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1 Introduction

The suspension balance model [NB94,MM06] gives good results when compared to experimental measure-
ments with stationary shear flows (Poiseuille and Couette). Nevertheless, it assumes a ”normal viscosity
and is restricted to shear flows. Miller and Morris [MM06] proposed a tensorial approach to introduce the
normal stress components, but the proposed model it is not invariant by a change of frame and do not
introduce time scales, as observed in shear reversal (see e.g. [GMA80]).

In this paper, we aim at developing an alternative model, that should be independent upon the referential,
and thus suitable for more general flow situations. This model takes into account migration, frictional
contacts, and anisotropic relaxation of clusters. The existence of non-zero normal stresses is here a con-
sequence of the usage of an Oldroyd tensor derivative for the stress tensor associated to particle clusters.
This tensor derivatives is associated to a characteristic time for clusters of particles to relax. This ap-
proach furnish also results in better agreement with the expected time-dependent behavior, such as simple
shear [KPGM02,NSH+02] reversal and Couette reversal experiments [GMA80,Bla11]. Finally, this tensor
based model should be able to better describe the experimentally observed anisotropic effects, pointed out
with pair-distribution functions.

The first section presents the model statement while the second one turns to time dependent flows, specifi-
cally shear reversals. The third section present some comparison between the model prediction and several
experimental measurements on stationary simple shear flows.

2 Model statement

2.1 From microscopic to macroscopic level

The tensor of deformation of particle clusters γe can defined in terms of averages of microscopic quantities:
the statistical texture tensor, denoted as m and represented on Fig. 1.left. The concept of texture tensor
already used in [AJGG03] in the context of liquid foams and extended to various applications such as
anisotropic damage of the sea ice [LWD+15]. The texture tensor is defined as an average of links `, at the
microscopic level, between particles in contact, i.e. m = 〈`⊗ `〉. The average, denoted by 〈.〉, is performed
at an intermediate mesoscopic level called the representative volume around the current position. Then,
we define the elastic strain as γe = −c log(m) where c > 0 is a normalization coefficient. Note that it
writes equivalently m = exp(−cγe). The tensor γe has the same eigenvectors as m but eigenvalues equal
to the logarithm of those of m. The minus sign expresses that the the largest eigenvalue of γe corresponds
to the smallest of m, i.e. the compression axis.
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Figure 1: (left) Representation of the local particle clusters by a texture tensor m. This tensor is
represented by an ellipse. Its compression axis is in red and its dilatation axis in green. Background
photography from [Bla11], Fig. 4.7 with φ = 0.55. (right) Schematic diagram of the rheological model:
link between the total stress σtot and the total deformation γ = γe + γp.

Let γ denote the total deformation of the suspension. We assume that it can be decomposed as the sum of
the particle cluster deformation γe and large deformations γp due to rearrangements of contacts between
particles (see Fig. 1.right):

γ = γe + γp (1)

The particle stress, denoted as τ , decomposes as the sum of τ c, the contribution due to frictions at
contacts between particles, and τ h, the contribution due to small distance hydrodynamic interaction
between particles.

The deviatoric part of the particle stress due to frictions at contacts between particles is expressed by the
Drucker and Prager [DP52] relation:

dev(τ c) = µpp
dev(γ̇p)

|dev(γ̇p)|

where pp = tr(τ )/3 denotes the total particle pressure and µ > 0 is the constant friction coefficient, related
to the Coulomb friction rules at the microscopic level. The effect of friction between particles in contact
as been pointed out by several experimental observations (see e.g. [BGP11]). The dot, as γ̇p denotes the
time derivative of the deformation γp tensor. Here, |.| denotes the matrix norm, defined for all matrix σ
by

|σ| =
(σ :σ

2

)1/2
=

(
3∑

i,j=1

σi,j

)1/2

where : denotes the double dot product between two matrix. The deviatoric part of the particle stress due
to small distance hydrodynamic interactions between particles is expressed by a power-law rule:

dev(τ h) = Ke |dev(γ̇p)|−1+ndev(γ̇p)
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where Ke is the consistence and n > 0 is the constant power-law index. Summing the two previous
relations leads to

dev(τ ) =

(
Ke |dev(γ̇p)|−1+n +

µ tr(τ )/3

|dev(γ̇p)|

)
dev(γ̇p)

Tacking the norm of the previous relation leads to

|dev(τ )| = Ke|dev(γ̇p)|n + µ tr(τ )/3

⇐⇒ |dev(γ̇p)| = K−1/ne (|dev(τ )| − µ tr(τ )/3)1/n

We recognize a Herschel-Bulkley [HB26] like relation, where the yield stress is proportional to the particle
pressure. Note that, when |dev(τ )| 6 µ tr(τ )/3, we have dev(γ̇p) = 0. Injecting this result in the previous
relation, we get:

dev(γ̇p) = K−1/ne max (0, |dev(τ )| − µ tr(τ )/3)1/n
dev(τ )

|dev(τ )|
We assume a similar relation for the trace parts tr(γ̇p) and the particle pressure pp = tr(τ )/3 and then
we obtain the following constitutive equation for the suspension:

γ̇p = K−1/ne max (0, |dev(τ )| − µ tr(τ )/3)1/n
τ

|dev(τ )|
Next, we assume a linear relation between the deformation γe of the particle clusters deformation and the
particle stress by introducing a time scale λ:

