Jean-Pierre Conze 
email: conze@univ-rennes1.fr
  
Stefano Isola 
email: stefano.isola@unicam.it
  
Stéphane Le Borgne 
email: stephane.leborgne@univ-rennes1.fr
  
Eugene Gutkin 
  
Diffusive behaviour of ergodic sums over rotations

Keywords: 2010 Mathematics Subject Classification. Primary: 11A55, 42A55, 60F05, 60F17; Secondary: 37D50 rotation, subsequences, variance, central limit theorem, lacunary series, almost sure invariance principle, periodic rectangular billiard

come   L'archive ouverte pluridisciplinaire

Introduction

Given a measure preserving map T on a probability space (X, A, µ), many results link the stochasticity of T to limit theorems in distribution for the ergodic sums of an observable ϕ on X. A simple example is T : x → 2x mod 1 on X = R/Z endowed with the Lebesgue measure: the normalized ergodic sums satisfy a Central Limit Theorem (CLT) when ϕ is Hölder or with bounded variation.

When T is an irrational rotation x → x + α mod 1 on X, the picture is quite different. Depending on the Diophantine properties of α, too much regularity for ϕ can imply that ϕ is a coboundary. In that case, there is no way to normalize its ergodic sums in order to get a non-degenerate asymptotic distribution. Therefore, it is natural to consider less regular but BV (bounded variation) functions, in particular step functions. Nevertheless, by the Denjoy-Koksma inequality, the ergodic sums S L ϕ(x) = L-1 0 ϕ(x + jα) of a BV function ϕ are uniformly bounded along the sequence (q n ) of denominators of α. This leads to consider other subsequences (L n ) with the hope that, along (L n ), there is a diffusive behaviour at some scale for the ergodic sums.

Results on the CLT in the context of Fourier series, which are related to our framework, trace back to Salem and Zygmund [START_REF] Salem | On lacunary trigonometric series[END_REF] in the 40's. M. Denker and R. Burton in 1987, then M. Weber, M. Lacey and other authors gave results on a CLT for ergodic sums generated by rotations. But their goal was the construction of some functions, necessarily irregular, whose ergodic sums satisfy a CLT after self-normalization. The limit theorem along subsequences that we show below is for simple steps functions. In this direction, for ψ := 1 [0, 1 2 [ -1 [ 1 2 ,0[ , F. Huveneers [START_REF] Huveneers | Subdiffusive behavior generated by irrational rotations, Ergodic Theory Dynam[END_REF] proved that for every α ∈ R \ Q there is a sequence (L n ) n∈N such that S Ln ψ/ √ n is asymptotically normally distributed.

Here we consider the diffusive behaviour of the ergodic sums of step functions ϕ over a rotation by α. We study growth of the mean variance and approximation of subsequences at a certain scale by a Brownian motion when α is not of constant type. Another method, including the constant type case, will be presented in a forthcoming paper.

The content of the paper is the following. An analysis of the variance along subsequences is given in Section 1. Then, in Section 1.2, we introduce an approximation by lacunary series, in order to show in Section 2 an ASIP (almost sure invariance principle) for subsequences of ergodic sums for BV observables when α has unbounded partial quotients. The method relies on the stochastic behaviour of sums of the form N 1 f n (k n x) where (k n ) is a fast growing sequence of integers and (f n ) a bounded set of functions in a class which contains the BV functions. It is based on a result of Berkes and Philipp [START_REF] Berkes | An a.e. invariance principle for lacunary series f (n k x)[END_REF] in a slightly extended version (see appendix, Section 3).

Examples with a non-degenerate limit in distribution are presented in Section 2.2. The result has an application to a geometric model, the billiard flow in the plane with periodic rectangular obstacles when the flow is restricted to special directions.

To conclude this introduction, let us observe that result presented here for an isometric map, the rotation by α, is related to the dimension 1. For instance for rotations on the 2-torus, the natural framework is to consider, instead of the single rotation, the Z 2 -action generated by two independent rotations.

Preliminaries

In what follows, α will be an irrational number in ]0, 1[. Its continued fraction expansion is denoted by α = [0; a 1 , a 2 , ..., a n , ...]. We will need some reminders about continued fractions (see, for instance, [START_REF] Khinchin | Continued fractions[END_REF]).

For u ∈ R, set u := inf n∈Z |u -n|. Let (p n /q n ) n≥0 be the sequence of the convergents of α. The integers p n (resp. q n ) are the numerators (resp. denominators) of α. They satisfy the following relations: p -1 = 1, p 0 = 0, q -1 = 0, q 0 = 1 and

(1) q n+1 = a n+1 q n + q n-1 , p n+1 = a n+1 p n + p n-1 , (-1) n = p n-1 q n -p n q n-1 , n ≥ 0.

Let n ≥ 0. We have, q n α = (-1) n (q n α -p n ), 1 = q n q n+1 α + q n+1 q n α .

Hence, setting α = p n q n + θ n q n , it holds

1 2q n+1 ≤ 1 q n+1 + q n ≤ q n α = |θ n | ≤ 1 q n+1 = 1 a n+1 q n + q n-1 . (2)
Moreover for 0 ≤ k < q n , in every interval [ k qn , k+1 qn [, there is a unique point of the form jα mod 1, with j ∈ {0, ..., q n -1} and we have

1 2q n ≤ q n-1 α ≤ kα , for 1 ≤ k < q n . (3) 
Recall that α is of constant type (or has bounded partial quotient (bpq)), if sup k a k < ∞.

The uniform measure on T 1 identified with X = [0, 1[ is denoted by µ. We will denote by C a generic constant which may change from a line to the other. The arguments of the functions are taken modulo 1. For a 1-periodic function ϕ, we denote by V (ϕ) the variation of ϕ computed for its restriction to the interval [0, 1[ and use the shorthand BV for "bounded variation". An integrable function ϕ is centered if µ(ϕ) = 0.

Let C be the class of centered BV functions. If ϕ is in C, its Fourier coefficients c r (ϕ) satisfy:

c r (ϕ) = γ r (ϕ) r , with K(ϕ) := sup r =0 |γ r (ϕ)| < +∞. (4)
The class C contains in particular the step functions with a finite number of discontinuities. An example which satisfies (4), but is not BV, is the 1-periodic function ϕ such that ϕ

(x) = -log |x|, for x ∈ [-1 2 , 1 2 [, x = 0.

Notation

Let ϕ be in C. The ergodic sums N -1 j=0 ϕ(x+jα) are denoted by S N ϕ(x) or ϕ N (x). Hence we have

ϕ (x) := -1 j=0 ϕ(x + jα) = r =0 γr(ϕ)
r e πi( -1)rα sin π rα sin πrα e 2πirx . (5)

Let q be such that for p/q a rational number in lowest terms, α -p/q < 1/q 2 (in particular for q a denominator of α). By Denjoy-Koksma inequality we have

ϕ q ∞ = sup x | q-1 =0 ϕ(x + α)| ≤ V (ϕ). (6)
In the L 2 setting, for functions which satisfy (4), we have ϕ qn 2 ≤ 2π K(ϕ). (See the remark after Proposition 1.5).

Therefore, the size of the ergodic sums ϕ depends strongly on the values of , since for a BV centered function, the ergodic sums are uniformly bounded along the sequence (q n ) of denominators of α.

Let us recall the Ostrowski expansion which gives a bound for the growth of the ergodic sums of a BV function.

