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1. INTRODUCTION

The usual method for robot identification is based on the 

Least-Squares (LS) technique and the Inverse Dynamic 

Identification Model (IDIM). The IDIM indeed allows 

expressing the input torque as a linear function of the 

physical parameters thanks to the modified Denavit and 

Hartenberg (DHM) notation. Therefore, the IDIM-LS method 

is a really practical solution, which explains its success, see 

(Gautier, Janot & Vandanjon 2013) and the references given 

therein. However this method needs a well-tuned band pass 

filtering to get the derivatives of the joint positions. It 

requires a good a priori knowledge of the system to tune 

adequately the filters. That may be an issue for the early tests 

of a system, especially if there is no access to the key design 

parameters, such as a robot bought "off-the-shelf".   

The goal of this article is twofold: first, to make clear the 

usual process of robot identification for people not related to 

this field; second, to show how this process can be improved. 

Robot identification may indeed be difficult for people 

coming from the general field of system identification, since 

the techniques rely on a priori knowledge of the system. For 

this work, the author designates by "a priori knowledge" the 

values of the parameters, which are known or guessed prior 

to the identification. In any case, the model structure is 

assumed to be known. 

As it will be seen, the main part of the work consists in 

differentiating the position signal to construct the regressors 

(see Section 3 for a proper definition) for the LS method. In 

many fields, the problem of differentiating numerical signals 

was raised. In the domain of continuous-time system 

identification, it has been successfully dealt by different 

techniques like the generalized Poisson moment functional 

(GPMF) in (Rao & Unbehauen 2006), the State Variable 

Filters (SVF) in (Mahata & Garnier 2006) or the Refined 

Instrumental Variable (RIV) in (Garnier et al. 2007). For 

further reading on the topic, see e.g. (Garnier, Mensler & 

Richard 2003). Nevertheless, those attractive methods require 

either the system to be linear in the states, in order to have a 

self-tuned filtering (RIV), or the user to provide the 

bandwidth for the filter (GPMF and SVF). As it will be seen, 

for a robot, the regressors are non-linear in the states. Hence, 

those techniques do not fulfil the requirements of our study. 

It would be worth to look at other fields to find a technique 

which does not require a priori knowledge of the system and 

which can handle non-linearities in the states.  

The plan of this article is as follows. Firstly, the tools and 

methods considered are presented. Secondly, the results in 

simulation of numerical differentiation and parameters 

identification are summarized. Afterwards, the techniques are 

compared with experimental data. Then, two cases are 

considered: first, high precision position sensor is used; 

second, the precision is deteriorated. Finally, concluding 

remarks are expressed. 

2. CLOSED-LOOP SYSTEM IDENTIFICATION

Traditionally, the closed-loop identification methods are 

divided in three main categories, see e.g.  (Forssell & Ljung 

1999). The first one, called direct approach, consists in 

identifying the open-loop system without taking into account 

the feedback loop. As it will be seen, it requires a careful 

process of the data to avoid biased estimation. The second 

category is the indirect approach. In this case, the knowledge 

of controller, or at least of the reference signal, is required to 
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identify the closed-loop system. The last category is the joint 

input-output approach, which consists in using open-loop 

techniques by considering at the same time the input and the 

output as an augmented output of the whole closed-loop 

system. 

As it will be presented in the next section, robot identification 

usually relies on IDIM-LS and belongs to the direct 

approach. Recently, the Instrumental Variable method has 

proven to be interesting improvement, see e.g. (Janot, 

Vandanjon & Gautier 2014) or (Brunot et al. 2015). This last 

method identifies the open-loop system but it relies on the 

simulation of the whole closed-loop system. This article 

focuses on direct approach methods in order to deal with 

robots whose the controller may be unknown. 

