
interval. Let Pitv,w,u the average number of indirect short-
term meetings computed by the node v at time t between
u and w. This information is computed from the last time
intervals, by counting the number of meetings observed by v
with the couple of nodes u and w and denoted P iv,w,u =

nu,w

n .



Therefore, the average number of indirect short-term meetings
between v and u is computed as follows:

Pitv,u = max
rc

{
Pitv,rc,u

}
· (19)

We consider only the most recently node crossed by v and
denoted rc.

3) Queuing mechanism: Our protocol determines a packet
transmission priority in order to reduce the end-to-end delay.
A queuing mechanism has been implemented, each queue is
dedicated to a destination node. Each p packet stored in a
queue q, is ranked according to its deadline td which decreases
periodically. We use a scheduling algorithm to determine
for each one, the number of packets to be transmitted. Our
algorithm relies on the Weighted Round Robin (WRR) to
compute the transmission priority related to each queue. Let q
a queue with a size n and qtdp the deadline td of the packet p,
the weight related to the queue, W (q) is computed following
the equation 20.

W (q) = qtd0

n∑
p=0

qtdp · (20)

The weight determines the priority level of the queue,
the one with the lowest weight is the most served by the
scheduling algorithm. Our algorithm inspects the weight of
each queue in order to determine the number of packets to be
transmitted. The algorithm 3 details each step.

Algorithm 3: Scheduling algorithm
Data: F , list of queues
Data: C, list of queue’s weight
Data: nf , size of the list f
Data: wf,p, weight related to the packet p of the list f

1 for i← 1 to nF do
2 C(i)← 0
3 for j ← 1, to ni do
4 C(i)← C(i) + wi,j
5 end
6 C(i)← C(i)× wi,0
7 if C(i) > Cmax then
8 Cmax← C(i)
9 end

10 end
11 for i← 1 to nC do
12 /* Determine the number of packets

transmitted */
13 TransmitPacket(Fi,

Cmax
Ci

)

14 end

The packet transmission is then managed by the DTN
routing algorithm, which determines the rewards related to
the packet transmission or its storing. If the algorithm keeps a
packet, all related to the same queue are not served during the
meeting time with the neighbor. At last, all packets destined
to a connected neighbor are directly sent.

4) Replication mechanism: We have developed a replica-
tion mechanism based on the packet deadline td in order to
reduce the end-to-end delay. We compute the time related to
the copy creation according to its deadline. The computation
starts as soon as the packet is stored in a queue. Let tc the time
related to the creation of the copy and computed according to
the following equation:

td =

{
t+ (te ×max(Pr, P i, P lg)), P r 6= 0 ∨ Pi 6= 0 ∨ Plg 6= 0

t+ te
2
, else

·

(21)

The basic idea is to increase tc if a node knows when it will
meet the desired destination. If any knowledge are available
about the meeting time with the destination, a copy is created
as soon as the half of the deadline has been reached. Finally,
if the deadline td is passed the packet lifetime has expired and
it is removed from the queue.

IV. SIMULATION SETTINGS AND SCENARIOS

In this section, we describe simulation scenarios and detail
simulation settings. We used the ns-3 simulator [13] to design
networks with realistic signal propagation models and the Bon-
nmotion software [14] to generate mobility scheme retracing
the displacement of unmanned vehicles. We define two types
of scenarios to assess the performance of our protocol.

A. Scenarios to compare hybrid routing protocols

We lead a performance evaluation, by comparing the routing
performances of the S-ROGUE and the classical HYMAD
routing protocol [7] which has been well investigated in
the literature. As HYMAD is not available in ns-3, we set
simulation settings and mobility schemes, according to [7]. In
the first scenario, 30 nodes move according to the Random
Waypoint mobility model (min speed: 0.5m/s, max speed:
1.5m/s, wait time: 2s) during 5000s. In the second scenario,
60 nodes move according to realistic Rollernet trace a highly
connected and extremely mobile connectivity traces. Since
authors in [7] do not use any propagation models in their
simulations, we will use the deterministic Friis propagation
model to recreate at least a free space environment.

