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A �ctitious domain method for unilateral contact

problems in non�destructive testing�

E� B�ecachey� P� Jolyz� G� Scarellax�

Abstract

In this work� we present a numerical method for solving the di�raction of transient elastic

waves by cracks of arbitrary shapes in complex media� with Signorini�s boundary conditions

on the crack� We use a �ctitious domain method based on a mixed displacement�stress

formulation for elastodynamics� We propose an o��centered time discretisation scheme for

enforcing the stability�

Keywords� elastodynamics� unilateral contact� �ctitious domain method� non�destructive

testing� cracks

�� Introduction

In this paper� we are interested in solving the di�raction of transient elastic waves by cracks

of arbitrary shapes in complex media� with Signorini�s boundary conditions on the crack�

This is the continuation of a previous work �	
 done on the linear problem� that is when

the boundary condition on the crack is a free surface boundary condition� To get an e��

cient method� we want to use regular meshes and at the same time respect the geometry

of the crack� This is possible thanks to the �ctitious domain method� which takes into

account the boundary condition via a Lagrange multiplier de�ned on the crack� which can
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be interpreted as the jump of the displacement through the crack� This allows to work

with a uniform mesh in the whole domain and an independent mesh on the crack� In order

to consider the unilateral contact boundary condition as a constraint� we are led to use

the mixed displacement�stress formulation for elastodynamics� We will present a �ctitious

domain formulation of this problem in which the boundary conditions are taken into ac�

count by a variational inequality for the Lagrange multiplier� For the space discretisation

of this problem� we propose to use the mixed �nite element using spaces of symmetric

tensors for the stress�	
� This choice was shown to allow the obtention of an explicit time

discretization scheme �mass�lumping in the linear case� In the non�linear case� we cannot

use a centered di�erence scheme for the time discretisation which would lead to an uncon�

ditionally unstable scheme� That is why we propose an o��centered scheme that we show

to be stable� This scheme is explicit in the volume unknowns �displacement and stress

but implicit in the Lagrange multiplier� one has to solve an optimisation problem with

bound constraints at each time step�

�� Presentation of the dynamic unilateral contact problem

We want to solve the displacement�stress formulation of elastodynamics in a domain

� � Cn� � IR�� where C is a rectangle �see Fig� 	�

���
��
�
��u

�t�
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A� � ��u in �� 
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where u is the displacement �eld� � the stress tensor� and ��u the strain tensor de�ned

as �ij�u � ��iuj � �jui��� We add to �	 Dirichlet boundary conditions on the exterior

boundary� u � � on �C � 
�� T � � Signorini�s boundary conditions without friction on

�



the crack �� ��
�
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where� if n denotes the unit normal to �� we set� uN � u�n� �N � �n�n� �T � �n� �Nn

and prescribed initial datas that we will systematically omitt�

�� A �ctitious domain formulation

The �ctitious domain method consists in extending the two unknowns �u� � in the whole

domain C and in introducing Lagrange multipliers to take into account the Signorini�s

boundary conditions ��� Setting G � H
���
�� ��� we introduce

M � fu �
�
L��C

��
g�

X � f	 � �L��C
�� div 	 � �L��C
��	ij � 	jig�

LN � H
���
����� � f
N � G�
N � � a�e� on �g�

LT � �H
���
��T ��


� � f
T � G
��
T �n � �g

The �ctitious domain formulation consists in �nding ��� u� �N � �T  � 
�� T � � X �M �

LN � LT

����������
���������

a��� 	 � d�	� u � bT �	� �T  � bN �	� �N � � � 	 � X�

��
��u

�t�
� v� d��� v � �f� v � v � M�

bT ��� 
T  � � � 
T � LT �

bN��� 
N � �N � � � 
N � LN �

��
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with

a��� 	 �

Z
C

A� � 	 dx� d�	� w �

Z
C

w�div 	 dx�

bT �	� 
T  �� 	T � 
T L
�

T
�LT

�

bN�	� 
N �� 	N � 
N G��G �

The Lagrange multipliers can be interpreted as �N � �uN 
 and �T � �uT 
� with uT �

u� uNn�

�� Discretisation

���� Semi�discretisation in space

We now introduce some �nite dimensional spaces Xh 	 X� Mh 	 M � GH 	 G and �LT H 	

LT of dimensions respectively NX � NM � NG� N
T
L � The semi�discretisation in space can then

be written in a matricial form as� �nding �U����N ��T  � IRNM � IRNX � IR
NG

� � IRNT
L

such that

����������
���������

M�� �D�U �B�
T�T �B�

N�N � �� �i

Mv
d�U

dt�
�D� � F� �ii

BT� � �� �iii

�BN�� 
N � �N � �� �
N � R
NG

� � �iv

��

In practice� and this is the interesting point in the �ctitious domain method� we introduce

two meshes� the volumic unknowns U and � are de�ned on a regular grid� Th made of

squares Kj of size h while the surfacic unknowns �N and �T are computed on a nonuniform

mesh on �� TH made of segments Sj of size Hj� H � supjHj� see Fig���

Remark � The inequality �����iv� can be reinterpreted as

�N � ���N �BN� ��

where � is the orthogonal projection on RNG

� �
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Choice of the �nite elements� We intend to use the same discretisation than for the

linear problem �see �	
� For the lowest order element� this choice corresponds to �

Xh � f�h � X��K � Th� �h jK � �Q��K�g

Mh � fvh �M��K � Th� vh jK � �Q��K�g

GH � f
H � G��S � TH � 
H jS � P��Sg

Its main interest is that it leads to block diagonal mass matrices �even diagonal for Mv

so that Mv and M� are very easy to invert�

���� The fully discretised scheme�

It would be tempting to discretize �� using centered �nite di�erence operators� for instance�

�n��
N � �n��

N

�
� ���n

N �BN�
n

which would give an explicit scheme� However� one can show that this choice leads to

an unconditionally unstable scheme� That is why we propose the following o��centered

scheme�
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N � �� �i
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�t�
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n � �� �iii

�n��
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�
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��

Note that if the mass matrices are block diagonal� this scheme is only implicit in �N and

is explicit in the other unknowns� We can show a stability result�

Theorem � The scheme ��� is stable under the usual CFL stability condition

�t�

�
kD�Dk � 	� with kD�Dk � sup

�

�D�� D�

�M����
��

For proving this result we show the decay of an energy� The precise result is the following�
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We set

V n���� �
Un�� � Un

�t
�

En��
� �

	

�

�
�M��

n����n�� � �MvV
n����� V n����

�
�

��

This quantity is an energy under the CFL condition ��� and one has the identity

En��
� � En

� � �t�
�n
N � �n��

N

�t
� BN

�n�� � �n

�
�

which shows that En��
� � En

� thanks to ���iv�

	� Numerical aspects

The implementation of the method amounts to combine an explicit scheme for the un�

knowns U and � with an optimisation problem �quadratic functional with bounds con�

straints to be solved at each time step for the unknown �� The algorithm has been tested

in 	D �comparison with analytic solutions� We are currently developping a �D code� the

optimisation procedure being handled by an algorithm combining the active set method

with gradient projection method� ��
� Numerical results will be presented at the conference�
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Figure 	� The geometry of the problem
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Figure �� The two meshes
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