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THIN FRONT LIMIT OF AN INTEGRO–DIFFERENTIAL
FISHER–KPP EQUATION WITH FAT–TAILED KERNELS∗

EMERIC BOUIN† , JIMMY GARNIER ‡ , CHRISTOPHER HENDERSON § , AND FLORIAN

PATOUT ¶

Abstract. We study the asymptotic behavior of solutions to a monostable integro-differential
Fisher-KPP equation, that is where the standard Laplacian is replaced by a convolution term, when
the dispersal kernel is fat-tailed. We focus on two different regimes. Firstly, we study the long
time/long range scaling limit by introducing a relevant rescaling in space and time and prove a sharp
bound on the (super-linear) spreading rate in the Hamilton-Jacobi sense by means of sub- and super-
solutions. Secondly, we investigate a long time/small mutation regime for which, after identifying a
relevant rescaling for the size of mutations, we derive a Hamilton-Jacobi limit.

Key words. Asymptotic analysis; Exponential speed of propagation; fat–tailed kernels; Fisher-
KPP equation; integro–differential equation; Hamilton-Jacobi equation.
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1. Introduction.

The model. In this paper, we focus on the asymptotic behavior of solutions to
the following integro–differential equation

(1.1)

{
nt = J ∗ n− n+ n(1− n), in (0,+∞)× R,

n(t = 0, ·) = n0.

where the dispersal kernel J, or mutation kernel depending on the ecological context,
is a given function and

(J ∗ n)(t, x) :=

∫
R
J(x− y)n(t, y) dy.

When the term J ∗ n − n is replaced by ∆n, this is the well-known Fisher-KPP
equation [20, 27].

This equation arises naturally in population dynamics to model systems with non–
local effects [17, 28]. In this context, the unknown function n represents a density of
individuals at time t and at position x. One of the most interesting features of this
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model, compared to the classical Fisher-KPP equation, is that it allows for long range
dispersal events.

The existence of these events depends critically on the tail of the kernel J . To
differentiate between the two regimes that arise, we introduce the following notation.
Roughly, we say that the kernel J is thin–tailed, or exponentially bounded, if there
exists λ > 0 such that

(1.2)

∫
R
J(h)eλhdh <∞,

Otherwise we may say the kernel is fat–tailed. We make mathematically precise what
we call a fat–tailed kernel in Hypothesis 1.1.

When the kernel is thin–tailed, solutions exhibit the same behavior as solutions
to the Fisher–KPP equation in that travelling wave solutions exist [3, 14]. This
regime can be used to model a biological invasion scenario in which a population
invades a homogeneous landscape at constant speed. There is an extensive literature
about models similar to (1.1) investigating the existence and stability of traveling
waves solutions, see [9, 32, 33] along with the work and references contained in the
habilitation thesis of Coville [12].

On the other hand, super-linear in time propagation phenomena can occur in
ecology. A classical example is Reid’s paradox of rapid plant migration [11, 10] that
is usually resolved using fat–tailed kernels. Indeed, when the kernel is fat–tailed, the
solutions of ŗefeq:main do not propagate at constant speed but accelerate with a rate
that depends on the thickness of the tail of the kernel J [28, 22]. This acceleration
phenomenon results from the combination of fat–tailed dispersion events and the
Fisher–KPP non–linearity n(1−n) that makes the solution grow almost exponentially
when small. In particular, when this cooperation between the kernel and the non–
linear term is broken, acceleration can be stopped. Recently, Alfaro and Coville [2]
have proved that traveling wave solutions may exist with fat–tailed kernels when a
weak Allee effect is present, that is a non–linearity of the form nβ(1− n) with β > 1,
if the tail of the kernel is not too fat.

We shall now be more precise on the type of dispersal kernels that we will consider.
We emphasize that the following assumptions on the kernel J hold true throughout
this work, even when not explicitly stated:

hypothesis 1.1 (Fat–tailed kernel). The kernel J is a symmetric probability
density, that is, for all x ∈ R,

(1.3)

∫
R
J(x) dx = 1, J(x) = J(|x|) and J(x) > 0.

The decay of J is encoded in the function

(1.4) f := − ln(J),

We further assume the following three properties:
Monotonicity and asymptotic convexity of J . The function f ∈ C2(R) is

strictly increasing on (0,+∞) and asymptotically concave, that is, there exists xconc >
0 such that

(1.5)

{
f(x) > f(y), if x > y ≥ 0 and

f ′′(x) ≤ 0 if x ≥ xconc.
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Without loss of generality, we suppose that f(0) = 0, or J(0) = 1, since otherwise we
may re-scale the equation. This implies that J(R) = (0, 1]. Moreover, J is invertible
on R+, this inverse from (0, 1] to R+ is what we denote J−1 in the sequel. Similarly,
f is invertible on R+, this inverse from R+ to R+ is what we denote f−1 in the sequel.

Lower bound on the tail of J . The kernel J decays slower than any exponential
in the sense that

(1.6) lim sup
x→∞

x f ′(x)

f(x)
< 1.

Roughly speaking, this implies that f grows sub-linearly and that J ′(x) = ox→∞(J(x)).
Upper bound on the tail of J . The tail of J is thinner than |x|−1, in the

sense that

(1.7) lim inf
x→∞

x f ′(x) > 1.

For ease of notation and since it will play a role in our analysis, we define µ :=
lim infx→∞ x f ′(x).

