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Abstract 
 

The affine transformation hypothesis is usually adopted in order to link the tissue scale with the fibers scale in 

structural constitutive models of fibrous tissues. Thanks to the recent advances in imaging techniques, such as 

multiphoton microscopy, the microstructural behavior and kinematics of fibrous tissues can now be monitored at 

different stretching within the same sample. Therefore the validity of the affine hypothesis can be investigated. 

In this paper, the fiber reorientation predicted by the affine assumption is compared to experimental data 

obtained during mechanical tests on skin and liver capsule coupled with microstructural imaging using 

multiphoton microscopy. The values of local strains and the collagen fibers orientation measured at increasing 

loading levels are used to compute a theoretical estimation of the affine reorientation of collagen fibers. The 

experimentally measured reorientation of collagen fibers during loading could not be successfully reproduced 

with this simple affine model. It suggests that other phenomena occur in the stretching process of planar fibrous 

connective tissues, which should be included in structural constitutive modeling approaches. 
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Introduction 
 

As for most solids, the macroscopic mechanical behavior of soft biological tissues is deeply linked to 

their internal microstructural organization (Humphrey 2003; Gasser et al. 2006). For this reason, the 

development of analytical constitutive equations has been an active research area, in order to obtain 

structurally based models that predict the tissues behavior from information on their internal structures 

(Gasser et al. 2006).  

Humphrey (Humphrey 2003) gives an extensive review of various biomechanical applications and 

contributions of constitutive models to the medical field. The development of surgical assistant robots 

is one of these examples: the behavior of the involved tissues and their injury thresholds have to be 

known and predicted accurately, to ensure a proper feedback (Kyriacou et al. 2002). These constitutive 

models can also help to optimize the rehabilitation procedures following injuries or surgeries, by 

suggesting the optimal loads that need to be applied to the tissues. For instance, Akeson et al. (Akeson 

et al. 1973; Akeson et al. 1980) showed that the immobilization of tendons or ligaments after injuries 

induces histological changes in the collagenous structure, degrading the mechanical properties of the 

tissues. Similarly, these models are also useful in the prediction of ruptured aneurysm risk, in order to 

design more efficient treatment schedules (Gasser 2011). They can also help to better understand 

surgical techniques (Holzapfel et al. 2002; Chauvet et al. 2010) and thus contribute to their upgrading.  

These models also have a huge potential in the field of tissue engineering. Indeed, they offer a 

significant contribution to evaluate the injuries threshold of in-vivo tissues that the engineered tissue 

needs to reproduce, or to help ranking the structural properties which are important to reproduce 

(Butler et al. 2001). They may also help to estimate the mechanical signals experienced by the cells 

seeded in the scaffold (Obbink-Huizer et al. 2014), or to predict the mechanical consequences of the 

cell-induced remodeling (Loerakker et al. 2016). 

The physiological basis of the constitutive models allows the straightforward incorporation of many 

different components and phenomena in the models. This is a major asset since these parameters are 

based on precise biological observations. It is then easy to model processes that directly influence the 

microstructure like ageing or pathologies, by degrading the parameters linked to the tissue structure or 

composition (Fung 1990). For instance, in the case of ageing, a microstructurally based model can take 

into account  the elastin degradation that arises with ageing (Robert 2002). 

Despite these numerous advantages, the development of such microstructural models presents 

significant challenges. One of the main concerns regards how the macroscopic deformation of the 

tissue is transmitted to the fiber network at the microscopic scale. Indeed, the way the transmission 

between these two scales is operated may have a great influence on the model response. 

The affine assumption is used in most of the existing models. Within this hypothesis, the fibers are 

supposed to follow exactly the motion of the local volume in which they are embedded. Therefore, the 

fibers’ stretching is equal to the tissue stretching in the particular direction of the fibers (Sacks 2003). 

Consequently, for a fiber family, the strain tensor of the fibers, Efibers, is given by: 

where E is the Green-Lagrange strain tensor applied to the global tissue, and M the vector associated 

to the fiber family direction in the representative elementary volume.  

The hypothesis behind the affine transformation assumption is that the structural phenomena arising 

from the interactions between fibers or between the fibers and the non fibrillar matrix are considered 

as not important for the tissue response. However, neglecting these phenomena may lead to an over- or 

 𝐸𝑓𝑖𝑏𝑟𝑒𝑠 = 𝑴𝑻𝐸 𝑴 (1) 
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under-estimate of the strain in the region of interest (ROI) since a part of the fibers displacement may 

come from interactions and constraints from the surrounding environment. 

