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Synopsis

We propose a new, minimal tensorial model attempting to clearly represent the role of mi-
crostructure on the viscosity of non-colloidal suspensions of rigid particles. Qualitatively,
this model proves capable of reproducing several of the main rheological trends exhibited
by concentrated suspensions: anisotropic and fore-aft asymmetric microstructure in sim-
ple shear and transient relaxation of the microstructure towards its stationary state. The
model includes only few constitutive parameters, with clear physical meaning, that can
be identified from comparisons with experimental data. Hence, quantitative predictions
of the complex transient evolution of apparent viscosity observed after shear reversals are
reproduced for a large range of volume fractions. Comparisons with microstructural data
shows that not only the depletion angle, but the pair distribution function, are well pre-
dicted. To our knowledge, it is the first time that a microstructure-based rheological model
is successfully compared to such a wide experimental dataset.

I. INTRODUCTION

Despite the apparent simplicity of the system, concentrated suspensions of non-colloidal,
rigid spheres in a Newtonian fluid display a rich and complex rheological behavior [1–3].
In the inertialess limit (zero Reynolds number), particle dynamics is essentially governed
by hydrodynamic interactions since lubrication forces prevent, in principle, direct contacts.
Linearity and reversibility of Stokes equation then lead to expect that the macroscopic
behavior of the suspension should remain Newtonian. Thus, numerous investigations doc-
umented the increase of the effective steady-state viscosity of suspensions with particle
volume fraction φ [3–5]. However, a wealth of experimental evidence also showed the ex-
istence of non-Newtonian rheological effects as soon as φ exceeds 0.2, typically. One of
the most prominent examples is the the existence of transient viscosity drops upon rever-
sal of the shearing direction [6–8]. There is nowadays a general agreement to relate these
non-Newtonian characteristics to flow-induced changes in the microstructure of the suspen-
sion [3, 9, 10]. The pair distribution function g(x), i.e. the likelihood of finding pairs of
particles at a separation vector x, has been shown to become anisotropic and lose fore-aft
symmetry under shear, with development of preferential concentration and depletion orien-
tations that depend on the volume fraction φ [11]. This asymmetry of the microstructure
is the hallmark of a loss of reversibility of the system that, again, contradicts expectations
based on Stokes equation. Although the precise mechanisms remain to be elucidated, it is
generally interpreted as resulting from chaotic dynamics induced by the nonlinearity of the
multi-body hydrodynamic interactions [12], and/or from even weak perturbations of the
hydrodynamic interactions by non-hydrodynamic near-contact forces [13, 14]. Note that
the asymmetric microstructure, and the associated normal stresses, are also at the origin of
the cross-stream particle migration process observed in these suspensions when the shear
rate is heterogeneous [15, 16].
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Since the pioneering work of Einstein [17], most rheological models for suspensions assume
an additive decomposition of the total Cauchy stress tensor σ into fluid and particle con-
tributions [2, 17, 18]. This decomposition naturally arises from mixture theories in which
macroscopic quantities are obtained from averages over both phases [19–21]. While the
fluid contribution is simply given by a Newtonian model (with the viscosity of the intersti-
tial fluid), closure relations are needed to express the particle stresses. Schematically, two
groups of models are found in the literature. The first group encompasses purely macro-
scopic approaches that do not contain explicit reference to the suspension microstructure,
apart from the volume fraction φ. The most popular representative of this class is the
suspension balance model (SBM), introduced in 1994 by Nott and Brady [22] (see also [15,
23]), in which particle stresses are expressed as the sum of a shear and a normal term
that are both linear in shear rate, with corresponding shear and normal viscosities given by
empirical functions of φ. By construction, SBM well reproduces experimental rheological
measurements obtained in stationary shear. It also leads to realistic predictions concerning
particle migration when the particle normal stresses are used as the driver of the migration
flux, even if this approach has been questioned [21, 24]. However, as a counterpart for its
simplicity, this model is devoid of any time or strain scale, and therefore unable to account
for transients observed during shear reversal experiments. In addition, earlier versions were
not invariant by changes of reference frame, although an ad hoc frame-invariant extension
has been proposed [16].
In the second group of models, particle stress is made explicitly dependent on the mi-
crostructure through the consideration of a local conformation tensor that is inspired from
the orientation distribution tensor defined for dilute fiber suspensions (see e.g. [25, 26]).
The conformation tensor, denoted be in this paper, is a second-order symmetric positive
definite tensor describing microstructure anisotropy. Hand [27] formulated a general repre-
sentation theorem for the total Cauchy stress tensor σ in term of the conformation tensor be
and the deformation rate tensor γ̇. This general representation should be closed by a con-
stitutive equation for the evolution of the conformation tensor be. An important constraint
is that the characteristic time associated to the evolution of be must scale inversely with
the deformation rate |γ̇| in order to ensure strain-scaling and rate-independence of the tran-
sients, as observed experimentally (see e.g. [8]) and imposed by dimensional analysis [9, 28].
Note that the rate-independence constraint leads to constitutive equations that are formally
similar to hypo-elastic models (see e.g. [29]). For concentrated suspensions of spherical par-
ticles, Phan-Thien [30] proposed a differential constitutive equation for the conformation
tensor, that led to prediction qualitatively in agreement with time-dependent experimental
observations in shear reversal [6, 7, 31]. The structural unit used to define the conformation
tensor was taken as the unit vector n joining two neighboring particles, thereby encoding a
direct connection with the pair distribution function g(x). Later, Phan-Thien et al. [32, 33]
went further with a micro-macro model inspired from statistical mechanics for the consti-
tutive equation of the conformation tensor, but no quantitative comparisons were obtained.
In 2006, Goddard [28] revisited this approach, and proposed a model involving twelve ma-
terial parameters and two tensors for describing the anisotropy. By a systematic fitting
procedure of the parameters, he obtained numerical results in quantitative agreement with
shear reversal experiments [7, 31]. Also in 2006, Stickel et al. [34] (see also [35, 36]) defined
the conformation tensor on the base of particle mean free path, and simplified the expres-
sion of the stress to be linear in the deformation rate and the conformation tensor. Their
model nevertheless also involves 13 free parameters. These authors obtained numerical re-
sults in qualitative agreement with a shear reversal experiment [7, 31], but failed to obtain
quantitative comparisons. In contrast with SBM model, all these tensorial models are, by
construction, frame-invariant and potentially applicable to arbitrary flow geometries and
conditions. As for polymer models, normal stress differences naturally arise from the use
of some objective derivative of the conformation tensor be (see [37]). The time-dependent
relaxation of this tensor, representing microstructure evolution, leads to transient responses
when the loading is varied. Nevertheless, these microstructure-based models are still rather
complex, and the identification of parameters is generally not obvious.
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This paper is a contribution to an ongoing effort for the development of more tractable
microstructure-based rheological models. With the least number of adjustable parameters,
the proposed model is relatively simple, yet capable of accounting both for the macro-
scopic non-Newtonian rheological features of non-colloidal suspensions and for the rate-
independent evolution of the microstructure. In particular, this model is able to describe
the experimentally observed anisotropic effects expressed by the pair-distribution function.
It also qualitatively and quantitatively agrees, for a wide range of volume fraction, with
experimental data for time-dependent shear reversals.
The outline of the paper is as follows. The second section concerns model statement. The
third section turns to predictions in stationary shear and validation against experimental
data for microstructure anisotropy and depletion angle. Section 4 deals with time-dependent
flows, specifically shear reversals, and present comparisons with experiments for the appar-
ent viscosity. Finally, the last section develops a discussion and a conclusion.