The main examples of kernels J that satisfy Hypothesis 1.1 are either sub–
exponential kernels where f(x) = (1 + |x|2)α/2 with α < 1 or polynomial kernels
where f(x) = α ln(1 + |x|2)/2 with α > 0. Our technical assumptions (1.5)–(1.7) do
not cover borderline kernels such as f(x) = |x|/ ln(1 + |x|2) that were considered by
Garnier [22]. Moreover, we restrict our focus to the effects of the tails of J on the rate
of propagation. As a consequence, we do not include potential singularities at the
origin, which is the case for a fractional Laplacian operator, for example. We expect
however that our results also hold for these cases.

Garnier [22] proved that the acceleration propagation of the solution of (1.1)
can be measured by tracking the level sets Eλ(t) := {x ∈ R : n(t, x) = λ} of the
solution n, where λ ∈ (0, 1). Under the fat–tailed kernel hypothesis, these level sets
move super-linearly in time. More precisely, Garnier [22] proved that there exists a
constant ρ > 1 such that for any λ ∈ (0, 1) and any ε > 0, any element xλ of the level
set Eλ satisfies for all ε > 0 and t large enough:

(1.8) J−1
(
e−(1−ε)t

)
≤ |xλ(t)| ≤ J−1

(
e−ρt

)
.

The propagation problem has been recently considered with non–symmetric kernels
in [19] and in the multi-dimensional case in [18]. There Finkelshtein, Kondratiev, and
Tkachov present a technical argument improving the precision in Garnier’s bounds.
As will be made clear below, one goal of this paper is to connect these results to
an underlying Hamilton-Jacobi equation, giving a new interpretation to the speed of
propagation. In doing so, we aim to provide a simpler proof of propagation that is,
in some regimes, more precise than those above.

The approach we use comes from the seminal paper of Evans and Souganidis [16],
where the authors applied the long time/long range limit to the Fisher-KPP equation
and showed convergence, after applying the Hopf-Cole transform, to a Hamilton–
Jacobi equation. Further, they show that the solution to this Hamilton–Jacobi equa-
tion determines the propagation rate of the original Fisher-KPP equation. In the first
part of our work, we first describe the scaling corresponding to the long time/long
range limit for (1.1). Then we show convergence to a Hamilton–Jacobi equation,
which gives information on the spreading properties of the solution to the original
equation (1.1).
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The same approach has been used extensively to understand propagation in var-
ious physical systems as well as more general qualitative behavior of solutions of
parabolic equations. In the context of adaptative dynamics, Diekmann, Jabin, Mis-
chler, and Perthame in [15] have provided an example of this approach. They have de-
rived, by a limiting procedure, a Hamilton–Jacobi equation from a mutation–selection
equation with small mutations.

The literature on this topic is enormous, but we mention a few closely related
works. Perthame and Souganidis studied (1.1) with thin–tailed kernels in [31]. Bar-
les, Mirrahimi and Perthame focused on Dirac concentration in integro-differential
equations with local and non–local non–linearities in [7]. Recently, Mirrahimi and
Méléard extended this approach to a fractional diffusion [29]. The second part of our
work is inspired by and closely follows this last work, extending their technique to the
case with a general dispersal kernel J , the main difficulties coming from the fact that,
in contrast to the fractional Laplacian, the kernel J is not explicit and has no natural
scaling. As a consequence, the scalings we use are not always easy to read but we
give some heuristics that make them appear naturally. Moreover, our scalings allow
to characterize the small mutation regime when the mutation kernel is fat–tailed.

In the present work, we only focus on the local Fisher–KPP nonlinearity n(1−n)
but our results can be generalized to a non–local non–linearity of the form n(r −∫
R n(x)dx), exactly as in [29]. This non–local term arises also naturally in the context

of mutation–selection model or structured population models. In this context, x
denotes a quantitative trait and n(t, ·) describes the distribution of this trait inside
the population. Thus, the parameter r describes the fitness of the population and the
integral term

∫
R n(t, x)dx is a mean–competition term. The model (1.1) with this non–

local nonlinearity can be derived rigorously from an individual–based model where
mutations are described by a fat–tailed kernel without jump (see for instance [4, 23]).
In general, the growth rate r depends also on the trait parameter x [26]. However, this
general form induces more technical difficulties that we do not tackle in this paper.

The propagation regime. In order to capture the accelerated propagation
phenomenon that occurs with fat–tailed kernels, we look at the behavior of n in the
long time/long range limit. Indeed, we first rescale the time t 7→ t/ε by a small
parameter ε and then we need to find an accurate rescaling in space that captures the
propagation regime. We thus look for a space rescaling of the form x 7→ ψε(x). The
seminal paper [16] used the hyperbolic scaling (t/ε, x/ε) for the asymptotic study of
the Fisher-KPP equation. The precise shape of ψε will be given below, but we first
start with heuristic explanation of this expression.

Using the results of Garnier (1.8), it is reasonable to say that the position x of
any level sets satisfies

J(x) ∼ e−t.

Our aim is to find a rescaling ψε that follows the level sets in the long time rescaling
t/ε. So we want

J(ψε(x)) ∼ e− tε ∼
(
e−t
) 1
ε ∼ J(x)

1
ε .