Experimental investigations of this fundamental assumption are only scarce (Billiar and Sacks 1997; 

Sacks 2003; Fan and Sacks 2014). This is due to the technical difficulties encountered for the 

observation of the fibrous microstructure during a mechanical assay, on the same sample and at the 

same location. Recent advances have been done through the combination of multiphoton microscopy 

(MPM) with mechanical assays (Screen and Evans 2009; Goulam Houssen et al. 2011; Keyes et al. 

2013). MPM is a powerful technique to investigate the three-dimensional architecture of collagen-rich 

tissues since it offers intrinsic optical sectioning and deep penetration in the tissue. MPM modes of 

contrast include Two-Photon Excited Fluorescence (2PEF) and Second Harmonic Generation (SHG). 

2PEF signal comes from elastin fibers and cells or from specifically stained components of the tissue 

(Deyl et al. 1980; Zoumi et al. 2002). Such specific staining can be used to determine the local strain 

field (Screen and Evans 2009; Mauri et al. 2013; Jayyosi et al. 2014). SHG specifically reveals the 

micrometer-scale organization of unstained collagen fibers (Zoumi et al. 2004; Raub et al. 2008; 

Goulam Houssen et al. 2011). Lately, SHG microscopy has been used in an increasing range of tissues 

to characterize the microstructural response to mechanical loading, such as skin (Bancelin et al. 2015), 

liver capsule (Jayyosi et al. 2016), aorta (Keyes et al. 2013), bone (Tang et al. 2015), cornea (Benoit et 

al. 2016), fetal membrane (Mauri et al. 2015), heart valve (Alavi et al. 2015), nerve (Vijayaraghavan et 

al. 2014) and tendon (Goulam Houssen et al. 2011). 

In this study, the hypothesis of affine transformation is confronted to the experimental data from 

uniaxial and biaxial mechanical tests on planar connective tissues. Uniaxial tensile tests have been 

performed on skin (Bancelin et al., 2015), and elliptic bulge testing has been conducted on liver 

capsule (Jayyosi et al. 2016). Both experiments have been coupled with multiphoton microscopy 

imaging, to assess the kinematic of collagen fibers during the test. The local microscopic and 

macroscopic strains measured are then used to compute the theoretical evolution of the collagen fibers 

orientation, under the assumption of affine transformation. This theoretical orientation evolution is 

compared to the observed reorientation during these experimental assays, to assess the validity of the 

affine assumption. 

Material and Methods 

1. Calculation of the theoretical reorientation of collagen fibers 

In the following, and when it is not mentioned, the mathematical formulation used is the one reported 

in Fan and Sacks (Fan and Sacks 2014). We restrict ourselves to planar deformations, since our data 

were obtained on biological membranes in which the fibers are mostly oriented within the same plane. 

To test the affine model, we consider the evolution of collagen fibers orientation in the field of view of 

the multiphoton microscope during the mechanical test considered (whether uniaxial tensile tests or 

elliptic bulge tests). A theoretical reorientation under the affine assumption can be calculated based on 

the initial orientation of the fibers in the region of interest (ROI), and the strain applied to the tissue, as 

the affine model is purely kinematic.  

Let us consider a family of fibers oriented in a direction M defined by an angle θ (see Fig. 1). Setting 

F the 2D transformation gradient tensor, the new direction m of this fibers family associated to an 

angle β after deformation reads: 

 𝒎 =  𝑭 𝑴 (2) 
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If we discard the non-diagonal component, we obtain the equation usually used in most reorientation 

models (Billiar and Sacks 1997; Chandran and Barocas 2005; Rezakhaniha et al. 2012): 

Let Γ1(β) be the fibers orientation distribution in the deformed state and Γ0(θ), the orientation 

distribution in the reference state. As adjacent fibers remain adjacent, the number of fibers dN around 

the angle θ is maintained after reorientation around the angle β: 

In the general case, the angular derivative is estimated by following the deformation of the surface 

element associated to a variation of angle dθ around θ into the same element for β, as done by Fan and 

Sacks (Fan and Sacks 2014). We then obtain, for a 2D transformation: 

with C the right Cauchy-Green dilation tensor calculated by C = F
T
 F. 

In the case of a diagonal gradient of the transformation, we get the simple relationship: 

It is thus possible to compute the theoretical reorientation of each direction of the 2D space between 

[0, π] knowing the kinematic of the transformation. The orientation distribution for the deformed 

configuration is inferred from the orientation distribution of the reference state, associated with the 

reoriented directions. 