τ =
(1− d)Ke

λn
γe (2)

where d ∈ [0, 1] is a damage variable that represents the density of contacts loss between particles and
G = Ke/λ

n is the elastic modulus of the undamaged particle cluster, e.g. when d = 0. Otherwise, when
0 < d < 1, some contacts are loss and the effective elastic modulus of the damaged particle clusters is
(1 − d)G. See e.g. [Mau92, p. 206] for an introduction to damage. From (1) we get also γ̇p = γ̇ − γ̇e.
Replacing in the previous relation, we get

γ̇e +
(1− d)

1
n

λ
max (0, |dev(γe)| − µ tr(γe)/3)1/n

γe
|dev(γe)|

= γ̇

The characteristic time λ is associated to the particle clusters that come back to an equilibrium state after
deformation, and this time scale is due to lubrication in thin spaces between particles (see e.g. [Lar99,
p. 270]). The rate of deformation tensor γ̇ is identified to the symmetric part of the gradient of velocity
D(u), where u is the velocity of the suspension. Also, the time derivative γ̇e is represented by the upper
convected tensor derivative, denoted by Dγe/Dt (see [Sar16], chap 4).

Dγe
Dt

+
(1− d)

1
n

λ
max

(
0,
|dev(γe)| − µ tr(γe)/3

|dev(γe)|n
) 1

n

γe = 2D(u)

This is an elastoviscoplastic constitutive equation: see e.g. [Sar07, Sar09] for similar models. The total
Cauchy stress tensor writes:

σtot = −pI + 2η(|2D(u)|)D(u) +
(1− d)Ke

λn
γe (3)

Finally, the base suspension viscosity η(γ̇) is given by a power law function

η(γ̇) = Kp|γ̇|mp−1 (4)

where Kp and mp are material parameters.
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2.2 Problem statement

The problem can be closed as a system of four equations and four unknowns γe, the particle clusters
deformation, d, the contact damage, u, the velocity, and p, a Lagrange multiplier associated to the
incompressibility constraint of the mixture that interprets as the pressure in the fluid phase:

Dγe
Dt

+
(1− d)

1
n

λ
max

(
0,
|dev(γe)| − µ tr(γe)/3

|dev(γe)|n
) 1

n

γe − 2D(u) = 0 (5a)

λd
Dd

Dt
+ d− dam(γe, D(u)) = 0 (5b)

ρ
Du

Dt
+ div

(
−pI + 2η(|2D(u)|)D(u) +

(1− d)Ke

λn
γe

)
= ρg (5c)

divu = 0 (5d)

The problem is closed by suitable initial and boundary conditions. The elastoviscoplastic constitutive
equation (5a) is coupled with an equation for the damage evolution (5b) and with the conservation of mo-
mentum (5c) and mass of the mixture (5d). In (5c), D/Dt = ∂/∂t+ u.∇ denotes the Lagrange derivative
and ρ is the density of the mixture. Note that the volume fraction φ is supposed to be constant during
the flow: the time scale for migration is large and the possible variation of the volume fraction is here
supposed negligible. Otherwise, the system could be also couped by an additional diffusion equation for
the volume fraction (see e.g. [MM06]).

The dam(γe, D(u)) term in (5b) denotes a damage function that takes its values in [0, 1]. It locally
depends upon the flow direction and the particle clusters. The time scale λd is associated to contacts that
establishes or are loss. The detailed expression for the damage function will be discussed in details in the
next section 2.1 devoted to time-dependent flow.

4



3 Time dependent shear flows

3.1 The damage function
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sgn(γ̇)
τxx/G
τxy/G

Figure 2: Shear startup from rest ; Computations are performed with a characteristic time λ = 0.35.

For a stationary flow, the deformation rate compresses the particle clusters and contacts are maintained:
in that case, the damage variable d, that represents loss of contacts, is zero.

When an imposed shear rate changes from γ̇ 6= 0 to zero, experimental observations (see [KPGM02],
Fig. 3) showed that both the the particle pressure pp = τxx/3 and the shear stress σxy fall very fast to zero.
In that case, the deformation rate does no more compresses the particle clusters and contacts are loss:
it means d = 1. It could be effective on a very short time scale by some small repulsion forces between
particles: particles stay very close but without contacts. The associated time scale is very small i.e. λd ≈ 0
in (5b). From (2) and as d = 1 we obtain τ = 0. Next, as the deformation rate is zero, we get from (3)
that σxy = 0. Observe that (3) reduces to the time derivative of the structure tensor equal to zero: the
structure tensor γe of the particle clusters remains unchanged while contacts are loss (d = 1).

Next, there is two possibilities:

• If the shear restarts suddenly in the same direction, experimental observations (see [KPGM02],
Fig. 3) showed that both the the particle pp = τxx/3 and the shear stress σxy jump very fast to
the previous stationary value. Suddenly, contacts are restored between particles in the suspension:
d changes from 1 to 0. As the structure tensor γe was unchanged and now d = 0, from (2), the
previous stationary value of τ is restored on a with short time scale.