3. LEAST-SQUARES for ROBOT IDENTIFICATION

3.1 Inverse Dynamic Model 

If a robot with n  moving links is considered, the 1n

vector ( )t  contains the inputs of those links, which are the 

applied forces or torques. The signals ( )tq , ( )tq( )( )( )q  and ( )tq( )( )( )q  are 

respectively the 1n  vectors of generalized joint positions,

velocities and accelerations. With respect to the Newton's 

second law it comes out: 

(t) (t) (t) (t), (t)M q q) (t) (t) (t), (t)q) () ( (t) (t), () ( , ((t) ((t) ((t (1) 

where, (t)M q  is the n n  inertia matrix of the robot, and

(t), (t)N q q(t)q  is the 1n  vector modelling the disturbances

or perturbations. Those perturbations contain the friction 

forces, gravity effects and other non-linearities depending on 

the studied robot. Experience has shown that those 

disturbances are, in the vast majority of cases, linear in the 

parameters, but not in the states. Therefore, it appears to be 

very convenient for the identification to consider the Inverse 

Dynamic Model (IDM). The IDM is described by (2), where: 

the input is the dependent (or observation) variable;  is the 

n n  matrix of regressors  (or independent variables); 

is the 1n  vector of dynamic parameters to be estimated.

( ) (t), (t), (t)t (t), (t)(t), (t)(t), (t (2) 

3.2 Least-Squares Equation 

The model described by (2) can straightforwardly be 

extended to the vector-matrix form: 

1

, ,m LS

s

t

N

u X q q q LSq q, ,, ,q q, ,, ,X qX q (3) 

where, mu  is a 1tN  vector constructed with the measured 

signals, X  is a 
tN n  matrix whose each column is

called a  regressor and LSe  is a 1tN  vector of error terms,

with t sN N n   and sN  the number of sampled points 

considered. It is assumed that X  is full rank, i.e. 

rank nX , and that 
tN nN n , to have an over-

determined system of equations. 

From (3), the Least-Squares (LS) estimates and their 

associated covariance matrix are given by: 

1
T T

LS m (4) 

1
2 T

LS (5) 

¨2
2 1

m LS

tN n
u X (6) 

From a theoretical point of view, the LS estimates (4) are 

unbiased if the error has a zero mean and if the regressors are 

uncorrelated with the error, see relations (7). 

0LSE e 0T T

LS LSE E EX e X e (7) 

The covariance matrix given by (5) assumes that X  is 

deterministic and that 
LSe is homoscedastic i.e. 

2var ( )LS te , for each t . It is assumed that those two 

assumptions hold. However, systems considered in this 

article operate in closed-loop. In that case, the assumption 

given by (7) does not hold (Van den Hof 1998). This partly 

explains why a tailor-made pre-filtering of the data is done in 

practice. 

3.3 States Estimation by Tailor-Made Filtering 

To build the regressors matrix X , the velocity and the 

acceleration are estimated from the measured position. As 

described in (Gautier 1997), the classical technique used in 

robots identification is divided in three sequential steps. 

Those steps are influenced by the sampling frequency, noted 

s
. This frequency is usually chosen 100 times larger than 

the natural frequency of the highest mode which must be 

modelled, 100dyn s , in order to satisfy the Nyquist rule. 

Step 1.  The first step consists in reconstructing the missing 

data, or, more practically, to compute the derivatives of the 

measured position. It is usually done thanks to numerical 

differentiation (centred scheme). Prior to this, to avoid 

amplification of the noise at high frequency, a low-pass 

filtering is undertaken. This filter is applied forward and 

backward to avoid phase lag introduction. It is a Butterworth 

filter, whose order is 2dn . Where dn  is the desired 

derivative order, which is usually equal to two. The issue is 

to choose the cutting frequency of the filter, q , to have 

( ) ( )q t q t( ) ( )q t q t( ) ( )( ) ( )  and ( ) ( )q t q t( ) ( )q t q t( ) ( )( ) ( )  over the frequency range of the

system. The rule of thumb is to take it as 2 10dyn q dyn .

It obviously requires knowledge about the system. 