2. Elliptic bulge test on liver capsule 

2.1 Experimental set up 

The experimental data are based on the experimental work presented in Jayyosi et al. (Jayyosi et al. 

2016). In this study, bulge tests on human liver capsule were performed under a multiphoton 

microscope to assess the changes that occurred in the fibrous structure during a biaxial loading. The 

liver capsule, or Glisson’s capsule, is a fibrous connective membrane mainly made of type I collagen 

thus 𝛽 =  𝑡𝑎𝑛−1 (
𝐹21 cos 𝜃 + 𝐹22 sin 𝜃

𝐹12 sin 𝜃 +  𝐹11 cos 𝜃
). (3) 

 tan 𝛽 =  
𝜆𝑦

𝜆𝑥
tan 𝜃.  (4) 

  𝛤 1(𝛽)𝑑𝛽 =   𝛤 0(𝜃)𝑑𝜃 = 𝑑𝑁 (5) 

therefore 𝛤 1(𝛽) = 𝛤 0(𝜃)
𝑑𝜃

𝑑𝛽
 . (6) 

  𝛤 1(𝛽) =  𝛤 0(𝜃) 
𝑴𝑻 ×  𝑪 ×  𝑴

det 𝑭
 (7) 

  𝛤 1(𝛽) =  𝛤 0(𝜃) (
𝜆𝑦

𝜆𝑥
 𝑠𝑖𝑛2𝜃 +

𝜆𝑥

𝜆𝑦
 𝑐𝑜𝑠2𝜃). (8) 
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fibers and elastin fibers (Voss et al. 1980; Gelse et al. 2003). These two fibers networks are deeply 

intertwined and are considered to define the tissue response to a mechanical loading, which present a 

non-linear hyperelastic behavior.  

Briefly, a customized air inflation device was developed to perform the bulge test under a two photon 

excitation microscope (NIKON, A1R MP PLUS®) at the IVTV platform (“Ingénierie et Viellissement 

des Tissus Vivants”, Engineering and Ageing of Living Tissues, ANR-10-EQPX-06-01). Inflation was 

conducted with pressure increments of 0.1 bar followed by pauses for imaging. SHG and 2PEF signals 

were then recorded on the entire thickness of the capsule samples. At the same time, the altitude of the 

apex was collected thanks to the displacement sensor of the microscope objective, to get an estimation 

of the macroscopic vertical displacement of the sample. In order to test different loading conditions, 3 

configurations of the bulge test were developed: a circular one (referred to as R1), and 2 elliptic 

(referred to as R2 for the samples with a ratio 2 between the minor and major axis of the ellipse and 

R4 for a ratio 4). Therefore, some circular samples (n=7) have been loaded at the apex in an 

equibiaxial manner, and some elliptic samples (R2 n=5 and R4 n=5) have been subjected to non-

equibiaxial loading. 

2.2 Data analysis and strain calculation 

The collagen fibers orientation distributions were determined on the obtained SHG images (see Fig. 

2), at each loading step, using the OrientationJ plugin of ImageJ (Rezakhaniha et al. 2012) .  

Macroscopic and microscopic measures of strain at the apex were also performed. The microscopic 

local strain fields at the apex were assessed using the method described previously (Jayyosi et al. 

2014). Briefly, a grid of intrinsic markers was created by photobleaching at the apex of the capsule: a 

5x5 grid of photobleached squares, as seen on figure 3, was made on an area of 260 x 260 µm² in the 

field of view (which was 507 x 507 µm² wide). The positions of these squared markers were collected 

at each loading step and used to compute local strain fields using the finite element method.  

The macroscopic strain was estimated under the assumption of an ellipsoidal shape of the inflated 

capsule (Jayyosi 2015). The approximated ellipsoid dimensions were obtained from the apex vertical 

displacements, measured by the displacement of the microscope objective, and the size of the 

clamping ellipses. The stretch ratios in X and Y directions, λx and λy respectively, were then calculated 

from the ellipsoid meridian lengths in each direction. These meridian lengths were estimated by the 

second formula of Ramanujan (Eq. 9), that gives the approximation of an ellipse circumference 

(Ramanujan 1914): 

where a and b are the semi minor and major axes of the ellipse. Thus, a is the vertical displacement of 

the capsule apex and b the dimension of the clamping ellipse in the X or Y direction. The stretch ratios 

λx and λy were then obtained by dividing this meridian length by the initial dimension of the clamping 

ellipse according to the case (R1, R2 or R4). 