• Otherwise, if we suddenly change the shear rate zero to the opposite of its previous value −γ̇, i.e. a
shear reversal, from [NSH+02], Fig. 3, we observe that the particle pressure pp increases progressively
from zero to its previous stationary value while the shear stress σxy progressively decreases from zero
to the opposite of its previous stationary value. When the deformation rate is reversed, then d = 1,
i.e. contacts are restored. Next, from (5a), the tensor γe evolves from its previous conserved value
γe to a new stationary one, as the right-hand-side of (5a) has been changed from D(u) to −D(u)
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(See Fig. 3). An detailed investigation shows that the new stationary solution has the same normal
component γe,xx while γe,xy has opposite sign. Thus, the particle pressure converges to the same
stationary value while tends to change of sign σxy.

All these deductions from the system of equations are conform to experimental observation. For the
damage function, we choose:

dam(γe, D(u)) =





1 when |D(u)| 6 γ̇c

0 when |D(u)| > γ̇c and γe :D(u) > −γ̇c

|γe :D(u)|
|dev(γe)| |D(u)| otherwise

(6)

It means that when the deformation rate D(u) acts in compression on the particle clusters, then contacts
are reinforced and there is no damage. Otherwise, the deformation rate acts in dilatation, tends to separate
the particles, contacts are loss and the particle clusters are damaged. Here, γ̇c > 0 denotes a critical shear
rate: its action balances the repulsion forces between particles, represented by a repulsion critical stress
σr = η(φ, γ̇c)γ̇c. In practice, γ̇c is very small and is used to avoid a division by a too small number.

The solution is represented on Fig. 2 for a startup of shear at t = 0 with a shear rate γ̇ > 0 where

γe(t=0) = 0. The material is undamaged and τ e =
Ke

λn
γe growth and tends to a stationary value. Fig. 3

represents a more complex situation: the material is first sheared with a negative shear −γ̇ and then, after
a period of rest, the shear rate is reversed to γ̇ > 0 at t = 0. During the period of rest, the material
is damaged and γe = 0 while γe is constant. It means that the particle clusters are unchanged during
the period of rest. At t = 0, the shear starts in the positive direction: the the particle clusters rotates
slowly to the opposite angle, from about −π/6 to π/6. During the rotation, the damage progressively
decreases and reaches zero when the inclination angle is also zero. The particle stress τ develops from
zero to a stationary value. Dotted lines represents γe values. Observe that the time scale to reach the new
stationary solution is of about 2γ̇−1, as observed in experiments (see e.g. [KPGM02], Fig. 5).
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Figure 3: Shear reversal at t = 0: representation of the texture tensor exp(−γe(t)) versus time as an
ellipse: eigenvector associated to compression (resp. dilatation), i.e. to the positive (resp. negative)
eigenvalue of γe is represented in red (resp. green). On the bottom, plots for the sign of the shear stress γ̇,
the inclination angle θ(t) of the ellipse, the damage d(t) and the particle stress τ with γe in dotted lines.
Computations are performed with a characteristic time λ = 0.35.
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3.2 Comparison with experiments

We aim at comparing our model for unsteady shear flows with experimental measurements. In 2001,
Blanc [Bla11, sec 3.3] (see also [BPL11a, BPL11b, BLMP13]) performed shear reversal experiments in
a Couette geometry. The author consider a suspension of polymethyl methacrylate (PMMA) spherical
particles in a Newtonian oil. The experiments have been performed with an imposed torque and, for
each volume fraction, it is adjusted in order to obtain similar angular velocities. Neglecting the variations
between the gap, the shear rate is here assumed as constant and the model is solved here as a simple
shear flow. All geometrical and material parameters of the experiment are grouped in table 1. The volume

description unit symbol value

fluid viscosity Pa.s η0 1.03
power law index mp 0.9

outer radius m Re 2.4 10−2

inner radius m Ri 1.4 10−2

radius for measures m Rc 0.77×Re

height m L 4.5 10−2

torque N.m Tm imposed
angular velocity s−1 ω measured

shear stress Pa σrθ
0.818× Tm

2πLR2
c

shear rate s−1 γ̇
ωRi

Re −Ri

Table 1: Shear reversal: experimental parameters, from [Bla11, sec 3.3].

fraction φ is varying in the range [0.3, 0.5]. In this volume fraction range, the suspension has been founded
slightly shear-thinning: the viscosity can be expressed with the power-law (4) where the power index
mp = 0.9. During experiments, the torque Tm is adjusted in order for the angular velocity to reach similar
values in the stationary regime.

The present model involves two material parameters with fixed values: the power-law index n = 2/3 and
the friction coefficient µ = 0.7. As shown in appendix A, the choice for n leads to a linear dependence
of the normal stress difference and particle pressure versus the shear rate for stationary shear flows. The
choice µ = 0.7 corresponds to an usual value of the friction coefficient (see e.g. [BGP11]). The time scale
of the damage parameter is chosen as very small: λd = 10−4.

