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Homogeneity and change-point detection tests for
multivariate data using rank statistics

Titre: Tests d’homogénéité et de détection de ruptures pour des données multivariées en utilisant des
statistiques de rang

Alexandre Lung-Yut-Fong1 , Céline Lévy-Leduc2 and Olivier Cappé1

Abstract: Detecting and locating changes in highly multivariate data is a major concern in several current statistical
applications. In this context, the first contribution of the paper is a novel non-parametric two-sample homogeneity test
for multivariate data based on the well-known Wilcoxon rank statistic. The proposed two-sample homogeneity test
statistic can be extended to deal with ordinal or censored data as well as to test for the homogeneity of more than two
samples. We also provide a detailed analysis of the power of the proposed test statistic (in the two sample case) against
asymptotic local shift alternatives. The second contribution of the paper concerns the use of the proposed test statistic
to perform retrospective change-point detection. It is first shown that the approach is computationally feasible even
when looking for a large number of change-points thanks to the use of dynamic programming. Computable asymptotic
p-values for the test are available in the case where a single potential change-point is to be detected. The proposed
approach is particularly recommendable in situations where the correlations between the coordinates of the data are
moderate, the marginal distributions are not well modelled by usual parametric assumptions (e.g., in the presence of
outliers) and when faced with highly variable change patterns, for instance, if the potential changes only affect subsets
of the coordinates of the data.

Résumé : La détection et la localisation de changements dans des données de très grande dimension est un problème
majeur dans plusieurs domaines d’applications. Dans ce contexte, la première contribution de notre papier est un
nouveau test d’homogénéité non-paramétrique à deux échantillons pour des données multivariées fondé sur la statistique
de rang de Wilcoxon. Le test d’homogénéité à deux échantillons que nous proposons peut être étendu au cas de données
censurées et pour proposer un test d’homogénéité pour plus de deux échantillons. Nous proposons également une
analyse détaillée du calcul de la puissance de notre statistique de test vis à vis de certaines alternatives locales. La
seconde contribution de notre papier concerne l’utilisation de notre statistique de test pour faire de la détection
rétrospective de ruptures. Nous montrons que notre méthode peut-être implémentée de façon efficace d’un point de
vue algorithmique grâce à la programmation dynamique et nous proposons une méthode pour calculer les p-valeurs.
Nous recommandons particulièrement notre approche dans les situations suivantes : lorsque les corrélations entre les
coordonnées des observations sont modérées, lorsque les lois marginales ne peuvent pas être modélisées par les lois
paramétriques usuelles ou lorsque les changements n’affectent qu’une partie des coordonnées des observations.
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134 Lung-Yut-Fong, Lévy-Leduc and Cappé

1. Introduction

Detection and location of distributional changes in data is a major statistical challenge that arises
in many different contexts. This very general concern can be particularised to more specific tasks
such as segmentation, novelty detection or significance tests. In this contribution, we focus on
two types of problems: homogeneity testing, where the statistician is presented with pre-specified
groupings of the data that are believed to be comparable, and change-point detection, in which a
series –most often, a time series– is to be segmented into homogeneous contiguous regions. These
two tasks are obviously related but the latter is more challenging as the appropriate groupings of the
data are unknown, although one does have the strong prior assumption that homogeneous regions
of the data are contiguous. Homogeneity testing and/or change-point detection are instrumental
in applications that range from the surveillance of industrial processes Basseville and Nikiforov
(1993), to computer security Tartakovsky et al. (2006); Lévy-Leduc and Roueff (2009), processing
of audiovisual data Désobry et al. (2005), financial and econometric modelling Bai and Perron
(2003); Talih and Hengartner (2005), health monitoring Brodsky and Darkhovsky (2000), or
bioinformatics Picard et al. (2005); Vert and Bleakley (2010).

In light of the important available literature on change-point detection it is important to make
two additional distinctions. First, in many cases the data to be analysed can be assumed to present
some form of global reproducibility and to include several instances of actual changes. In this case,
it seems reasonable to fit a model to the data to profit from the available statistical information
regarding various relevant aspects of the problem such as the distribution of the data in the absence
of change, the typical change-point patterns, etc. In such situations, very convincing results have
been demonstrated using Bayesian approaches due to the existence of efficient computational
methods to explore the posterior distribution, even when using very flexible models Barry and
Hartigan (1992); Fearnhead (2006). In contrast, in this contribution, we consider scenarios in
which the data are either scarce or very variable or where potential changes occur somewhat
infrequently. In this alternative context, the goal is to develop approaches that make as few
assumptions as possible regarding the underlying distribution of the data or the nature of the
changes and that do not rely on the observation of actual change patterns. The second important
distinction is that many works in the time series literature consider the online or sequential
change-point detection framework Siegmund (1985); Poor and Hadjiliadis (2009); Tartakovsky
et al. (2014). in which the data have to be processed on-the-fly or with minimal delay using for
instance the CUSUM algorithm initially proposed by Page (1954). In the following, we consider
the opposite situation, sometimes referred to as retrospective analysis, in which all the data to be
tested have been recorded and are available for analysis.

In this context, the first contribution of this work consists in novel homogeneity tests for
dealing with possibly high-dimensional multivariate observations. We focus on situations where
the potential changes are believed to have a strong impact on the mean but where the distribution
of the data is otherwise mostly unknown. For scalar observations, there are well-known robust
solutions for testing homogeneity in this context such as the Wilcoxon/Mann–Whitney or Kruskal-
Wallis procedures Lehmann (1975) to be further discussed below. For multivariate observations,
the situation is far more challenging as one would like to achieve robustness with respect both
to the form of the marginal distributions and to the existence of correlations (or other form of
dependence) between coordinates. The latter aspect has been addressed in a series of works by
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Homogeneity and change-point detection tests for multivariate data using rank statistics 135

Möttönen et al. (1997); Hettmansperger et al. (1998); Oja (1999); Topchii et al. (2003) who
studied multivariate extensions of sign and rank tests. These tests are affine invariant in the sense
that they behave similarly to Hotelling’s T 2 test (see Section 2.3 below) —which is optimal for
Gaussian distributions– for general classes of multivariate distributions having ellipsoidal contours
(e.g., for multivariate t distributions). For a very recent review of nonparametric multivariate
rank tests, we refer the reader to Jurečková and Kalina (2012). Another promising approach
investigated by several recent works consists in using kernel-based methods Désobry et al. (2005);
Gretton et al. (2006); Harchaoui et al. (2008). In our experience however, these methods that
can achieve impressive results for moderately multidimensional data or in specific situations
(e.g., if the data lie on a low-dimensional manifold) lack robustness when moving to larger
dimensions. In particular, as illustrated in Section 4.1 below, kernel-based methods are not robust
with respect to the presence of contaminating noise and to the fact that the changes to be detected
may only affect a subset of the components of the high-dimensional data. The latter scenario is
of very important practical significance in applications where the data to be analysed consist in
exhaustive recordings of complex situations that are only partly affected by possible changes (see
Lévy-Leduc and Roueff (2009) for an example regarding the detection of computer attacks). The
method proposed in this work is based on a combination of marginal rank statistics, following the
pioneering idea of Wei and Lachin (1984). Compared to the latter, our contribution is twofold:
first, we show how to correct the bias that appears in the test statistic proposed by Wei and
Lachin (1984) whenever the two samples are not balanced in size; we then show how to extend
this idea to the case of more than two groups. The numerical simulation presented in Section 4
confirms that the proposed test statistic is significantly more robust than kernel-based methods
or approaches based on least-squares or Hotelling’s T 2 statistics. These empirical observations
are also supported by the results detailed in Section 2.3 regarding the power of the proposed test
statistic (in the two sample case) with respect to asymptotic local shift alternatives. In particular,
although the proposed test is not strictly affine invariant 1 it compares favourably to Hotelling’s
T 2 statistic for important classes of distributions under the assumption that the condition number
of the correlation matrix of the data is not too large.

We then consider the use of the proposed approach for change-point detection by optimising the
test statistic over the –now considered unknown– positions of the segment boundaries. Although
simple this idea raises two type of difficulties. The first one is computational as the resulting
optimisation task is combinatorial and cannot be solved by brute force enumeration when there is
more than one change-point (that is, two segments). In the literature this issue has been previously
tackled either using dynamic programming Bai and Perron (2003); Harchaoui and Cappé (2007)
or more recently using Lasso-type penalties Harchaoui and Lévy-Leduc (2010); Vert and Bleakley
(2010). We show that the generic dynamic programming strategy is applicable to the proposed
test statistic making it practically suitable for retrospective detection of multiple change-points.
The second difficulty is statistical as the optimisation with respect to the change-point locations
modifies the distribution of the test statistics. Thus, the design of quantitative criterions for
assessing the significance of the test is a challenging problem in this context. This issue has been
considered before, mostly in the case of a single change-point, for various test statistics Csörgő
and Horváth (1997); Chen and Gupta (2000). In many cases the asymptotic distribution of the test

1 It is highly unlikely that there exist statistics which are both invariant under monotonic transformations of the
marginals –as the proposed method is– and affine invariant.
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136 Lung-Yut-Fong, Lévy-Leduc and Cappé

remains hard to characterise and must be calibrated using Monte Carlo simulations. We show that
for a simple modification of the proposed rank-based statistic, one can indeed obtain computable
asymptotic p-values that can be used to assess the significance of the test when looking for a
single change-point.

Contributions of the paper. Section 2 is devoted to homogeneity testing, starting first with the
two-sample case and then considering the more general situation where several predefined groups
are available. The end of Section 2 is dedicated to the study of the asymptotic behaviour of the
two-sample homogeneity test under local shift alternatives. In Section 3, the proposed test statistic
is modified to provide a method for detecting and locating change-points, with the computation of
p-values (in the single change-point case) being discussed in Section 3.2. The results of numerical
experiments carried out both on simulated and on real data are then reported in Section 4.

2. Testing for Homogeneity

We first tackle in this Section the so-called two-sample problem, that is testing the homogeneity
between two partitions of data. The proposed test statistic is then extended in Section 2.2 to deal
with more than two groups of data.