Let N ≥ 1 and m = m(N ) be such that N ∈ [q m , q m+1 [. We can write N = b m q m + r, with 1 ≤ b m ≤ a m+1 , 0 ≤ r < q m . By iteration, we get for N the following representation:

N = m k=0 b k q k , with 0 ≤ b 0 ≤ a 1 -1, 0 ≤ b k ≤ a k+1 for 1 ≤ k < m, 1 ≤ b m ≤ a m+1 .
Therefore, the ergodic sum can be written:

S N ϕ(x) = m =0 N -1 j=N -1 ϕ(x + jα) = m =0 b q -1 j=0 ϕ(x + N -1 α + jα), (7) 
with N 0 = b 0 , N = k=0 b k q k for ≤ m. It follows, for every x:

| N -1 j=0 ϕ(x + jα)| ≤ m(N ) k=0 b k ϕ q k ∞ ≤ V (ϕ) m(N ) k=1 b k . (8)

The aim

In view of the Ostrowski expansion, we can ask if there is a diffusive behaviour of the ergodic sums along suitable subsequences defined in terms of the q n 's. We will see that, for rotations of non constant type, there are such sequences along which a CLT holds and that even a stronger stochastic behaviour can occur: after redefining (S Ln ) on a probability space, denoting by (ζ(t) t≥0 ) the standard 1-dimensional Wiener process, we will show the existence of a sequence (L n ) such that, for a sequence of r.v. (τ n ) and a constant λ > 0, we have

S Ln = ζ(τ n ) + o(n 1 2 -λ ), a.e. with τ n / S Ln 2 2 → 1, a.e. ( S Ln 2 2 is of order n).
The method of proof is the following. As shown below, if a n is big, there is f n such that the 1 qn -periodic function f n (q n .) approximates well the ergodic sum ϕ qn , cf. (23). When a n , or a subsequence of a n , is growing fast, a CLT for subsequences (ϕ Ln ) can be deduced from the stochastic properties of sums of the form N k=1 f n k (q n k .). In the appendix, we will recall a result of Berkes and Philipp which provides a CLT and an approximation by a Wiener process for sums of this form.

1. Variance estimates for subsequences of ergodic sums 1.1. Bounds for the variance.

We will use inequalities related to the repartition of the orbit of 0 under the rotation by α.

Lemma 1.1. If q n is a denominator of α and m ≥ 1, we have with an absolute constant C:

k: kα ≤1/m, k≥qn 1 k 2 ≤ C ( 1 mq n + 1 q 2 n ), k: kα ≥1/m, k≥qn 1 k 2 1 kα 2 ≤ C ( m q n + m 2 q 2 n ), (9) qn-1 k=1 1 k 2 1 kα 2 ≤ 6 n-1 j=0 ( q j+1 q j ) 2 . ( 10 
)
Proof. Observe first that, if f is a nonnegative BV function with integral µ(f ) and if q is a denominator of α, then:

∞ k=q f (kα) k 2 ≤ 2µ(f ) q + 2V (f ) q 2 . (11) Indeed, by (6) applied to f -µ(f ), ∞ k=q f (kα) k 2 is less than ∞ j=1 1 (jq) 2 q-1 r=0 f ((jq + r)α) ≤ 1 q 2 ( ∞ j=1 1 j 2 ) (q µ(f ) + V (f )) = π 2 6 ( µ(f ) q + V (f ) q 2 ).
Now, (9) follows from (11), taking f (x) respectively = 1 [0, 1 m ] (|x|) and = 1

x 2 1 [ 1 m , 1
2 [ (|x|). For (10) we can write the LHS as

n-1 j=0 q j+1 -q j -1 =0 1 (q j + ) 2 1 (q j + )α 2 ≤ n-1 j=0 1 q 2 j q j+1 -q j -1 =0 1 (q j + )α 2 .
Using the fact that there is only one value of rα mod 1, for 1 ≤ r < q j+1 , in each interval [ k q j+1 , k+1 q j+1 [, k = 1, ..., q j+1 -1, we have the following bound which implies (10):

q j+1 -q j -1 =0 1 (q j + )α 2 ≤ 1 q j α 2 + ∞ k=1 1 (k/q j+1 ) 2 ≤ (q j + q j+1 ) 2 + π 2 6 q 2 j+1 ≤ 6q 2 j+1 .
Now, we study the behaviour of the variance for the ergodic sums ϕ n (x) = n-1 j=0 ϕ(x+jα) of a function ϕ(x) = r γr r e 2πirx in the class C. We have:

ϕ n 2 2 = r |γ r | 2 r 2 G n (rα), with G n (t) := sin 2 n π t sin 2 π t . (12) The 1-periodic function G n satisfies 1 0 G n (t) dt = n and the symmetry G n (t) = G n (1 -t) for 0 ≤ t ≤ 1, so that G n ({rα}) = G n ( rα ). We set G n (t) := 1 n n-1 k=0 G k (t) = 1 sin 2 πt 1 2 - 1 4n 1 + sin(2n -1)πt sin πt .
The mean satisfies the following lower bounds:

G n (t) ≥ n 2 π 2 , for 0 ≤ t ≤ 1 2n , ≥ 1 8 π 2 t 2 , for 1 2n ≤ t ≤ 1 2 . ( 13 
)
Lemma 1.2. (upper bound) There is a constant C such that, if ϕ satisfies (4),

(14) ϕ n 2 2 ≤ CK(ϕ) 2 j=0 a 2 j+1 , ∀n ∈ [q , q +1 [.
Proof. Using (9), we have (with the last inequality satisfied if q ≤ n):

1 2 |k|≥q 1 k 2 nkα 2 kα 2 ≤ n 2 kα ≤1/n, k≥q 1 k 2 + kα >1/n, k≥q 1 k 2 1 kα 2 ≤ n 2 nq + n 2 q 2 + n q + n 2 q 2 = 2 n q + 2 n 2 q 2 ≤ 4 n 2 q 2 .
Let ϕ satisfy (4). Let q ≤ n < q +1 . From (10) and (9) of Lemma 1.1, we have

ϕ n 2 2 = k =0 |c k (ϕ)| 2 |1 -e 2πinkα | 2 |1 -e 2πikα | 2 ≤ K(ϕ) 2 k =0 1 k 2 nkα 2 kα 2 ≤ K(ϕ) 2 0<k<q 1 k 2 1 kα 2 + K(ϕ) 2 k≥q 1 k 2 nkα 2 kα 2 ≤ K(ϕ) 2 [ -1 j=0 ( q j+1 q j ) 2 ] + 6K(ϕ) 2 n 2 q 2 ≤ CK(ϕ) 2 j=0 a 2 j+1 .
When α is of bounded type, this gives max q ≤n<q +1 ϕ n 2 = O( ).

For the mean Dϕ n of the square norm of the ergodic sums, we have by ( 12):

(15)

Dϕ n := 1 n n-1 k=0 ϕ k 2 2 = r =0 |γ r | 2 r 2 G n ( rα ) .
Theorem 1.3. [Is06] (lower bound) There is a constant c > 0 such that

Dϕ n ≥ c -1 j=0 |γ q j | 2 a 2 j+1 , ∀n ∈ [q , q +1 [. (16) 
Proof. From (15) and (13), we get the estimate

(17) Dϕ n ≥ r : rα ≥ 1 2n |γ r | 2 8π 2 (r • rα ) 2 + r =0 : rα < 1 2n n 2 |γ r | 2 π 2 r 2 .
If n ≥ q , then (2) implies q j α > 1 2n , for j = 1, ..., -1. Therefore, using q j q j α < a -1 j+1 , we have:

Dϕ n ≥ C 1 rα ≥ 1 2n |γ r | 2 (r • rα ) 2 ≥ c 1 -1 j=0 |γ q j | 2 (q j • q j α ) 2 ≥ C 2 -1 j=0 |γ q j | 2 a 2 j+1 . By (16), if v is an integer < q +1 such that ϕ v 2 = max k<q +1 ϕ k 2 , then ϕ v 2 2 ≥ c -1 k=0 |γ q k | 2 a 2 k+1 .
If the sequence (γ q k (ϕ)) is bounded from below, the variance of most of the ergodic sums is of order of the scale given by the a k 's. If α has bounded partial quotients, the average of the variance grows at a logarithmic rate.

Examples will be given in Section 2.2. To complete the picture we discuss a lower bound valid for functions ϕ whose Fourier coefficients satisfy a definite (lower) bound.