There are still three model parameters to determine: λ, Ke and Kp. For each volume fraction, these three
parameters are adjusted to experimental measurements (from [Bla11], Fig. 3.17) of the apparent viscosity.
In simple shear flow, the set of equations reduces to a time-dependent system of ordinary differential
equation that are solved by the lsode library [RH93], as interfaced in the octave software [EBH11]. Fig. 4
presents a comparison between the model prediction and the experimental measurements of the apparent
viscosity for the shear reversal. Observe that, for the first time, the sudden decrease of the apparent
viscosity and its relaxation to the stationary value are qualitatively and quantitatively well represented
by a continuous model. Indeed, there are three regimes: first, we observe an instantaneous decrease,
then, a minimum is reached with a smooth shape, and finally, the apparent viscosity increases regularly
until it reaches its stationary value. The only discrepancy between the model prediction and experimental
measurements concerns the first regime, at the vicinity the minimum, where the model predicts a slow
increases. Observe that the apparent viscosity, as measured during experiments, increases slowly for large
deformations γ: a possible cause could be the slow migration of particles in the Couette gap, due to a
small variation of the shear rate between the gap. The table at the bottom of Fig. 4 groups, for each
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volume fraction, the values used for the three model parameters λ, Ke and Kp.

Fig. 5 presents the dependency upon the volume fraction φ of the three adjusted model parameters λ, Ke

and Kp. Observe the regularity of these dependencies: this suggests a best fit procedure based on the
following material functions:

λ(φ) = λ0 exp(−αφ) (7a)

Ke(φ) = K̄e

(
1− φ

φm

)−β2
(7b)

Kp(φ) = K̄p

(
1− θp +

(
5

2
− βθp
φm

)
φ+ θp

(
1− φ

φm

)−β)
(7c)

Indeed, the values of λ vs φ are aligned on the semi-logarithmic plot Fig. 5.top-left: this suggests an
exponential dependency (7a). Conversely, the values of Ke vs φ are aligned on on the log-log plot Fig. 5.top-
right: this suggests a power-law dependency (7b). The expression (7c) for Kp(φ) is an original extension of
the Krieger-Dougherty [KD59] rule: when the volume fraction is small, its first order development coincides
with the Einstein [Ein06] rule Kp(φ)/K̄p = 1 + 5φ/2 for any value of the three material parameters φm,
β > 0 and θp ∈ [0, 1]. The parameter φm is the maximal volume fraction of the suspension, β ≈ 2 is the
power-law index of the Krieger-Dougherty rule and θp is a balance parameter. The table on the bottom
of Fig. 5 groups the values as adjusted for the parameters involved by these expressions. The best fit uses
a nonlinear least square method, as implemented in [WK10].

Fig. 6 presents a sensitivity analysis of the present model upon the seven parameters λ, Ke, Kp, µ, n, mp

and λd around the solution obtained for φ = 0.47. The effects of the three adjusted parameters λ, Ke and
Kp can be interpreted as follow: λ drives the amplitude of the stationary apparent viscosity, Ke drives
the slope of the transient regime and Kp the value of the minimum. Observe that the variation upon
the power law indexes n and mp have significant effects what justifies to choose them with care, whereas
the variation upon the friction coefficient µ leads to small variations of the stationary apparent viscosity.
Finally the damage time scale λd should be chosen small enough for the solution to be unchanged.
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Figure 4: Shear reversal: apparent viscosity ηapp vs deformation γ. Comparison between experimental
measurements (from [Bla11], Fig. 3.17) for a PPMA suspension in a Couette geometry and computations
with the present model. For each experimental conditions φ and Tm, the three model parameters λ, Ke,
Kp are chosen from a best fit procedure. Values are grouped in the table on bottom-right.
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Figure 5: Shear reversal: best fit versus φ for the three material parameters λ, Ke, Kp of the model.
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Figure 6: Shear reversal: sensitivity analysis on material parameters of the model (φ = 0.47).
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4 Stationary shear flow

4.1 Imposing both volume fraction and shear rate

In [ZHLJ00], Figs. 7.b and 10.b, the authors considered as Newtonian fluid a corn syrup: its viscosity
η0 = 2.2 Pa.s at 240C (see Fig. 6 of the paper). The rigid spheres have diameter equal to 43 µm and
are suspended in the corn syrup, and the suspension is considered as non-Brownian. The geometry is a
parallel plate rheometer.

The solution of the present model for a stationary simple shear flow admits an explicit expression, developed
in appendix A.2. The normal stress difference N1−N2 = τxx is explicitly given by (12a). As in the present
section, we choose the power-law index n = 2/3 and the friction coefficient µ = 0.7. The flow is stationary
and the shear rate compresses the particle clusters, so we assume here that there is no damage of the
particle clusters, i.e. d = 0. Thus, the damage time scale λd is not involved. Also, the time scale λ is
undetermined, as it appears only as the ratio G = Ke/λ

n in the expression (12a) of the stationary solution:
thus, the time scale λ can be chosen as an arbitrarily constant. Note that expression (12a) for the normal
stress still involves the material parameter Ke. Instead of identifying Ke from the experimental data for
each value of the volume fraction φ, we base on the template expression (7b) and identify its two scalar
parameters K̄e and β2 for the whole bidimensional in (φ, γ̇) experimental data set. This bidimensional
identification in (φ, γ̇) bases on a nonlinear least square method, as implemented in [WK10]. The maximal
volume fraction was chosen as φm = 0.67. Fig. 7.top-left compares the normal stress difference N1 − N2,
as predicted by the present model, with the experimental measurement, as given in [ZHLJ00], Fig. 10.b.
Observe the good agreement between the experimental measurements and the model prediction. The
model predicts, as expected, an linear dependence of the normal stress difference versus the shear rate.