Consequently, since we calculated the strain at two different scales, the reorientation calculation was 

also conducted at two different levels. First the macroscopic strain calculated via the ellipsoidal 

assumption was used to compute the fibers reorientation on the whole images. The calculation was 

performed on the distribution of every image of the stack, at each pressure level, with the assumption 

of a homogenous strain across the thickness. Second, a more local approach was considered by 

focusing the analysis to the area of the photobleaching grid. Therefore a measure of the local 

orientation in each element of the mesh was made, in the mean plane of the grid. The theoretical fibers 

 𝐿 ≈
𝜋(𝑎 + 𝑏)

4
[1 +

3ℎ

10 +  √4 − 3ℎ
]  (9) 

with ℎ =  (
𝑎 − 𝑏

𝑎 + 𝑏
)

2

 (10) 
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reorientation was calculated for each element of the mesh, based on the local strain calculated in that 

particular element.  

3. Uniaxial tensile test on skin 

3.1 Experimental set up 

The used experimental data originate from Bancelin et al. (Bancelin et al., 2015), in which uniaxial 

tensile tests were performed under SHG microscope. Briefly, murine skins were harvested from the 

back of 4 week old wild-type mice; epidermis and hair were removed without altering the underlying 

dermis structure. These samples were cut in bone shape and were stretched in situ with a custom-made 

tensile device (see Fig. 4a). The stress/stretch curves exhibited a classical "J" shape: they had a toe 

region, a gradual increase (heel region) and a linear section, before rupture (see Fig. 4b). The 

microstructural organization was assessed by use of a custom-made multiphoton microscope. SHG 

images (300 x 300 µm²) showed fibrillar structures corresponding to collagen fibers, interrupted by 

round structures with no SHG signal corresponding to the hair follicles (see Fig. 4c). As the 

microstructural image acquisition was impossible during the stretching because of slight movements, 

loading was performed incrementally (see Fig. 4b), with a pause every 5% of stretching.  

3.2 Data analysis and strain calculation 

In Bancelin et al.(Bancelin et al. 2015), the centers of hair follicles were tracked at each stretch level. 

They defined a Delaunay grid, which was used to compute the local stretch (see Fig. 5a-c). To reduce 

the effects of misplaced points, the mesoscopic strain was determined by averaging over the whole 

region of interest. Figure 5d-f show the components of the mesoscopic surface stretch tensor (λxx, λyy, 

and the sliding angle ω) as a function of the global stretch ratio (λ). Along the traction direction, the 

λxx slope was equal to 1, indicating a homogeneous deformation of the sample. Transversely to the 

traction direction, the λyy response was found to be not linear. The initial increase was likely due to 

structural effects or water absorption; for higher stretch ratios, we observed the expected decrease. At 

the SHG scale, the sliding angle ω remained small (<5°), and thus was neglected to compute the 

theoretical fibers reorientation. 

Independently from the strain analysis, the collagen fibers orientation distribution was extracted from 

SHG images at each step. A morphological filtering was used to create a map of the fibers orientation, 

and then a normalized histogram of the fibers orientation distribution was calculated (see Fig. 5g) on 

the field of view.  

Using the mesoscopic strain, we computed the theoretical evolution of the normalized collagen fibrils 

distribution at each level of stretching. 

 

Results 
 

Experimental observations gave access independently to the strain and to the fibers orientation 

distribution at three different scales: 1) the orientation evolution on the whole image (500 x 500 µm²) 

as a function of the strain estimated from macroscopic motions for the liver capsules, 2) the orientation 

evolution on the whole image (300 x 300 µm²) as a function of the local measurement of the strain on 

the same region for the murine skin, and 3) the orientation evolution in 16 subparts of the image as a 

function of the local strain measured on the same subpart for liver capsule. 

In each case, we computed the theoretical distribution of fibers orientation at each strain level using 

the affine assumption. This distribution is then compared to the measured one.  
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1. Maximal reorientation 

1.1. Reorientation in the liver capsule for the whole image, based on macroscopic strain 

Figure 6 presents the measured initial distribution as well as the theoretical and experimental 

distributions at the highest pressure level for a human liver capsule. Each subfigure corresponds to a 

different type of biaxial loading. The examples were chosen so that they display a different initial 

orientation distribution. Although the analyses were performed on the full stack of images, the figures 

present only the evolution of a given optical plane of the liver capsule for the sake of clarity.  

The main observation is that the affine assumption is not able to predict the reorientation observed 

experimentally. For the samples that showed an important reorientation during loading (~30°, see Fig. 