As a consequence, for any ε > 0, it is natural to set

(1.9) ψε(x) = sign(x)J−1
(
J(x)

1
ε

)
for all x ∈ R.
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The rescaling ψε transforms functions that looks like J into functions that looks
like exp {(ln J(x)) /ε} . Indeed, notice that J(ψε(x)) = J(x)1/ε = exp {(ln J(x)) /ε} .
Since the solution n of the Cauchy problem (1.1) is expected to behave like etJ for large
x, we can heuristically say that the rescaled function nε = n(t/ε, ψε) should behave
like et/εJ(ψε(x)) = exp {(t+ ln J(x))/ε} ∼ exp {(lnn(t, x))/ε} . The last expression is
the logarithmic Hopf–Cole transformation of n(t, x). Our rescaling is thus compatible
with this transformation.

The scaling ψε can also be rewritten in terms of the function f introduced in
Hypothesis 1.1. Indeed,

ψε(x) = sign(x)f−1 (f(x)/ε) .

We derive a precise formula for this scaling for our two main examples: the sub–
exponential kernels and the polynomial kernels.

Example 1.2 (Sub–exponential kernels). Consider f(x) := (1 + |x|2)α/2− 1 with
α ∈ (0, 1). Then

ψε(x) = sign(x)

[(
1 +

1

ε

[(
1 + |x|2

)α
2 − 1

]) 2
α

− 1

] 1
2

.

Observe that ψε(x) ∼ ε−
1
αx when |x| → +∞ at fixed ε and ψε(x) ∼ ε−

1
α sign(x)[(

1 + |x|2
)α

2 − 1
] 1
α

when ε→ 0 and x 6= 0.

Example 1.3 (Polynomial kernels). Consider f(x) := (1+α) ln
(

(1 + |x|2)
1
2

)
for

α > 0. In this case, the scaling becomes

ψε(x) = sign(x)
√

(1 + x2)1/ε − 1.

One can observe that, for any fixed ε and α, ψε(x) ∼ sign(x)|x| 1ε as |x| → +∞. In

addition, ψε(x) ∼ sign(x)
(
1 + |x|2

) 1
2ε , when ε→ 0 at fixed x 6= 0. We point out that

when α ∈ (0, 2), the kernel J decays at the same rate as the kernel in the definition
of the fractional Laplacian (−∆)α/2 as |x| → ∞. This suggests that the behaviour of
the solution of (1.11) with f as above and α ∈ (0, 2) and the behaviour of the solution
of (1.1) (−∆)α/2n in the place of J ∗ n− n are the same. We verify this below. We

also point out that in the limit |x| → +∞, ψε(x) ∼ sign(x)|x| 1ε , which is the rescaling
chosen in [29] for the fractional Laplacian.

As far as the initial data is concerned, we assume without lost of generality that
there exists two positive constants C and C such that C < 1 < C and

(1.10) CJ ≤ n0 ≤ CJ.

Moreover, we assume that the initial data is symmetric, and since the kernel J is also
assumed to be symmetric (see Hypothesis 1.3), the solution n thus remains symmetric
for all times.

Remark 1.4. The lower bound in assumption (1.10) is not restrictive, though
it allows us to avoid discussion of a boundary layer at t = 0. Indeed, assuming
Hypothesis 1.1, any solution of (1.1) starting with initial data that decays faster
than J at infinity satisfies Hypothesis 1.10 after at most time 1. More precisely, for
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any n0 decaying faster than J , there exist constants C and C such that CJ(x) ≤
n(1, x) ≤ CJ(x) for any x ∈ R see, e.g., [22, Section 4.2]). After translating in time,
our argument applies with initial data n(1, x). From the uniqueness of solutions of
the Cauchy problem (1.1), our conclusions hold for n as well. If, on the other hand,
the upper bound in Hypothesis 1.10 does not hold, i.e. n0 decays slower than J , then
we expect different behavior. Indeed, by analogy with [1, 24, 25], we expect faster
propagation depending only on the rate of decay of the initial data.

In view of the above, the assumption (1.10) is quite general for the regimes that
we wish to understand.

Let us now rescale time and space as follows: t 7→ t/ε and x 7→ ψε(x) and define
the solution nε in the new variables: nε(t, x) = n(t/ε, ψε(x)) where n solves (1.1) with
initial condition n0 satisfying (1.10). Plugging this quantity into (1.1), we obtain the
following equation:
(1.11)
ε∂tnε =

∫ ∞
−∞

J(h)
[
nε
(
t, ψ−1ε (ψε(x)− h)

)
− nε

]
dh + nε (1− nε) in (0,∞)× R,

nε(0, x) = n0(ψε(|x|)), for x ∈ R.

We know from [22] that the solutions of (1.11) will propagate and converge to one
as t → ∞. In the large scale limit ε → 0 with our change of variables, we expect
this propagation to be transformed into dynamics of an interface moving with time.
To capture this phenomenon, we use the logarithmic Hopf–Cole transform [16, 21] as
follows:

(1.12) uε := −ε lnnε.

Notice that this is equivalent to nε = exp
(
−uεε

)
. Then, the function uε solves:

(1.13)
∂tuε + 1=

∫ ∞
−∞

J(h)
[
1− e−

1
ε (uε(t,ψ

−1
ε (ψε(x)−h))−uε(t,x))

]
dh + nε, in (0,∞)× R

uε(0, x) = −ε ln
(
n0(ψε(x))

)
, x ∈ R.

Note that assumptions (1.10) imply that uε(0, ·) → f uniformly in R as ε → 0.
Our aim is to compute the limit ε→ 0 of uε and then deduce the behavior of nε. The
result is the following.