Fig. 7.center-left compares the apparent viscosity ηapp = σxy/γ̇ by as predicted by the present model, with
the experimental measurement, as given in [ZHLJ00], Fig. 7.b. Observe also the good agreement between
the model prediction and the measures. The exact solution of the model is given in (12c), replacing the
base viscosity η(γ̇) by its expression (4). The base viscosity η(γ̇) involves two material parameters Kp and
mp. As for the normal stress difference, we choose to identify globally, for the whole experimental data set,
these material parameters: we base on the template expression (7c) for Kp. The corn-syrup suspension
was founded shear-thinning with a power-law index mp that varies with the volume fraction and we use:

mp(φ) = 1− exp(νpφ)− 1

exp(νpφm)− 1
(8)

Thus, there four four material parameters: K̄p, β, θp, νp We use β = 2 while the three others parameters
are adjusted on the whole bidimensional experimental data set.

The right column on Fig. 7 plots the material functions Ke(φ), Kp(φ) and λ(φ) while the table on the
bottom of Fig. 7.bottom groups the numerical values of the associated scalar parameters. It is remarkable
that the model is able to predict such a complex behavior with very few adjustable scalar parameters.
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Figure 7: Stationary shear. Comparison of normal stress (top-left) and shear stress (bottom-left) as
predicted with the present model and as measured with a suspension in a corn syrup, from [ZHLJ00],
Fig. 7.b and 10.b.
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4.2 Imposing both particle pressure and shear stress
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Figure 8: Stationary shear. Comparison of the present model prediction with experimental measures:
(left) φ vs Iv = η0γ̇/pp, from [BGP11], Fig. 2.c ; (right) σxy vs γ̇ from [BGP11], Fig. 2.a(insert).

In 2011, Boyer et al. [BGP11] performed experimental measurements of both shear rate γ̇ and volume
fraction φ, while the particle pressure pp and the shear stress σxy are imposed. The spherical particles are
suspended in a triton x-100/water/zinc chloride mixture of viscosity η0 = 3.1 P.s.

Fig. 8.top-left presents the volume fraction versus the dimensionless quantity Iv = η0γ̇/pp, as predicted
by the model together with experimental measurements from [BGP11], Fig. 2.c. Observe the excellent
agreement between the model prediction and the experimental data. The empirical approximation

φ = φm
(
1 + I1/α̂v

)−1
(9)

suggested in [BGP11], relation (7), with α̂ = 2 has been here slightly improved with α̂ = 2.15: it is also
represented by a dotted red line. The choice of the material parameters of the model has been performed
using a methodology similar to those of the previous paragraph. The power-law index is n = 2/3 and the
friction coefficient is µ = 0.7. The flow is stationary and the shear rate compresses the particle clusters,
so we assume here that there is no damage of the particle clusters, i.e. d = 0. Thus, the damage time
scale λd is not involved. Also, the time scale λ is undetermined: thus, it can be chosen as an arbitrarily
constant. In appendix A.3, relation (15) provides an explicit relation of Iv versus φ from the solution of
the model. It remains to determine the material parameter Ke. Based on (7a) for the dependence of Ke

upon φ, the two associated scalar parameters K̄e and β2 are identified globally on the bidimensional (φ, pp)
experimental data set from [BGP11], Fig. 2.c.

Fig. 8.top-right presents the shear stress σxy versus the shear rate γ̇ as predicted by the model together
with experimental measurements from [BGP11], Fig. 2.a(insert). Observe the good agreement between
the model and the experimental data. Experimental data from [BGP11], Fig. 2.a(insert) has been used to
identify additional model parameters associated to the base viscosity η(γ̇) of the mixture, as expressed by
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the power law (4). It involves two material parameters Kp and mp. The shear-thinning was founded to
be negligible for the present fluid, and we choose mp = 1. Relation (7c) is considered for the dependence
of Kp upon the volume fraction φ. Relation (16) in appendix A.3 explicitly solves the present model and
furnishes an expression of σxy that depends only on γ̇ and pp. The remaining scalar parameters K̄p, β and
θp are identified using the bidimensional (φ, pp) data set available from experimental measurements of γ̇
and φ from [BGP11], Fig. 2.a(insert). The table on the bottom of Fig. 8 summarizes the values of the
scalar parameters.
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pp

pp = 35
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µapp(Iv) fit
present model

Figure 9: Stationary shear. Apparent friction coefficient µapp = σxy/pp vs Iv = η0γ̇/pp. Comparison of
the present model prediction with experimental measures from [BGP11], Fig. 2.a.

Fig. 9 presents the dimensionless apparent friction coefficient µapp = σxy/pp versus the dimensionless
number Iv = η0γ̇/pp. All the experimental data, and also the model predictions, seems to merge on
an unique master curve: its true for small Iv but the present model predicts that these curves start to
separate for large Iv. Following [BGP11], relation (6), we plot on Fig. 9 by a dotted black line the following
empirical approximation:

µapp(Iv) = µ1 +
µ2 − µ1

1 + I0/Iv
+ Iv +

5φm
2

√
Iv

with φm = 0.585, µ1 = 0.32, µ2 = 0.7 and I0 = 0.005. Observe that this approximation captures also well
the main behavior. Recall that, in the present model, the friction coefficient is constant: this variation of
the apparent friction coefficient µapp = σxy/pp is due to the dependency of the shear stress σxy upon the
normal stress τxx, via τxy, and thus, upon the particle pressure pp = τxx/3. Thus, thanks to our tensorial
model that predicts normal stresses, there is no need of any dependence of the friction coefficient upon Iv,
as proposed in [BGP11].
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4.3 Comparison with Deboeuf et al. (2009) experiment
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λ0 α K̄e β2 φm K̄p β θp νp
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Figure 10: Comparison of the present model prediction with experimental measures from [DGM+09],
experimental correlations from [ZHLJ00], Stokesian simulations [YM08,SB02] and modeling [MB99].