6b), the reorientation calculated from the macroscopic strain is clearly under estimated when 

compared to the experimental ones. In fact, the strain values measured in these experiments lead to a 

predicted reorientation of only few degrees. Therefore the reorientation model derived from the affine 

assumption can predict the fiber reorientation only for samples that present a limited reorientation 

(<10°, see Fig. 6c). 

For circular samples (R1 type), the hypothesis of an equibiaxial loading implied that the stretches were 

the same in all directions, so the λy/λx ratio was equal to 1. Therefore, the affine assumption predicted 

that no reorganization should occur (Γ0(θ)= Γ1(β) with Eq. 8). However, a slight reorientation was 

observed experimentally.  

 

1.2. Reorientation in the mice skin for the whole image, based on local strain measured on the same 

region 

 

Figure 7 presents the measured initial distribution as well as the theoretical and experimental 

distributions at a high stretch level ( = 1.5), close to the rupture stretch for two skin samples. The 

analysis was performed few micrometers below the surface to have the better signal/noise ratio, but 

similar results are obtained at the different imaging depths. 

 

In both cases, the fibers are realigned in the direction of traction (0°). The initial distribution had more 

or less two peaks (around – and + 20°), while the experimental and theoretical final distributions had a 

single peak centered on the direction of traction. Despite this qualitative agreement, the affine 

assumption was not able to reproduce quantitatively the observed distribution, which was broader. 

 

1.3. Reorientation in the liver capsule for sub-regions of the photobleaching grid, based on local 

strain measured on the same region. 

Figure 8 presents the measured initial distributions as well as the theoretical and experimental 

distributions for each element of the photobleached grid mesh, for the same samples as in figure 6. 

However, the strains used for reorientation calculation were determined locally here unlike figure 6. 

The distributions of the fibers orientation were estimated on the same ROIs as the ones used for the 

strain determination. As the grid had 5x5 points, we had access to 16 sub-regions (which correspond to 

the 16 elements of the mesh). The positions of the sub-images reported in figure 8 correspond to the 

positions in the photobleached mesh. 

Results are quite similar to those observed with the global orientation distribution. For the samples 

showing no reorientation (see Fig. 8a and c), the small difference between experimental and 

theoretical orientation distributions that was previously observed in figure 6a and c is not present 

anymore in the different elements of the mesh, or it is smaller than the noise. For the samples where 

the reorientation was important (see Fig. 8b), results are similar to those from the global orientation 

analysis, although the reorientation magnitude now depends on the location in the grid. 

2. Reorientation with strain  
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The previous examples (see Fig. 6, 7 and 8) were obtained for the highest stretch reached before 

rupture, where we expected to observe the highest discrepancy between the model and the 

observations. We now perform similar comparison at intermediate loading steps. 

2.1 Liver capsule 

Regarding the liver capsule, figure 9 shows the reorientation observed in the sample R2 (same as in 

figures 6b and 8b), but at a lower pressure level (P=0.2bar) which corresponds to the beginning of 

inflation. Figure 9a corresponds to the global reorientation calculated from macroscopic strain (as in 

figure 6b) whereas figure 9b presents the local reorientation in the photobleaching grid (as in figure 

8b).  

Not surprisingly, the observed reorientation is lower than the one observed at higher pressure. 

However, an important gap between theoretical and experimental reorientations is still observed in 

some areas, for instance in quadrant 8 (2
nd

 row, 4
th
 column) in the figure 9b. In quadrant 4 (1

st
 row, 4

th
 

column), the beginning of the reorientation process can be observed with the disappearance of the 

initial dominant orientation into a rather isotropic area. This implies that the discrepancy between the 

affine assumption and the experimental observations is observed even at small loading values. 

2.2 Skin samples 

Regarding the skin, we have access to a larger number of samples, and to more intermediate stretch 

levels. Figures 10a and b present the same results as figure 7 but for a lower stretch level ( = 1.2) 

corresponding to the end of the heel region of the stress-stretch curve. A slight difference between 

theoretical prediction and experimental data is observed in figure 10a – the observed orientation 

remaining very close to the initial one. On the other hand, no difference can be seen between the 

model and the observation in figure 10b, while the experimental orientation no longer corresponds to 

the initial one.  

The same analysis was performed at each step of stretching, for 12 different samples (see 

Supplementary Figures 1, 2, 3, 4, 5). Not all samples have reached the highest stretch levels (for 

example, only 4 have reached =1.5): the other ones have broken earlier. We observed that the 

experimental orientation distributions were close to the initial ones in the heel region of the stress-

stretch curve (stress-stretch curves can be seen onSupplementary Figure 6 – the size of the heel region 

depends on the sample), and became more and more different in the linear region. Not so surprisingly, 

the predicted distributions were very close to the observed ones in the heel region, and became more 

and more different at increasing stretching in the linear region. 