2.1. Two-sample homogeneity test

Consider n K-dimensional multivariate observations (X1, . . . ,Xn) and denote by Xi,k the kth
coordinate of Xi, such that Xi = (Xi,1, . . . ,Xi,K)

′, where the prime is used to denote transposition.
We consider the classical statistic test framework with the null (or baseline) hypothesis, (H0):
“(X1, . . . ,Xn) are identically distributed random vectors”, and the alternative hypothesis, (H1):
“(X1, . . . ,Xn1) are distributed under P1 and (Xn1+1, . . . ,Xn) under P2, with P1 6=P2”. In this setting,
the potential change point n1 is assumed to be given but the data distributions are fully unspecified
both under (H0) and (H1). The proposed test statistic extends the well-known Wilcoxon/Mann–
Whitney rank-based criterion to multivariate data by considering the asymptotic joint behaviour
of the rank statistics that can be computed from each coordinate of the observations. For k in
{1, . . . ,K}, define the vector-valued statistic Un(n1) = (Un,1(n1), . . . ,Un,K(n1))

′ by

Un,k(n1) =
1√

nn1(n−n1)

n1

∑
i=1

n

∑
j=n1+1

{
1(Xi,k ≤ X j,k)−1(X j,k ≤ Xi,k)

}
. (1)

Although the form of the statistic given above is more appropriate for mathematical analysis as
well as for discussing possible generalisations of the approach (see Section 2.1.2 below), it is
important to realise that Un,k(n1) is related to the classical Wilcoxon/Mann–Whitney statistic
computed from the series X1,k, . . . ,Xn,k. Assuming that there are no ties in the data, let R(k)

j

denote the rank of X j,k among (X1,k, . . . ,Xn,k), that is, R(k)
j = ∑

n
i=1 1(Xi,k ≤ X j,k). Noticing that

∑
n
j=1 R(k)

j = n(n+1)/2, it is then easily verified that Un,k(n1) can be equivalently defined as

Un,k(n1) =
2√

nn1(n−n1)

n1

∑
i=1

(
n+1

2
−R(k)

i

)
=

2√
nn1(n−n1)

n

∑
j=n1+1

(
R(k)

j −
n+1

2

)
. (2)
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Homogeneity and change-point detection tests for multivariate data using rank statistics 137

This alternative form of Un,k(n1) is more appropriate for computational purposes as discussed in
Section 2.1.1 below. For convenience, we denote by F̂n,k(t) = n−1

∑
n
j=1 1(X j,k ≤ t) the empirical

cumulative distribution function (c.d.f. in short) of the kth coordinate, such that F̂n,k(Xi,k) = R(k)
i /n.

Let Σ̂n denote the K-dimensional empirical covariance matrix defined by

Σ̂n,kk′ =
4
n

n

∑
i=1
{F̂n,k(Xi,k)−1/2}{F̂n,k′(Xi,k′)−1/2}, 1≤ k,k′ ≤ K . (3)

The test statistic that we propose for assessing the presence of a potential change in n1 is defined
as

Sn(n1) = Un(n1)
′
Σ̂
−1
n Un(n1) . (4)

Theorem 1 below (proved in Appendix A) gives the limiting behaviour of the test statistic Sn(n1)
under the null hypothesis.

Theorem 1. Let X1, . . . ,Xn1 ,Xn1+1, . . . ,Xn be RK-valued i.i.d. random vectors, such that for all
k in {1, . . . ,K}, the cumulative distribution function Fk of X1,k is a continuous function. Assume
that n1/n→ t1 in (0,1) as n tends to infinity, and that the K×K covariance matrix Σ defined by

Σkk′ = 4Cov
(
Fk(X1,k);Fk′(X1,k′)

)
, 1≤ k,k′ ≤ K , (5)

is positive definite. Then, the test statistic Sn(n1) defined in (4) converges in distribution to a χ2

distribution with K degrees of freedom.

Theorem 1 shows that the proposed test is well normalised with respect to the dimension K, the
length n of the data and the postulated change-point location n1. It is asymptotically distribution-
free in the sense that its limiting behaviour under (H0) does not depend on the distribution of the
data. By construction, it is also invariant under any monotonic transformation of the coordinates
of Xi.

The matrix Σ, which corresponds to the asymptotic covariance matrix of the vector Un(n1) is
equal, up to a multiplicative constant, to the Spearman correlation matrix of Xi Lehmann (1975);
van der Vaart (1998). This is a well-known robust measure of dependence that appears in particular
when using copula models. A sufficient condition for ensuring the invertibility of Σ is thus that no
linear combination of the Fk(X1,k)’s should be almost surely equal to a constant, which is arguably
a very weak condition. It is easily checked that the diagonal elements of Σ are all equal to 1/3
and that Σk` = Σ`k = 0 whenever the k-th and `-th coordinates of Xi are independent. It appears,
in practice, that the diagonal elements of Σ̂n converge very rapidly to 1/3 value and we did not
observe any significant improvement when trying to take into account this fact when estimating Σ.

Theorem 1 defines the asymptotic false alarm rate associated with the test statistic Sn(n1). The
test is consistent (i.e., its power tends to 1) for all alternatives such that the condition ensuring the
consistency of the standard Wilcoxon/Mann–Whitney two-sample test holds true for at least one
coordinate. More formally, the proposed test is consistent when there exists k in {1, . . . ,K} such
that P(Xk,1 ≤ Xk,n) 6= 1/2. In the scalar case, this condition is known to hold for general classes
of changes such as shift (change-in-the-mean) models or scale (multiplicative) change for positive
variables. We defer to Section 2.3 a more detailed investigation of the asymptotic power of the
test in the case of multivariate shift alternatives.
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138 Lung-Yut-Fong, Lévy-Leduc and Cappé

As Theorem 1 is an asymptotic result, we have carried out Monte Carlo simulations to asses the
accuracy of the approximation for finite sample sizes. Using data with independent coordinates 2

we found that the distribution of Sn(n1) defined in (4) can be considered close enough to the
limiting distribution, as measured by the Kolmogorov-Smirnov test at level 1%, when n is at
least 8 times larger than K. For instance, for K = 20, a value of n = 210 was sufficient; K = 100
required n = 840 samples, etc. The empirical density of the test statistics is illustrated in the upper
part of Figure 1 when K = 10 and n = 200.

0 10 20 30 0 10 20 30 0 10 20 30

0 10 20 30 0 10 20 30 0 10 20 30

n1/n = 1/8 n1/n = 1/2 n1/n = 7/8

FIGURE 1. Histograms of the statistics Sn(n1) (top) and Wei and Lachin’s (bottom) compared to the χ2
K p.d.f., as a

function of the ratio n1/n. Data corresponds to n = 200 samples of a ten-dimensional standard Gaussian distribution.

The pioneering work of Wei and Lachin (1984) describes a result analogous to that of Theorem 1
in the case of possibly upper-censored data. However, the proof technique used by Wei and Lachin
(1984) relies on a different interpretation of Σ which is used to derive a weighting matrix that is
not equal to Σ̂n as defined in (3). In contrast, our proof (see Appendix A) is based on a standard
argument for U-statistics (the Hoeffding decomposition) that directly returns an expression of Σ

in terms of covariances, for which usual estimators, such as Σ̂n, may be used. The test statistics
of Wei and Lachin (1984) thus differs from Sn(n1) and turns out to be biased in cases where
n1 6= n/2, i.e., when the change does not occur in the centre of the observation frame, as shown
by the bottom part of Figure 1. This bias becomes problematic when the potential change location
n1 is unknown because the values of Sn(n1) for different values of n1 cannot be validly compared.

2.1.1. Implementation Issues

As noted above, the vector (Un,k(n1))1≤k≤K should be computed from the marginal rank statistics
in the form given in (2). Σ̂n also is a simple function of those marginal ranks. Thus, (Un,k(n1))1≤k≤K
can be computed in O(Kn log(n)) operations using a sort for computing the ranks, as the average
numerical complexity of usual sorting algorithms is of the order of n log(n) operations. The

2 Note that by construction, the test statistic is then fully invariant with respect to the precise distribution used for the
Monte Carlo simulations.
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Homogeneity and change-point detection tests for multivariate data using rank statistics 139

computation of Σ̂n then requires O(K2n) operations and its inversion O(K3) operations. Note that
if the test statistic needs to be recomputed at a neighbouring index, say n1 +1, neither the ranks
nor Σ̂n and its inverse need to be recomputed. Hence the number of additional operations required
to compute Ŝn(n1 +1) is indeed very limited.

In some situations, it may happen that the empirical estimate Σ̂n becomes ill-conditioned
rendering its inversion numerically unstable. Wei and Lachin (1984) suggested to circumvent the
problem by adding some small positive value to the diagonal elements of Σ̂n. It is important to
realise however that a particular case where Σ itself can be ill-conditioned is when coordinates
of X1 are strongly dependent. In the limiting case where coordinates of X1, say two of them for
illustration, are duplicated, Σ becomes a matrix of rank K−1. In such a case, the correct statistic
is obtained by simply discarding one of the coordinates that are duplicated. Hence, to regularise
Σ̂n in such cases, we suggest inverting it using its Moore-Penrose pseudo inverse: if Σ̂n =USU ′

denotes the singular value decomposition of Σ̂n, with S = diag(s1, . . . ,sK) being the diagonal
matrix of eigenvalues of Σ, then the pseudo inverse Σ†

n is defined as U ′ diag(s†
1, . . . ,s

†
K)U where

s†
i = s−1

i 1(si > ε) and ε is a fixed positive threshold. Instead of relying on the asymptotic result
of Theorem 1, it is suggested to compare Sn(n1) to the quantiles of the χ2

K′ distribution, where K′

is the number of non-null values among the s†
i ’s. As already mentioned however, some terms of

Σ̂n appear to converge very rapidly and the matrix is only very rarely ill-conditioned, even when
n is only slightly larger than K. On the other hand, the regularised variant described above was
found to be effective for dealing with signals whose coordinates can be extremely dependent, e.g.,
if there is a quasi-deterministic relationship between two coordinates.