Experimental measurements of the particle pressure pp proposed by Deboeuf et al. [DGM+09] showed that
its varies roughly linearly with γ̇. This observation is confirmed by the present model: from the asymptotic
analysis (13b) in appendix A, we obtain, for large γ̇:

pp
η0γ̇

=
2λ(φ)1−nKe(φ)

η0cn,µ
for γ̇ � 1

Fig. 10 plots this expression versus φ together with experimental measurements and others computational
approaches. The suspension balance model from Morris and Boulay [MB99] corresponds to the expression
ηn(φ) = pp/(η0γ̇): it is also displayed, together with values of pp from Stokesian simulations at Peclet
number 1000 [YM08] and infinite Peclet [SB02], obtained with weak and zero thermal motion, respectively.
Our model prediction is in remarkable agreement with both experimental measurements and simulation.
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4.4 Depletion angle and pair distribution function
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Figure 11: (left) Depletion angle θe versus φ: comparison between the model prediction (solid line) and
experimental data from [Bla11], Fig. 5.11 (dotted lines). (right) Pair distribution function: comparison
between the model prediction with the texture tensor 〈` ⊗ `〉 = exp(−0.2γe) represented as an ellipse
(solid lines) and the experimental data of g(θ) from [Bla11], Fig. 5.10, represented as r = g(θ)−1/2 versus
θ in (r, θ) polar coordinates (dotted lines).

Following [BLMP13], we introduce the pair distribution function. We consider a particle p and denote by
xp the center of the particle. For any neighbor particle q of p, in the sense that there is no others particles
between p and q, we denote by ` the vector xq−xp. The second order tensor `⊗` associated with this pair
distribution is symmetric. Let 〈.〉 denotes the averaging operator in a representative elementary volume
(REV). Note that 〈xp〉 is the barycenter of the REV. Then, any point in the REV writes as 〈xp〉 + v
where v ∈ R3. We assume that the distribution is invariant in the vertical direction and use the polar
coordinates. Let θ be the second polar coordinate of v and θ` be the second polar coordinate of `. Let
E = {v, tv〈`⊗ `〉v = 1} be the ellipse associated to 〈`⊗ `〉 and represented on Fig. 1. We have:

v ∈ E ⇔ 〈 tv(`⊗ `)v〉 = 1

⇔
〈
(v.`)2

〉
= 1

⇔ ‖v‖−2 =
〈
‖`‖2 cos(θ − θ`)2

〉

We now consider the averaging for ‖`‖ = 2a only and we get

v ∈ E ⇔ ‖v‖−2 = 4a2
〈
cos(θ − θ`)2

〉

We introduce G(θ) = 4a2 〈cos(θ − θ`)2〉 and its normalized version:

g(θ) =
G(θ)∫ π

−π G(θ) dθ
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The g(θ) function interprets as the probability to find a neighbor particle at distance 2a in the θ direction.
The minimum of g is reached at a specific angle, denoted as θe and called the depletion angle. Note that,
as 〈`⊗ `〉 = exp(−cγe), the depletion angle is associated to the eigenvector of the largest eigenvalue of γe.

Fig. 11 compares, for various volume fraction, the model prediction of both the depletion angle and the
pair distribution with experimental data were presented in [Bla11], Figs. 5.9 to 5.11. For φ 6 0.3 we use
the value in steady state produced by the computations done to make Fig. 4. For φ < 0.3 we do a start-up
with an imposed shear rate as it is done in [Bla11, ch. 5], using parameters shown in table 1 and µ = 0.7,
n = 2/3, λd = 10−4. Also, λ, Ke and Kp are extrapolated from the law exposed in Fig. 6. The experiment
data and the numerical results were normalized in order to have the same mean. The values of the shear
rate are from [Bla11], Table 5.1.
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5 Discussion and conclusion

The proposed model could be completely characterized by a simple shear flow experiment, providing
either the particle pressure is imposed, as in [BGP11] or the difference of normal stresses is measured, as
in [ZHLJ00]. As a preliminary conclusion, this model should be potentially as efficient as the suspension
balance model. Its true tensorial formulation also introduces additional important features: anisotropy
and a time scale for clusters of particles to relax. Future work will consider more complex flows, such as
Couette flows in large gap, with particle migration and shear banding.
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A Resolution for simple shear flows

A.1 Explicit resolution

For simplifying the notations, we omit in this section the dependences in φ and denote simply G instead
of G(φ). Let u(x, y, z) = (ux(y), 0, 0) be the velocity in the stationary regime: accordingly to notations
used in experimental papers, such as [ZHLJ00], the x axis is in the flow direction and the y axis in the
direction of the gradient ∇ = (0, ∂y, 0). Let γ̇ = u′x(y) that is supposed to be constant. We focus on the
stationary shear flow and the damage is supposed to be zero, i.e. no contacts are loss. The constitutive
equation of the elastoviscoplastic model writes for a stationary shear flow (see [Sar16], section 4.4):