To obtain a more quantitative comparison, we used the Orientation Index (OI) scalar (Bancelin et al. 

2015). The OI is obtained from the orientation distribution I() and the angle of the main orientation 

max:  

The OI is related to the fraction of fibers aligned with the direction of loading: for a single peak 

distribution, it is directly related to the width of the pic. It is therefore a useful quantity to analyze the 

reorientation for uniaxial loading. The figures 10c and d show the evolution of the experimental and 

predicted Orientation Index, and the difference between the two. We observed a double part behavior: 

at low stretches, we did not observe a significant difference between the experimental and predicted 

OIs; at higher stretches, the difference progressively increased. This behavior was found in almost all 

our 12 analyzed samples (see Supplementary Figure 7). 

 𝑂𝐼 = [2
∫ 𝐼(𝜃)cos2(𝜃 − 𝜃max)𝑑𝜃

90°

−90°

∫ 𝐼(𝜃)𝑑𝜃
90°

−90°

− 1] . 100 

 

(11) 
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Discussion 

We have tested the validity of the affine assumption with respect to experimental observations in two 

planar fibrous tissues. The affine assumption is used in most multiscale models of connective tissues 

to relate the motions and stretches of the collagen fibers to the ones of the material volume embedding 

these fibers. Indeed, it is the simplest and most natural assumption since it supposes that the fibers 

follow exactly the kinematic of the representative elementary volume. Within this assumption, the 

knowledge of the transformation kinematics is sufficient to completely determine the kinematics of the 

collagen fibers.  

We used multiphoton microscopy combined to mechanical assays to image the collagen fibers 

organization at different stretch levels. This was performed on two different tissues: the Glisson’s 

capsule of human livers and the dermis of murine skins, which were subjected to respectively biaxial 

and uniaxial tensile tests. The multiphoton microscopy and more specifically the SHG contrast 

provided volume images of the collagen fibers with a micrometer resolution. We used these images to 

extract the fibers orientation in a ROI (the whole image or subparts). Therefore, we had access to a 

series of collagen fibers orientation distributions at increasing stretch levels. 

The approaches we used were efficient to determine the planar orientation of the fibers. Effects of 

curvature (for liver capsule) or out-of-plane inclination of the fibers were not taken into account. 

Indeed, at the scale of the whole image, we did not observe significant bending of the liver samples, 

even at high load. The out-of-plane inclination of the fibers could exist, but is expected to be small in 

planar tissues. Moreover, we had no reason to assume that the reorientation would be more accurately 

predicted for out-of-plane motions than for in-plane motions, while the full 3D analysis would require 

a higher resolution in the z-direction than the one used here. The same ROI was observed during the 

whole experiment. Still, as the tissue was stretched, it became thinner which implied that more and 

more fibers were observed in the same plane. As we did not observe any difference in the fibers 

orientation distribution along the thickness of the sample, and as we used normalized distribution, this 

effect was not likely to create a significant bias in our data. 

Independently, we determined the stretch of the ROI, based on other information obtained from the 

microscope: displacement of the centers of the hair follicles for the skin samples, and displacement of 

the apex or of a photobleached grid in the fluorescence channel for the liver samples. The knowledge 

of the strain and of the collagen fibers orientation histogram on the reference image was sufficient, in 

the affine assumption, to determine the orientations of the fibers at each stretch level. 

We had three approaches for the strain calculation, based on the specificity of each tissue. Clearly, the 

macroscopic measurement used on liver capsule was the less accurate, since it relied on strong 

assumptions, investigated in Jayyosi’s thesis (Jayyosi 2015). First, the motion of the apex of the 

sample was determined by the vertical displacement of the focal plane. Comparison with 

stereocorrelation images showed an average error of -0.35mm, leading to an underestimation of the 

strain down to -5%. This can lead to an underestimated reorientation. Second, the boundary conditions 

could create heterogeneous strains and induce an extrinsic non affine kinematic that would not come 

from structural phenomena. In fact, the slight reorientation of circular samples observed in figure 6a 

may come from heterogeneities in the radial strains induced by a non-uniform clamping, which would 

modify the equibiaxial loading into a non-equibiaxial tensile test. The difficult control of the boundary 

conditions was indeed highlighted during stereoscopic digital image correlation tests (Jayyosi 2015). 