B. Scenarios related to unmanned vehicles

To test our protocol in realistic environments related to
unmanned systems, two additional scenarios have been de-
fined. The first one is dedicated to a mission in a free space
environment, the second one is dedicated to a mission in an
urban city. In the first scenario, all engines evolve on an area
of 1km2, where aerial engines evolve over terrestrial engines
at an altitude of 100m. Aerial engines move according to
the PPRZM model (PaPaRaZzi Mobility) [15], meanwhile the
terrestrial engines move according to the Disaster Mobility
Model [16]. In the second scenario, aerial vehicles keep the
same mobility, whereas terrestrial vehicles move according to
Manhattan Mobility Model with a grid of 10× 10. We fix the
speed at 15m.s−1 for the couple of scenarios. Regarding the
propagation model, we fix parameters in order to describe the



TABLE I
SIGNAL PROPAGATION SETTINGS

Scenario Pathloss Shadowing fading
Free space Friis (Freq: 2.4× 109, SystemLoss: 1,

MinLoss: 0)
None (any buildings) Nakagami-m (m0: 1.5, m1: 0.75, m2:

0, d1: 80 d2: 320)
Urban ThreeLogDistance(Exp0: 2.5, Exp1: 5,

Exp2: 10, Dist0: 1, Dist1: 75, Dist2:
114)

Building Loss Model (set building at
each crossing)

Nakagami-m (m=1) −→ Rayleigh

path loss, shadowing and fading effects as described in table
I. Each scenario has been running with three seeds (5155236,
5236, 60) in order to retrace different fast-fading effects.

V. EVALUATION RESULTS

In this section, some evaluation results are presented. First,
the ability of the S-ROGUE and HYMAD protocols to support
the network load is analyzed. Second, the robustness of the S-
ROGUE is compared to classical MANET and DTN protocols.

A. Network load analysis

We compare the performance of S-ROGUE and HYMAD
by observing the related Packet Delivery Ratio (PDR) accord-
ing to network load. Figures 7a, 7b and 7c show results with
the Random Waypoint mobility model and different data traf-
fics. Figure 7d shows results related to the Rollernet scenario.
The S-ROGUE protocol appears as the best regardless the
scenario. At the end of the first three scenarios, the PDR is
the same with the S-ROGUE protocol, close to 0.9 unlike
HYMAD, where the PDR decreases when the network load
increases. In the last scenario with a real mobility trace, we
confirm that S-ROGUE has a better PDR than HYMAD.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1000 2000 3000 4000 5000

Time (s)

P
D

R
 (

c
d

f)

Protocols

HYMAD

S−ROGUE

(a) 1 KB/s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1000 2000 3000 4000 5000

Time (s)

P
D

R
 (

c
d

f)

Protocols

HYMAD

S−ROGUE

(b) 10 KB/s

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1000 2000 3000 4000 5000

Time (s)

P
D

R
 (

c
d

f)

Protocols

HYMAD

S−ROGUE

(c) 100 KB/s

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 200 400 600 800

Time (s)

P
D

R
 (

c
d

f)

Protocols

HYMAD

S−ROGUE

(d) Rollernet

Fig. 7. Cumulative PDR with S-ROGUE and HYMAD

B. Robustness analysis in realistic simulated environments

We compare the S-ROGUE with classical MANET proto-
cols (AODV and OLSR) and DTN protocols (Spray and Wait
with 3 copies authorized and an unlimited version) in term of
PDR and end-to-end delay. Figure 8 plots the mean and the

standard error of the mean related to the PDR and the end-to-
end delay. Regarding the PDR, S-ROGUE provides the best
ratio in both scenarios. Even if the number of nodes impact the
network density, giving an advantage to MANET protocols,
the environment has a significant impact on the signal quality.
As a result, even if the number of paths decreases in the urban
scenario, S-ROGUE keeps a high PDR regardless the scenario.
About the end-to-end delay, MANET protocols have the lowest
delay compared to DTN protocols. However, S-ROGUE comes
to reducing the end-to-end delay by exploiting current paths.

VI. CONCLUSION

In this paper, we have presented a novel routing protocol
(S-ROGUE) designed for unmanned systems and using either
a MANET or a DTN algorithm according to the network
connectivity. The MANET algorithm relies on a proactive
approach to discover the local topology and end-to-end paths.
It uses also the F-ETX metric which assesses both the quality
and the state of local links. We have developed a framework
to integrate each estimator in the routing protocol such as,
each information is taken into account by the routing process
to select the best link. The DTN algorithm relies on a RL
technique to perform the best routing action when nodes are
crossing. Indeed, it determines if a packet has to be transmitted
or kept according to the remaining energy level of a node
and its capacity to meet the desired destination. The DTN
algorithm uses also a queuing mechanism and a replication
technique to reduce the end-to-end delay. S-ROGUE has been
compared to a large panel of solutions including MANET,
DTN and Hybrid protocols in realistic environments. We have
investigated the performance of the S-ROGUE by changing
the network load and the number of nodes. Regardless the
scenarios, S-ROGUE has appeared as the best routing protocol
in term of PDR and end-to-end delay.

However, some issues are still open. Firstly, we did not
perform an investigation to identify the bottleneck of our pro-
tocol. Secondly, we will investigate online learning algorithms
to determine if a better approach is possible.
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