Aγe,yy = 0 (10a)

−2γ̇γe,xy + Aγe,xx = 0 (10b)

−γ̇γe,yy + Aγe,xy = γ̇ (10c)

Note that, from [Sar16], section 4.4, we have swapped the x and y coordinates, in order to be consistent
with notations used in experimental papers. We have set for convenience:

A =
1

λ
max

(
0,
|dev(γe)| − µ tr(γe)/3

|dev(γe)|n
) 1

n

When A = 0, we get from (10c) the relation γ̇γe,xy = 0 and then γ̇ = 0 and the particle deformation tensor
γe is undetermined, assuming it satisfies A = 0: this is the solid rigid behavior. Next, we assume A 6= 0.
First, from (10a), we get γe,yy = 0. Next, multiplying (10c) by γe,xx, ten (10b) by γe,xy, and subtracting,
we obtain, as γ̇ 6= 0:

γe,xx = 2γ2e,xy (11a)

Note that, after replacing from (11a) γe,xx by its expression in (10c), we will provide a relation between
γe,xy and γ̇. We have just to expand first A as an expression involving γe,xy only:

tr(γe) = γe,xx = 2γ2e,xy

|dev(γe)| =

(
γ2e,xy +

γ2e,xx
3

)1/2

= γe,xy

(
1 +

4γ2e,xy
3

)1/2

λA =
(|dev(γe)| − µ tr(γe)/3)1/n

|dev(γe)|

= γ−1+1/n
e,xy

((
1 +

4γ2e,xy
3

)1/2

− 2µγe,xy
3

)1/n(
1 +

4γ2e,xy
3

)−1/2

Without loss of generality, we assume γ̇ > 0 and γe,xy > 0. Replacing in (10c), we obtain an explicit
expression for λγ̇ in terms of γe,xy only:

λγ̇ = fn,µ(γe,xy) (11b)

where the function fn,µ is defined for all γe,xy > 0 by

fn,µ(Y ) = γ1/ne,xy

((
1 +

4

3
γ2e,xy

)1/2

− 2µ

3
γe,xy

)1/n(
1 +

4

3
γ2e,xy

)−1/2
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Figure 12: (left) The characteristic function fn,µ when n = 2/3. (right) Computing µ∗n.

The first factor under the 1/n is positive when

3 + 4(1− µ)γ2e,xy > 0

When µ 6 1 this condition is satisfied for all γe,xy. When µ > 1 this requires γe,xy 6
√

4(µ− 1)/3 and the
solution does not exists for large γe,xy. Thus, we assume µ 6 1.

Large shear rate regime – When γe,xy becomes large, we have fn,µ(γe,xy) ≈ cn,µγ
2/n−1
e,xy with

cn,µ = (
√

3/2)1−1/n(1− µ/
√

3)1/n. For the function fn,µ to be strictly increasing when γe,xy → +∞, we need

cn,µ > 0 or equivalently 0 6 µ <
√

3. Then λγ̇ ≈ cn,µγ
2/n−1
e,xy or equivalently γe,xy ≈ (λγ̇/cn,µ)n/(2−n). From

(11a) we get γe,xx ≈ 2c
−2n/(2−n)
n,µ (λγ̇)2n/(2−n). In terms of the particle stress τ = Gγe, we get τxy ≈ c1γ̇

n/(2−n)

and τxx ≈ c2γ̇
2n/(2−n) with c1 and c2 independent of γ̇. Experimental observations [ZHLJ00,BPG11] showed

that the normal stress difference N1, that coincides here with τxx, is proportional to |γ̇|. This leads to
choose n = 2/3 for applications. With the choice n = 2/3, at large shear rate, τxy behaves as γ̇1/2 and N1

behaves as γ̇.

Small shear rate regime – Conversely, observe that, when γe,xy is small, we have fn,µ(γe,xy) ≈ γ
1/n
e,xy.

Then γe,xy ≈ (λγ̇)n and γe,xx ≈ 2(λγ̇)2n. Recall that λn = Ke/G. In terms of the particle stress, we get
τxy ≈ Keγ̇

n and τxx ≈ 2K2
eG
−1γ̇n. With the choice n = 2/3, at small shear rate, τxy behaves as γ̇2/3 and

N1 = τxx behaves as γ̇4/3. From Fig. 12.left, we observe that this flow regime is satisfied for λγ̇ smaller
than 10−2. In most experiments with suspensions, λ is of about 0.1 s to 1 s seconds typical γ̇ larger than
0.1 s−1, this flow regime is not clearly observed.

Summary of flow regimes – Notice from (3) that σxy has an additional viscous term with the η(φ, γ̇)
viscosity. Assuming for simplicity that η(φ, γ̇) is independent of γ̇,. with the choice n = 2/3, σxy has three
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regimes: γ̇2/3 at small shear rate, γ̇1/2 at intermediate shear rate and γ̇ at high shear rate. Conversely, the
apparent viscosity behaves as γ̇−1/3 at small shear rate, γ̇−1/2 at intermediate shear rate and as a constant
at high shear rate (see Fig. 13.left). Also, N1 behaves γ̇4/3 at small shear rate, and γ̇ at high shear rate
(see Fig. 13.right). See [ZHLJ00], Fig. 7 and 10 for these flow regimes.