Local measurements seemed much more promising, although harder to perform. Two different 

methods were used, selected on the specificities of the tissues. For liver samples we photobleached a 

grid since this tissue exhibited an important fluorescence signal coming from the non-collagen matrix. 

Then, the displacement of the grid was tracked using classic DIC approaches and used to determine 

the strain in each of the 16 subparts of the grid. Skin samples did not show a fluorescence background, 

but exhibite well defined endogenous structures: the hair follicles. So, we tracked the center of each 

follicle, creating a grid on which we computed the strain. As the follicles were not uniformly 
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distributed, and as their position tracking was not perfect, we averaged the computed strains on the 

whole image, which was less sensitive to measurement errors and provided parameters at the same 

scale for all samples. 

We had thus access separately to an observed and a predicted histogram of fibers orientations at each 

stretch level. The direct comparison showed that the affine model did not predict correctly the 

evolution of the fibers orientation. Not surprisingly, it was at the largest stretches that we observed the 

greatest differences (see figures 6 and 7). At low stretch level (see figures 9 and 10), the model and the 

observations were in general very close, although important differences were observed in case of 

important reorientations (higher than 10
°
). Quantitative measurements on skin samples indicated that 

the differences between the predictions and the experimental observations appeared at the end of the 

heel region and increased in the linear region. These observations are consistent with the observation 

of two different responses of the tissue in the heel region and in the linear region (Bancelin et al. 

2015). 

This limitation of the affine transformation assumption has been previously reported in studies on 

other types of tissues, in particular in the study of Chandran and Barocas (Chandran and Barocas 

2005). They compared two models of a tissue equivalent, a gel of collagen fibers embedded in a 

matrix. On one hand, they considered a model based on the affine assumption to predict the strain and 

reorientation in the tissue. On the other hand, they tested a network-based model that included 

information on the connection and force transmissions between fibers. The comparison of these two 

models led to significant differences in the model responses about the microstructural kinematic. 

Especially, the fibers orientations, predicted by the two modeling approaches, presented some 

important differences. The fibers orientation in the network based model seemed to be not correlated 

to the fibers strain. Therefore, these results indicated that the kinematic was not exclusively defined by 

the fibers strain. Thus, the authors highlighted the importance of identifying the relationship between 

the fibers network and the surrounding environment, to assess the role played by the fibers inter-

connections on kinematic. In particular, for tissues which force transmission to fibers is mainly done 

by other fibers, the affine assumption appears greatly limited, and the impact of the organization in an 

interconnected network cannot be discarded. On the opposite, if the force transmission comes mainly 

from the global loading conditions, then, fibers will more likely act independently and enforce the 

assumption of an affine kinematic. 

The response of the fibers to the strain thus depends on the type of tissues. In certain types of tissue 

like pericardium, a good correlation was found between experimental measurements and simulation 

with the affine transformation model (Fan and Sacks 2014). In the study by Billiar and Sacks (Billiar 

and Sacks 1997), the simulations of biaxial tensile tests coupled with a reorientation model under the 

affine assumption allowed to get fibers reorientation very close to experimental observations made by 

SALS (Small Angle Light Scattering). In the present work, we studied two other types of tissues. It is 

noteworthy that the affine assumption overestimates the reorientation for skin samples, while it 

underestimates it for liver capsules.  

The reorganization of the network seems to depend on other factors than only the applied strain to the 

individual fibers, at least for elementary volumes of few hundred of micrometer. The degrees of 

freedom of the fibers are also defined by the network structure and the links between fibers, which can 

increase or prevent the reorientation of a given fiber in a particular direction.  

Therefore, the consideration of a reorientation model based solely on geometry seems quite limited to 

describe accurately the kinematic of fibers in planar fibrous tissues. Structural effects take indeed a 

huge part in the network reorganization, and the affine assumption presents important limitations when 

it does not take into account the interactions between fibers that influence the kinematic greatly. 

Affine assumption may be indeed relevant for small representative volumes, smaller than the fibers 

mesh size. However, at such small scale, the samples are unlikely to remain homogeneous in 

mechanical properties. At larger scales – as the ones we have been considering – the spatial 

organization of the fibers, and the stress transmission by the extracellular matrix, are likely to play 
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significant roles on the fiber reorganization with stretch. Therefore, more complex assumptions 

including stresses transmission in the fibers mesh will provide more accurate results. 