We define u n by ( 18)

u n := min{ u : q u α < 1 2n } = max{ u : q u-1 α ≥ 1 2n },
The sequence (u n ) cannot grow faster than log n. Since (19) rα ≥ q un-1 α ≥ 1 2n , ∀r < q un , the integer q un can be interpreted as the first time the orbit {x + α} ≥1 returns into a neighborhood of size 1/n of x.

We say that α is of type

γ if 1 ≤ γ = sup{s : lim inf r→∞ r s • r α = 0}. If α is of type γ, then lim inf n→∞ log qu n log n = 1 γ (cf. [Is06]). Lemma 1.4. Let α be of type γ and ϕ ∈ L 2 be such that |γ r | > c r 1-β for some β ∈] 1 2 , γ[. Then there is an infinite subset I ⊆ N and a constant C > 0 such that Dϕ n ≥ C n 2(1-β γ-)(1+β-β γ-) -1 , n ∈ I, ∀ > 0. (20)
Proof. We start again from the estimate (17). Since 2q k > 1/ q k-1 α > q k for all k, using (18) and (19) we write

Dϕ n ≥ 1 8π 2 |γ q un-1 | 2 q -2 un-1 q 2 un + n 2 |γ qu n | 2 q -2 un .
The assumption on the Fourier coefficients of ϕ then yields

Dϕ n ≥ c 2 8π 2 q -2β un-1 q 2 un + n 2 q -2β un .
On the other hand, one checks that the function

F a,b,s (x) := x -2s a + bx 2 , a, b > 0, s ∈ (0, 1), x ∈ R + , satisfies F a,b,s (x) ≥ 1 s s (1 -s) 1-s a 1-s b s , x ∈ R + , and therefore n -2s Dϕ n ≥ c 2 8π 2 s s (1 -s) 1-s q -2β(1-s) un-1 q 2(1-s-sβ) un . Now, if α is of type γ ≥ 1, we have lim inf r→∞ r γ-• rα = 0 for all > 0. This implies that q un j -1 ≤ c 1 q 1 γ-
un j along an infinite subsequence {n j } and for some positive constant c 1 . Thereby, for each s ∈ (0, 1), we can find a constant C s so that the above yields:

n -2s j Dϕ n j ≥ C s q 2(1-s-sβ- β(1-s) γ- ) un j .
Hence, taking s such that the exponent at right is zero, we get (20).

Remark: Since ϕ / ∈ C for β < 1, in order to apply Lemma 1.4 to some ϕ ∈ C, α must be of type γ > 1.

Lacunary series and approximation by 1

qn -periodic functions. We consider now another method giving information on the diffusive behaviour of the ergodic sums S N ϕ. It is based on approximation of ϕ qn by 1 qn -periodic functions. Given ϕ(x) = r =0 γr r e 2πirx , recall that the ergodic sums can be written:

ϕ (x) = r =0 γr(ϕ)
r e πi( -1)rα sin π rα sin πrα e 2πirx . We use the following notations for ≥ 1:

ϕ (x) = -1 j=0 ϕ(x + j ) = r =0 γ r r e 2πir x = ϕ ( x), with ϕ (x) := r =0 γ r r e 2πirx . (21) 
In particular, ϕ qn (x) := r =0 γrq n r e 2πirx . We will show that ϕ qn (q n .) is a 1 qn -periodic approximation of ϕ qn , if a n+1 is big.

Remark: If ϕ ∈ C, then ϕ is also in C and satisfies: K( ϕ ) ≤ K(ϕ).
If ϕ is a BV function, then for every ≥ 1, the periodic function ϕ = ϕ ( .) has the same variation on an interval of period and the variation of ϕ on [0, 1[ is less than V (ϕ). When ϕ has zero integral, this implies

ϕ ∞ ≤ V (ϕ). ( 22 
)
Proposition 1.5. If ϕ satisfies (4), then we have

ϕ qn -ϕ qn (q n .) 2 2 = r =0, qn | r 1 r 2 q n rα 2 rα 2 = O(a -1 n+1 ). (23)
Proof. If ϕ satisfies (4), we have:

ϕ qn (x)-ϕ qn (q n x) = r =0 γ r (ϕ) r e πi(qn-1)rα sin πq n rα sin πrα e 2πirx - r =0 γ qnr (ϕ) r e 2πiqnrx = (A)+(B), with (A) = r =0 γ qnr (ϕ) r [e πi(qn-1)qnrα sin πq 2 n rα q n sin πq n rα -1] e 2πiqnrx , (B) = r =0,qn |r γ r (ϕ) r e πi(qn-1)rα sin πq n rα sin πrα e 2πirx .
Therefore, ϕ qn -ϕ qn (q n .) 2 2 is equal to

r =0 |γ qnr (ϕ)| 2 r 2 |e πi(qn-1)qnrα sin πq 2 n rα q n sin πq n rα -1| 2 + r =0,qn |r |γ r (ϕ)| 2 r 2 | sin πq n rα sin πrα | 2 (24) ≤ K(ϕ) 2 r =0 1 r 2 |e πi(qn-1)qnrα sin πq 2 n rα q n sin πq n rα -1| 2 + K(ϕ) 2 r =0, qn |r 1 r 2 | sin πq n rα sin πrα | 2 . (25) Let ϕ 0 (x) = {x} -1 2 . The Fourier series of ϕ 0 is ϕ 0 (x) = -1 2πi r =0 1 r e 2πirx . For δ j ∈ [0, 1[, we have: |ϕ 0 (x + δ j ) -ϕ 0 (x)| ≤ δ j + 1 [0,δ j ] (x); hence qn-1 j=0 |ϕ 0 (x + jα + δ j ) -ϕ 0 (x + jα)| ≤ qn-1 j=0 δ j + qn-1 j=0 1 [0,δ j ] (x + jα).
Since |jα -jp n /q n | ≤ 1 a n+1 qn , for 0 ≤ j < q n , this implies:

|ϕ 0 qn (x) -ϕ 0 qn (x)| ≤ 1 a n+1 + qn-1 j=0 1 [0, 1 a n+1 qn ] (x + jα),
and therefore ϕ 0 qn -ϕ 0 qn (q n .) 1 = 2a -1 n+1 . As ϕ 0 qn and ϕ 0 qn are bounded by V (ϕ 0 ) (Denjoy-Koksma inequality and ( 22)), if follows:

ϕ 0 qn -ϕ 0 qn (q n .) 2 2 ≤ [ ϕ 0 qn ∞ + ϕ 0 qn (q n .) ∞ ] ϕ 0 qn -ϕ 0 qn (q n .) 1 ≤ 4 a n+1 . ( 26 
)
By (24) applied to ϕ 0 , we obtain:

ϕ 0 qn -ϕ 0 qn (q n .) 2 2 = 1 4π 2 r =0 1 r 2 |e πi(qn-1)qnrα sin πq 2 n rα q n sin πq n rα -1| 2 + 1 4π 2 r =0, qn |r 1 r 2 | sin πq n rα sin πrα | 2 .
It follows, by (25) and (26):

ϕ qn -ϕ qn (q n .) 2 2 ≤ (2π K(ϕ)) 2 ϕ 0 qn -ϕ 0 qn (q n .) 2 2 ≤ (4π K(ϕ)) 2 a -1 n+1 . Remark: Likewise, if ϕ satisfies (4), then, since ϕ 0 qn 2 ≤ ϕ 0 qn ∞ ≤ V (ϕ 0 ) = 1, we have ϕ qn 2 2 = r =0 |γ r (ϕ)| 2 r 2 | sin πq n rα sin πrα | 2 ≤ K(ϕ) 2 r =0 1 r 2 | sin πq n rα sin πrα | 2 = (2π K(ϕ)) 2 ϕ 0 qn 2 2 ≤ (2π K(ϕ)) 2 V (ϕ 0 ) 2 .