Step2. A filter is then applied to all signals. The objective is 

to remove high frequencies perturbations in the dependent 

variable measurements (generally, the input torque). To be 



consistent, this filter is also applied to the independent 

variables. Its cut-off frequency, f , is chosen at about 

5f dyn .

Step 3. After the previous step, the signals do not contain any 

information above f . Therefore, they are re-sampled at a 

lower frequency (down-sampling). This frequency is usually 

taken equal to f . 

In practice, three elements are worth noting. First, the filters 

frequencies may be defined taking into account the excitation 

signal spectrum instead of dyn . It allows being a little more

"aggressive" on the filtering. The second element is that, with 

MATLAB®, the two last steps are performed simultaneously 

with the decimate function. The last element is that the 

described methodology is a rule of thumb. It only provides 

approximate relation or intervals. The choice relies on the 

practitioner skills. This is why another way is investigated for 

users without solid background in robotic identification. 

4. KALMAN OBSERVER and INTEGRATED

RANDOM WALK 

4.1 The State Space Model: IRW 

Many researches are on-going concerning the numerical 

differentiation issue; see e.g. (Dridi et al. 2010). Our goal is 

to suggest a practical and straightforward technique. 

Therefore, the study will focus on the well-known Kalman 

observer technique, in a discrete time framework. This 

technique is developed in (Young 2000) and (Norton 1975). 

Equation (8) defines the state vector of state space model, (9) 

is the state equation and (10) is the observation equation. 

Considering our robot velocity estimation, y  would be the 

measured position of link j , jq . 

( )
( )

( )

x k
k

x k
x (8) 

( ) ( 1) ( 1)k k kx Ax D (9) 

( ) ( ) ( ) ( )y k k k e kh x (10) 

With, 

0
A  , 

0

0
D . (11) 

h  is the row observation vector.  is the state noise, 

assumed to be white and zero mean, with covariance matrix 

Q  (diagonal). The measurement noise ( )e k  is also zero 

mean and white. Its covariance is written 2 . This model, 

developed in (Young 2011), is named Generalized Random 

Walk (GRW). Many variants exist depending on the choice 

of the hyper-parameters 
11 22

Q Q . 

For this study, only the Integrated Random Walk (IRW: 

1 , 0  and 1 0h ) will be

considered. In that case, since 0 , the term
11

Q  has no 

influence. Therefore, it will be equal to 
22

Q  in order to 

preserve the definite-positive property of the covariance 

matrix. Finally, the only remaining hyper-parameter is 
22

Q . 

As it will be seen later, its value may be estimated thanks to a 

Maximum Likelihood (ML) optimization. 

4.2 The Kalman and FIS Equations 

From the model previously described, a specific Kalman 

filter is implemented. First of all, it is associated with a Fixed 

Interval Smoother (FIS) to take advantage of the off-line 

process. Secondly, the filter and smoother equations are 

modified to avoid the knowledge of the observation noise 

variance, 2 . In a classical Kalman Filter, this information is 

required like the covariance of the state noise, Q . Instead, 

all the equations are written as functions of the Noise 

Variance Ratio (NVR), which is defined by 2

nvrQ Q .

The algorithm described in (Young 2000) and (Young 2011) 

is summarized below. 

Prediction step: 

( | 1) ( 1| 1)k k k kx Ax (12) 

nvr( | 1) ( 1| 1) T Tk k k kP AP A DQ D (13) 

Correction step: 

( | ) ( | 1) (k) ( ) ( ) ( | 1)k k k k y k k k kx x g h x   (14)

1

( ) ( | 1) (k) 1 (k) ( | 1) (k)Tk k k k kg P h h P h   (15)

( | ) ( | 1) (k) (k) ( | 1)k k k k k kP P g h P (16) 

2( | ) ( | )k k k k*
P P (17) 

Smoothing step: 
1( | ) ( 1| ) ( )Tk N k N kx A x DQ D (18) 