2.1.2. Discrete, missing or censored data

Theorem 1 requires the continuity of the c.d.f. Fk of each coordinate; hence it is not directly
applicable, for instance, to discrete variables. In such cases however, Theorem 1 is still valid upon
redefining Σ as

Σkk′ = E
[
{Fk(X−1,k)+Fk(X1,k)−1}{Fk′(X−1,k′)+Fk′(X1,k′)−1}

]
, (6)

where Fk(x−) denotes the left-limit of the c.d.f. in x. In this case, (2) has to be replaced by

Un,k(n1) =
2√

nn1(n−n1)

n

∑
j=n1+1

{
R(k)

j −
n+∑

n
i=1 1(Xi,k = X j,k)

2

}
.

Another useful extension concerns the case of censored or missing data that can be dealt
with in great generality by introducing lower X i,k and upper X i,k censoring values such that
X i,k ≤ Xi,k ≤ X i,k, where a strict inequality indicates censoring (for missing values, simply set
X i,k =−∞ and X i,k =+∞). In this case, we define a modified statistics from the censoring bounds
X i,k and X i,k by

Un,k(n1) =
1√

nn1(n−n1)

n1

∑
i=1

n

∑
j=n1+1

{
1(X i,k ≤ X j,k)−1(X j,k ≤ X i,k)

}
. (7)
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140 Lung-Yut-Fong, Lévy-Leduc and Cappé

It can be shown, adapting the arguments of Lung-Yut-Fong et al. (2012) who studied the use of
the scalar statistic (7) for change-point detection, that Theorem 1 then holds with

Σkk′ = E
[
{Fk(X1,k)+Fk(X

−
1,k)−1}{Fk′(X1,k′)+Fk′(X

−
1,k′)−1}

]
, (8)

where Fk and Fk denote the c.d.f.’s of X1,k and X1,k, respectively.

2.2. Testing homogeneity within several groups of data

In this section, the procedure presented so far is extended to deal with more than two groups of
multivariate data. The resulting test statistic is again based on a proper combination of marginal
statistics involved in the Kruskal-Wallis procedure that generalises the classical Wilcoxon-rank
test when there are more than two groups of data.

Consider the null hypothesis that L given groups, X1, . . . ,Xn1 ; Xn1+1, . . . ,Xn2 ; . . . ; XnL−1+1, . . . ,XnL ,
share the same distribution, where we shall use the convention that n0 = 0 and nL = n. For j in
{1, . . . ,n} and k in {1, . . . ,K}, denote as previously by R(k)

j the rank of X j,k among (X1,k, . . . ,Xn,k)

that is, R(k)
j = ∑

n
i=1 1{Xi,`≤X j,`}. For ` in {0, . . . ,L−1}, define the average rank in group ` for the

kth coordinate by R̄(k)
` = (n`+1−n`)−1

∑
n`+1
j=n`+1 R(k)

j . Consider the following test statistic:

T (n1, . . . ,nL−1) =
4
n2

L−1

∑
`=0

(n`+1−n`)R̄′` Σ̂
−1
n R̄` , (9)

where the vector R̄` is defined as R̄` = (R̄(1)
` − (n+1)/2, . . . , R̄(K)

` − (n+1)/2)′, and Σ̂n is again
the matrix defined in (3). Theorem 2, proved in Appendix B, describes the limiting behaviour of
the test statistic T (n1, . . . ,nL−1) under the null hypothesis.

Theorem 2. Assume that (Xi)1≤i≤n are RK-valued i.i.d. random vectors such that, for all k, the
c.d.f. Fk of X1,k is a continuous function. Assume also that for `= 0, . . . ,L−1, there exists t`+1 in
(0,1) such that (n`+1−n`)/n→ t`+1, as n tends to infinity. Then, T (n1, . . . ,nL−1) defined in (9)
satisfies

T (n1, . . . ,nL−1)
d−→ χ

2 ((L−1)K) , as n→ ∞ , (10)

where d denotes convergence in distribution and χ2((L−1)K) is the chi-square distribution with
(L−1)K degrees of freedom.

Observe that (9) extends the classical Kruskal-Wallis test used for univariate observations to
the multivariate setting. Indeed, when K = 1, (9) is equivalent to

T (n1, . . . ,nL−1) =
12
n2

L−1

∑
`=0

(n`+1−n`)
(

R̄(1)
` − (n+1)/2

)2
, (11)

where we have replaced Σ̂n,11 by Σ11 = 4Var(F1(X1,1)) = 4Var(U) = 1/3 (U denoting a uniform
random variable on [0,1]). In the case where there is only one change-point, i.e., when L = 2, (9)
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reduces to the test statistic proposed in Section 2.1. Indeed, using (2), T (n1) can be rewritten as
follows

T (n1) =
nn1(n−n1)

n2n1
Un(n1)

′
Σ̂nUn(n1)+

nn1(n−n1)

n2(n−n1)
Un(n1)

′
Σ̂nUn(n1)

= Un(n1)
′
Σ̂nUn(n1) = Sn(n1) ,

where Sn(n1) is defined in (4).

2.3. Power of the homogeneity test in the two sample case

In this section, we focus on the two sample homogeneity test statistic Sn(n1) defined in (4) using
local alternatives consisting of multivariate shifts to investigate the statistical power of the proposed
approach. We consider the following alternative hypotheses (H1,n): “(X1, . . . ,Xn1) are i.i.d with
common multivariate p.d.f. f (x) and (Xn1+1, . . . ,Xn) are i.i.d with density f (x−δ/

√
n)”, where

f is symmetric, positive, and, continuously differentiable and δ denotes an arbitrary shift vector
in Rk. Our results can thus be compared directly with those obtained by Hettmansperger et al.
(1998), Oja (1999) and Topchii et al. (2003) for affine invariant multivariate generalisations of
rank tests.

We first recall the classical result pertaining to the Hotelling-T 2 test

Hn(n1) = (n1(n−n1)/n)(x̄n1− x̄n−n1)
′Ĉ−1

n (x̄n1− x̄n−n1) ,

where x̄n1 = (∑
n1
i=1 Xi)/n1, x̄n−n1 = (∑n

i=n1+1 Xi)/(n− n1), and, Ĉn is the empirical covariance
matrix of the Xi’s. Under (H1,n), assuming that n tends to infinity with n1/n→ t1 and under

appropriate moment conditions, it is proved in Bickel (1965) that Hn(n1)
d−→ χ2

K(dH(δ )), where

dH(δ ) = t1(1− t1)δ
′C−1

δ , (12)

χ2
K(d) denoting the non-central chi-squared distribution with K degrees of freedom and non-

centrality parameter d and C denoting the covariance matrix of the Xi’s.
Let F(Xi) = (F1(Xi,1), . . . ,FK(Xi,K))

′ denote the K-dimensional vector of marginal distribution
functions and ∇ log f (Xi) the score function. The following theorem (proved in Appendix C)
establishes the asymptotic behaviour of Sn(n1) under (H1,n).

Theorem 3. Assume that X1, . . . ,Xn1 ,Xn1+1, . . . ,Xn are RK-valued random vectors distributed
under (H1,n) and that the K×K covariance matrix Σ defined by (5) is positive definite. Assume
also that the Fisher information matrix I f = E f [∇ log f (X1)∇ log f (X1)

′] is finite and that the
densities fk of X1,k are upper bounded for all k. Then, as n tends to infinity with n1/n→ t1 ∈ (0,1),

Sn(n1)
d−→ χ

2
K
(
4t1(1− t1)δ

′A′Σ−1Aδ
)
=: χ

2
K(dS(δ )) , (13)

where Σ is defined in (5) and A = E f [(F(X1)−1/2)∇ log f (X1)
′].

The following corollary, which is proved in Appendix D, particularises this results to the case
where the coordinates of the observations are independent.
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Corollary 1. Assume that the density f may be written as the product of its marginals, f (x) =
∏

K
k=1 fk(xk). Then,

dH(δ ) = t1(1− t1)
K

∑
k=1

δ 2
k

σ2
k

and dS(δ ) = 12t1(1− t1)
K

∑
k=1

δ 2
k

σ2
k

λ
2
k ,

where σ2
k =

∫
x2 fk(x)dx and λk =

∫
(σk fk(σkx))2 dx.

Moreover, dS(δ ) ≥ (108/125)dH(δ ), with dS(δ ) being equal to (3/π)dH(δ ) when fk are
Gaussian densities.

Corollary 1 states that the so-called asymptotic relative efficiency (ARE) with respect to the
Hotelling-T 2 test dS(δ )/dH(δ ) is lower bounded by 108/125 ≈ 0.864. Granted that this result
holds irrespectively of the choice of the marginals fk this is a strong guarantee that extends the
well-known scalar result. As will be illustrated in Section 4.2.2, the ARE is much larger whenever
some of the marginal have strong tails. In the particular case of Gaussian densities, the ARE of
the proposed test is equal to 3/π ≈ 0.955, which is comparable to the values obtained for affine
invariant multivariate rank tests (Oja, 1999, p. 331).

For the particular case of multivariate Gaussian distributions, an explicit expression of the ARE
can be obtained without assuming independence, as shown by the following corollary (proved in
Appendix E).

Corollary 2. Assume that f is a multivariate Gaussian p.d.f. with mean 0 and covariance matrix C,
then the matrices A and Σ featured in Theorem 3 are given by A = (2

√
π)−1 diag(σ−1

1 , . . . ,σ−1
K )

and Σk` = 2/π arcsin(Ck`/(2σkσ`)), for 1 ≤ k, ` ≤ K, where (σ2
k )1≤k≤K denote the diagonal

elements of C.
Furthermore, the asymptotic relative efficiency of the test statistic Sn(n1) can be lower bounded

as follows
dS(δ )/dH(δ )≥ (3/π)(σ2

min/σ
2
max)(λmin(C)/λmax(|C|)) ,

where σ2
min and σ2

max denote, respectively, the minimal and maximal diagonal terms of C, λmin(C)
is the minimal eigenvalue of C and λmax(|C|) the maximal eigenvalue of |C|= (|Ck,`|)1≤k,`≤K .