CLT for rotations

2.1. CLT and ASIP along subsequences for rotations.

Let (t k ) be a strictly increasing sequence of positive integers and let (L n ) be the sequence of times defined by L 0 = 0 and L n = n k=1 q t k , n ≥ 1. Our goal is to show that, under a condition of the growth of (a n ), the distribution of ϕ Ln can be approximated by a Brownian motion. More precisely we will show the following ASIP (almost sure invariance principle, cf. [START_REF] Philipp | Almost sure invariance principles for partial sums of weakly dependent random variables[END_REF]) for (ϕ Ln ), when a t k +1 is fast enough growing: Theorem 2.1. Let (t k ) be a strictly increasing sequence of positive integers and let L n = n k=1 q t k , n ≥ 1. Assume the growth condition:

a t k +1 ≥ k β , with β > 1. Then, for every ϕ in the class C such that n k=1 ϕ qt k 2 2 ≥ c n, for a constant c > 0, (27) we have ϕ Ln 2 2 / n k=1 ϕ qt k 2 2 → 1 and the convergence in distribution (CLT) ϕ Ln / ϕ Ln 2 → N (0, 1). (28)
Moreover, keeping its distribution, the process (ϕ Ln ) n≥1 can be redefined on a probability space together with a Wiener process ζ(t) such that

ϕ Ln = ζ(τ n ) + o(n 1 2 -λ ) a.e., (29) 
where λ > 0 is an absolute constant and τ n is an increasing sequence of random variables such that τ n / ϕ Ln 2 2 → 1 a.e. Proof. As in Ostrowski's expansion, the sum Ln-1 j=0 ϕ(x + jα) reads

n k=0 qt k +L k-1 -1 j=L k-1 ϕ(x + jα) = n k=0 qt k -1 j=0 ϕ(x + L k-1 α + jα) = n k=0 ϕ qt k (x + L k-1 α).
We use Proposition 1.5 . Let 21) and there is a finite constant C such that the tail of the Fourier series satisfies:

g k := | qt k +L k-1 -1 j=L k-1 ϕ(. + jα) -ϕ qt k (q t k . + L k-1 α)|. We have g k 2 2 ≤ Ca -1 t k +1 . Assume that a t k +1 ≥ k β .
/ n k=1 ϕ qt k 2 2 → 1). For (H1), observe that sup k ϕ qt k ∞ ≤ V (ϕ) < +∞, sup k ϕ qt k 2 < +∞. Moreover, |γ rqt k | ≤ K(ϕ) by (
R( ϕ qt k , t) ≤ R(t), ∀k, with R(t) ≤ C R t -1 2 .
For the sequence (q t k ), the lacunarity condition (H2) as well as the arithmetic condition (H3) are satisfied, since

q t k+1 /q t k > a t k +1 → ∞.
Therefore, the hypotheses of Theorem 3.2 are satisfied. The convergence in distribution (28) is a corollary.

Lemma 2.2. Let (g n ) be a sequence of nonnegative functions such that g n 2 2 = O(n -δ ), δ > 0. Then we have, for all ε > 0:

N k=1 g k = O(N 1-δ 2 +ε ) a.e. Proof. For δ 1 = 1 2 -δ 2 +ε, with ε > 0, we have convergence ∞ k=1 g 2 k k 2δ 1 dµ < ∞. Therefore, ∞ k=1 g 2 k k 2δ 1 = O(1), a.e. which implies: N 1 g k = N 1 k δ 1 g k k δ 1 ≤ ( N 1 k 2δ 1 ) 1 2 ( N k=1 g 2 k k 2δ 1 ) 1 2 = O(N 1-δ 2 +ε ), a.e.
If the partial quotients of α are not bounded, then there is a sequence (t k ) of positive integers tending to +∞ such that a t k +1 ≥ k β , with β > 1. It follows:

Corollary 2.3. Let α be an irrational rotation with unbounded partial quotients. Then there are λ > 0 and an increasing sequence of integers (t k ) k≥1 such that, for the sequence, L n = N k=1 q t k , n ≥ 1, under the non-degeneracy condition (27), we have

ϕ Ln = ζ(τ n ) + o(n 1 2 -λ ) a.e. (30) 
Remarks: 1) It still remains the question of Condition (27) that we will check for explicit step functions. We will have to estimate:

-1 k=0 |γ q k (ϕ)| 2 a 2
k+1 (for the lower bound of the mean variance), (31)

1 N N k=1 ϕ qt k 2 2 = 1 N N k=1 [ r =0 1 r 2 |γ rqt k | 2 ] (for the ASIP). ( 32 
)
To get the ASIP along a subsequence L n = n 1 q t k , we need an increasing sequence (t k ) of integers such that a t k +1 ≥ k θ , with θ > 1, and lim inf n

1 n n k=1 [ r =0 1 r 2 |γ rqt k | 2 ] > 0.
For this latter condition, it suffices that lim inf n

1 n n k=1 |γ qt k | 2 > 0.
2) The result of Theorem 2.1 is valid more generally for sequences of the form L n = n k=0 c k q t k , where (c n ) is a bounded sequence of non negative integers.

3) Let α be of Liouville type. Then, under a non degeneracy condition which is checked in the examples below, the variance along subsequences is "in average" of the order of N 1 a 2 k as shown by Theorem 1.3, whereas the variance for the subsequences described in this section is much smaller and grows linearly. 4) If α is such that a n is of order n β with β > 1, we find a sequence (L n ) for which Theorem 2.1 holds with of growth at most exp(c n ln n) for some c > 0.

5) For α with bounded partial quotients, a different approach is necessary for the CLT. It is based, as suggested in [START_REF] Huveneers | Subdiffusive behavior generated by irrational rotations, Ergodic Theory Dynam[END_REF], on a decorrelation property between the ergodic sums at time q n for BV functions. The details will be given in a forthcoming paper.

2.2. Application to step functions.

Example 1. ϕ(x) = ϕ 0 (x) = {x} -1 2 = -1 2πi r =0
1 r e 2πirx . Here the above formulas (31), (32) reduce to:

1 4π 2 -1 k=0 a 2 k+1 , 1 N N k=1 ϕ qt k 2 2 = π 2 6 .
One easily deduces a non-degenerate CLT and ASIP along subsequences for non-bpq rotations. Now we consider steps functions. The non-degeneracy of the variance is related to the Diophantine properties (with respect to α) of its discontinuities. If ϕ is a step function:

ϕ = j∈J v j (1 I j -µ(I j )), with I j = [u j , w j [, its Fourier coefficients are c r = j∈J v j
e -2πirw j -e -2πiru j 2πir = j∈J v j πr e -πir(u j +w j ) sin(πr(u j -w j )), r = 0.

The growth of the mean variance is bounded from below by

q ≤ n < q +1 ⇒ Dϕ n ≥ C k=1 | j∈J v j (e 2πiq k (w j -u j ) -1)| 2 a 2 k+1 . (33) 
One can try to set conditions on the coefficients v j and the endpoints of the partition such that |γ q k | 1 when k belongs to some subsequence J ⊂ N.

For example, if the a k 's are bounded, then it can be shown, with an argument of equirepartition as below, that for a.e. choice of the parameters the lower bound Dϕ n ≥ c ln n holds. Now we consider different particular cases for generic or special values of the parameter.