2

2

( ) ( )
( 1) ( | )

( )
( ) ( ) ( ) ( 1| 1)

T
T

T
T

k k
k k k

k
k y k k k k

* h h

h
A

(19) 

with ( ) 0 0
T

N

1

1

( | ) ( | ) ( | ) ( 1| )

( 1| N) ( 1| ) ( 1| ) ( | )

Tk N k k k k k k

k k k k k k k

* * * *

* * * *

P P P A P

P P P AP
 (20) 

The observation noise covariance, 2 , is estimated at the end 

of the filtering process in order to obtain the state covariance 

matrix, 
*

P , for the smoothing process. By defining xn  the 

size of the state vector ( 2xn for the IRW), the estimation is

given by: 



2

2

1

2

1

( ) ( ) ( | 1)1

1 (k) ( | 1) (k)

1 ( )

( )

s

x

s

x

N

T
k nx

N

k nx

y k k k k

N n k k

k

N n k

h x

h P h
(21) 

In the time domain, the first order derivative of the signal is 

then approximated as follows 
1

( )
( )k

k k

dx x k
t

dt t t
, with ( )x k

the second term of the estimated state vector ( | )k Nx . 

Similarly, x  could be augmented with 2 x  in order to

estimate the second order derivative. From a practical point 

of view, this algorithm is implemented in the function irwsm 

of the CAPTAIN Toolbox, developed by a team of Lancaster 

University. 

4.3 Hyper-Parameters Optimization 

As it has been said, the user does not have to provide the 

observation noise covariance to irwsm contrary to a classical 

Kalman filter. It remains the issue of the hyper-parameters 

and more specifically of the NVR. Fortunately, the 

CAPTAIN Toolbox provides also a function called irwsmopt 

which estimates the hyper-parameters maximizing the 

likelihood of the prediction error, ( )k , defined in (21). For

further information, see e.g. (Durbin & Koopman 2012). This 

toolbox thus allows the user to process the data from a 

system without a priori knowledge about it. Obviously, it 

does not prevent him to be vigilant on the results. 

Fig. 1. EMPS prototype 

5. SIMULATION RESULTS

5.1 Model Description 

To evaluate the differentiation techniques, the rigid one-

degree-of-freedom Electro-Mechanical Positioning System 

(EMPS) is studied. This experimental system (Fig. 1) is 

modelled by (22), where M  is the inertia of the arm; vF  and 

cF  are respectively the viscous and Coulomb frictions; q , qq

and qq  are respectively the position, velocity and 

acceleration;  is the motor force. The system is driven by

controller (23), where rq is the reference trajectory and 

fg is the electronic gain of the actuator. The bandwidth of the 

electronic part of the system is larger than the one of the 

mechanical part. Therefore, it can accurately be approximated 

by a constant. By noting the differential operator 
d

p
dt

 , 

the closed-loop system can be represented by Fig. 2 where 

( ) ( ) ( )v cd t F q t F sign q t( )v cF q t F sign q t( ) ( )( ) ( )v cv c( )( )( )( )  is the nonlinear state dependant

perturbation. 

( ) ( ) ( ) ( )v ct Mq t F q t F sign q t( ) ( ) ( )v cq t F q gn q t( ) ( ) ( )( ) ( ) ( )v cv c( )( )( )( ) ( )( ) ( )( ) ( ) (22) 

( ) ( ) (t) (t)f v p rt g k k q t q q) (t)q q) () ( (23) 

In practice, the controller gains have been chosen equal to 

160.2 (1/s) for pk and 242.5 (V.s/m) for 
vk  . The actuator 

gain has previously been identified to 35.2 (N/V). 

In first time, the study is done thanks to simulated data. The 
values of parameters are chosen close to those which have 
previously been estimated for other works (see 
in Table 2). A measurement noise is added to the simulated 
output. To be realistic, the Signal to Noise Ratio (SNR) is 
taken equal to 100dB. Mathematically, the SNR is defined by 

(24), where en  is the energy of the signal; measq  and nfq  are 

respectively the measured and the noise-free signals. 100 
Monte Carlo Simulations (MCS) are run to evaluate the 
effect of this noise over the estimates. 