Theorem 1.5. Let uε be the solution of (1.13) with initial condition satisfy-
ing Hypothesis 1.10. If the kernel J satisfies Hypothesis 1.1, then as ε → 0, the
sequence uε converges locally uniformly on (0,∞)× R to

u(t, x) := max{f(x)− t, 0}.

From this convergence result, we may deduce the asymptotics of nε.

Theorem 1.6. Let nε be the solution of (1.11) with the initial data satisfying Hy-
pothesis 1.10. If the kernel J satisfies Hypothesis 1.1, then

(a) uniformly on compact subsets of {u > 0},

lim
ε→0

nε = 0;

(b) for every compact subset K ⊂ Int ({u(t, x) = 0}),

lim
ε→0

nε(t, x) = 1,
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where the limit is uniform in K.

Since f is a continuous and increasing function of |x|, the boundary of {u(t, x) = 0}
is given by |x| = f−1(t). Hence, as ε → 0, nε ∼ 1 if and only if |x| < f−1(t). Since
n(t, x) ∼ nε(1, ψ

−1
ε (x)) with ε = 1/t, then as t → ∞ we see that n(t, x) ∼ 1 if and

only if |x| < f−1(t). As such, Theorem 1.5 and Theorem 1.6 imply that the location
of the front of n is ∼ f−1(t).

Let us apply our two main results Theorem 1.5 and Theorem 1.6 to our basic
examples.

Example 1.7. When f is a sub–exponential kernel of the form f(x) = (1 +
|x|2)α/2 with α ∈ (0, 1), we see that the front is located at ∼ t1/α. In the thin-tailed
limit α→ 1 see recover constant speed propagation.

On the other hand, when f is a polynomial kernel of the form f(x) = (1+α) ln(1+
|x|2)/2, with α > 0, we see that the front is located at ∼ et/(1+α).

In Theorem 1.5 the dispersion kernel J disappears when we pass to the limit
ε → 0, in the sense that the constrained Hamilton–Jacobi equation satisfied by the
limit function u is simply min {∂tu+ 1, u} = 0, in which J is absent. Solutions to this
equation are given by max{u0(·) − t, 0}, so that the effect of the kernel is felt only
through the initial data. Without the Hypothesis 1.10, a boundary layer at t = 0
would develop during the limit ε→ 0. See Remark 1.4.

This is quite different from the case of a thin tailed kernel, for which the Hamil-
tonian would typically contain a term of the form Ĵ − 1 [15, 31, 7]. This is explained
by our rescaling ψε which focuses on the behavior at infinity of the solution, and thus
mainly ignores the precise dynamics of the dispersion. This phenomenon was already
observed in [29] for the fractional Laplacian. Despite this, Theorem 1.6 states that
our rescaling is sharp enough to capture the interface at infinity.

One way to understand intuitively why the kernel disappears in the limiting equa-
tion is to investigate the integral term in (1.13). Due to the fat–tailed assumption
in Hypothesis 1.1, the quantity ψ−1ε (ψε(x) + h) − ψ−1ε (ψε(x)) is likely to go to zero
faster than ε. Hence, the integral disappears in the limit. While this is formally clear,
it is difficult to make this intuition rigorous.

We comment momentarily on the method of proof. We construct explicit sub-
and super-solutions of u using the kernel J and the general solution to the logistic
equation. While the most natural thing to do would be to use half relaxed limits along
with the limiting Hamilton-Jacobi equation (see [8]), the non–locality of the kernel
makes this very difficult because the non-local term in the equation “sees” all of R but
the half-relaxed limits only provide convergence locally. Thus, as in [29], we construct
sharp sub- and super–solutions of (1.13) to conclude. The construction of these sub-
and super–solutions also provides sharp sub- and super–solutions for equation (1.1).
We point out that Theorem 1.6 improves the existing bounds in [22].

To illustrate the results of Theorem 1.5, we provide the results of some numerical
simulations in Figure 1 for four choices of kernels J : a Gaussian kernel for which
linear spreading is expected [13], two sub-exponential kernels J ∼ exp(−| · |1/2),

J ∼ exp(−| · |3/4) and a polynomial one J ∼
(
1 + | · |5

)−1
.

The small mutations limit. Our main equation (1.1) also arises naturally in
the context of population genetics, to capture the effect of genetic mutations [7, 30].
Under this perspective, the variable x now corresponds to a phenotypic trait and the
convolution term describes the mutation process during which an individual with trait
x can give birth to an individual with trait x+ h with probability J(h).
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Fig. 1. Numerical simulations of the Cauchy problem (1.1), for various kernels J. The first line
corresponds to J ∼ |x|−5, the second line to J ∼ exp

(
−|x|1/2

)
, the third line to J ∼ exp

(
−|x|3/4

)
and the last line to a Gaussian kernel J ∼ exp

(
−|x|2

)
. For each kernel, we present in the left

column the evolution of the solution by plotting it on the same figure for various successive (linearly
chosen) values of time t. To quantify this and recover and illustrate Theorem 1.6, we present in the
right column the time evolution of the level set {x ∈ R : n(t, x) = 1/2} for each kernel. The red bold
curve is the numerical simulation, starting from an initial condition of the form J. The green curve
is the expected asymptotic rate of expansion predicted by Theorem 1.5, that is J−1(e−t), except for
the Gaussian kernel, in which case it is a line. Each kernel is successively more thin–tailed, yielding
an interpolation between the obvious acceleration for the first kernel and the linear propagation for
the last kernel.