Example 2. ϕ = ϕ(β, .) = 1 [0,β[ -β = r =0
1 πr e -πirβ sin(πrβ) e 2πir. . Therefore γ r (ϕ) = 1 π e -πirβ sin πrβ and Theorem 1.3 yields

Dϕ n ≥ C 1 -1 k=0 a 2 k+1 sin 2 (πq k β) ≥ 4C 1 -1 k=0 a 2 k+1 q k β 2 , ∀n ∈ [q , q +1 [ .
For the mean variance, putting, for δ > 0, J δ := {k : q k β ≥ δ}, we have

(34) Dϕ n ≥ Cδ 2 k∈J δ ∩ [1, [ a 2 k , ∀n ∈ [q , q +1 [ .
For the CLT, we have ϕ qn = r =0

1 πr e -πirqnβ sin(πrq n β) e 2πir. ,

ϕ qn 2 2 = 1 π 2 r =0 | sin(πrq n β)| 2 r 2 ≥ 1 π 2 | sin(πq n β)| 2 . ( 35 
)
Since (q k ) is a strictly increasing sequence of integers, for almost every β in T, the sequence (q t k β) is uniformly distributed modulo 1 in T 1 . For a.e. β we have:

lim N 1 N N k=1 ϕ t k 2 2 = lim N 1 N N k=1 1 π 2 r =0 | sin(πrq t k β)| 2 r 2 = 1 6 .
Hence, Theorem 2.1 implies: If α is not of bounded type, there exists a sequence (q t k ) of denominators of α such that, for the subsequence L N = q t 1 + ... + q t N , for a.e. β,

√ 6 √ N L N j=1 ϕ(β, . + jα) → distribution N (0, 1). A special case (β = 1 2 ): ϕ := 1 [0, 1 2 [ -1 [ 1 2 ,1[ = r 2 
πi(2r+1) e 2πi(2r+1). . In this case, we have γ q k = 0, if q k is even, = 2 πi , if q k is odd. If a n+1 → ∞ along a sequence such that q n is odd, then there is a sequence (L n ) for which

1 √ N L N j=1 ϕ( 1 2 , . + jα) → distribution N (0, 1).
Remark. Degeneracy can occur even for a cocycle which generates an ergodic skew product on T 1 × R (and therefore is not a measurable coboundary). Let us consider 1 [0,β[ -β and the so-called Ostrowski expansion of β: β = n≥0 b n q n α mod 1, with b n ∈ Z. Then it can be shown that n≥0 |bn| a n+1 < ∞ implies lim k q k β = 0. If α is not bpq, there is an uncountable set of β's satisfying the previous condition, but ergodicity of the cocycle holds if β is not in the countable set Zα + Z.

Example 3. Let ϕ be the step function:

ϕ = ϕ(β, γ, .) = 1 [0, β] -1 [γ, β+γ]
. The Fourier coefficients are c r (ϕ) = 2i π 1 r e -πir(β+γ) sin(πrβ) sin(πrγ). We have

ϕ q k 2 2 = 4 π 2 r =0 1 r 2 | sin(πrq k β)| 2 | sin(πrq k γ)| 2 .
As above, since (q k ) is a strictly increasing sequence of integers, for almost every (β, γ) in T 2 , the sequence (q t k β, q t k γ) is uniformly distributed in T 2 . We have for a.e. (β, γ):

lim n 1 n n k=1 ϕ qt k 2 2 = 4 π 2 r =0 lim n 1 n n k=1 | sin(πrq t k β)| 2 | sin(πrq t k γ)| 2 r 2 = 4 π 2 r =0 | sin(πry)| 2 | sin(πrz)| 2 r 2 dy dz = 1 3 .
This computation and Theorem 2.1 imply the following corollary for ϕ(β, γ, .):

If α is not of bounded type, there exists a sequence (q t k ) of denominators of α such that, for the subsequence L N = q t 1 + ... + q t N , for a.e. (β, γ)

√ 3 √ N L N j=1 ϕ(β, γ, . + jα) → distribution N (0, 1). Example 4. Let us take γ = 1 2 , i.e., ϕ = ϕ(β, 1 2 , .) = 1 [0, β] -1 [ 1 2 , β+ 1 2 ]
. We have:

ϕ(x) = 2 π r e -πi(2r+1)β sin(π(2r + 1)β) (2r + 1) e 2πi(2r+1)x .
Hence: |γ q k | ∼ q k β if q k is odd, else = 0. This example is like Example 2, excepted the restriction to odd values of the frequencies.

The lower bound for the mean variance (Theorem 1.3) gives in this case:

q ≤ n < q +1 ⇒ Dϕ n ≥ C 0≤k≤ -1, q k odd q k β 2 a 2 k+1 ( 36 
)
and we have, if (q t k ) is a sequence of odd denominators, for a.e. β:

lim N 1 N N k=1 ϕ t k 2 2 = lim N 1 N N k=1 4 π 2 r | sin(π(2r + 1)q t k β)| 2 (2r + 1) 2 = 2 π 2 r∈Z 1 (2r + 1) 2 = 1 2 .
Example 5. (Vectorial cocycle) Now, in order to apply it to the periodic billiard, we consider the vectorial function ψ = (ϕ 1 , ϕ 2 ), where ϕ 1 and ϕ 2 are functions as in the example 4) with parameters

β 1 = α 2 , β 2 = 1 2 -α 2 : ϕ 1 = 1 [0, α 2 ] -1 [ 1 2 , 1 2 + α 2 ] = 2 π r∈Z e -πi(2r+1) α 2 sin(π(2r + 1)α/2) 2r + 1 e 2πi(2r+1). , ϕ 2 = 1 [0, 1 2 -α 2 ] -1 [ 1 2 ,1-α 2 ] = -2i π r∈Z e πi(2r+1) α 2 cos(π(2r + 1)α/2) 2r + 1 e 2πi(2r+1). ,
If q k is even both ϕ 1 q k and ϕ 2 q k are null. If q k is odd, we have

ϕ 1 q k 2 2 = 4 π 2 r∈Z | sin(π(2r + 1) α 2 )| 2 (2r + 1) 2 , ϕ 2 q k 2 2 = 4 π 2 r∈Z | cos(π(2r + 1) α 2 )| 2 (2r + 1) 2 .
Let q k be odd. We use (2). We have

q k β 1 = q k α 2 = p k 2 + θ k 2 , hence q k β 1 - p k 2 ≤ θ k 2 ≤ 1 2q n+1 .
This implies:

ϕ 1 q k 2 2 = O( 1 q k+1
), if p k is even,

ϕ 1 q k 2 2 = 4 π 2 r∈Z 1 (2r + 1) 2 + O( 1 q k+1 ) = 1 + O( 1 q k+1
), if p k is odd.

Similarly, we have

q k β 2 = q k 2 - p k 2 - θ k 2 , hence q k β 2 - 1 2 + p k 2 ≤ θ k 2 ≤ 1 2q n+1 , hence: φ 2 q k 2 2 = O( 1 q k+1 ), if p k is odd, φ 2 q k 2 2 = 1 + O( 1 q k+1
), if p k is even.

Lemma 2.4. For almost every α, for β > 1, there exists a sequence (t k ) such that q t k is odd, p t 2k is even, p t 2k+1 is odd and a t k +1 ≥ k β for all k. (37)

Proof. Let us examine, for three consecutive terms, the configurations for (p n , q n ) modulo 2, i.e., the parities of p n , q n , p n+1 , q n+1 , p n+2 , q n+2 . Suppose that a n+2 is even. Then, using (1) we see that the only possible configurations are:

[(0, 1), (1, 0), (1, 1)], [(0, 1), (1, 1), (1, 0)], [(1, 0), (0, 1), (1, 1)], [(1, 1), (0, 1), (1, 0)], [(1, 0), (1, 1), (0, 1)], [(1, 1), (1, 0), (0, 1)].

Taking either p n , q n , p n+1 , q n+1 , or p n , q n , p n+2 , q n+2 , or p n+1 , q n+1 , p n+2 , q n+2 , it follows that we can find among three consecutive convergents (p, q), (p , q ) the desired parities, i.e., p even, q odd, p odd, q odd. Now let be given A 1 , A 2 , A 3 three positive integers. Using the ergodicity of the Gauss map x → {1/x} in the class of the Lebesgue measure, one easily shows that for a.e. x, there are infinitely many values of n such that a n = A 1 , a n+1 = A 2 , a n+2 = A 3 . By choosing successively for A 1 , A 2 , A 3 arbitrary big integers and A 3 even, and using the above analysis of possible configurations, we get a sequence (t k ) such that the condition on the parities as in (37) is satisfied and lim k a t k +1 = +∞. Now, taking a subsequence, still denoted (t k ), we can insure that a t k +1 ≥ k β , with β > 1 for all k ≥ 1.