II. MATHEMATICAL MODEL

A. Rheological model

As illustrated in Fig. 1, a key feature of the microstructure of sheared suspensions is the
existence of preferential directions along which the average inter-distance between particles
varies: particles are closer along the compression axis, and farther apart along the depletion
axis. In inertialess systems, these preferential directions depend on the concentration φ, but
not on the deformation rate |γ̇| (see [11]). The rheological model developed in this work
is purely macroscopic, and hence no attempt is made at deriving a microscopic evolution
equation for the microstructure. However, to clarify the physical meaning of the conforma-
tion tensor be used in the sequel, and to provide a direct link with the microstructure, the
following definition is proposed:

be = d20〈ℓ⊗ ℓ〉−1, (1)

where ℓ is the branch vector joining the centers of two neighboring particles, and d0 is
the average distance between neighboring particle centers in an isotropic configuration at
rest. In what follows, the isotropic configuration at rest will be referred to as the reference

configuration. In concentrated suspensions, d0 is close to 2a, where a denotes particle
radius, since particles are in near-contact. The choice of an inverse relation between be and
〈ℓ⊗ℓ〉 in (1) is motivated by the wish to have a conformation tensor whose largest principal
direction is aligned with the depletion axis of the microstructure (Fig. 1). The use of ℓ as
the main microstructural unit is notably different from the approach followed in most earlier
studies, which define a fabric tensor 〈n ⊗ n〉 based on the unit vector joining neighboring
particles, n = ℓ/|ℓ| [3, 28, 32, 33, 38]. In particular, while the trace of the tensor 〈n⊗ n〉
is by construction equal to one, the 〈ℓ ⊗ ℓ〉 tensor and the present be conformation tensor
do not have such a constraint, and thus present additional degrees of freedom.
To couple the conformation tensor be with a rheological model, we introduce a deformation
γe defined as:

γe = be − I

where I is the identity tensor. For an isotropic microstructure at rest, i.e. the reference
configuration, we have be = I, and thus γe = 0. Hence, γe can be interpreted as the average
deformation of the local cages formed by neighboring particles, with respect to the reference
configuration. Note that a similar concept of cages formed by nearest neighbors was already
introduced by [34]. We then assume that the total deformation of the suspension γ can
be decomposed into the sum of the cage deformation γe and of a viscous deformation γv,
which represents the global rearrangements of neighboring particles through the flow:

γ = γe + γv (2)
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FIG. 1. (left) Schematic representation of the branch vectors ℓ joining neighboring particles
in a sheared suspension. (right) Representation of the local conformation tensor be by an ellipse.
The compression axis is in red and the depletion axis is in green. Background photography taken
from [39], Fig. 4.7 (φ = 0.55).

The next step is to write a constitutive equation for the variable γe. To that aim, we define
a local stress, denoted as τ e, and assume the following relation between τ e and γe:

τ e = ηg|γ̇|γe (3)

where the tensorial norm |ξ| is defined as |ξ| = [(1/2)ξ : ξ]1/2 for any second-order tensor ξ.
Observe that this expression is linear with respect to γe and involves a factor ηg|γ̇| that
ensures rate-independence of the constitutive relation. Here, ηg is a constant coefficient
with the dimension of a viscosity. This local stress τ e is also assumed to be linearly related
to the rate of viscous deformation γ̇v through:

τ e = ηeγ̇v (4)

where ηe > 0 is an associated viscosity. Finally, differentiating (2), replacing γ̇v from (4)
and using (3), the following linear differential equation is obtained for γe:

γ̇e +
ηg
ηe

|γ̇|γe = γ̇

The previous constitutive equation is completed by the following expression for the total
Cauchy stress tensor of the suspension:

