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two families of fibers at each interconnecting pivot is the physical quantity controlling the observed rupture phenomena.

For so doing, we have modified the presented model by considering a more general description similar to the one adopted in [START_REF] Altenbach | On generalized Cosserat-type theories of plates and shells: a short review and bibliography[END_REF][START_REF] Altenbach | Large deformations of inelastic shells Key Engineering Materials[END_REF] in the case of shells and plates.

As far as plasticity does not enter in the picture, we postulate that there exists a threshold in the fibers relative displacements beyond which the interconnecting pivot breaks out. Beyond this threshold the elastic model which we use must be updated to account for the irreversible transformation to which it was submitted. The case involving plasticity becomes more complicated since a plasticity threshold will also need to be accounted for, the yield stress being possibly attained before the first fracture. In a forthcoming work the whole rupture evolution process will be studied in a quasi-static regime by introducing stiffnesses depending on the fiber relative displacement and the other deformation measures.

The presented results are preliminary but promising: they motivate the development of more sophisticated theoretical and numerical methods.

Deformation energies for biphasic co-continuous pantographic structures

Consider a reference configuration of an orthogonal pantographic lattice. It is constituted by two families of mutually orthogonal fibers which intersect one by one in a bidimensional array of regularly distributed material points. These points are modelling some cylinders with fixed dimensions, called pivots. Let be {D 1 , D 2 } an orthogonal basis for the reference configuration. So we will refer to the reference configurations of the two families of fibers by using the two unitary vectors D ˛with ˛= 1, 2. In [START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF] it is shown how to obtain a homogenised form for the energy for this kind of structure. The authors describe a system in which the two families of fibers are described by using a single placement function . Here we want to analyse the resistance of the pivots that interconnect the two layers of fibers to the stresses, such as to make the two layers sliding (elastically or plastically) with respect to each other. So we will have to modify the homogenised energy for the system as presented in [START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF] by using two independent placement functions ˛and introducing an interaction term in the energy as
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In Eq. (1) we used F ˛= ∇ ˛and no sum over repeated ˛is intended.

Since, exploiting [START_REF] Franciosi | Laminate system schemes for effective property estimates of architectured composites with co-(dis) continuous phases[END_REF][START_REF] Franciosi | Effective properties of fiber and platelet systems and related phase arrangements in n-phase heterogeneous media[END_REF], the pantographic structure can be seen as an assembly of two fiber-reinforced layers connected by the pivots, the last term of Eq. ( 1) can be interpreted as an interaction term between two cocontinuous phases,1 described by the two placements

K int 2 || 1 -2 || 2 d (2) 
˛.
Remark that the interaction in Eq. ( 2) is ruled by the modulus K int which is unknown and which in general has to be related to the flexibility of pivots. We are able to make some ansatz about the value of K int , depending on the dimensions of the pivots and the material which we are considering. Infact, one can well understand that the effect of the term in Eq. ( 2) will be remarkable with longer pivots and it will be negligible with shorter pivots (this case is, infact, the one considered in [START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF]). We can consider K int as a modulus which either remains elastic up to the fracture threshold of the pivots or changes from elastic to elastic-plastic whenever a plastic threshold is reached before fracture. It is also possible that some microstructural damage onset at some critical threshold makes this modulus decrease before any macroscopic fracture event in the pantograph. All this will here simply be considered in terms of a possible non constancy of this modulus value, when comparing available data with performed simulations.

In this first work we will predict mainly the behaviour of pantographic structures until the first pivot rupture and we will therefore use the available experimental measure only in the regime before that point. We will not analyze in detail the possible mathematical model which describes the dependence of stiffness on deformation measures. We will present a numerical study of the behaviour of a pantographic structure modeled through a homogenised theory in which kinematics depends on the two fields, 1 and 2 , which are related by the energetic term in Eq. ( 2). We will also show that when we choose high values for K int the model produces the same results of the previously introduced "1-field" model [START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF]. In fact, that will be the case in which interconnecting pivots do not allow for relative displacements.

In this first work, we have applied the energy modification presented in Eq. ( 1) to simulate the experiment reported in Figs. 2 and3 of a tensile test applied up to fracture on an aluminium pantograph as described in Section 1. Fig. 2 reports the force-displacement curve relative to this test and Fig. 3 shows the pantograph final state with the location of the first breaks of the pivots corresponding to the maximum force on the graph.

The comparison of these experimental data with the performed simulation is presented in the next section.