We observe here an important difference with the test statistic of Möttönen et al. (1997) which
is designed so as to guarantee that its ARE in the multivariate Gaussian case does not depend on
the value of C. For the proposed statistic, the ARE is lower bounded by the minimal eigenvalue of
A′Σ−1AC, where A and Σ are defined in Corollary 2. Recall that Σ is proportional to the Spearman
correlation matrix whereas Corollary 2 implies that ACA′ is proportional to the standard correlation
matrix. Empirically, it can be checked using numerical simulation that the minimal eigenvalue
of A′Σ−1AC can only be small when C itself is poorly conditioned. The second statement of
Corollary 2 substantiates this claim by providing a lower bound which, for positively correlated C
at least, is inversely proportional to the condition number of C. Note that this bound appears to be
pessimistic in practice as for values of K in the range 2 to 6, we observed the ARE to be larger
than 0.8 for all matrices with condition number smaller than 10 (recall that the ARE is equal to
0.95 in the scalar case); for matrices with condition number up to 100, the ARE was still larger
than 0.3. Hence, in situations where the coordinates of the data are not too correlated, despite the
fact that the proposed test is not affine invariant, its loss with respect to the (optimal) likelihood
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ratio test in the Gaussian case is usually negligible, a fact that will be illustrated by the numerical
simulations of Section 4.

3. Change-point estimation and detection

We now consider the setting in which the position of the potential change-points are unknown (still
assuming that their number is known). Our proposal is to consider the statistic T (n1, . . . ,nL−1)
described in the previous section and to optimise it over all the possible change point locations.
This proposal is however faced with two serious difficulties. The first one, which is of com-
putational nature is related to the feasibility of the maximisation when there is more than a
single change-point. We start by showing that the maximisation of T (n1, . . . ,nL−1) is amenable to
dynamic programming and stays feasible even when L is large. The second difficulty, to which a
partial answer is provided in Section 3.2, is statistical and concerns the interpretation of the value
of T (n1, . . . ,nL−1) as optimising with respect to the change-point location obviously modifies the
distribution of the values of the test statistic. This is a difficult issue in general, but we show how
to obtain meaningful and simple-to-compute p-values for a variant of the test in the case of a
single change-point.

3.1. Multiple change-point estimation

Assuming a known number of change-points L, we propose to use the test statistic described in
Section 2.2 to determine the positions of the segment boundaries n1, . . . ,nL−1. These unknown
change-point locations are estimated by maximising the statistic T (n1, . . . ,nL−1) defined in (9)
with respect to n1, . . . ,nL−1:

(n̂1, . . . , n̂L−1) = argmax
1≤n1<···<nL−1≤n

T (n1, . . . ,nL−1) . (14)

In practice, direct maximisation by enumeration in (14) is computationally prohibitive as it
corresponds to a combinatorial task whose complexity grows exponentially with L. However, due
to the fact that the matrix Σ̂n is common to all segments, the statistic T (n1, . . . ,nL−1) defined in
(9) has an additive structure which makes it possible to adopt a dynamic programming strategy.
We refer here to the classical dynamic programming approach to the segmentation task which is
described in Kay (1993) used by, among others, Bai and Perron (2003) and can be traced back to
the note by Bellman (1961). More precisely, using the notations

∆(n`+1 : n`+1) = (n`+1−n`)R̄′` Σ̂
−1
n R̄` ,

and

IL(p) = max
1<n1<···<nL−1<nL=p

L−1

∑
`=0

∆(n`+1 : n`+1) , (15)

we prove in Appendix F that

IL(p) = max
nL−1
{IL−1(nL−1)+∆(nL−1 +1 : p)} . (16)
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Thus, for solving the optimisation problem (14), we proceed as follows. We start by computing
the ∆(i : j) for all (i, j) such that 1≤ i < j ≤ n. All the I1(E) are thus available for E = 2, . . . ,n.
Then I2(E) is computed by using the recursion (16) and so on. The overall numerical complexity
of the procedure is thus proportional to L×n2 only.

3.2. Assessing the significance of the test in the single change-point case

In addition to practical algorithms for estimating change-point locations, one needs tools to assess
the plausibility of the obtained change-point configuration. An important step in that direction is
to characterise the behaviour of T (n̂1, . . . , n̂L−1) under the null hypothesis that the data are indeed
fully homogeneous. This is a difficult issue in general due to the optimisation over all possible
change-point configurations. A possible calibration approach consists in running Monte Carlo
experiments, possibly using bootstrap techniques if a representative sample of the baseline data
of interest is available. We show below that in the case where L = 2, i.e., when looking for a
single potential change-point, it is possible to obtain a simple computable approximation to the
asymptotic p-value of the test.

To do so, we consider in the rest of this section a modification of the test statistic used in (14).
The practical consequences of using this variant rather than the statistic T (n̂1) when L = 2 will be
discussed after Theorem 4 which states the main result of this section.

Let Vn(n1) = (Vn,1(n1), . . . ,Vn,K(n1))
′ denote the vector such that

Vn,k(n1) =
1

n3/2

n1

∑
i=1

n

∑
j=n1+1

{
1(Xi,k ≤ X j,k)−1(X j,k ≤ Xi,k)

}
, k = 1, . . . ,K , (17)

and define

S̃n(n1) = Vn(n1)
′
Σ̂
−1
n Vn(n1) . (18)

Note that Vn only differs from Un by the normalisation, which is now independent of n1. We now
consider the statistic

Wn = max
1≤n1≤n−1

S̃n(n1) . (19)

The following theorem, proved in Appendix G, gives the asymptotic p-values of Wn under the
null hypothesis that no change in distribution occurs within the observation data.

Theorem 4. Assume that (Xi)1≤i≤n are RK-valued i.i.d. random vectors such that, for all k, the
c.d.f. Fk of X1,k is a continuous function. Further assume that the K×K matrix Σ defined in (5) is
invertible. Then,

Wn
d−→ sup

0<t<1

(
K

∑
k=1

B2
k(t)

)
, as n→ ∞ , (20)

where d denotes convergence in distribution and {Bk(t), t ∈ (0,1)}1≤k≤K are independent Brow-
nian bridges.
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To determine the p-value Pval(Wn) associated to (20), one can use the following result due to
Kiefer (1959):

Pval(b) = P

(
sup

0<t<1

(
K

∑
k=1

B2
k(t)

)
> b

)

= 1− 4

Γ(K
2 )2

K
2 b

K
2

∞

∑
m=1

(γ(K−2)/2,m)
K−2 exp[−(γ(K−2)/2,m)

2]/2b
[JK/2(γ(K−2)/2,m)]2

, (21)

where Jν is the Bessel function of the first kind, γν ,m is the m-th nonnegative zero of Jν and Γ is
the Gamma function. In practice, only a few terms of the series have to be computed. For values
of K of forty or less computing the p-values from the thirty first terms of the series was sufficient.

As noted at the beginning of Section 3.2, the normalisation of Vn differs from that of Un,
resulting in a statistic Wn that does not coincide with T (n̂1). From our practical experience,
replacing Vn by Un in the definition of Wn, that is using T (n̂1) instead of Wn, produces a statistic
that has the same detection and localisation capacities when the potential change occurs in the
central region of the observation window, say between n/4 and 3n/4 observations. For potential
changes occurring closer to the beginning or to the end of the observation window, T (n̂1) has
an enhanced detection power at the expense of a slight increase in the rate of false alarms, with
corresponding spurious detections occurring mostly near the borders of the observation window.
Proceeding as in Appendix G, one can prove a result related to Theorem 4 for T (n̂1) (used when
L = 2) by imposing some additional conditions on the admissible values of n1 (namely, that the
maximum is searched only for value of n1 such that n1/n is bounded from above and below).
The resulting limit, expressed in terms of Bessel processes, does not yield easily computable
asymptotic p-values, although approximations such as those studied by Estrella (2003) could be
used for approximating extreme quantiles (that is, very low p-values).

4. Numerical Experiments

In this section, we report numerical experiments that illustrate different aspects of the methods
proposed in Sections 2 and 3. A software implementing these methods in Python is available as a
supplementary material of the paper. For easy reference, the two- or multi-sample homogeneity
test defined by (9) is referred to as MultiRank-H in the following; the change point estimation
criterion defined in (14) is referred to as MultiRank.

4.1. Illustration of the two-sample homogeneity test

We start by considering the basic two-sample homogeneity test first introduced in Section 2.1. For
this, we generate baseline observations distributed as a mixture of two two-dimensional Gaussian
densities with common mean (0,0) and diagonal covariance matrices with diagonal terms equal
to (4,0.2) and (0.2,4), respectively. For the alternative distribution, we generate observations
having the same characteristics except that the mean is now equal to s = (0.5,0.5). In this case,
n = 100 and the two groups (baseline and alternative data) are of length n/2 = 50. Figure 2 (a)
shows a typical example of the data, represented as a two-dimensional scatter plot.
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MultiRank-H is compared with three other approaches. The first is the the Maximum Mean
Discrepancy (MMD) statistics proposed by Gretton et al. (2006), which is a kernel-based test
here used with a Gaussian kernel having a bandwidth given by the median distance between the
samples as suggested by Gretton et al. (2006), Désobry et al. (2005) and Harchaoui et al. (2008).
The second approach is the classical Hotelling’s T 2-test (Chen and Gupta, 2000, p. 67) which is
optimal in the multivariate Gaussian case. The third method is to use the likelihood ratio (LR) test
assuming a known structure for the model whose parameters (mean vectors and diagonal terms
of the covariance matrices) are estimated using the Expectation-Maximisation algorithm. This
latter approach is optimal in this context but is the only one that uses some knowledge about the
distribution of the data. These methods are compared through their ROC (Receiver Operating
Characteristic) curves, averaged over 1000 Monte Carlo replications of the data.