Conclusion 

The affine transformation assumption that allows linking the fiber strain to the global transformation 

of the tissue seems to present important limitations. Using multiphoton microscopy imaging combined 

with mechanical assays, we measured independently the strain and the fibers orientations at different 

stretching. Results indicate that the fibers’ kinematic is not entirely affine, but is over or 

underestimated depending on the tissue.  

The structural phenomena induced by the interactions between fibers are then likely to be predominant 

in the deformation mechanisms of planar fibrous tissues. The affine assumption appears to be 

appropriate only in some specific cases, since it neglects the impact of the surrounding environment. 

Therefore, the development of constitutive models of planar fibrous tissues based on microstructure 

must include information about these interactions to predict faithfully the tissue behavior and link the 

macroscopic response to the microscopic organization. 
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Figure legends 
 

Fig. 1 Reorientation of fiber with main direction M in a direction m after transformation F 

 

Fig. 2 Calculation of the orientation distribution of collagen fibers thank to the ImageJ plugin OrientationJ 

developed by Rezakhaniha et al. (Rezakhaniha et al. 2012). Top: map of collagen fibers with their detected 

orientation; Bottom: associated histogram of fibers orientation.  

 

Fig. 3 Typical photobleaching grid made at the apex of a sample of human liver capsule observed with 

multiphoton microscopy at 0.1 bar. The photobleached squares, characterized by a local loss of fluorescence, are 

used as nodes of a mesh to compute local strain. Photobleached squares are 20µm x 20µm spaced out by 40µm. 

Green color corresponds to the fluorescence channel that shows the elastin fibers, while magenta color 

corresponds to the Second Harmonic Generation (SHG) signal which reveals collagen fibers. 

 

Fig. 4 a) In situ custom made tensile test device for skin sample stretching. b) SHG image of a murine dermis, 

revealing the hair follicles (black holes) and the collagen network (in green). c) Mechanical behavior of the skin 

under uniaxial tensile testing. The nominal stress versus stretch curve exhibits the four classical regions. The 

small relaxations are due to the pauses in stretching for image acquisition 

 

Fig. 5 Analysis of the skin SHG image. (a-c) skin local strain on the traction axis (x), transversally (y) and 

sliding angle (), differentiated from the displacements of the hair follicles. (d-f) Average values of the surface 

stretch components (λxx and λyy) and the sliding angle (ω) in the SHG image as a function of the global stretch 

ratio (λ) (g) Collagen fibers orientation, extracted from SHG image.  

 

Fig. 6 Distribution of collagen fibers orientation for human liver capsule, at the end of loading (just before 

rupture), for a circular sample (a), an elliptic sample R2 (b) and an elliptic sample R4 (c). The images were taken 

in the median plane of the liver capsule. In each subfigure, the initial distribution of fibers is presented in yellow, 

the orientation distribution measured experimentally is indicated in blue, and the theoretical distribution 

calculated from the macroscopic strain values is shown in red 

 

Fig. 7 Distribution of collagen fibers orientation for murine skin, at 50% strain (just before rupture), for samples 

with a one peak (a) and a two-peaks (b) initial distributions. In each subfigure, the initial distribution of fibers is 

presented in blue, the orientation distribution measured experimentally is indicated in dashed black, and the 

theoretical distribution calculated from the averaged local strain is shown in dotted dash red 

 

Fig. 8 Experimental (blue), theoretical (red) and initial (yellow) distributions of the collagen fibers in the liver 

capsule for (a) circular, (b) elliptic R2, and (c) elliptic R4 samples. Each quadrant of the graph corresponds to a 

different element of the finite element mesh made on the photobleaching grid. Reorientation calculation is based 

on local strain values. The samples are the same ones as in figure 6, at the same pressure level (just before 

rupture) 

 

Fig. 9 Experimental (blue), theoretical (red) and initial (yellow) orientation distributions of the collagen fibers in 

the liver capsule after the first increment of pressure i.e P=0.2bar, a) calculated from the macroscopic strain 

values and b) in each element of the finite element mesh calculated from local strain value (each quadrant 

corresponds to a different element of the mesh). The sample presented here are the same samples as in figures 

6.b and 7.b, which presented important reorientation 

 

Fig. 10 Reorientation of the collagen fibers at low strain for murine skin samples. (a-b) Initial orientation 

distribution of fibers (blue), experimentally measured orientation distribution (dashed black), and theoretical 

distribution calculated from the averaged local strain (dotted dash red) for the same samples as the ones infigure 

7, for a strain of 20%. (c-d) Evolution of the OIs measured (dotted black) and calculated (dashed black), and 

their difference (measured minus calculated) (red), as a function of the applied strain 

 

 