Disregarding in this first work more elaborated homogenization procedures (e.g. [START_REF] Alibert | Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof[END_REF][START_REF] Forest | Generalized continua and non-homogeneous boundary conditions in homogenisation methods[END_REF][START_REF] Alibert | Extensional elastica in large deformation as\Gamma-limit of a discrete 1D mechanical system[END_REF][START_REF] Alibert | Convergence of Hencky-type discrete beam model to Euler inextensible elastica in large deformation: rigorous proof[END_REF]), we have simply applied the energy modification presented in Eq. ( 1) to simulate the experiment reported in Figs. 2 and 3 of a tensile test applied up to fracture on an aluminium pantograph as described in Section 1.

Numerical simulations and comparisons to experiments

Fig. 2 shows an initial linear part of the force-displacement curve, followed by a second non linear stage, of slightly decreasing slope up to the point of maximal force that closely precedes the final fracture limit. We first simulate the initial linear stage.

As far as the two families of fibers are described by using a single pivot placement function, the dominant term in the homogeneized energy in the case of a tensile test in the main direction of the pantograph is the torsion contribution, since fiber extension and bending remain of low level and effect. When attempting to match the force-displacement curve of Fig. 2 with this one-placement function, the torsion modulus is being given by the following relation [START_REF] Placidi | Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients[END_REF] 

K p = G b r 4 2hp 2 = 6.44 × 10 4 N/m ( 3 
)
where r is the radius of a pivot, h its height, p the distance between two pivots and G b is the shear modulus owing to the several uncertainties concerning the terms in Eq. ( 3) for K p . So we could also obtain an incertitude on the K p value by using the incertitude on the radius of the pivot, on its height and on the distance between the pivots, which are related to the 3D printing precision. When the simulation makes use of the energy form in Eq. ( 1), related to the use of the two independent pivot placement functions, the value to be given to the interaction modulus for a match of the elastic stage is K int = 1.8 × 10 8 N/m 3 , when arbitrarily keeping the same value as in the "one-placement option" for the torsion modulus. The inter-dependency of these two moduli in order to always match the linear part of the experimental curve is reported in Fig. 4, showing that for both moduli there is a minimum value near which the curve slope * is quite insensitive to the other modulus value. These moduli are too stiff to represent the experimental behaviour during the second stage which corresponds to the onset of either some plasticity or some microstructural damage as pointed in Section 2. Yet, prior to attempt matching the force-displacement curve in this second stage, Fig. 5a and b compares the energy fields which correspond respectively to the "one-placement option" and to the "two-placement option": it is striking that the two placement option indicates (Fig. 5b) a location of maximal deformations perfectly corresponding to the experimental evidence in Fig. 3, while the one-placement option Fig. 5a corresponds with a significantly different field. It is unlikely that introducing a modulus decrease as indicated by the force-displacement curve could be capable of inverting this observation. Fig. 6 presents the obtained match up to maximal force for the F-D curve in the two-placement option, with showing in Fig. 7 the used step-wise modulus decrease to obtain this match. This last figure shows how the K int modulus changes depending on ı = | 1 -2 |. In this mechanism of fracture there is all the physical interpretation of the presented problem: we hint that in the particular experimental measure which we analyze the fundamental fracture mechanism depends on the shear of the pivots. For well understanding this point can be useful to refer to [START_REF] Andreaus | A review of the problem of the shear centre (s)[END_REF]. Fig. 8 finally presents the related deformation field, where the four maxima located at the experimental fracture sites are still present. It can be interesting to look at the step-wise decrease of the modulus K int that we used for matching the experiment. In fact, in Fig. 9 we have the plot of this modulus along the pantographic plate for different imposed displacements and we can clearly see the arising of the effects due to the step decrease. In Fig. 9a we just find that, after an extension of about 4 mm, the K int modulus has changed its value close to the four sites where we also saw the maxima in Fig. 8 and which correspond to the experimental fracture sites: these four zones are the ones in which the ı = | 1 -2 | term immediately acquires a non-zero value. In the following Fig. 9b-d we see the arising of other sites in which the different thresholds in ı have been reached and consequently the K int modulus has changed. 