We are interested in a situation where large–effect mutations, while still uncom-
mon, are relatively frequent. This is exactly what is encoded in a mutation kernel
with fat–tails. The aim of this section is to understand the effect of these large mu-
tation events on the adaptive dynamics when the mean effect of mutations is small.
This regime of small mean–effect of mutations will be referred as the small mutation
regime. Note that even in the small mutation regime, mutation events with a large
effect can occur. The main difficulty is to identify the appropriate scaling of this small
mutation regime when the mutation kernel has fat tails.

To work in the small mutation regime, we introduce a small parameter ε, such
that ε−1 typically represents the time-scale on which these mutations accumulate.
This time scale being given, one needs to scale the size of the mutations in a relevant
way to capture the expected (non-trivial) dynamics.
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In the case of a thin–tailed mutation kernel, the small mutation regime corre-
sponds to mutation kernel with small variance of order ε2. Thus, it is natural to
rewrite the mutation kernel J(h) as Jε(h) := J(h/ε)/ε where now J is of variance
σ2. Precisely the variance of Jε is equal to σ2ε2. With such transformation, the jump
x 7→ x + h with probability J(h) is replaced by the jump x 7→ x + εh with the same
probability J(h). In this case, the asymptotic behavior of the population is described
by a Hamilton–Jacobi equation [7, 15, 30].

In the fat–tailed setting, however, the large mutation events modify the dynamics.
As a consequence, it is necessary to rescale the jump size non-linearly to take this
into account as the scaling above does not contract the kernel enough. Indeed, if the
size of jumps is of order ε it does not go to zero fast enough to be comparable with
the contraction of the kernel. Inspired by our first part about propagation, we replace
the jumps x 7→ x+ h by x 7→ x+ ψ−1ε (h) with the same probability, where

ψε(h) = sign(h)f−1 (εf(h)) .

Our jump size scaling procedure is actually equivalent to rewrite the mutation kernel
J . The mutation kernel J is transformed into Jε defined by

(1.14) J(h) = e−f(h) 7−→ Jε(h) = J(ψε)ψ
′
ε(x) =

1

ε

f ′(h)

f ′
(
ψ−1ε (h)

)J(h)
1
ε .

Thus, with fat–tailed mutation kernel, the small mutation regime corresponds to when
the following quantity is rescaled by ε2:∫

R
f(x)2Jε(x)dx = ε2

(∫
R
f(x)2J(x)dx

)
Observe that in the case of the small mutation regime of a thin tailed kernel, this
quantity would be exactly the variance of Jε. From the formula (1.14), we can observe
that Jε is a contraction of J .

Due to the small size of the mutations, their effect can only be seen after many
mutations accumulate. Hence, we want to capture the long time behavior of the
population, or, equivalently, the setting where the rate of mutation is large. This
suggests that we rescale the time by the parameter ε as t 7→ t/ε. Under this rescaling
and the rewriting of the mutation (1.14), equation (1.1) becomes:

(1.15) ε∂tnε(t, x) =

∫
R

(
nε(t, x− ψ−1ε (h))− nε(t, x)

)
J(|h|)dh+ nε(1− nε).

As in the propagation regime, the scaled size of jumps goes to 0 as ε→ 0. So we expect
the solution nε to concentrate. In order to capture this concentration phenomenon, we
perform the logarithmic Hopf–Cole transformation, uε := −ε ln(nε) and uε satisfies
the following equation:
(1.16){
∂tuε(t, x) +

∫
R e
− 1
ε (uε(t,x−ψ

−1
ε (h))−uε(t,x))J(h)dh = nε(t, x), on (0,+∞)× R

uε(t, ·) = u0ε.

Before stating our main results, we need the following additional technical as-
sumption on the derivative of f = − ln(J) at x = 0.

hypothesis 1.8. Assume that f ∈ C2(0,∞) and that f satisfies limx↘0 f(x)/x ∈
(0,∞). We abuse notation by denoting it f ′(0). Additionally, f satisfies all the



10 E. BOUIN, J.GARNIER, C.HENDERSON AND F. PATOUT

assumptions of Hypothesis 1.1 except for regularity at zero. Namely, f ∈ C0(R) but
f is not C2 at 0.

We also require additional assumptions on the initial data u0ε = −ε ln(n0ε). We as-
sume that u0ε is a positive sequence of Lipschitz continuous functions which converges
locally uniformly to u0 as ε → 0 and there exists A ∈ (0, 1 − 1/µ) where, we recall,
µ := lim infx→+∞ |x|f ′(|x|) > 1 such that for all x, h ∈ R:

(1.17) u0ε(x+ h)− u0ε(x) ≥ −Af(h).

Note that (u0ε)ε is thus uniformly locally bounded and n0ε = exp(−u0ε/ε) satisfies, for
all x ∈ R and ε > 0,

(1.18) 0 ≤ n0ε(x) ≤ 1.

From the maximum principle, we have that 0 < nε(t, x) < 1 for all x ∈ R and t > 0.
Moreover, the property Hypothesis 1.17 propagates for any positive time – see the
following lemma.