σ = −pfI + ηγ̇ + τ

where τ = ηg|γ̇|γe + ηd(γe ⊗ γe) : γ̇

The first term involves pf , the pressure in the fluid phase. The second term represents the
base viscosity of the suspension, expressed here by η > 0. Finally, the third term represents
the microstructure stress τ . This microstructure stress itself expresses as the sum of the
local stress τ e and of a quadratic term with respect to γe. Such quadratic terms commonly
derive from the closure of a fourth-order structure tensor in statistical micro-macro models
for spherical or fiber suspensions (see e.g. [25, 26]). It involves an additional parameter ηd
with the dimension of a viscosity. Note that this last term writes equivalently ηd(γ̇ :γe)γe

and, thus, the two tensors τ and γe are co-linear and share the same eigensystem. The
influence of this additional quadratic contribution will be analyzed in the following.
In the present model, the total stress is thus split into the stress that would be observed for
an isotropic microstructure (the base viscosity), and the stress induced by the anisotropic
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arrangement of the microstructure (represented by τ ). This stress decomposition could ap-
pear similar to the decomposition σ = σf + σp between fluid σf and particle σp stresses,
used in classical mixture theories [20] and in most suspensions models, such as SBM [10,
22]. It shall be emphasized however that, in our approach, the base viscosity η also con-
tains a contribution from the particle phase. More precisely, for the present model, we
have σf = −pfI + η0γ̇ and σp = (η − η0)γ̇ + τ , where η0 is the viscosity of the suspending
fluid. Roughly, the base viscosity η can be seen as accounting for long-range hydrodynamic
interactions between particles, while the microstructure stress τ accounts for short-range,
hydrodynamic and contact, interactions. As a consequence, we expect all the parameters
of the model, including η, ηe, ηg and ηd to depend on volume fraction φ. Finally, also
recall that tr(γe), and thus tr(τ ), are not necessarily zero, such that the microstructure
stress τ may also contribute to the total pressure p = −(1/3)tr(σ) of the suspension. In-
deed, p = pf + pp with pp = −(1/3)tr(σp) = −(1/3)tr(τ ), as the mixture is assumed to be
isochoric with tr(γ̇) = 0.
The time derivative γ̇e is given by the upper-convected tensor derivative (see e.g. [37],
chap 4), denoted hereafter Dγe/Dt:

Dγe

Dt
=

∂γe

∂t
+ (u.∇)γe −∇uγe − γe∇uT

The deformation rate γ̇ is identified to two times the symmetric part of the velocity gradient
tensorD(u) = (∇u+∇uT )/2, where u is the velocity field of the mixture. The constitutive
equations thus become:

Dγe

Dt
+ α|2D(u)|γe = 2D(u) (5a)

σ = −pfI + 2ηD(u) + ηe {α|2D(u)|+ β(D(u) :γe)}γe (5b)

where α = ηg/ηe and β = 2ηd/ηe are dimensionless parameters. These constitutive equa-
tions can be seen as a rate-independent variant of a viscoelastic Oldroyd [40] model with
an additional quadratic term for the total stress. Rate-independence is guaranteed by the
the use of an “effective elastic modulus” ηg|γ̇| proportional to the deformation rate.

B. Problem statement

Coupling the above constitutive model with the mass and momentum conservation equations
of the mixture, the problem can be formulated as a system of three equations for three
unknowns: γe, the particle cage deformation; u, the mixture velocity; and pf , the pressure
in the fluid phase:

Dγe

Dt
+ α|2D(u)|γe − 2D(u) = 0 (6a)

ρ
Du

Dt
− div {−pfI + 2ηD(u) + αηe|2D(u)|γe + βηe(D(u) :γe)γe} = ρg (6b)

divu = 0 (6c)

The isochoric relation (6c) of the mixture is a consequence of mass conservation of the
fluid and solid phases. From a mathematical point of view, the fluid pressure pf acts
as a Lagrange multiplier associated to this isochoric constraint. The problem is closed by
suitable initial and boundary conditions. In (6b), D/Dt = ∂/∂t+ u.∇ denotes the Lagrange
derivative and ρ is the density of the mixture. From Hulsen [41], it is possible to show that
the constitutive equation (6a) leads to a conformation tensor be = I + γe that is always
positive definite. Note that the volume fraction φ, and hence ρ, are supposed to be constant
during the flow: in agreement with experimental evidences [3], we assume the time scale
for migration to be large compared to the typical time scales for microstructure evolution,
and focus here on the short-time response of the suspensions. Otherwise, the system could
be also coupled with an additional diffusion equation for the volume fraction [23].
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III. STATIONARY SHEAR FLOWS AND MICROSTRUCTURE ANISOTROPY
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FIG. 2. (left) Depletion angle θe versus volume fraction φ: experimental data from [39], Fig. 5.11,
and best fit with the second-order polynomial (10). (right) Dependence upon φ of model parameter
α.

Let us consider a simple shear flow. The x axis is in the flow direction and the y axis is in
the direction of the gradient ∇ = (0, ∂y, 0). Let u(t, x, y, z) = (ux(t, y), 0, 0) be the velocity
and γ̇(t) = ∂yux be the spatially uniform shear rate. The constitutive equations (5a)-(5b)
become, after expanding the upper-convected derivative [37] (chap. 4):

∂tγe,xy + α|γ̇|γe,xy = γ̇ (7a)

∂tγe,xx − 2γ̇γe,xy + α|γ̇|γe,xx = 0 (7b)

∂tγe,yy + α|γ̇|γe,yy = 0 (7c)

∂tγe,zz + α|γ̇|γe,zz = 0 (7d)

σxy = αηe|γ̇|γe,xy + βηeγ̇γ
2
e,xy + ηγ̇ (7e)