1010log
nf

meas nf

q

q

q q

en
SNR

en
(24) 

Fig. 2. Closed-loop block-diagram for the EMPS prototype 

5.2 Signals and Parameters Estimation Results 

From the noisy position signal generated by the simulator, 
three methods are compared. The first one is the classical 
approach, with Butterworth filters, described in Section 3.3 
and will be named by "Classical". The second method is the 
irwsm implemented in the CAPTAIN Toolbox, described in 
Section 4.2, and will be referred as "IRWSM 1". The last one 
is a variant of the irwsm where the GRW model contains 
three states, which allows estimating directly the second 
derivative without calling the algorithm twice. This approach 
will be named "IRWSM 2". 

Concerning the Classical method, (25) is the relation between 

the reference signal and the output, by neglecting the 

Coulomb friction. From this relation, the highest mode 

frequency is about 19 Hz. It should be noticed that this 

relation requires knowing the controller parameters and 

structure. The Butterworth filter is designed with a cut-off 

frequency equal to 40 Hz (i.e. twice the highest natural 



mode). To get the acceleration, its order is fixed at 2+2=4. At 

last, the decimate frequency is chosen at 60 Hz. 

2
( ) ( )

f p v

ref

v f v f p v

g k k
q t q t

Mp F g k p g k k
(25) 

Table 1 summarizes the results by providing the mean of the 

100 relative errors for each estimate. The relative error of the 

signal ( )s t  is given by (26), where ( )nfs t  is the noise free 

component of ( )s t  generated by the simulator. IRWSM 1 and 

2 give very good results for the velocity and the acceleration, 

since the relative errors are very small and less than those of 

the classical approach. The methods seem to be equivalently 

effective in order to estimate the position.  

RelErr( ) 100
nf

nf

s s
s

s

s s
(26) 

To conclude this simulation part, a LS estimation of the 

parameters was undertaken to compare their performances. 

Table 2 presents the results. The performances of the 

IRWSM methods seem to be better than those of the 

Classical. Actually, their mean estimated parameters are 

closer to the real one. That must be confirmed, or not, with 

the experimentation. 

Table 1. Mean relative errors of the estimated signals for 

100 Monte Carlo Simulations 

Signal 
Method 

q 56.38 10  % 55.78 10 % 55.10 10 %

qq 15.49 10 % 31.20 10 % 33.20 10 %

qq 01.15 10 % 11.34 10 % 12.64 10 %

Table 2. Mean estimated parameters (relative error) for 

100 Monte Carlo Simulations 

Parameter 
True 

Values 

Method 

M  (kg) 96.00 
96.11 

(0.12%) 

95.99 

(0.01%) 

95.88 

(0.13%) 

vF

(N/(m/s)) 
205.00 

190.35 

(7.15%) 

205.36 

(0.18%) 

205.12 

(0.06%) 

cF (N) 20.00 
22.44 

(12.2%) 

19.71 

(1.45%) 

19.91 

(0.47%) 

6. EXPERIMENTAL RESULTS

6.1 Robot Identification with Good a priori Knowledge and 

High Precision Sensor 

The model of the experimental setup is the same than the one 

previously considered for the simulation. Concerning the 

controller, its structure and its parameters are exactly the 

same. The sampling frequency of 1 kHz is also identical. 

Table 3 summarizes the results of the identification from the 

experimental data. The IRWSM methods almost estimate the 

same parameters. For the experimental results, the relative 

error (26) is defined with respect to the measured signal 

instead of the noise free one. The relative errors can be 

considered as equivalent for the three methods.  