Lemma 1.9. Let f satisfy Hypothesis 1.8. Then any solution uε of (1.16) starting
with initial condition u0ε satisfying Hypothesis 1.17, satisfies the following properties:

1. the sequence (uε)ε is locally uniformly bounded. In particular, there exists
r > 0 such that, for all x ∈ R and t ∈ (0,∞),

−rt ≤ uε(t, x)− u0ε(x) ≤ t;

2. for all t ≥ 0 and all x, h ∈ R, we have:

(1.19) uε(t, x+ h)− uε(t, x) ≥ −Af(|h|).

In particular uε is uniformly Lipschitz with respect to x with the bound

(1.20) ‖∂xuε‖L∞((0,+∞)×R) ≤ Af
′(0).

The local uniform estimates of Lemma 1.9 allows us to define the following upper-
and lower–half–relaxed limits of uε by the following formulas:

(1.21) u(t, x) := lim inf
ε→0

(s,y)→(t,x)

uε(s, y) and u(t, x) := lim sup
ε→0

(s,y)→(t,x)

uε(s, y) .

From the properties of half-relaxed limits, the estimates (1.19) and (1.20) hold true
for the functions u and u. In addition, it is apparent that u ≤ u in (0,∞) × R by
construction. With this sub- and super–solution in hands, we can state our main
results on the asymptotics of uε and nε as ε→ 0.

Theorem 1.10. Let f satisfy Hypothesis 1.8 and let uε be the solution of (1.16)
starting with initial condition u0ε satisfying Hypothesis 1.17. Then as ε → 0 we have
the following:

i) the upper (resp. lower) half–relaxed limit u (resp. u) is a sub- (resp. super-)
solution to the following constrained Hamilton–Jacobi equation:

min

{
∂tu+

∫
R

[
e

sign(h)f(h)

f′(0) ∂xu − 1

]
J(h) dh+ 1, u

}
= 0, on (0,+∞)× R;
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ii) the sequence (uε)ε converges locally uniformly on (0,+∞) × R to a function
u that is Lipschitz continuous with respect to x and continuous in time, and
which is a viscosity solution to

(1.22)
min

{
∂tu+

∫
R

[
e

sign(h)f(h)

f′(0) ∂xu − 1

]
J(h) dh+ 1, u

}
= 0, on (0,+∞)× R,

u(0, ·) = u0.

We first note that the integral term in (1.22) is well defined due to the inequality (1.20).
It is also related, up to a change of variables, to the analogous equation obtained by
Méléard and Mirrahimi [29, equation (27)]. The proof of Theorem 1.10, appearing
in Section 4, uses the half–relaxed limits method introduced by Barles and Perthame
[8]. It relies heavily upon Lemma 1.9, which is proved last in Subsection 4.3. Under the
small mutation regime, we do not use explicit sub- and super–solutions. In particular,
the sub- and super–solutions introduced in the propagation regime are not relevant
in this situation.

The previous result Theorem 1.10 on the behavior of uε = −ε ln(nε) as ε → 0
allows us to study the convergence of nε as ε→ 0. Heuristically, when ε is small, we
expect that nε ' exp(u(t, x)/ε). Thus, the solution u gives an indication on where
the solution nε is concentrated in the regime of small mutations, or at least at a first
order of approximation. More precisely we obtain the following result:

Theorem 1.11. Let f satisfy Hypothesis 1.8 and let nε be the solution of (1.15)
starting with initial condition n0ε such that u0ε = −ε ln(n0ε) satisfies Hypothesis 1.17.
Then as ε→ 0,

(1.23)

nε → 0 locally uniformly in A = {(t, x) ∈ (0,∞)× R | u(t, x) > 0},

nε → 1 locally uniformly in B = Int{(t, x) ∈ (0,∞)× R | u(t, x) = 0}.

We now discuss, heuristically, Theorem 1.11. When ε is small, we expect that nε ∼ 1 in
B, implying that, at time t, the phenotype x is realized in the population if (t, x) ∈ B.
On the other hand, nε ∼ 0 in A. Similarly, the trait x at time t will not be realized
in the population if (t, x) ∈ A. Hence, if the mutations are sufficiently small, i.e. if
ε is small enough, the sets A and B determine which phenotypes are realized in the
population. We can thus deduce the form of the solution nε when ε is small. This
final result is proved in Subsection 4.2.

To illustrate Theorem 1.10, we discuss the following example which is also dis-
cussed in the paper of Mirrahimi and Méléard [29] in the case of the fractional Lapla-
cian. We show how our results Theorem 1.10 and Theorem 1.11 gives an approxima-
tion of the behaviour of the solution nε of the problem (1.15).

Example 1.12. Let nε be the solution of (1.15) starting with n0ε(x) = J(x)A/ε,
then the initial condition u0ε(x) = −ε ln(n0ε(x)) = Af(x)/ε. Notice that u0ε satis-
fies Hypothesis 1.17 because f is concave. It follows from the Theorem 1.10 that uε
converge locally uniformly to the unique viscosity solution ofmin (∂tu+H(∂xu), u) = 0, on (0,+∞)× R,

u(0, ·) = Af.
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where the Hamiltonian H is defined by

H(p) =

∫
R

[
e

sign(h)f(h)

f′(0) p − 1

]
J(h) dh+ 1.

From a Taylor expansion, one can check that there exists two positive constants κ and
κ such that

1 + κp2 = 1 + p2
∫ ∞
0

(
f(h)

f ′(0)

)2

e
− f(h)

f′(0)AJ(h) dh

≤ H(p) ≤ 1 + p2
∫ ∞
0

(
f(h)

f ′(0)

)2

e
f(h)

f′(0)AJ(h) dh = 1 + κp2.