G b = Y b /[2(1 + )],

Discussion

The simple assumption that a co-continuous model assuming two different displacement fields for the two arrays of beams constituting the pantographic sheet and a simple postulation of a quadratic energy, isotropic in the difference between the two displacement fields, has allowed us to predict the main deformation features of the examined specimen up to the damage initiation. The structure of aluminum specimens at microlevel decreases remarkably the nominal of constituting metal. Infact. the surface is usually very rough (Rz > 80 m) and therefore 0.16 mm of the 1 mm thick beam are affected by the roughness. This might be the reason why the fracture point looks granular. It is indeed not realistic to use Young and Poisson modulus for describing microscopically the involved aluminum material, which indeed most likely is even not isotropic [START_REF] Buchbinder | Selective Laser Melting Von Aluminiumgusslegierungen[END_REF]. For a discussion about the Young's modulus in anisotropic, cubic and transversely isotropic solids see [START_REF] Cazzani | Extrema of Young's modulus for cubic and transversely isotropic solids[END_REF]. This issue motivates the effort to improve from metallurgic point of view the printing process and on the other hand will require the development of more detailed and sophisticated numerical models. For well analyzing microscopic and macroscopic aspects of the deformation and fracture mechanisms of aluminum, especially in the case of ultrafine-grained specimens, it can be useful to refer to [START_REF] Billard | Macroscopic and microscopic aspects of the deformation and fracture mechanisms of ultrafine-grained aluminum processed by hot isostatic pressing[END_REF]. However it is surprising that the model developed in [START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF] under very restrictive assumptions can be slightly improved to get, at least from a qualitative point of view, a careful prediction of the damage initiation in the standard extensional BIAS test for constructed aluminum specimens. We show (see Fig. 10) that when the aluminum specimen is too granular the rupture mechanism is not the one described in the present paper: indeed experimental evidences show that the first rupture occurs in the central pivot where most likely a brittle rupture occurs. For this rupture mechanism another rupture criterion will need to be formulated including the possibility of pivot disconnection induced by shear. To describe other typologies of rupture, for example the one occurred to the specimen shown in Fig. 10, we probably should take in account a further criterion possibly linked to the torsional angle of the pivot. Furthermore, we remark that if we tried to feat the experimental F-D curve in Fig. 6 after the breaking point we probably would have to take in account also a decrease in the torsion modulus K p .

In this work we presented the identification of the sites in which the fracture firstly arises. In a future work we can think to use the informations here obtained to perform an optimization procedure which allows to design pantographic sheets in which the characteristics of the pivots are variated to obtain a more resistent structure in the most weak sites, as for example has been done in [START_REF] Andreaus | An optimal control procedure for bone adaptation under mechanical stimulus[END_REF][START_REF] Andreaus | Modeling of trabecular architecture as result of an optimal control procedure[END_REF][START_REF] Rosi | Optimization of piezoelectric patch positioning for passive sound radiation control of plates[END_REF].

Conclusion

Using 3D printing technology it has been possible to obtain some specimens of pantographic sheet using aluminum powder. The metallurgic process has not been optimized, however the first experimental evidence proves that even in the present condition the specimen has the behaviour forecast by the second gradient model developed in [START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF]. The observed rupture occurs for the failure of an interconnecting pivot located on the boundary of the specimen close to the last beam clamped at the short side. In the present paper we have developed a model in which the motions of two families of beams constituting a pantographic sheet are described with two independent placement fields. The deformation energy has been postulated as in [START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF] in function of these displacements and it has been added a further quadratic term of deformation energy depending on the squared norm of their difference. We have furthermore presented the first numerical simulations, which qualitatively confirm that the most strained pivot is exactly the one where one observes rupture. The presented results motivate further investigations both theoretical and experimental: more sophisticated printing processes and efficient numerical coding seem necessary to progress in the design of pantographic sheets.
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 1 Fig. 1. 3D printing of pantographic structure with custom manufacturing parameters. Notice the granular structure, enlighted in the circle.
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 2 Fig. 2. Force-displacement graph of the bias extension test for the aluminum specimen shown in Fig. 1.
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 3 Fig. 3. Evidence of the first break in the aluminum specimen shown in Fig. 1.
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 4 Fig. 4. Inter-dependency of the Kp and K int moduli in order to always match the linear part of the experimental curve.
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 5 Fig. 5. The energy fields U (N/m) corresponding to the "one-placement option" (a) and to the "two-placement option" (b).
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 6 Fig. 6. The obtained match up to maximal force for the F-D curve in the twoplacement option.
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 7 Fig. 7. Plot of the behaviour of the modulus of interaction K int in function of the difference ı = | 1 -2 |.
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 8 Fig. 8. Plot of the difference | 1 -2 | (m).
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 9 Fig. 9. Variation of the modulus K int (N/m 3 ) with following the rule on the threshold in Fig. 7.

Fig. 10 .

 10 Fig. 10. Experimental evidences show that the first rupture occurs in the central pivot where most likely a brittle rupture occurs.

  Y b and being the Young modulus and the Poisson ratio respectively. All the numerical values are listed in the following table

	r	h	p	Y b	
	0.9-1.0 mm	3.0 mm	4.9 mm	6.8 × 10 9 Pa	0.36

We could imagine also a different interaction energy between the phases, for example by adding some suitably conceived extensional springs linking the pivots of different fibers, but we refrain from doing so presently.
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