Exact resolution – The equation λγ̇ = fn,µ(γe,xy) can be solved, assuming that fn,µ is strictly increasing,
at least for µ sufficiently small, as shown on Fig. 12. Thus, let us study its derivative:

f ′n,µ(γe,xy) =
1

31/(2n)n
γ1/n−1e,xy

(
3 + 4γ2e,xy

)−3/2

×
{(

3 + 4γ2e,xy
)1/2 − 2√

3
µγe,xy

}1/n−1

×
{√

3
(
3 + 4γ2e,xy

)1/2 [
4(2− n)γ2e,xy + 3

]
− 4µγe,xy

[
2 (2− n) γ2e,xy + 3

]}

Assuming µ ∈ [0,
√

3[, all the factors are positive except perhaps the last one.

√
3
(
3 + 4γ2e,xy

)1/2 [
4(2− n)γ2e,xy + 3

]
> 4µγe,xy

[
2 (2− n) γ2e,xy + 3

]
, ∀γe,xy > 0

⇐⇒ µ 6 µ∗n = min
γe,xy>0

f̂n(γe,xy) with f̂n(γe,xy) =

√
3
(
3 + 4γ2e,xy

)1/2 [
4(2− n)γ2e,xy + 3

]

12γe,xy
[
2 (2− n) γ2e,xy + 3

]

Fig. 12 represents the characteristic function fn,µ and the evaluation of µ∗n ≈= 1.665 when n = 2/3.
Observe that when µ ∈ [0, µ∗n], then fn,µ is strictly increasing and invertible for all γe,xy > 0. As fn,µ is
differentiable, its inverse if−1n,µ can be efficiently computed by a Newton method, up to machine precision,
so its computation is considered as exact.

A.2 Imposing both volume fraction and shear rate
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Figure 13: (left) Apparent viscosity ; (right) Normal stress (n = 2/3, Ke = 1, G = 1, η̄app = 2).

From (11b)-(11a), When both the volume fraction φ and the shear rate γ̇ are imposed, the solution writes:
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τxy = Gf−1n,µ (λγ̇)

σxx = τxx = 2G
(
f−1n,µ (λγ̇)

)2
(12a)

σxy = η(γ̇)γ̇ +Gf−1n,µ (λγ̇) (12b)

ηapp(γ̇) = η(γ̇) +Gf−1n,µ (λγ̇) γ̇−1 (12c)

Notice that σyy = σzz = 0 and thus N2 = 0 and N1 −N2 = τxx. The solution is represented on Fig. 13 for
various friction coefficient values. Observe that the apparent viscosity is monotonically decreasing when
µ = 0 i.e. shear-thinning. This property is loss for sufficiently large µ e.g. µ = 1.5: the apparent viscosity
presents a region of shear-thickening at small shear rate and then, for large shear rate, the apparent
viscosity is decreasing. Conversely, N1 presents a region where there is a rapid growth. From experimental
observations, we have µ ≈ 0.7: in that case, the main behavior is almost smooth.

Using the development of fn,µ for large γ̇ when n = 2/3, we get:

τxy = G

(
λγ̇

c2/3,µ

)1/2

(13a)

τxx = 2G
λγ̇

c2/3,µ
(13b)
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A.3 Imposing both particle pressure and shear stress

As the particle pressure pp = tr(τ )/3 = τxx is imposed, the normal stress is known: τxx = 3pp. Then,
from (2) we get γe,xx = 3pp/G(φ) and, from (11a), we obtain γe,xy =

√
3pp/(2G(φ)). From (11b), and

since G = Ke/λ
n, we get

λ(φ)γ̇ = fn,µ

((
3ppλ(φ)n

2Ke(φ)

)1/2
)
⇐⇒ Ke(φ) =

3pp λ(φ)n

2
{
f−1n,µ (λ(φ) γ̇)

}2 (14)

Relation between Iv and φ – Following [BGP11], we introduce the dimensionless number Iv = η0γ̇/pp
and the previous equation rewrites in terms of Iv instead of γ̇ as:

Iv =
η0

pp λ(φ)
fn,µ

((
3pp λ(φ)n

2Ke(φ)

)1/2
)

(15)

It expresses Iv versus φ where pp is imposed and the material functions λ(φ) and Ke(φ) are given by
(7a)-(7b).

Relation between σxy and γ̇ – From (3), we obtain the shear stress :

σxy = Kp(φ)γ̇mp(φ) + τxy = Kp(φ)γ̇mp(φ) +

(
3ppλ(φ)n

2Ke(φ)

)1/2

(16)

Next, it remains to replace in the previous expression φ by an expression in terms of γ̇. There are two
ways to find such an expression. The first way bases on (15). Note that Iv expresses simply in terms of
γ̇ and pp, thus (15) is equivalent to an expression of γ̇ in terms of φ, as pp is given, and is represented on
Fig. 8.left. It could be inverted, e.g. by a Newton method, in order to obtain φ as an expression in terms
of γ̇. The second way bases on the empirical relation (9), which simpler and sufficiently accurate for our
purpose, as shown on Fig. 8.left. By one of these ways, (16) reduces to an expression of σxy in terms of γ̇.
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