From the results of Section 2.3, we know that, as the covariance matrix of the data is propor-
tional to the identity matrix, the asymptotic performance of Hotelling’s T 2-test does not depend
on the particular choice of the shift s, but only on its L2 norm. For the Multirank-H approach the
answer is less straightforward as the coordinates of the data are not independent in this example.
However, Monte Carlo estimation of the asymptotic performance index ds(δ ) in (13) shows that
it does not varies by more than 1% with the direction of δ . We indeed verified that in the setting
of Figure 2 the variation in performance with the direction of the shift s is negligible.

The results displayed in Figure 2(b) show that MultiRank-H is on a par with the LR and
outperforms the other two approaches. MMD performs somewhat better than Hotelling’s T 2 in
this context due to the non-Gaussian nature of the data. Figure 2(c) corresponds to the more
difficult setup in which eight-dimensional i.i.d. Gaussian random vectors of variance 2.52 are
appended to the data described previously. In this case, the data are thus ten-dimensional but
the change only affects two coordinates. MultiRank-H is again comparable to the LR, which is
still optimal in this case. Note the lack of robustness of MMD which is distinctly dominated by
Hotelling’s T 2 in this second scenario.

4.2. Properties of the change-point detection test

In this section, we investigate the properties of the change-point detection test based on the
statistic T (n̂1) resulting from the optimisation of (19). The simulations reported in this section are
based on the following common benchmark scenario: under (H0), that is, in the absence of change,
we generate 100 samples from a five-dimensional standard Gaussian distribution. Under (H1), the
observations are similar, except that the common mean of the Gaussian vector changes to 0.3
at a location which is either equal to 1/4 or 1/2 of the observation window, that is, at indices 25
or 50. This scenario corresponds to a simple situation where all coordinates of the data possibly
undergo similar upward shifts. The ROC curves that are plotted in the following are based on
2000 replications of the simulated data.

4.2.1. Comparison with marginal decisions

The MultiRank test statistic is obviously based on a combination of marginal rank statistics. Never-
theless, it incorporates two important aspects of the multivariate change-point detection problem:
first, detection of simultaneous changes in multiple coordinates should make the presence of an
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FIGURE 2. (a) Example of observations under baseline and alternative distributions, (b) ROC curves for MultiRank-H,
MMD, Hotelling’s T 2 and LR, (c) Same as (b) with eight-dimensional Gaussian noise padding (that is, with K = 10).

actual change-point more likely, and, second, the existence of dependence between the coordinates
should influence the decision. To illustrate these observations, we compare MultiRank with a
simpler heuristic approach that combines marginal decisions based on Bonferroni bound, using
as test statistic max1≤k≤K max1≤n1≤n−1Vn,k(n1). The results obtained with the data-generating
mechanism described at the beginning of Section 4.2 are displayed in the leftmost plot of Figure 3.
We also compare both approaches in a setting where the covariance matrix of the Gaussian vector
is not the identity matrix anymore but a tridiagonal matrix with a common value of 0.45 (positive
correlation) or −0.45 (negative correlation) on the sub- and super-diagonal. The resulting ROC
curves are displayed in the middle and right plots of Figure 3, respectively.

The leftmost plot of Figure 3 shows that the approach that combines the marginal statistics by
taking into account their correlation, that is MultiRank, outperforms the Bonferroni-type approach.
Furthermore, when the coordinates are positively correlated, the rate of detection of the MultiRank
method decreases for a given false alarm rate and when negatively correlated, the rate of detection
increases. The performance of the Bonferroni-type approach on the other hand does not improve
for the negatively correlated data. The MultiRank method captures an important feature of the
problem that fails to be exploited by the mere marginal decisions: negative correlations in the data
make the detection of simultaneous upward jumps easier while positive correlations render this
task more difficult.

Although Figure 3 deals with change-point estimation (which includes the maximisation with
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respect to the change point position), we note that Corollary 2 of Section 2.3 implies that the
performance of the Multirank-H homogeneity test is here comparable to that of the Hotelling’s
T 2 test as the condition number of the covariance matrices considered in Figures 3 is relatively
small (less than 8.1). The Multirank change detection test obviously inherits this property as its
performance is nearly indiscernible from that of the LR test for all three choices of the covariance
matrix in Figure 3.

FIGURE 3. ROC curves for the MultiRank and the Bonferroni-type approaches when the coordinates are independent
(left), positively correlated (middle) and negatively correlated (right). The change-point instant is located at 1/4 and
1/2 of the observations window of length 500.
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FIGURE 4. ROC curves for the MultiRank approach and the likelihood-ratio procedure (LR) for three different
proportions of outliers (from left to right: 0, 5 and 20%) when the change-point instant is located at 1/4 and 1/2 of the
window of length 500.

4.2.2. Robustness with respect to outliers

Here we illustrate the robustness of the MultiRank approach with respect to outliers in the data
by considering the same simulation scenario as in the previous section (with a larger shift of
amplitude 0.5) progressively contaminated by large additive outliers. The outliers distribution is
the multivariate Gaussian distribution with covariance matrix 10Id5, instead of Id5 for the baseline
distribution (where Id5 refers to the five by five identity matrix). The fraction of outliers is varied
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between 0, 5 and 20%. The MultiRank approach is compared to the parametric likelihood-ratio
based change-point detection test described by Srivastava and Worsley (1986). This latter method,
which is itself based on Hotelling’s T 2-test statistic, is optimal in the absence of outliers as the
baseline and alternative distributions are both Gaussian. As shown in the leftmost plot of Figure 4,
MultiRank has comparable performance with the parametric approach in the case where there
are no outliers in the data. However, as shown in the middle and rightmost plots of Figure 4,
MultiRank demonstrates its robustness with respect to the presence of outliers as it barely suffers
from the presence of additive outliers contrary to the parametric approach.

4.3. Application to genomic hybridisation data

To illustrate the potential of the approach, we consider its application to the segmentation of
multiple individual genomic data. We consider the bladder cancer micro-array aCGH dataset
studied by Vert and Bleakley (2010) which consists of records of copy-number variations, i.e.
abnormal alteration of the quantity of DNA sections.

The objective here is to jointly segment data recorded from different subjects so as to robustly
detect regions of frequent deletions or additions of DNA which could be characteristic of cancer.
Each of the 57 profiles provides the relative quantity of DNA for 2143 probes measured on
22 chromosomes. We ran the change-point estimation algorithm on each of 22 chromosomes
separately, thus processing 22 different 9- to 57-dimensional signals (depending on the selected
groups of patients at different stages of cancer) of length 50 to 200 (the number of probes varies
for each chromosome).

In this paper, we have not considered principled methods for inferring the number of change-
points from the data. We describe below an heuristic approach to determine the number of
change-points which, despite its simplicity, performs in our experience much better than the
use of generic penalties such as AIC or BIC. Values of the statistics IL(n), for L = 0, . . . ,Lmax,
are first computed using the procedure described in Section 3.1. The algorithm is based on the
principle that in the presence of L? ≥ 1 change-points, if IL(n) is plotted against L, the resulting
graph can be decomposed into two distinct regions: the first one, for L = 0, . . . ,L? where the
criterion is growing rapidly; and the second one, for L = L?, . . . ,Lmax, where the criterion is barely
increasing Lavielle (2005). Hence, for each possible value of L in L = 1, . . . ,Lmax, we compute
least square linear regressions for both parts of the graph (before and after L); the estimated
number of change-points is the value of L that yields the best fit, that is, the value for which
the sum of the residual sums of squares computed on both parts of the graph is minimal. For
an illustration of this methodology, see Figure 5. The case L = 0 is treated separately and the
procedure described above is used only when the value of the test statistic Wn for the presence
of a single change-point (see Section 3.2) is significant (p-value smaller than 0.1%) based on
Theorem 4.

Results are shown for a group of 32 profiles corresponding to Stage T2 of a tumour. In Figure 6
the copy-number data and the segmentation of the whole set of chromosomes is displayed for two
particular individuals, together with the corresponding stepwise constant approximations of the
data for the 32 individuals (in the bottom of the Figure). Figure 7 details the results pertaining
to the 7th chromosome. In both cases, the segmentation result is represented by a signal which
is constant (and equal to the mean of the data) within the detected segments. The bottom plot
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FIGURE 5. Determining the optimal number of change-points. Here, the actual number of change-points is L? = 4; the
optimal regression is displayed in solid lines, while a non-optimal alternative (for L = 6) is displayed in dashed lines.

in Figure 6 particularly highlights the fact that several coordinates indeed jump at the same
time, suggesting that the joint segmentation model is appropriate. On the other hand, it is also
obvious that one cannot assume (see, e.g., the third change-point at index 64 in Figure 7) that all
coordinates undergo similar changes. Note also that in this application, the fact that the MultiRank
test statistic is properly normalised with respect to the length n of the data and their dimension K is
particularly important: n corresponds to the number of probes and varies with each chromosome,
K represents the number of individuals and varies when considering different groups of subjects.

As a reference, the group fused Lasso algorithm by Bleakley and Vert (2011) outputs similar
results. In particular, on the 7th chromosome, change-points are found at positions 21, 44, 65, 102,
107, 112, 124, 132, 156 and 166. On the whole set of chromosomes, 96 change-points are found
while the MultiRank estimation procedure outputs 98.

5. Conclusion

We proposed an approach for retrospective detection of multiple changes in multivariate data.
The basic idea, used for homogeneity testing when the data groupings are known, is an extension
of well-known marginal rank based tests (Wilcoxon/Mann-Whitney and Kruskal-Wallis) based
on the idea originally proposed by Wei and Lachin (1984). The use of this approach for change-
point detection (when the segments boundaries are unknown) was shown to be computationally
feasible. In addition, it incorporates important aspects of the problem, in particular the fact that
simultaneous detections in different coordinates make the presence of an actual change more
likely. The method was shown to be robust against various alternatives and on a par with optimal
methods in benchmark cases. The approach can also be straightforwardly modified to deal with
ordinal data, missing or censored values.