σxx = αηe|γ̇|γe,xx + βηeγ̇γe,xyγe,xx (7f)

completed by an initial condition for γe. For simplicity, we assume an isotropic microstruc-
ture at t = 0. Hence, γe,yy(0) = γe,zz(0) = 0, which yields γe,yy(t) = γe,zz(t) = 0 for all
t > 0. Similarly, γe,xz(0) = γe,yz(0) = 0.
We first focus on a stationary simple shear flow where the shear rate is supposed to be
constant and is denoted γ̇0. In that case, the solution writes explicitly:

γe,xy = sgn(γ̇0)α
−1, γe,xx = 2α−2 (8a)

σxy =
(

η + (1 + βα−2)ηe
)

γ̇0 (8b)

σxx = 2α−1(1 + βα−2)ηe|γ̇0| (8c)

Observe that the model predicts a normal stress component proportional to the shear
rate |γ̇0|. This feature is in agreement with several experimental observations [4]. In con-
trast, most classical viscoelastic models, such as Maxwell and Oldroyd models, predict
normal stresses in shear flows proportional to γ̇2

0 [37] (p. 157). In the present model, normal
stresses proportional to |γ̇0| arise from the use in (3) of an “effective elastic modulus” that
is itself proportional to |γ̇0|, as required to obtain a rate-independent rheological behavior.
The particle pressure pp = −tr(τ )/3 is given by, for the present stationary simple shear
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flow:

pp = −(2/3)α−1(1 + βα−2)ηe|γ̇0| (8d)

Thus, pp is also proportional to the shear rate |γ̇0|, again in agreement with experimental
observations [42]. Finally note that, from (8b), the shear stress component σxy also scales
linearly with γ̇0, as expected.
Let us now turn to microstructural aspects, described by the particle cage deformation
tensor γe. As we only consider stationary simple flows in this paragraph, we can assume
without loss of generality that γ̇0 > 0. From (8a), the eigenvector associated to the largest
eigenvalue of the tensor γe, makes an angle with the x axis denoted as θe and given by:

θe = atan

(

−1 +
√
1 + α2

α

)

=
1

2
atan(α)

⇐⇒ α = tan(2θe) (9)

Since be = I + γe, the tensors be and γe share the same eigensystem. The angle θe is thus
also associated to largest eigenvalue of be, i.e. to the dilation direction of the microstructure:
in this direction, the probability to find two particles in contact is the smallest, and θe thus
corresponds to the so-called depletion angle. Experimental data for the depletion angle θe
versus volume fraction φ are presented by Blanc [39], Fig. 5.11, and are reproduced on Fig. 2
(left), together with a best fit using a second-order polynomial denoted by θe(φ). Assuming
θe(0) = 0 and θe(φm) = π/4, with φm the maximum volume fraction of the suspension, the
second-order polynomial template can be expressed as:

θe(φ) = δeφ+
(π

4
− δeφm

)

(

φ

φm

)2

(10)

where φm = 0.571 and δe = 0.661 are adjusted through a nonlinear least square method, as
implemented in gnuplot [43]. Through (9), the dependence upon φ of the α parameter of
the present model is thus directly deduced from the experimental data (see Fig. 2, right):

α(φ) = tan
(

1.32φ+ 2.48φ2
)

(11)

FIG. 3. Pair distribution function g(x, y): experimental observation by Blanc et al. [11] for a
stationary shear flow with φ = 0.35.

In experiments or in numerical simulations, the microstructure of suspensions is generally
represented through the pair distribution function g(x). As an example, Fig. 3 shows,
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for a suspension at φ = 0.35 submitted to a a stationary shear flow, the experimentally-
determined evolution of g(x) in the shear plane (x, y) [11]. Recall that g(x) is the conditional
probability, when there is already a particle in x0 = 0, to find a particle at any location
x ∈ R

2, normalized by the average particle density φ/(4πa3/3) (where a is particle radius).
Observe on Fig. 3 that g is zero in the central disk of diameter 2a, due to non-penetration of
particles. It is maximum in a thin band [2a, 2a+ δ], and then tends to 1 when the distance
increases. Most of the relevant microstructure information is encoded in this thin band,
whose thickness δ is sufficient to include contact and near-contact interactions, and which
thus describes the average arrangement of neighboring particles [9, 10]. Switching to polar
coordinates (r, θ) in the shear plane, we assume, in order to simplify the modeling of g,
that this function only depends upon θ in the thin band. We thus introduce its average
value, denoted as g̃(θ), in radial direction in the thin band, and the associated probability
distribution function p(θ) such that

p(θ) =
g̃(θ)

∫ π

−π g̃(θ) dθ

This distribution p(θ) is interpreted as the probability to find, for each particle in the suspen-
sion, a neighboring particle in the θ direction inside the thin band. Assuming furthermore
that the probability to find a neighboring particle outside the thin band is negligible, p(θ)
can be related to the fabric tensor 〈n⊗ n〉 introduced in section IIA as follows:

〈n⊗ n〉 =
∫ θ=π

θ=−π

n⊗ n p(θ) dθ (12)

where n(θ) = (cos θ, sin θ) is the unit outward normal vector to the unit circle. Observe
that, as expected,

tr 〈n⊗ n〉 =
∫ π

−π

p(θ) dθ = 1

since p is a probability distribution. Accordingly, from (1), we can thus postulate the
following relation between p(θ) and the conformation tensor be introduced in our model:

∫ θ=π

θ=−π

n⊗ n p(θ) dθ =
b−1
e

tr
(

b−1
e

) (13)