Theorem 2.5. Let α be an irrational number satisfying the (generic) condition (37) holds for a sequence (t k ) and the convergents of α. Then, for L N = N 1 q t k , the sequence

(N -1/2 ψ L N ) N ≥1 satisfies a 2-dimensional CLT with a non-degenerate diagonal covariance matrix 1 2 0 0 1 2 .
Proof. It suffices to prove the CLT for ψ u,v = uϕ 1 + vϕ 2 where (u, v) is an arbitrary fixed vector. By hypothesis the sequence (q t k ) is superlacunary. Therefore (Lemma 3.6 in the appendix), we have

N k=1 ψ u,v qt k 2 2 = N k=1 ψ u,v qt k 2 2 + o(N ).
The above computations show that, under Condition (37),

ψ u,v qt k 2 2 = v 2 + O( 1 q t k +1 ), if k is even, ψ u,v qt k 2 2 = u 2 + O( 1 q t k +1
), if k is odd.

Thus the hypotheses of Theorem 2.1 are fulfilled and

N -1/2 uϕ 1 L N + vϕ 2 L N
converges in distribution to the centered Gaussian law with variance u 2 +v 2 2 .

Remarks: 1) Using the continued fraction expansion of α, one can find rotations and subsequences (L n ) with arbitrary values of the covariance matrix in the above CLT.

2) We have only considered the CLT for the vectorial cocycle, but not the ASIP, since the result of Theorem 3.2 is one dimensional. Further work should be done to obtain a vectorial ASIP (approximation by a two dimensional Brownian motion). Let us mention that a method to get it, could be to adapt the method developed by S. Gouëzel in [START_REF] Gouëzel | Almost sure invariance principle for dynamical systems by spectral methods[END_REF].

2.3. Application to the periodic billiard in the plane.

Description of the model

We start with a brief description of the billiard flow in the plane with Z 2 -periodically distributed obstacles. The flow acts on the set of configurations, where a configuration is a position in the complementary of the obstacles in R 2 together with a unitary speed vector. The flow is defined according to the usual rule: the ball (geometrically reduced to a point) moves with constant speed in straight line between two obstacles and obeys the laws of reflection when it hits the edge of an obstacle.

If the obstacles are strictly convex with regular boundary and positive curvature, the flow has a stochastic behaviour with a rate of diffusion of order √ N at time N . The situation is quite different when the boundary of the obstacles is piecewise flat. We consider here the billiard with Z 2 -periodically distributed rectangular obstacles (sometimes called rectangular Lorenz gas, cf. [START_REF] Hardy | Diffusion in a periodic wind-tree model[END_REF]). We give below a short description of this model (cf. [START_REF] Conze | On recurrence and ergodicity for geodesic flows on non-compact periodic polygonal surfaces[END_REF]) and show that for special directions the previous results on ergodic sums over rotations apply. The quotient surface P (a, b) = P (a, b)/Z 2 is the unit torus with a rectangular hole. It is rational and its dihedral group is R 2 , the group generated by two orthogonal reflections with the angle π/2 between their axes. The flow (U P (a, b), T t , µ) decomposes as a oneparameter family of directional billiard flows ( Zη , T t η , μη ), where η ∈ [0, π/2]. Let η ∈ (0, π/2) and let X η be the space consisting of unit vectors pointing outward, whose base points belong to ABCD and whose directions belong to the set {±η, π ± A natural Poincaré's section ( Xη , τη , νη ) of the conservative part of the flow is given by its restriction to the configurations corresponding to the boundary of the obstacles, at times of impact with the obstacles. We obtain so the billiard map.

Let 0 < a, b < 1. For (m, n) ∈ Z 2 , let R (m,n) (a, b) ⊂ R 2 be

Rational directions and small obstacles

A direction η ∈ [0, π/2] is rational if tan η ∈ Q. Rational directions η(p, q) =
arctan(q/p), also simply denoted (p, q), correspond to pairs (p, q) ∈ N with relatively prime p, q.

In what follows we fix (p, q) and assume that the following "small obstacles condition" is satisfied: qa + pb ≤ 1.

The inequality above is strict if and only if the directional billiard flow ( Z(p,q) , T t (p,q) , μ(p,q) ) has a set of positive measure of orbits that do not encounter obstacles.

We will now investigate the Poincaré map τ (p,q) : X (p,q) → X (p,q) induced by the billiard map. We identify X (p,q) with 2 copies of the rectangle ABCD: one copy carries the outward pointing vectors in the direction η or π + η, the other one the outward pointing vectors in the direction π -η or 2π -η.

One can reduce the model to the case of a direction of flow with angle η = π/4 and with the small obstacles condition a + b ≤ 1 (see [START_REF] Conze | On recurrence and ergodicity for geodesic flows on non-compact periodic polygonal surfaces[END_REF]). Without loss of generality, we will consider this case. Let α := a a + b .

The square of the Poincaré map for the direction π/4 can then be represented as two copies of the skew product defined on T 1 × Z 2 by (x, z) → (x + α, z + Ψ(x)), where the displacement function Ψ is given by: (38)

Ψ(x) = (0, 1) for x ∈]0, 1 2 -α 2 [, (1, 0) for x ∈] 1 2 -α 2 , 1 2 [, (0, -1) for x ∈] 1 2 , 1 -α 2 [, (-1, 0) for x ∈]1 -α 2 , 1[.

This vectorial function reads

Ψ = (ψ 1 , ψ 2 ), with ψ 1 = ϕ 1 (. + 1 2 -α 2 ) = 1 [ 1 2 -α 2 , 1 2 [ -1 1-α 2 ,1[ , ψ 2 = ϕ 2 = 1 [0, 1 2 -α 2 [ -1 [ 1 2 ,1-α 2 [
, where ϕ 1 , ϕ 2 are defined in Subsection 2.2. The billiard map generates the cocycle S(n, Ψ)(x) = n-1 j=0 Ψ(x + jα) (the ergodic sums of the displacement function over the rotation by α), which gives the label in the Z 2 -plane of the cell containing the ball after 2n reflections on the obstacles.

Let ψ(x) be the length of the path for the ball starting from x ∈ ABCD (identified with the circle T) up to its collision with a second obstacle and let X t (x) be the position at The ergodic sum T n (x) = n-1 j=0 ψ(x + jα) is the hitting time of the ball with an obstacle after 2n collisions. Therefore X Tn(x) (x) belongs to the cell S(n, Ψ)(x) in the Z 2 -plane.

A natural question is the existence of a sequence of (deterministic) times along which the process (X t ) after normalisation has a limit distribution. For the second part of the next result, we need the mild assumption on the partial quotients of α:

n -1 2 [ln n] j=1 a j+1 → 0 (40)
This condition is satisfied by a.e. α. Indeed, since α → (a 1 (α)) 1 2 is integrable, we have for a.e. α by the ergodicity of the Gauss map, sup N N -1 (a 1 (α))

1 2 + ... + (a N (α)) 1 2 < ∞,
which implies sup N N -2 (a 1 (α) + ... + a N (α)) < ∞ Theorem 2.6. For almost all ratio a/b of the lengths of the sides of the rectangular obstacles, there is a sequence (L n ) such that S(L n , Ψ) has asymptotically after normalization a non-degenerate 2-dimensional normal distribution (with the uniform measure on a rectangular obstacle as initial distribution). Moreover under the assumption (40), also n -1 2 X cLn converges in distribution to a non-degenerate normal law.

Proof. The first part of the theorem follows from Theorem 2.5.

For the second part, observe, first, that T n (x) ∼ c n by the ergodic theorem, where c is defined in (39).

Let us show that the distance between X T Ln (x) (x) and X c Ln (x) is small compared with the norm of the vector S(L n , Ψ)(x), which is of order √ n.

Denoting by d the euclidean distance in the plane, the distance d(X T Ln (x) (x), X c Ln (x)) corresponds to a travel of the ball during a lapse of time

|T Ln (x) -c L n |.
The (time) difference T Ln (x) -c L n coincides with ψ 0 Ln , the ergodic sum of ψ 0 at time L n . The estimation of the variance along the sequence L n can be applied to the function ψ 0 which is centered and belongs to the class C.