To improve the method, it would be desirable to provide significance levels for the change-point
detection test when used to detect more than a single potential change-point. We believe that
by considering the normalisation used to define the statistic Wn in Section 3.2, it is possible to
study the asymptotic behaviour of the change-point detection statistic in the general case. This
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FIGURE 6. First and second row: copy number data for two different individuals with superimposition of the segmenta-
tion. Third row: superimposition of the smoothed bladder tumour aCGH data for 32 individuals in Stage T2 cancer
that result from the segmentation. Vertical dashed lines represent the separation between the different chromosomes.

being said, the difference between the two forms of normalisation could be more significant when
applied to more than two segments. On a different level, one should obviously consider more
principled approaches for selecting the number of change-points. General-purpose penalisation
schemes could be used but we feel that novel ideas need to be developed specifically for the
change-point problem given the specific nature of over- and under-estimating the number of
change-points. For instance, in many practical applications the significance of over-estimating the
number of change-points depends not only on the number of spurious segments but also on their
locations. Traditional approaches based on complexity penalties Bai and Perron (2003), Bayesian
methods Fearnhead (2006) and sparsity-based criterions Harchaoui and Lévy-Leduc (2010); Vert
and Bleakley (2010) are already available but there is certainly room for new developments in
these fields.

Appendix A: Proof of Theorem 1

The proof is based on the Hoeffding decomposition of Un,k(n1) for each k in {1, . . . ,K}. For further
details on the Hoeffding decomposition, we refer the reader to Chapters 11 and 12 of van der Vaart
(1998). For each k in {1, . . . ,K}, let h1,k(y) =

∫
h(x,y)dFk(x) and h̃1,k(x) =

∫
h(x,y)dFk(y), where

h is defined by h(x,y) = 1(x ≤ y)−1(y ≤ x). By the continuity of Fk, h1,k(y) = 2Fk(y)−1 and
h̃1,k(x) = 1−2Fk(x). The Hoeffding decomposition of Un,k(n1) can thus be written as Un,k(n1) =
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FIGURE 7. Data for 32 individuals in Stage T2 bladder cancer with superimposed segmentation for chromosome 7. 10
change-points were estimated and the dashed vertical lines correspond to the estimated segment boundaries.

Ûn,k(n1)+Rn,k(n1), where

Ûn,k(n1) =
n1√

nn1(n−n1)

n

∑
j=n1+1

h1,k(X j,k)+
n−n1√

nn1(n−n1)

n1

∑
i=1

h̃1,k(Xi,k) , (22)

Rn,k(n1) =
1√

nn1(n−n1)

n1

∑
i=1

n

∑
j=n1+1

[h(Xi,k,X j,k)− h̃1,k(Xi,k)−h1,k(X j,k)] . (23)

We first prove that Un,k(n1) = Ûn,k(n1)+op(1) by showing that Var[Rn,k(n1)]→ 0, as n tends to
infinity. Using that E[Un,k(n1)] = E[Ûn,k(n1)] = 0, we obtain that Var[Rn,k(n1)] = Var[Un,k(n1)−
Ûn,k(n1)] =E[U2

n,k(n1)]+E[Û2
n,k(n1)]−2E[Un,k(n1)Ûn,k(n1)]. By independence of the (Xi,k)1≤i≤n,

we obtain that

E[Û2
n,k(n1)] =

n2
1

nn1(n−n1)

n

∑
j=n1+1

E[h1,k(X j,k)
2] +

(n−n1)
2

nn1(n−n1)

n1

∑
i=1

E[h̃1,k(Xi,k)
2]. (24)
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Using that
E[h1,k(Xi,k)

2] = 4E[(Fk(X1,k)−1/2)2] = 4Var(U ) = 1/3 , (25)

where U has a uniform distribution on [0,1], we get, on the one hand, that

E[Û2
n,k(n1)] =

n2
1(n−n1)

3nn1(n−n1)
+

(n−n1)
2n1

3nn1(n−n1)
= 1/3 . (26)

On the other hand

E[U2
n,k(n1)] =

1
nn1(n−n1)

n1

∑
i=1

n

∑
j=n1+1

E[h(Xi,k,X j,k)
2]

+
1

nn1(n−n1)
∑

1≤i 6=i′≤n1

n

∑
j=n1+1

E[h(Xi,k,X j,k)h(Xi′,k,X j,k)]

+
1

nn1(n−n1)

n1

∑
i=1

∑
n1+1≤ j 6= j′≤n

E[h(Xi,k,X j,k)h(Xi,k,X j′,k)] . (27)

We separately study the three terms of the r.h.s of (27). Using that (Xi,k)1≤i≤n are i.i.d. , we get

1
nn1(n−n1)

n1

∑
i=1

n

∑
j=n1+1

E[h(Xi,k,X j,k)
2] =

n1(n−n1)

nn1(n−n1)
E[h(X1,k,Xn1+1,k)

2]→ 0, as n→ ∞ . (28)

Then, by continuity of Fk, we have

1
nn1(n−n1)

∑
1≤i6=i′≤n1

n

∑
j=n1+1

E[h(Xi,k,X j,k)h(Xi′,k,X j,k)]

=
(n2

1−n1)(n−n1)

nn1(n−n1)

∫
(2Fk(y)−1)(2Fk(y)−1)dFk(y) =

n1(n1−1)(n−n1)

3nn1(n−n1)
. (29)

Using similar arguments, the last term of the r.h.s of (27) is equal to n1(n− n1)(n− n1 −
1)/(3nn1(n−n1)). With (28) and (29), we obtain

E[U2
n,k(n1)]→ 1/3, as n→ ∞. (30)

Since E[Un,k(n1)Ûn,k(n1)]→ 1/3, as n→ ∞, (26) and (30) lead to Var[Rn,k(n1)]→ 0 and thus
Un,k(n1) = Ûn,k(n1)+ op(1), as n tends to infinity. The multivariate central limit theorem then
yields (Un,1(n1), . . . ,Un,K(n1))

′ → N (0,Σ) , where the (k,k′)th entry of Σ is given by Σkk′ =
limn→∞E[Ûn,k(n1)Ûn,k′(n1)]. Using that the (Xi,k)1≤i≤n are i.i.d., we obtain that

E[Ûn,k(n1)Ûn,k′(n1)] =
4n2

1
nn1(n−n1)

n

∑
j=n1+1

E[{Fk(X j,k)−1/2}{Fk′(X j,k′)−1/2}]

+
4(n−n1)

2

nn1(n−n1)

n1

∑
i=1

E[{Fk(Xi,k)−1/2}{Fk′(Xi,k′)−1/2}]

= 4Cov
(
Fk(X1,k),Fk′(X1,k′)

)
.

Thus, Σ−1/2(Un,1(n1), . . . ,Un,K(n1))
′ d−→N (0, IdK). Since Σ̂n

p−→ Σ, we deduce from Slutsky’s

Theorem that Σ̂
−1/2
n (Un,1(n1), . . . ,Un,K(n1))

′ d−→N (0, IdK), which concludes the proof.
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Appendix B: Proof of Theorem 2

Using that R(k)
j = ∑

n
i=1 1(Xi,k ≤ X j,k), we obtain that

R̄(k)
` −

n+1
2

=
1

n`+1−n`

(
n`+1

∑
j=n`+1

n

∑
i=1

1(Xi,k ≤ X j,k)

)
− n+1

2

=
1

n`+1−n`

n`+1

∑
j=n`+1

n

∑
i=1
i6= j

[
1(Xi,k ≤ X j,k)−1/2

]
. (31)

Let h(x,y) = 1(x≤ y), h1,k(y) =
∫

1(x≤ y)dFk(x) and h2,k(x) =
∫

1(x≤ y)dFk(y). By continuity
of Fk: h1,k(y) = Fk(y) and h2,k(x) = 1−Fk(x). Using the notation:

R
(k)
` = (n`+1−n`)1/2/n(R̄(k)

` − (n+1)/2) ,

the Hoeffding decomposition yields

R
(k)
` =

(n`+1−n`)1/2

n

[
n−1

n`+1−n`

n`+1

∑
j=n`+1

(h1,k(X j,k)−1/2)+
n`+1−n`−1

n`+1−n`

n

∑
i=1

(h2,k(Xi,k)−1/2)

]

+
(n`+1−n`)1/2

n

 1
n`+1−n`

n`+1

∑
j=n`+1

n

∑
i=1
i6= j

{
h(Xi,k,X j,k)−h1,k(X j,k)−h2,k(Xi,k)+1/2

}
def
= R

(k)
`,1 +R

(k)
`,2 +R

(k)
`,3 . (32)

Note that R
(k)
`,3 = op(1), as n tends to infinity, since it can be proved that Var(R(k)

`,3 ) = Var[R(k)
` −

(R
(k)
`,1 +R

(k)
`,2 )]→ 0, as n tends to infinity. Thus, (32) can be rewritten as

R
(k)
` =

n−1
n(n`+1−n`)1/2

n`+1

∑
j=n`+1

(Fk(X j,k)−1/2)+
n`+1−n`−1

n(n`+1−n`)1/2

n

∑
i=1

(1/2−Fk(Xi,k))+op(1) .

Since ∑
n
i=1(1/2−Fk(Xi,k)) = ∑

L−1
p=0 ∑

np+1
j=np+1(1/2−Fk(X j,k)),

R
(k)
` =

n− (n`+1−n`)
n(n`+1−n`)1/2

n`+1

∑
j=n`+1

(Fk(X j,k)−1/2)− n`+1−n`−1
n(n`+1−n`)1/2

L−1

∑
p=0
p6=`

np+1

∑
j=np+1

(Fk(X j,k−1/2))+op(1)

def
= Uk(n`,n`+1)+op(1) .

Observe that, for a fixed ` in {0, . . . ,L−1} and k,k′ in {1, . . . ,K}, we get, as n tends to infinity,

4Cov(Uk(n`,n`+1),Uk′(n`,n`+1)) =

Σkk′

(1− (n`+1−n`)
n

)2

+
L−1

∑
p=0
p6=`

(n`+1−n`−1)2(np+1−np)

n2(n`+1−n`)

→ (1− t`+1)Σkk′ , (33)
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where we have used that ∑
L−1
p=0
p6=`

(np+1−np) = n− (n`+1−n`). In the same way, for fixed k,k′ in

{1, . . . ,K} and ` 6= `′ in {0, . . . ,L−1}, we obtain, as n tends to infinity,

4Cov(Uk(n`,n`+1),Uk′(n`′ ,n`′+1))→−
√

t`+1t`′+1Σkk′ . (34)

Let

R̄n = 2

(
(n1−n0)

1/2

n
R̄′0, . . . ,

(nL−nL−1)
1/2

n
R̄′L−1

)′
.