As shown in appendix A, for a given conformation tensor be, (13) can be used to reconstruct
the probability distribution p(θ) through a Fourier mode decomposition.
From (13), the first Fourier mode of p(θ) can be expressed explicitly in terms of the pa-
rameter α and the depletion angle θe: see appendix A, relation (A3). This prediction is
compared on Fig. 4 with experimental data from Blanc [39], Figs. 5.9 and 5.10. Observe
that both predicted (in black) and experimental (in dotted-red) curves present two main
lobes, separated by the depletion angle direction. The experimental probability distribution
is however also affected by higher-frequency modes, which are are potentially very sensitive
to both experimental errors from image preprocessing and the choice of the width of the
thin band [2a, 2a + δ] used to integrate the pair distribution function, as pointed out by
Blanc [39], Fig. 5.6. Fig. 5 represents the five first Fourier coefficients of the experimental
data. Observe in general the rapid decrease of these coefficients, as expected. However,
when the volume fraction φ becomes close to the maximal fraction φm, the second mode
dominates. A similar behavior has already been experimentally observed for dry granular
material [44], and can be explained by steric exclusion of neighbors. This second Fourier
mode cannot be determined by the present model, as explained in appendix A.
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FIG. 4. Probability distribution function p(θ), represented in polar coordinates as r = p(θ).
Comparison between model prediction (black curve) and experimental data (red dotted-curves) by
Blanc [39], Fig. 5.10. The experimental pdfs are obtained as radial averages of the pair distribution
function in the thin band corresponding to r/a ∈ [1.87, 2.14]. The depletion angle is indicated
by an arrow and its value is given in degrees. The dotted blue circle represents the equiprobable
(isotropic) distribution p(θ) = 1/(2π).

IV. TIME-DEPENDENT SIMPLE SHEAR FLOWS

A. Shear startup, reversal and pause

For simple shear flows, the problem reduces to the time-dependent linear system of ordinary
differential equation (7a)-(7f). For a constant applied shear rate γ̇0, the system can be
explicitly solved by performing the change of variable γ = |γ̇0|t, where γ represents the
deformation. The solution writes:

γe,xy(γ) =
(

1−e−αγ
)

sgn(γ̇0)α
−1 + e−αγγe,xy(0) (14a)

γe,xx(γ) =
(

1−e−αγ
)

2α−2 + e−αγ
{

γe,xx(0)+2γ(sgn(γ̇0)γe,xy(0)−α−1)
}

(14b)

and, then, the total tress tensor σ is explicitly given by (7e)-(7f).
For a startup from a material at rest at t = 0 with an isotropic microstructure, we have
γe(0) = 0. If a constant shear rate γ̇0 > 0 is imposed for t > 0, the solution (14a)-(14b)
becomes:

γe,xy(γ) =
(

1− e−αγ
)

α−1

γe,xx(γ) =
(

1− e−αγ
)

2α−2 − e−αγ2α−1γ

As shown on Fig. 6, this solution displays an exponential relaxation towards the steady
state solution. Remark that the graph of the solution versus shear deformation γ = γ̇0t,
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FIG. 5. Five first Fourier coefficients pk, k > 1 of the probability distribution function p(θ), from
experimental data by Blanc [39], Fig. 5.10, for φ = 0.3, 0.4 and 0.5.

0

1/α

2/α2

0 1 2 3 4

γ = γ̇0t

γe,xy
γe,xx

FIG. 6. Shear startup from rest: exponential relaxation of the γe tensor components versus shear
deformation γ = γ̇0t (with α =

√
3).

is invariant when changing the value of shear rate γ̇0 > 0. This constitutes a fundamental
property of rate-independent materials.
Let us now turn to a case of shear reversal: the material is first sheared with a negative shear
rate −γ̇0 until a first stationary regime is reached. Then, at t = 0, the shear rate is suddenly
reversed to the opposite value +γ̇0 > 0. In that case, γe,xy(0) = −α−1, γe,xx(0) = 2α−2 and
the solution (14a)-(14b) becomes:

γe,xy(γ) =
(

1− 2e−αγ
)

α−1

γe,xx(γ) =
(

1− e−αγ
)

2α−2 + e−αγ(2α−2 − 4α−1γ)

As shown on Fig. 7, at t = 0, the particle cages, represented by the conformation tensor
be = I + γe as an ellipse, start to rotate towards a symmetrically opposite position. Ac-
cording to (9), the depletion angle increases from θe(0) = −atan(α)/2 at t = 0 to reach

asymptotically its new value θe(∞) = +atan(α)/2. With the choice α =
√
3 made in Fig. 7,

we have θe(∞) = π/6. The depletion angle is expressed at any γ = γ̇0t from the γe tensor
components by:

θe(γ) = atan





−γe,xx(γ) +
√

γ2
e,xx(γ) + 4γ2

e,xy(γ)

γe,xy(γ)




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be = I + γ
e

−

π

6

0

π

6

θe

−

1

α

0

2

α2

0 γ∗ 1 2

γ = γ̇0t

γe,xy
γe,xx

FIG. 7. Shear reversal at t = 0: evolution versus shear deformation γ = γ̇0t of the conformation
tensor be = I+γe represented as an ellipse. Eigenvector associated to compression (resp. dilation),
i.e. to the smallest (resp. largest) eigenvalue of be, is represented in red (resp. green). On the
bottom, plots for the depletion angle θe(t), and the γe tensor components versus shear deformation
γ = γ̇0t. (Parameter α is taken as

√
3 in this plot.)