Using these inequalities, we obtain the following estimates of u:

max

(
inf
y∈R

(
Af(y)+

|x− y|2

4κt
− t
)
, 0

)
≤ u(t, x) ≤ max

(
inf
y∈R

(
Af(y)+

|x− y|2

4κt
−t
)
, 0

)
We then deduce that{

(t, x) ∈ (0,+∞)× R : |x| ≤ max
r∈[0,1]

(
2
√
κrt+ f−1(t(1− r2)/A)

)}
⊂ {u = 0}

⊂
{

(t, x) ∈ (0,+∞)× R : |x| ≤ max
r∈[0,1]

(
2
√
κrt+ f−1(t(1− r2)/A)

)}
Combining these estimates with Theorem 1.11, we conclude that the population prop-
agates in the phenotype space to be of order f−1(t/A) for large time. Roughly, when
the mutations in (1.15) are sufficiently small and time is sufficiently large, we see
that the phenotypes x realized in the population are those for which x . f−1(t/A) and
those that have not been realized are those for which x & f−1(t/A). Moreover, we
can deduce the following approximation at the first order of ε. Formally, using the
convergence Theorem 1.10, we can say that the solutions nε = exp(−uε/ε) of (1.15)
can be approximated by exp(−u/ε). Roughly, we conclude that nε(t, x) ' 1 when
|x| . f−1(t/A) and that nε(t, x) ' 0 when |x| & f−1(t/A), up to some additional
small error depending on ε.

Remark 1.13. Throughout the paper, we use C to refer to any constant depending
only on the kernel J . This constant may change line-by-line.

2. The propagation result: proof of Theorem 1.5.

To prove Theorem 1.5, we construct sharp explicit sub- and super–solutions to
the non-rescaled problem (1.1). Our sub- and super–solutions are sharp enough to
converge after rescaling to the same solution. This construction is defined in the next
proposition.

Proposition 2.1. Let the kernel J satisfy Hypothesis 1.1 and n be a solution
of (1.1) with initial data n0 satisfying Hypothesis 1.10. Then, there exists a bounded
positive function θ, which only depends on J, such that θ(s) → 0 as s → +∞, and
positive constants C < 1 < C, such that, for all t > 0 and x ∈ R,

(2.1)
C exp

(
−
∫ t
0
θ(s)ds

)
1 + e−t/J(x)

≤ n(t, x) ≤
2C exp

(∫ t
0
θ(s)ds

)
1 + e−t/J(x)

.
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The function θ could, for a specific kernel, be computed explicitly; however, such a
computation would be quite involved. For our purposes, we only need to know that
it converges to 0 as t → +∞. Next let us give some interpretation of this result and
an insight into the underlying ideas of the proofs. Let us first rewrite the estimate as

C exp

(
−
∫ t

0

θ(s) ds

)
φ(t, x) ≤ n(t, x) ≤ 2C exp

(∫ t

0

θ(s)ds

)
φ(t, x).

where we define the function φ(t, x) := (1 + e−t/J(x))−1. We observe that the be-
haviour of n is well approximated by the solution of the family of decoupled ODEs:

dφ(t, x)

dt
= φ(1− φ),

φ(0, ·) = J
1+J ≤ J,

parametrized by x ∈ R. In other words, the behaviour of n at large time is dominated
by the reaction term; that is to say that the dispersion term plays a negligible role,
in some sense, compared to the growth by reaction.

Before embarking on the proof of this proposition, we explain how Proposition 2.1
implies Theorem 1.5.

2.1. Proof of Theorem 1.5 assuming Proposition 2.1.

Proof of Theorem 1.5. Let us assume that the estimate (2.1) holds true for
a solution n of (1.1) with initial data n0 satisfying Hypothesis 1.10. Then, for any
ε > 0, the rescaled solution nε(t, x) = n(t/ε, ψε(x)) with ψε defined in (1.9), satisfies
for all t > 0 and x ∈ R:

C exp
(
−
∫ t
ε

0
θ(s)ds

)
1 + e−t/ε/J(x)

1
ε

≤ nε(t, x) ≤
2C exp

(∫ t
ε

0
θ(s)ds

)
1 + e−t/ε/J(x)

1
ε

,

Thus, its Hopf–Cole transformation uε(t, x) = −ε ln(nε(t, x)) satisfies for all t > 0
and x ∈ R

−ε ln(C)+ε

∫ t
ε

0

θ(s)ds+ ε ln
(

1 +
(
e−t/J(x)

) 1
ε

)
≥ uε(t, x)

≥ −ε ln(2C)− ε
∫ t

ε

0

θ(s)ds+ ε ln
(

1 +
(
e−t/J(x)

) 1
ε

)
.

(2.2)

We point out that t−1
∫ t
0
θ(s)ds→ 0 as t→∞ since θ(t)→ 0 as t→ +∞. It follows

that, locally uniformly in t,

(2.3) lim
ε→0

ε

∫ t
ε

0

θ(s)ds = 0.

In addition, it is easy to see that, locally uniformly in x and t,

(2.4) lim
ε→0

ε ln
(

1 +
(
e−t/J(x)

) 1
ε

)
= max (f(|x|)− t, 0) .