We deduce from (33), (34) and the multivariate central limit theorem that

R̄n
d−→N (0,Θ⊗Σ) ,n→ ∞ ,

where Σ is the K×K matrix defined in (5), ⊗ denotes the Kronecker product, Θ = IdL−
√

t
√

t ′

with
√

t = (
√

t1, . . . ,
√

tL)′. Thus,

R̄Σ
n

d−→N (0,Θ⊗ IdK) ,n→ ∞ ,

where

R̄Σ
n = 2

(
(n1−n0)

1/2

n
Σ
−1/2R̄′0, . . . ,

(nL−nL−1)
1/2

n
Σ
−1/2R̄′L−1

)′
.

Since Σ̂n
p−→ Σ, as n tends to infinity, the same convergence holds when Σ is replaced by Σ̂n.

Since ∑
L−1
`=0 (n`+1−n`)/n = 1, ∑

L
`=1 t` = 1 and the matrix t has eigenvalue 0 of multiplicity 1 (with

eigenspace spanned by
√

t), and eigenvalue 1 of multiplicity L− 1. Hence, the eigenvalues of
Θ⊗ IdK are 0, with multiplicity K, and 1, with multiplicity (L−1)K, which concludes the proof
using Cochran’s theorem.

Appendix C: Proof of Theorem 3

In Appendix A, we proved that under the null hypothesis where the X j’s are i.i.d. random vectors
such that the c.d.f Fk of X1,k is continuous:

Un,k(n1) =
2n1√

nn1(n−n1)

n

∑
j=n1+1

{Fk(X j,k)−1/2}

− 2(n−n1)√
nn1(n−n1)

n1

∑
i=1
{Fk(Xi,k)−1/2}+oP(1) , as n→ ∞ . (35)

Since, by assumption, the model f (x− θ) is differentiable in quadratic mean at θ , the log-
likelihood ratio Ln defined by

Ln = log

[
∏

n1
i=1 f (Xi)∏

n
j=n1+1 f (X j−δ/

√
n)

∏
n
i=1 f (Xi)

]
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satisfies the following asymptotic expansion as n tends to infinity

Ln =−
δ√
n

n

∑
j=n1+1

∇ log f (X j)−
(1− t1)

2
δ
′I f δ +oP(1) . (36)

Combining multivariate central limit theorem with (35) and (36) one can thus show that (Un,Ln)
converges in distribution to a Gaussian random vector. From the expression of the asymptotic
covariance matrix and using Le Cam’s third lemma, one obtains that under (H1,n)

Un(n1)
d−→NK(2

√
t1(1− t1)Aδ ,Σ) .

Using Glivenko-Cantelli Theorem, the weak law of large numbers and the fact that fk is bounded
for all k –which implies that Fk is a Lipschitz function for all k– it can be proved that, under (H1,n),
Σ̂n converges in probability to Σ. The conclusion follows using Slutsky’s Lemma.

Appendix D: Proof of Corollary 1

Assuming independence, Σ = 4E0[{F1(X1,1)− 1/2}2] IdK = 1/3IdK , where IdK denotes the
K ×K identity matrix, and A is the diagonal matrix with elements Ak,k =

∫
R Fk(x) f ′k(x)dx =

−∫R f 2
k (x)dx=−σ

−1
k
∫
R(σk fk(σkx))2dx. The lower bound on dS is obtained by the classical result

that 12λ 2
k ≥ 108/125 (van der Vaart, 1998, p. 198). Finally, in the Gaussian case, λk = 1/(2

√
π).

Appendix E: Proof of Corollary 2

Let us first prove that A is a diagonal matrix such that Ak,k = σ
−1
k /(2

√
π). Let D = (dk,`)1≤k,`≤K =

C−1, then

Ak,` = E0[(Fk(X1,k)−1/2)(
K

∑
j=1

d`, jX1, j)] =
K

∑
j=1

d`, jσ jE[Φ(X̃1,k)X̃1, j] ,

where Φ is the c.d.f. of a standard Gaussian random variable and X̃1, j = X1, j/σ j is a standard
Gaussian random variable. Since Φ(x)−1/2 = ∑p≥1(αp/p!)Hp(x), where αp = E[Φ(Z)Hp(Z)],
Z is a standard Gaussian random variable and Hp is the pth Hermite polynomial with leading
coefficient equal to one (H1(x) = x, H2(x) = x2−1, ...). By applying Mehler’s formula, one obtains
E[Φ(X̃1,k)X̃1, j] = α1Ck, j/(σkσ j), where α1 = E[ZΦ(Z)] =

∫
R ϕ2(x)dx, using an integration by

parts. Thus, Ak,` = σ
−1
k /(2

√
π)∑

K
j=1 d`, jC j,k = σ

−1
k /(2

√
π)1{k=`}. The expression given for Σ

can be obtained similarly and is well-known in the literature as it provides the link between the
Spearman correlation and the usual correlation coefficients Kruskal (1958). Regarding the lower
bound, first note that

ARE = (4π)−1
δ
′diag(σ−1

1 , . . . ,σ−1
K )(4Σ

−1)diag(σ−1
1 , . . . ,σ−1

K )δ/δ
′C−1

δ

≥ (4π)−1
λmin

(
diag(σ−1

1 , . . . ,σ−1
K )(4Σ

−1)diag(σ−1
1 , . . . ,σ−1

K )C
)

= (4π)−1
σ
−2
maxλmin(C)/λmax(Σ/4) .

From the expression of Σ, it is easily checked that Σk,` ≤ |Ck,`/3σ
−1
k σ

−1
` | ≤ |Ck,`|/3σ

−2
min, which

gives the second result.
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Appendix F: Proof of (16)

By (15), I1(p) = max1<n1=p ∆(1 : n1) = ∆(1 : p) and I2(p) = max1<n1<n2=p{∆(1 : n1)+∆(n1 +
1 : p)} = max1<n1<n2=p{I1(n1)+∆(n1 + 1 : p)}, which is (16) when L = 2. By (15), I3(p) =
max1<n1<n2<n3=p{∆(1 : n1)+∆(n1 +1 : n2)+∆(n2 +1 : p)}. By using the previous expression
of I2(p), we get that I3(p) = max1<n2<p{I2(n2)+∆(n2 +1 : p)}, which is (16) when L = 3 and
so on, which gives (16).

Appendix G: Proof of Theorem 4

We start by proving (20) when Σ̂n is replaced by Σ in (18). For this, we shall verify the assumptions
of (Billingsley, 1968, Theorem 15.6): the convergence of the finite-dimensional distributions:

(
Vn(bnt1c)′Σ−1Vn(bnt1c), . . . ,Vn(bntpc)′Σ−1Vn(bntpc)

)
d−→
(

K

∑
k=1

B2
k(t1), . . . ,

K

∑
k=1

B2
k(tp)

)
, for 0 < t1 < .. . < tp < 1 , n→ ∞ , (37)

and the tightness criterion for the process:

{
Vn(bntc)′Σ−1

n Vn(bntc); 0 < t < 1
}
,

where bxc denotes the integer part of x. Let n1 = bnt1c, with t1 in (0,1). In the same way as
in Appendix A, as Vn,k(·) only differs from Un,k(·) by a normalising factor, we can prove that
Vn,k(n1) = V̂n,k(n1)+op(1), with 0 < n1 < n and

V̂n,k(n1) =
n1

n3/2

n

∑
j=n1+1

h1,k(X j,k)−
n−n1

n3/2

n1

∑
i=1

h1,k(Xi,k) ,

where h1,k(x) = 2Fk(x)−1 and that

E[V̂n,k(n1)V̂n,k′(n1)]→ 4t1(1− t1)Cov
(
Fk(X1,k),Fk′(X1,k′)

)
, as n→ ∞ . (38)

Let n2 = bnt2c. Since 1 < n1 < n2 < n, n1/n→ t1 ∈ (0,1), and n2/n→ t2 ∈ (0,1) we get

E[V̂n,k(n1)V̂n,k′(n2)] = E

[{
n1

n3/2

n

∑
j=n1+1

h1,k(X j,k)−
n−n1

n3/2

n1

∑
i=1

h1,k(Xi,k)

}

×
{

n2

n3/2

n

∑
j=n2+1

h1,k′(X j,k′)−
n−n2

n3/2

n2

∑
i=1

h1,k′(Xi,k′)

}]
. (39)
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By decomposing the interval [n1 +1,n] (resp. [1,n2]) into [n1 +1,n2] and [n2 +1,n] (resp. [1,n1]
and [n1 +1,n2]) and developing the expression, we obtain

E[V̂n,k(n1)V̂n,k′(n2)] =

E

[
(n−n1)(n−n2)

n3

n1

∑
i=1

h1,k(Xi,k)h1,k′(Xi,k′)−
n1(n−n2)

n3

n2

∑
j=n1+1

h1,k(Xi,k)h1,k′(Xi,k′)

+
n1n2

n3

n

∑
j=n2+1

h1,k(Xi,k)h1,k′(Xi,k′)

]

=
n1(n−n2)

n2 Σkk′ −→ t1(1− t2)Σkk′ , as n→ ∞ . (40)

With (38) and (40), we obtain(
V̂n(n1)

V̂n(n2)

)
d−→N

(
0;
(

t1(1− t1)Σ t1(1− t2)Σ
t1(1− t2)Σ t2(1− t2)Σ

))
, (41)

which is equivalent to (
V̂n(n1)

V̂n(n2)

)
d−→
(

Σ
1
2 0

0 Σ
1
2

)(
B(t1)
B(t2)

)
, (42)

where B(t) = (B1(t), . . . ,BK(t)), 0≤ t ≤ 1. For the sake of clarity and without loss of generality,
(37) is thus proved in the case p = 2 by applying the continuous function(

x1
x2

)
7−→

(
x′1x1
x′2x2

)
, where x1,x2 ∈ RK . (43)