A Taylor development for small γe,xy(γ) shows that θe(γ) vanishes when γe,xy(γ) = 0, i.e.
when the shear deformation is equal to the critical value γ∗ = α−1 log(2). For this critical
deformation, the ellipse axis associated to the largest eigenvalue (in green on Fig. 7), is
horizontal with γe,xy(γ∗) = 0 and γe,xx(γ∗) = 2(1 − log(2))α−2 > 0. It means that the
microstructure temporarily presents a fore-aft symmetry, but is not isotropic, i.e. be 6= I

when γ = γ∗. Fig. 7 also plots separately the two components γe,xy and γe,xx of the
tensor: observe that tr(γe) = γe,xx is not constant during the reversal. This constitutes
an important difference with approaches based on a fabric tensor 〈n ⊗ n〉 that always has
trace equal to one [3, 28, 32, 33, 38].
For a general γ̇(t) evolution, the system of ordinary differential equations (7a)-(7f) is solved
using lsode library [45], as interfaced in octave software [46]. Fig. 8 plots the response in
stress components and depletion angle when applying a succession of startups and reversals,
possibly separated by pauses. In agreement with experimental observations [7] (Fig. 3),
when the imposed shear rate changes from γ̇0 6= 0 to zero, i.e. during a pause, both particle
pressure pp = −tr(τ )/3 = −τxx/3 and shear stress σxy instantaneously fall to zero. Observe
however that the depletion angle remains constant during the pause: the microstructure is
conserved. This latter feature can be deduced from constitutive equation (5a), which simply
reduces to Dγe/Dt = 0 when the shear rate is zero. After a pause, if the shear restarts
suddenly in the same direction, experimental observations [7] (Fig. 3) showed that both
particle pressure pp = −τxx/3 and shear stress σxy jump instantaneously to their previous
stationary values. Conversely, if the shear rate restarts suddenly in the direction opposite
to its previous value, e.g. −γ̇0, experimental observations by Narumi et al. [31], Fig. 3,
showed that particle pressure pp progressively increases from zero to its previous stationary
value while shear stress σxy progressively decreases from zero to the opposite of its previous
stationary value. As shown on Fig. 8, all these features are remarkably well captured by
the present model.
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−γ̇0

0
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γ̇(t)

−

π
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π
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γ(t) = γ̇0t

σxy(t)
σxx(t)

FIG. 8. Shear evolution with pauses, startups and reversals: evolution of imposed shear rate,
depletion angle, and stress components versus shear deformation (choice of parameters: α =

√
3,

β = 5, ηe = 10 Pa.s, η = 10 Pa.s).

The apparent viscosity of the suspension is defined as ηapp = σxy/γ̇. From (7e), we obtain:

ηapp(γ) = η + ηeγe,xy(γ) (α+ βγe,xy(γ)) (15)

Notice that the apparent viscosity is independent of the shear rate. Fig. 9 presents the
evolution of apparent viscosity for a shear reversal, together with a sensitivity analysis to
the model parameters. The apparent viscosity shows three regimes after the shear rever-
sal: First, an instantaneous decrease is observed. The apparent viscosity then continues to
decrease with a smooth shape until a minimum is reached. Finally, the apparent viscosity
increases and relaxes exponentially to its stationary value. As shown in Fig. 9, these differ-
ent regimes are diversely affected by the model parameters α, β, ηe and η. The parameter
α controls the relaxation of the solution to its stationary value: the larger α, the faster
the solution reaches the stationary regime. In fact, α−1 interprets as a characteristic defor-
mation for reaching the stationary regime. The parameter β controls the existence of the
smooth minimum and the shape of the curve around this minimum. When β = 0, there is
no smooth minimum, and the apparent viscosity is monotonically increasing immediately
after the shear reversal. The viscosity ηe influences the stationary plateau, while the min-
imum remains unchanged. Finally, the parameter η globally shifts the apparent viscosity:
note that this effect is obvious when considering (15).

B. Comparison with experiments

We quantitatively compared our model to the unsteady shear flow experiments of Blanc [39],
sec 3.3 (see also [8, 11, 47]). This author performed shear reversal experiments in a Couette
rheometer. The suspensions were prepared with polymethyl methacrylate (PMMA) spher-
ical particles in a Newtonian oil at various volume fractions φ ranging from 0.30 to 0.50.
The experiments were performed at an imposed torque whose value was adjusted in order
to obtain, for each volume fraction, similar angular velocities in the stationary regime. All
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FIG. 9. Apparent viscosity during shear reversal: sensitivity of the response to the model param-
eters (base value of the parameters: α =

√
3, β = 5, ηe = 10 Pa.s, η = 10 Pa.s).

description unit symbol value

fluid viscosity Pa.s η0 1.03

outer radius m Re 2.4 10−2

inner radius m Ri 1.4 10−2

height m L 4.5 10−2

torque N.m Tm imposed

angular velocity s−1 ω measured

shear stress Pa σxy

0.818 × Tm

2πLR2
c

shear rate s−1 γ̇
ωRi

Re −Ri

TABLE I. Parameters of the shear reversal experiments of Blanc [39].

geometrical and material parameters of the experiments are summarized in Table I. Note
that, experimentally, the suspensions have been found to be slightly shear-thinning, with a
power index on the order 0.9 (see [39]). This slight shear-thinning is not considered in the
following comparison with our model.
Neglecting the variations inside the gap, we assume the shear rate as uniform and consider
this experiment as a simple shear flow. The problem is then described again by (7a)-(7f),
where now σxy is imposed and γ̇ is unknown. Observe that, based on relation (7e), the
unknown shear rate γ̇ expresses explicitly in terms of the unknown γe,xy and the given data
σxy (see appendix B). This expression can then be inserted in (7a), yielding a nonlinear
scalar ordinary differential equation for γe,xy. This equation does not admit, to our knowl-
edge, an explicit solution and should be solved numerically. As in the previous paragraph,
the numerical procedure uses lsode library [45].
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FIG. 10. Shear reversal: apparent viscosity ηapp vs deformation γ. Comparison between experi-
mental measurements from Blanc [39] for a suspension of PMMA particles in a Couette geometry
and computations with the present model. For each volume fraction φ, the three model parameters
β, ηe, and η were obtained through a best-fit procedure. Parameter values are indicated in Table II.