We get:

ψ 0 Ln 2 2 ≤ Cn. Therefore, for ε > 0, there is a constant M = M (ε) such that |ψ 0 Ln (x)| ≤ M √ n on a set B ε of measure ≥ 1 -ε.
If the ball starts from a point x on the boundary of the obstacle located on some cell p ∈ Z 2 and travels during a lapse of time t such that ψ n (x) ≤ t < ψ n+1 (x), then the ball hits 2n or 2n + 1 obstacles and reaches a cell at a (uniformly) bounded distance of the cell p + S(n, Ψ)(x) ∈ Z 2 . By Ostrowski expansion, cf. (8), we have S(n, Ψ)(x) ≤ C +1 1 a j , if q ≤ n < q +1 . By the ergodic theorem, ψ n (x)/n is of order c, so n is of order t/c and less than t/ inf x∈T ψ(x).

If we know only that t ≤ K for some K, then the distance between the starting point and the final point after time t is ≤ C r+1 1 a j + C , where q r ≤ K/c < q r+1 and C, C are the constants C = V (ψ), C = sup x∈T ψ(x).

This shows that, on the set B ε , the distance between X T Ln (x) (x) and X c Ln (x) is bounded by: C s+1 1 a j + C , where s is such that q s ≤ CM √ n/c < q s+1 .

In view of the (at least) exponential growth of the q n 's, s is at most of order C ln n. We conclude by (40) that n -1 2 d(X T Ln (x) (x), X c Ln (x)) → 0 in probability. Therefore, n -1 2 X T cLn (x) has the same normal limit in distribution as n -1 2 X T Ln (x) (x) = n -1 2 S(L n , Ψ)(x).

Appendix

3.1. CLT and ASIP for f k (n k .).

In this appendix, we present an extension of a result of Berkes and Philipp [START_REF] Berkes | An a.e. invariance principle for lacunary series f (n k x)[END_REF] which was used in the proof of Theorem 2.1.

Let (n k ) be an increasing lacunary sequence of positive integers and ρ

:= inf k n k+1 n k > 1.
For a fixed regular function f , the problem of the CLT for the sums N j=1 f (n j .) has been studied by several authors (Zygmund, Salem, Kac, Fortet, then Gaposhkin, Berkes, Berkes and Philipp, ...). Two questions arise: non nullity of the variance, validity of a CLT when the variance is non zero. The answer to the second question depends on arithmetic conditions on the sequence (n k ), cf. Gaposhkin and Subsection 3.2. For the first question, in general it is difficult to check the non nullity of the asymptotic variance

lim N 1 N N k=1 f (n k .) 2
2 , if it exists, except for special sequences or when Corollary 3.5 below can be used.

For f ∈ L 2 (T) with Fourier coefficients (c j ), we put R(f, t) = ( |j|≥t |c j | 2 ) 1 2 , for t > 0. If f is in C, we have: R(f, t) = ( |j|≥t | γ j j | 2 ) 1 2 ≤ 2K(f ) t -1
2 . We introduce now several hypotheses.

1. (H1) (regularity) We say that a sequence F = (f k ) k≥1 of real functions in L 2 (T 1 ) with zero mean satisfies (H1) if the following conditions hold: 1) (uniform bound for uniform and L 2 -norms)

M (F) := sup k f k ∞ < +∞, Φ = Φ(F) := sup k f k 2 < +∞; (41)
2) (tail of the Fourier series) there is a finite constant C R = C R (F) and a constant γ = γ(F) > 0 such that the tail of the Fourier series of f k satisfies uniformly in k:

R(f k , t) ≤ R(t), ∀k, with R(t) ≤ C R t -γ . (42) 2. (H2) (lacunarity of a sequence (n k )) There is ρ > 1 such that n k+1 /n k ≥ ρ > 1, ∀k ≥ 1. (43)
3. (H3) (arithmetic condition) For all integers m ≥ 1, the following holds for {n k }: Condition (D m ): there is a constant C such that the equation tn k ± sn = ν, for k > and t, s = 1, ..., m, has at most C solutions for any integer ν > 0.

The CLT for {f (n k .)} under (H2) and (H3) follows from Gaposhkin [START_REF] Gaposhkin | On the central limit theorem for some weakly dependent sequences (in Russian)[END_REF] for a given sufficiently smooth function f . Results of Berkes [START_REF] Berkes | On the asymptotic behaviour of f (n k x): I. Main theorems, II. Applications[END_REF] and Berkes and Philipp [START_REF] Berkes | An a.e. invariance principle for lacunary series f (n k x)[END_REF] give an approximation by a Wiener process: Theorem 3.1. [START_REF] Berkes | An a.e. invariance principle for lacunary series f (n k x)[END_REF] Let f be a 1-periodic Lipschitz centered function. Assume that (n k ) satisfies (H2) and (H3). Assume moreover the condition

∃ C > 0, N 0 ≥ 1 such that 1 0 [ M +N k=M +1 f (n k x)] 2 dx ≥ CN, ∀M ≥ 0, ∀N ≥ N 0 . (44) Let S N = N k=1 f (n k x).
Then the sequence (S N , N ≥ 1) can be redefined on a new probability space (without changing its distribution) together with a Wiener process ζ(t) such that

S N = ζ(τ N ) + O(N 1/2-λ ) a.e.
where λ > 0 is an absolute constant and (τ N ) is an increasing sequence of random variables such that τ

N / S N We have n +1 n ≥ ρ > 1 and by Lemma 3.3, for 1 ≤ k ≤ N -1: |W k | ≤ C R (F) Φ(F) N ρ -kγ . It follows: |W 1 + ... + W N -1 | ≤ C R (F) Φ(F) N ρ -γ 1 -ρ -γ . Corollary 3.5. There is ρ 0 > 1 and c > 0 depending on Φ(F), C R (F), γ(F) such that, for ρ ≥ ρ 0 , 1 0 [ N k=1 f k (n k x)] 2 dx ≥ c N k=1 f k 2 2 , ∀N ≥ N 0 . (48) 
A similar proof shows the following lemma.

Lemma 3.6. If F = (f k ) satisfies (H1) and (m k ) is a superlacunary sequence of positive integers (i.e., n k+1 /n k → ∞), then we have

1 0 ( N k=1 f k (n k x)) 2 dx = N k=1 f k 2 2 + o(N ).

3.2.

A remark on a result of Gaposhkin.

Let (n k ) be a lacunary sequence of integers and f a 1-periodic real function with some regularity. If the quotients n k+1 /n k are integers, the central limit theorem (CLT) holds for the sums n-1 k=0 f (n k x). But Erdös and Fortet gave the example of n k = 2 k -1 for which the function f 0 (x) := cos(2πx) + cos(4πx) does not satisfy the CLT.

Let us recall this counter-example (cf. [START_REF] Aistleitner | On the central limit theorem for f (n k x)[END_REF], [START_REF] Conze | Limit law for some modified ergodic sums[END_REF]). If f 0 is as above and

Z n (x) = 1 √ n n k=1 f 0 (2 k x -x), then µ{x : 1 √ n Z n (x) ≤ t} → 1 √ 2π 1 0 ( t/ cos y -∞ e -t 2 /2 dt) dy. ( 49 
)
For the proof, observe that the sum n

1 [cos(2π(2 k -1)x) + cos(4π(2 k -1)x)] reads cos(2πx) + cos(2π(2 n+1 -2)x) + n 2 [cos(2π(2 k -1)x) + cos(2π(2 k -2)x)] = cos(2πx) + cos(2π(2 n+1 -2)x) + 2 cos(πx) n 2 cos(2π(2 k -3/2)x).
The convergence then follows from the CLT in Salem and Zygmund [START_REF] Salem | On lacunary trigonometric series[END_REF] and from the following lemma (see for example [START_REF] Conze | Limit law for some modified ergodic sums[END_REF]).