In the following, we check the tightness condition, that is, for 0 < t1 < t < t2 < 1, we show that

E
[
|V̂n(bntc)Σ−1V̂n(bntc)− V̂n(bnt1c)Σ−1V̂n(bnt1c)|2

×|V̂n(bnt2c)Σ−1V̂n(bnt2c)− V̂n(bntc)Σ−1V̂n(bntc)|2
]
≤C|t2− t1|2, (44)

where C is a positive constant. Let xn(t) = (xn,1(t), . . . ,xn,K(t))′ = AV̂n(bntc), where A = Σ−
1
2 ,

whose (p,q)th entry is denoted by ap,q. The l.h.s. of (44) can thus be rewritten as

E
[
|x′n(t)xn(t)−x′n(t1)xn(t1)|2|x′n(t2)xn(t2)−x′n(t)xn(t)|2

]
= E

∣∣∣∣∣ K

∑
k=1
{x2

n,k(t)− x2
n,k(t1)}

∣∣∣∣∣
2 ∣∣∣∣∣ K

∑
k′=1
{x2

n,k′(t2)− x2
n,k′(t)}

∣∣∣∣∣
2
 . (45)

Note that
K

∑
k=1
{x2

n,k(t)− x2
n,k(t1)}=

K

∑
k=1

(xn,k(t)− xn,k(t1))(xn,k(t)+ xn,k(t1))

=
K

∑
k=1

(
K

∑
p=1

ak,p[V̂n,p(bntc)−V̂n,p(bnt1c)]
)(

K

∑
p′=1

ak,p′ [V̂n,p′(bntc)+V̂n,p′(bnt1c)]
)

=
K

∑
p,p′=1

bp,p′
[
V̂n,p(bntc)−V̂n,p(bnt1c)

][
V̂n,p′(bntc)+V̂n,p′(bnt1c)

]
, (46)
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where bp,p′ = ∑
K
k=1 ak,pak,p′ is the (p, p′)th element of the matrix B = A2 = Σ−1. Similarly

K

∑
k′=1
{x2

n,k′(t2)−x2
n,k′(t)}=

K

∑
q,q′=1

bq,q′
[
V̂n,q(bnt2c)−V̂n,q(bntc)

][
V̂n,q′(bnt2c)+V̂n,q′(bntc)

]
. (47)

Using the notations `= bntc, `1 = bnt1c and `2 = bnt2c, and decomposing the interval [1,n] into
[1, `1], [`1 +1, `], [`+1, `2] and [`2 +1,n], we get

V̂n,p(`)−V̂n,p(`1) =
`− `1

n3/2

(
`1

∑
i=1

h1,p(Xi,p)

)
− n− (`− `1)

n3/2

(
`

∑
i=`1+1

h1,p(Xi,p)

)

+
`− `1

n3/2

(
`2

∑
i=`+1

h1,p(Xi,p)

)
+

`− `1

n3/2

(
n

∑
i=`2+1

h1,p(Xi,p)

)
, (48)

and

V̂n,p(`)+V̂n,p(`1) =
`+ `1

n3/2

(
`1

∑
i=1

h1,p(Xi,p)

)
− n− (`+ `1)

n3/2

(
`

∑
i=`1+1

h1,p(Xi,p)

)

+
`+ `1

n3/2

(
`2

∑
i=`+1

h1,p(Xi,p)

)
+

`+ `1

n3/2

(
n

∑
i=`2+1

h1,p(Xi,p)

)
, (49)

with similar results for the terms of (47). Equation (45) is the expected value of the product of the
squares of (46) and (47). Using Cauchy-Schwarz inequality, (45) is bounded above by the sum
of several terms, obtained by inserting (48) and (49) in (46) and (47), respectively. Among these
terms, we consider the case of:

C1

K

∑
p,p′=1

K

∑
q,q′=1

b2
p,p′b

2
q,q′

(n− (`− `1))
2(`+ `1)

2(n− (`2− `))2(`2 + `)2

n12

×E

∣∣∣∣∣ `

∑
i=`1+1

h1,p(Xi,p)

∣∣∣∣∣
2 ∣∣∣∣∣ `1

∑
i=1

h1,p(Xi,p)

∣∣∣∣∣
2 ∣∣∣∣∣ `2

∑
i=`+1

h1,p(Xi,p)

∣∣∣∣∣
2 ∣∣∣∣∣ n

∑
i=`2+1

h1,p(Xi,p)

∣∣∣∣∣
2
 . (50)

Using the independence of (Xi,k)1≤i≤n, the expected value in (50) can be separated into the product
of four expected values, and thus can be bounded by

(`− `1)`1(`2− `)(n− `2)/34 ≤ n2(`2− `1)
2/34. (51)

Equation (50) is thus bounded above by a quantity proportional to (`2− `1)
2/n2 = (bnt2c−

bnt1c)2/n2. All the terms appearing in the expansion of (45) can be treated similarly. This
completes the proof of (44) and thus ensures that

sup
0<t<1

Vn(bntc)′Σ−1Vn(bntc) d−→ sup
0<t<1

K

∑
k=1

B2
k(t), n→ ∞ . (52)
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In order to prove (52) when Σ is replaced by Σ̂n, it enough to prove that sup0<t<1 |Vn(bntc)′(Σ−1−
Σ̂−1

n )Vn(bntc)|= op(1). Note that

|Vn(bntc)′(Σ−1− Σ̂
−1
n )Vn(bntc)| ≤ ‖Σ̂−1

n −Σ
−1‖ sup

0<t<1
‖Vn(bntc)‖2 ,

where Σ̂−1
n

p−→ Σ−1 and sup0<t<1 ‖Vn(bntc)‖2 = Op(1), by (52), which concludes the proof.
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Jurečková, J. and Kalina, J. (2012). Nonparametric multivariate rank tests and their unbiasedness. Bernoulli, 18(1):229–

251.
Kay, S. (1993). Fundamentals of statistical signal processing: detection theory. Prentice-Hall, Inc.
Kiefer, J. (1959). K-sample analogues of the Kolmogorov-Smirnov and Cramér-V. Mises tests. Ann. Math. Statist.,

30:420–447.
Kruskal, W. (1958). Ordinal measures of association. J. Amer. Statist. Assoc., 53(284):814–861.
Lavielle, M. (2005). Using penalized contrasts for the change-points problems. Signal Processing, 85(8):1501–1510.
Lehmann, E. (1975). Nonparametrics: statistical methods based on ranks. Holden-Day Inc.
Lévy-Leduc, C. and Roueff, F. (2009). Detection and localization of change-points in high-dimensional network traffic

data. Ann. Applied Statist., 3(2):637–662.
Lung-Yut-Fong, A., Lévy-Leduc, C., and Cappé, O. (2012). Distributed detection/localization of change-points in

high-dimensional network traffic data. Statist. Comput., 22(12):485–496.
Möttönen, J., Oja, H., and Tienari, J. (1997). On the efficiency of multivariate spatial sign and rank tests. Ann. Statist.,

25(2):542–552.

Journal de la Société Française de Statistique, Vol. 156 No. 4 133-162
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



162 Lung-Yut-Fong, Lévy-Leduc and Cappé

Oja, H. (1999). Affine invariant multivariate sign and rank tests and corresponding estimates: a review. Scand. J.
Statist., 26(3):319–343.

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41:100–115.
Picard, F., Robin, S., Lavielle, M., Vaisse, C., and Daudin, J.-J. (2005). A statistical approach for array CGH data

analysis. BMC Bioinformatics, 6(1):27.
Poor, H. and Hadjiliadis, O. (2009). Quickest Detection. Cambridge University Press, Cambridge.
Siegmund, D. (1985). Sequential analysis. Springer Series in Statistics. Springer-Verlag, New York.
Srivastava, M. S. and Worsley, K. J. (1986). Likelihood ratio tests for a change in the multivariate normal mean. J.

Amer. Statist. Assoc., 81(393):199–204.
Talih, M. and Hengartner, N. (2005). Structural learning with time-varying components: tracking the cross-section of

the financial time series. J. Royal Statist. Soc. B, 67(3):321–341.
Tartakovsky, A., Nikiforov, I., and Basseville, M. (2014). Sequential Analysis : Hypothesis Testing and Changepoint

Detection. CRC Press, Taylor & Francis Group.
Tartakovsky, A., Rozovskii, B., Blazek, R., and Kim, H. (2006). A novel approach to detection of intrusions in

computer networks via adaptive sequential and batch-sequential change-point detection methods. IEEE Trans.
Signal Process., 54(9):3372 – 3382.

Topchii, A., Tyurin, Y., and Oja, H. (2003). Inference based on the affine invariant multivariate Mann-Whitney-
Wilcoxon statistic. J. Nonparametr. Stat., 15(4-5):403–419.

van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge University Press.
Vert, J. and Bleakley, K. (2010). Fast detection of multiple change-points shared by many signals using group LARS.

In Advances in Neural Information Processing Systems 23.
Wei, L. J. and Lachin, J. M. (1984). Two-sample asymptotically distribution-free tests for incomplete multivariate

observations. J. Amer. Statist. Assoc., 79(387):653–661.

Journal de la Société Française de Statistique, Vol. 156 No. 4 133-162
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238


	Introduction
	Testing for Homogeneity
	Two-sample homogeneity test
	Implementation Issues
	Discrete, missing or censored data

	Testing homogeneity within several groups of data
	Power of the homogeneity test in the two sample case

	Change-point estimation and detection
	Multiple change-point estimation
	Assessing the significance of the test in the single change-point case

	Numerical Experiments
	Illustration of the two-sample homogeneity test
	Properties of the change-point detection test
	Comparison with marginal decisions
	Robustness with respect to outliers

	Application to genomic hybridisation data

	Conclusion
	Proof of Theorem 1 
	 Proof of Theorem 2
	 Proof of Theorem 3
	 Proof of Corollary 1
	 Proof of Corollary 2
	Proof of (16)
	 Proof of Theorem 4
	References