The present model involves four parameters that need to be determined: α, β, ηe and η.
The α parameter has been already identified for this experimental setup, and its depen-
dence upon φ is given by (11). For each volume fraction, identification of the three other
parameters can be performed based on the evolution of the apparent viscosity ηapp = σxy/γ̇
during the shear reversals, as illustrated in the previous sensitivity analysis.
Fig. 10 presents direct comparisons between model prediction and experimental measure-
ments of the apparent viscosity. Observe that the sudden decrease of the apparent viscosity
the after shear reversal, and its relaxation to the stationary value, are qualitatively and
quantitatively very well reproduced by the present continuous model, and this for the dif-
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φ Tm (10−3 Nm) α β ηe (Pa.s) η (Pa.s)

0.30 0.07 0.715 0.79 0.35 3.5

0.40 0.10 1.33 1.5 2.9 6.6

0.44 0.25 1.80 3.0 9.9 11.5

0.47 0.50 2.37 5.3 21 17

0.50 2.00 3.38 9.3 97 79

TABLE II. Model parameters used to fit the experiments of Blanc [39].

ferent volume fractions investigated. For φ = 0.47, the apparent viscosity measured during
the experiments displays a very slowly increasing trend for large deformations γ. This fea-
ture, which is obviously not captured by the model, could be due to slow migration of the
particles induced by the small variations of the shear rate in the Couette gap.
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data

β(φ)
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1− φ/φm
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η(φ)

η0(1 + 5φ/2)

FIG. 11. Evolution with φ of the model parameters β, ηe, and η, and best fits provided by
expressions (16a)-(16c).

Table II summarizes, for each volume fraction, the values of the four adjustable parameters
α, β, ηe and η provided by the fitting . Fig. 11 shows the dependency upon φ of the
parameters β, ηe and η. The regularity of these dependencies suggests the existence of



16 A new non-colloidal suspension model

φm δe (rad) β̄ η̄e (Pa.s) ω

0.571 0.661 0.152 0.0213 0.652

TABLE III. Fitting parameters involved in expressions (10) and (16a)-(16c).

material functions with the following forms:

β(φ) = β̄

(

1− φ

φm

)−2

(16a)

ηe(φ) = η̄e

(

1− φ

φm

)−4

(16b)

η(φ) = η0

(

1−ω+

(

5

2
− 2ω

φm

)

φ+ω

(

1− φ

φm

)−2
)

(16c)

Hence, β and ηe vs φ are expressed by simple power-law dependencies diverging at φ = φm,
where φm is the maximum volume fraction of the suspension. Expression (16c) for η(φ) is
an original extension of Krieger and Dougherty [48]’s rule, associated to the −2 power-law
index, where ω is a balance parameter. Note that, when volume fraction is small, the first
order development of (16c) coincides with Einstein [17]’s rule η(φ)/η0 = 1 + 5φ/2 + O(φ2)
for any value of φm and ω ∈ [0, 1]. Best-fitted values of all the material parameters involved
in (16a)-(16c) are indicated in Table III. Lastly, recall that the evolution of α upon φ was
obtained independently, and is given by (11).

V. DISCUSSION AND CONCLUSIONS

This paper proposes a minimal tensorial model attempting to clearly represent the role
of microstructure on the apparent viscosity of non-colloidal suspensions of rigid particles.
The contribution to the total stress of the suspension of local anisotropic particle arrange-
ments, is accounted for through a specific microstructure stress. This microstructure stress
is expressed as a function of a local conformation tensor, whose evolution is governed by
a rate-independent viscoelastic-like differential equation. Qualitatively, this model proves
capable of reproducing several important non-Newtonian trends exhibited by concentrated
suspensions. First, the development of an anisotropic, and fore-aft asymmetric, microstruc-
ture in simple shear is well captured by the conformation tensor. As expected, the sta-
tionary microstructure is independent of shear rate (see (9)). The depletion angle, which
corresponds to the largest eigenvalue of the the conformation tensor, is a function of a sin-
gle model parameter α that can be adjusted to fit experimental observations. Second, in
time-dependent cases, the model predicts transient responses associated to the progressive
relaxation of the microstructure towards its stationary state. In agreement with experimen-
tal observations, these transient responses occur for shear reversals (due to the associated
reversal of anisotropy direction), but not for changes of shear rate with the same sign
(since microstructure is rate-independent). Also in agreement with experiments, the mi-
crostructure remains frozen during shear pauses, and its evolution during the transients is
fully controlled by the shear deformation. The critical deformation to reach the stationary
regime is directly related, again, to the parameter α.
Overall, the model presented here includes only 4 constitutive parameters. Besides α, two
viscosities η and ηe represent the base viscosity of the suspension for an isotropic microstruc-
ture and the excess viscosity induced by microstructure anisotropy, respectively, while the
non-linearity parameter β controls the early stage of the transients. This limited number
of parameters, and their clear physical meaning, is an advantage compared to most pre-
vious microstructure-based rheological models proposed in the literature [28, 32, 34]. In
particular, parameter identification for quantitative comparisons with experimental data is