Lemma 3.7. Let (Y n ) be a sequence of random variables defined on ([0, 1], P) and L a distribution on R with characteristic function Φ. The following conditions are equivalent: a) for every probability density ψ, the sequence (Y n ) converges in distribution to L under the measure ψP; b) for every interval I, 1 µ(I) µ{x ∈ I : Y n (x) ≤ t) → L(] -∞, t]), ∀t ∈ R; c) for every Riemann integrable function ϕ, the sequence (ϕY n ) converges in distribution to a limit with characteristic function 1 0 Φ(ϕ(y) t) dy. In particular, if L = N (0, 1), the sequence (ϕY n ) converges in distribution to a limit with characteristic function 1 0 e -1 2 ϕ 2 (y) t 2 dy, a mixture of Gaussian distributions.

Description of a result of Gaposhkin

Gaposhkin has introduced an arithmetical condition on (n k ) so that the CLT should be true. Actually, he has given an answer to a slightly different problem. For simplicity, we consider only trigonometric polynomials.

Let (λ M,k , 1 ≤ k ≤ M, M ≥ 1) be an array of non negative numbers. We say that Property (P ) holds if for every M , M k=1 λ 2 M,k = 1 and lim M max k λ M,k = 0.

Theorem 3.8. (Gaposhkin) Let (n k ) be a lacunary sequence satisfying the arithmetic condition (H3) (i.e., (D m ) for every m). Then the following strong version of the CLT holds for every trigonometric polynomial f : if (λ M,k ) is an array with property (P ), for every measurable subset E of [0, 1] with positive measure, we have, with λ (f )

2 := E (( ∞ k=1 λ M,k f (n k •)) 2 ), 1 
P(E) P(x ∈ E : λ M (f ) -1 k λ M,k f (n k x) < y) -→ M →∞ 1 √ 2π y -∞
e -t 2 /2 dy. (50) A possible choice for (λ M,k ) is as in the "classical" version of the CLT:

λ M,k = 1 √ M if 1 ≤ k ≤ M, = 0 otherwise. (51) 
Gaposhkin also has shown that if (D m ) is not satisfied for every m ≥ 1, one can find a trigonometric polynomial f for which the above strong version of the result is not true anymore. But this does not mean that classical CLT is not true, as we will see. ) -1 2 N j=1 cos(2π(2 j a -1)x) + cos(2π(2 j a +j+1 -2)x) converges to 0. One easily shows that ∞ k=1 λ M,k f (n k x) has the same limit when M → ∞. We now consider another choice for λ M,k , the classical choice λ M,k = 1/ √ M if k = 1, . . . , M , 0 otherwise. Let us begin by a simple remark. Let f be a trigonometric polynomial and (n k ) and (q k ) two sequences such that #{k ∈ {1, . . . , n} : n k = q k } = o( √ n). Suppose that n -1/2 n k=1 f (n k •) converges in law toward a random variable Y . Then, n -1/2 n k=1 f (q k •) also converges toward Y , as n k=1 f (n k •) -n k=1 f (q k •) = o( √ n). Let us take, for (n k ) the sequence (2 k ) k≥1 , and for (q k ) : From this, we deduce that for a ≥ 5 and f a trigonometric polynomial not of the form ψ(•) -ψ(2•), both sums n -1/2 n k=1 f (n k •) and n -1/2 n k=1 f (q k •) converge to the same non-degenerate Gaussian law (recall that CLT is satisfied for the sequence (2 k ) k≥1 ).

q k = 2 k if k / ∈ I a , q k = 2 k -1 if k ∈ I a . Then
In other words the necessary and sufficient condition of Gaposhkin is only necessary for the strong result, i.e., Theorem 3.8. The classical version can be true for examples without this condition holding. This is not a surprise: the above remark shows that a sufficiently rare modification of the sequence (n k ) can not be seen anymore at infinity after normalisation by √ n. The arithmetic condition (H3) is much more rigid.

  the a × b rectangle centered at (m, n) whose sides are parallel to the coordinate axes and let R(a, b) = ABCD be the rectangle of same size in the unit torus. The associated billiard flow (T t ) t≥0 can be viewed as the geodesic flow on the polygonal surface P (a, b) = R 2 \ (m,n)∈Z 2 R (m,n) (a, b). It acts on the set U P (a, b) of unit tangent vectors and preserves the Liouville measure µ on it.
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 12 Figure 1. An orbit of the rectangular billiard, angle π/4

For.

  an integer a > 1, let us consider the following subset of N * :I a = ∪ n≥1 {k ∈ N / k ∈ [n a , n a + n]}. Let (n k ) be the sequence n k = 2 k if k / ∈ I a , n k = 2 k -1 if k ∈ I a .This sequence does not satisfy the condition (H3). It is easy to find a family λ M,k for which the conclusion of the preceding theorem is not true. It suffices to consider the family λM,k = 0 if k / ∈ I a , λ M,k = 1 √ M ifk is one of the first M elements of I a . Following Kac, Fortet, for this choice of λ M,k and for f 0 , the central limit theorem is not satisfied (this is what Gaposhkin did to show that his condition is necessary). For M = N (N +1) 2, λ M,k is either 0 or ( N ((n k x) reads after computation:N j=1 cos(2π(2 j a -1)x) + N j=1 cos(2π(2 j a +j+1 -2)x) + cos(πx) N j=1 ( j a +j k=j a +1 cos(2π(2 k -3 2 )x)). The first sums have N terms, the third one N (N +1) 2 By the CLT in[START_REF] Salem | On lacunary trigonometric series[END_REF], ( N (a +j k=j a +1 cos(2π(2 k -3/2)x)] converges toward a gaussian variable. Lemma 3.7 then implies that( k=j a +1 cos(2π(2 k -3/2)x)]converges toward a distribution similar to the one appearing in (49). The same is true for N a +N k=1 λN(N+1) 2 ,k f (n k x) as ( N (N +1) 2

#

  {k ∈ {1, . . . , n} :n k = q k } = # ({1, . . . , n} ∩ I a ) = O n 2/a .

  Then by Lemma 2.2 below, we have: n k=1 g k = O(n 1-β 2 +ε ) a.e. Since β > 1, this bound is comparable to the term of approximation in Theorem 3.2 (appendix), which we apply now with f k = ϕ t k (. + L k-1 α). Let us check the hypotheses of this theorem. Condition (27) implies Condition (45) of Theorem 3.2 for f k and n k = q t k (see in the appendix Lemma 3.6 which implies ϕ Ln

	2
	2

→ 1 a.s.

We use the following slightly extended version in which the fixed Lipschitz function f of Theorem 3.1 is replaced by a family (f k ) satisfying a uniform boundedness condition and a uniform tail condition. Moreover Condition (44) of Theorem 3.1 can be replaced by a weaker one.

Theorem 3.2. Let (f k ) satisfy (H1) and let (n k ) be a sequence of integers satisfying (H2) and (H3). Let S N (x) := N k=1 f k (n k x). Suppose that the following condition holds:

Then the process (S N ) N ≥1 can be redefined on a probability space (without changing its distribution) together with a Wiener process (ζ(t)) t≥0 such that for an absolute constant λ > 0 and an increasing sequence of random variables (τ N ) satisfying τ N / S N 2 2 → 1 a.e. we have:

By Corollary 3.5 below, for ρ big enough, (45) reduces to lim inf N

For the sake of conciseness, we do not reproduce the proof of this extended version which is an adaptation of the proofs in [START_REF] Berkes | On the asymptotic behaviour of f (n k x): I. Main theorems, II. Applications[END_REF] and [START_REF] Berkes | An a.e. invariance principle for lacunary series f (n k x)[END_REF].

Quasi-orthogonality and variance

Lemma 3.3. Let f, g be in L 2 0 (T 1 ), λ 2 ≥ λ 1 two positive integers. Then

Proof. (47) follows from Parseval relation and

) is a sequence of integers satisfying (43) , then we have

, where the constant γ is the one given in (H1), ρ is the constant of lacunarity in (43) and C depends on the constant C R (F) defined in (42). In particular