Table 3.  Experimental with high precision sensor- 

Estimated parameters (relative standard deviation) 

Parameter 
Method 

M (kg) 
95.12 

(0.11%) 

94.87 

(0.04%) 

94.48 

(0.06%) 

vF (N/(m/s)) 
203.54 

(0.56%) 

212.96 

(0.21%) 

212.95 

(0.28%) 

cF (N) 
20.39 

(0.49%) 

19.67 

(0.20%) 

19.67 

(0.27%) 

Relative Error 4.04% 4.53% 4.72% 
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Fig. 3. Estimated signals 

Fig. 3 illustrates the estimated signals thanks to the three 

methods. There is no clear difference between the IRWSM 1 

and the IRWSM 2 estimates, which explains why the relative 

errors of both methods are equivalent. Thus, it is still difficult 

to discriminate those methods. To do so, a case more 

representative of an industrial robot will be considered. That 

is to say that the sensor (the encoder) will be less precise: 

0.1  deg of precision against 0.01  deg previously.

Furthermore, we will not assume good a priori knowledge on 

the system. The filtering cut-off frequencies will be 

multiplied by three. 

6.2 Robot Identification with Poor a priori Knowledge and 

Low Precision Sensor 

The results of the identification with a low precision sensor 
and poor a priori knowledge are summarized in Table 4. This 
table includes the values and the relative standard deviation 
of the estimated parameters as well as the relative errors. The 
difficulty of the IRWSM 1 method is flagrant. Its estimated 
values are far from those previously estimated and its error is 
large. On the contrary, the Classical and IRWSM 2 methods 
find estimates relatively close to the previous results (i.e. with 
high precision sensor). Compared to high precision case, the 
Classical method performances are slightly worsened with 
respect to the mass estimation and the error.  

One fact is worth noting about this low precision case. In this 
case, the irwsmopt algorithm indeed tends to catch all the 
dynamic of the noisy signal (large NVR). In other words, it 
gives too much importance to the covariance of the state 



noise compared to the one of the measurement noise. A 
careful visual inspection of the signals, prior to the 
identification, by the user is therefore required. For the 

present case, a NVR equal to 510  has proved to be an

appropriate choice, as it can be seen in Fig. 4. That figure 
illustrates the estimated velocity and acceleration by IRWSM 
1, with low precision sensor, thanks to the irwsmopt function 
(blue) and with the SNR manually found (red). This value of 
NVR was fixed for both IRWSM methods presented in this 
section.  
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Fig. 4. Impact of the NVR on the estimated signals 

Finally, this more realistic experiment did not totally confirm 

the simulation results. If the IRWSM 2 method provides 

better estimates than the classical one, it requires the user 

intervention to set the NVR. Nonetheless, IRWSM methods 

proved to be able to provide a valuable estimation of the 

parameters. This estimation can be used as a first step for the 

design of pre-filters for the Classical method. In practice, the 

IRWSM 2 solution should be preferred. 

Table 4. Experimental with low precision sensor  

Estimated parameters (relative standard deviation) 

Parameter 
Method 

M (kg) 
89.52 

(0.16%) 

104.26 

(0.01%) 

95.99 

(0.03%) 

vF (N/(m/s)) 
204.50 

(0.17%) 

209.88 

(0.23%) 

213.34 

(0.08%) 

cF (N) 
20.29 

(0.16%) 

19.98 

(0.02%) 

19.63 

(0.08%) 

Relative Error 18.00% 32.67% 8.95% 

7. CONCLUSION

In this paper the usual robot identification methodology is 

presented. It is based on the well-known Least-Squares 

method but it requires a careful tailor-made pre-filtering to 

deal with closed-loop issues. This tailor-made pre-filtering 

process is summarized and a new pre-filtering methodology 

is developed. That one is based on a combination of a 

Kalman filter and a fixed interval smoother. The obtained 

results suggest that the new method is a suitable alternative 

when the system bandwidth is not known prior to the 

identification. Future work will focus on more complex 

industrial robots with multiple degrees of freedom. 
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