A new non-colloidal suspension model 17

relatively straightforward. We showed that the model is capable of quantitatively repro-
ducing the complex transient evolution of apparent viscosity observed after shear reversals
for a large range of volume fractions. Both the immediate response, characterized by an
instantaneous drop followed by a smooth minimum, and the subsequent exponential relax-
ation, are well captured. Note that the quadratic term in (5b), and the parameter β, are
essential to obtain the smooth minimum observed in experimental data. To our knowledge,
it is the first time that a microstructure-based rheological model is successfully compared
to such a wide experimental data set. This comparison allowed us to derive material func-
tions for the evolution of the constitutive parameters with volume fraction. Noteworthily,
the values of the parameter α were determined from microstructure data (depletion angle),
and then applied without adjustment to model the transient response. This validates the
use of a single parameter controlling both microstructure anisotropy and the characteristic
deformation during transients.
As a further quantitative validation, the model also proved capable of reproducing not only
the depletion angle, but the overall shape of the pair distribution function. Here also, it
is the first time, to our knowledge, that a continuous model is used to obtain detailed
microstructural predictions in agreement with experimental data. Accounting for higher-
frequency modes would further improve the prediction of the pair distribution function both
for high and low values of the volume fraction, but would require the consideration of higher-
order structure tensors in the model. Other promising prospects include the addition of a
friction term to the microstructure stress, which could prove important for modeling volume
fractions close to φm and/or experiments performed at imposed particle pressure [49].
Future works shall also consider in more details the issue of normal stresses. Indeed, another
important non-Newtonian rheological feature exhibited by non-colloidal suspensions is the
development of normal stress differences in simple shear flow, with negative values of N2,
an ongoing debate concerning the sign of N1, and a ratio |N2/N1| on the order of three,
typically [4, 50–53]. In agreement with experimental observations, our model effectively
predicts that microstructure anisotropy is associated to the existence of normal stresses
proportional to shear rate. However, expressions of stresses in simple shear lead to N2 = 0
and N1 > 0 (see (8c)). As a consequence, the particle pressure pp, expressed in (8d), has a
sign opposite to that expected. This indicates that, although the minimal model presented
here is capable to reproduce microstructure evolutions, additional degrees of freedom would
be needed to capture the full rheological behavior of suspensions. These improvements
will be required to consider, e.g., more complex non-viscosimetric flows such as extensional
flows [54] or flows around an obstacle [55, 56]. These improvements are also required in
order to predict particle migration, by considering the microstructure stress τ as the driver
of the particle flux, through an approach analogous to SBM [16].
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Appendix A: Computation of the probability distribution function

Let µ± be the two eigenvalues of the fabric tensor 〈n⊗ n〉, with µ− 6 µ+ and
e− = (cos(θe), sin(θe)) and e+ = (− sin(θe), cos(θe)) the two corresponding eigenvectors,
where θe is the depletion angle. Expressing (12) in the eigenbasis, observing that
n.e− = cos(θ − θe) and n.e+ = sin(θ − θe), we get:

∫ π

−π

cos2(θ − θe) p(θ) dθ = µ− (A1a)

∫ π

−π

sin2(θ − θe) p(θ) dθ = µ+ (A1b)

Note that, by construction, p(θ) is even (see Fig. 3). Then, expressing p(θ) in terms of a
Fourier series as:

p(θ) =
∑

k>0

pk cos(2k(θ − θe))

where pk ∈ R, k > 0 are the Fourier coefficients, we obtain from (A1a)-(A1b), after com-
putation of the integrals, that p0 = 1/(2π) and p1 = −(µ+ − µ−)/(2π). The coefficients pk
for k > 2 remain undetermined. Observe from Fig. 5 that, in experimental data, these
coefficients present a fast decrease. By retaining only the two first coefficients, the present
model is able to predict the following probability distribution:

p(θ) =
1

2π
(1− (µ+ − µ−) cos{2(θ − θe)}) (A2)

Note that such expression was previously used by Troadec et al. [44], eqn (1). Remark that
θe minimizes p(θ): as expected, the depletion angle is the direction where the probability
to find a neighbor particle is minimal.
In the present model, the fabric tensor is expressed from (13) by 〈n⊗ n〉 = b

−1
e /tr

(

b
−1
e

)

with be = I + γe. Accordingly, the two eigenvalues of the fabric tensor 〈n⊗ n〉 are

µ+ =
(1 + λ−)

−1

(λ+ + 1)−1 + (λ− + 1)−1
and µ− =

(1 + λ+)
−1

(λ+ + 1)−1 + (λ− + 1)−1

where λ± denotes the two eigenvalues of γe. From (8a), we have λ± =
(

1±
√
1 + α2

)

/α2.

Then µ+ − µ− = 1/
√
1 + α2 and the previous relation (A2) writes explicitly in terms of the

model parameter α only:

p(θ) =
1

2π

(

1− 1√
1 + α2

cos(2(θ − θe))

)

(A3)

where θe is expressed explicitly versus α by (9).

Appendix B: System of ODE for imposed stress

Assuming a strictly positive apparent viscosity, we have sgn(γ̇(t)) = sgn(σxy(t)) for all time
t > 0 and relation (7e) leads to the following explicit expression of the shear rate γ̇ versus
the given shear stress σxy and the unknown γe,xy:

γ̇(t) =







σxy(t)

η + ηe
(

α sgn(σxy(t))γe,xy(t) + βγ2
e,xy(t)

) when σxy(t) 6= 0

0 otherwise

(B1)

This expression of the shear rate γ̇ is replaced in (7a)-(7b) and we then obtain a nonlinear
ordinary differential equations (ODE) in terms of the two unknowns γe,xy and γe,xx. These
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EDO are closed by two initial conditions γe,xy(0) = sgn(σxy(0))α
−1 and γe,xx(0) = 2α−2.

For the shear reversal, σxy(0) is chosen and σxy(t) = −σxy(0) for all t > 0. For the shear
reversal experiments of Blanc [39] with an imposed torque Tm, σxy(0) is given in table I.
After computation of γe,xy and γe,xx, the rate of deformation γ̇(s) is computed from (B1)

and finally, the deformation γ(t) is obtained by a numerical integration as
∫ t

0 |γ̇(s)|ds.
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