Hence, using (2.2)–(2.4), we see that, locally uniformly in x and t,

lim
ε→0

uε(t, x) = max{f(x)− t, 0},

which concludes the proof of Theorem 1.5.
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Remark 2.2. Using the work below, one could, in practice, compute θ and de-
termine for which kernels J the function θ is integrable. When this is the case, the
estimate given by (2.1) is more precise since

∫ t
0
θ(s)ds could be replaced by a constant

on both sides of the equation. One could then quantify and compare more precisely
the expansion of the λ-level lines of the solution n for various values of λ. Further, by
plotting the function x 7→ (1 + e−t/J(|x|))n(t, x) for various values of time (results
not shown), one can investigate the accuracy of the upper and lower bounds given
by (2.1). The threshold for integrability of θ appears to be kernels like exp{

√
|x|}:

those which are fatter yield an integrable θ. In this case, (2.1) gives a sharp estimate,
up to the constants, of n and, in turn, on the expansion of the level sets of n. On
the other hand, when kernels are thinner, θ is not integrable and (2.1) is no longer
an accurate point-wise bound, though it is good enough for our purposes. This is
consistent with the fact that when the kernel is thin-tailed the qualitative behavior
of n is quite different.

2.2. The existence of sub- and super-solutions: Proof of Proposition 2.1.

Proof. We will show that the left hand side and the right hand side of (2.1) are
respectively a sub- and a super–solution of (1.1). As already observed these sub- and
super–solution are constructed from the family of solutions of ODEs of the form

(2.5) φ(t, x) =
1

1 + e−t/J(x)
.

Then, we may write our (potential) sub- and super-solutions as

φ(t, x) = Cφ(t, x) exp

(
−
∫ t

0

θ(s)ds

)
and φ(t, x) = 2 Cφ(t, x) exp

(∫ t

0

θ(s)ds

)
,

for all t > 0 and x ∈ R. Note that, for all x ∈ R

φ(0, x) =
CJ(x)

1 + J(x)
≤ CJ(x) ≤ n0(x) ≤ CJ(x) ≤ 2 CJ(x)

1 + J(x)
= φ(0, x).

Moreover, a direct computation shows that the function φ satisfies, for all t > 0 and
x ∈ R,

∂tφ(t, x) = φ(t, x) (1− φ(t, x)) + θ(t)φ(t, x) ≥ φ(t, x)
(
1− φ(t, x)

)
+ θ(t)φ(t, x).

Then,

∂tφ(t, x)− φ(t, x)
(
1− φ(t, x)

)
−
(
J ∗ φ− φ

)
(t, x)

≥
(
θ(t)φ(t, x)− (J ∗ φ− φ) (t, x)

)
2 C exp

(∫ t

0

θ(s)ds

)
.

Thus, if θφ− (J ∗φ−φ) ≥ 0 in (0,∞)×R, the function φ is a super–solution to (1.1).
Similarly, if −θφ− (J ∗ φ− φ) ≤ 0 in (0,∞)× R, the function φ is a sub–solution to
(1.1). The proof of Proposition 2.1 then reduces to proving that

(2.6) − θφ ≤ J ∗ φ− φ ≤ θφ.

In the following sections, we obtain upper and lower bounds on this convolution
term, completing the proof of Proposition 2.1. To do so, we will split the space into



THIN FRONT OF INTEGRO-DIFF KPP EQUATION WITH FAT-TAILED KERNELS 15

two regions depending on time; the large range region E`(t) and the short range region
Es(t) defined, for all t > 0, by

(2.7) E`(t) =
{
x ∈ R : |x| ≥ f−1(t)

}
and Es(t) = R \ E`(t).

We immediately notice that both regions are preserved by the scaling (t/ε, ψε(x)).
We shall estimate J ∗ φ− φ in both regions E`(t) and Es(t) separately.

2.3. Establishing Proposition 2.1: the proof of the bound (2.6).
To estimate the convolution term, regardless the region in which x lies, we split

the domain of integration of the convolution term as follows

(J ∗ φ− φ) (t, x)

=

∫
|x−y|≤γ(t)

J(x− y) (φ(t, y)− φ(t, x)) dy +

∫
|x−y|≥γ(t)

J(x− y) (φ(t, y)− φ(t, x)) dy,

= I1(t, x) + I2(t, x),

for a function γ(t) to be determined that localizes the integral around x. In what
follows, we choose γ(t) to be a positive and increasing function of time t such that
γ(t) ≤ f−1(t). Note that by symmetry of the problem, we can assume that x ≥ 0,
which we do from now on.

The existence of θ in (2.6) is equivalent to showing that, for k = 1, 2,

(2.8) lim
t→∞

|Ik(t, x)|
φ(t, x)

= 0,

where the limit holds uniformly in x.

2.3.1. Estimation of the integral I1. In the region where y is close to x,
that is |x− y| ≤ γ(t), we estimate the difference φ(t, y)− φ(t, x) by using the Taylor
expansion of φ around location x.

More precisely, for any t > 0, x ∈ R and y such that |x − y| ≤ γ(t), there exists
ξt,x,y ∈ (0, 1) such that

(2.9) φ(t, y)− φ(t, x) = (y − x)∂xφ(t, xξt,x,y + (1− ξt,x,y)y) .

For notational ease, we omit the subscripts (t, x, y) for ξt,x,y in the sequel. Plugging
this expression into I1 we obtain

I1 =

∫
|x−y|≤γ(t)

J(x− y)(y − x)∂xφ(t, xξ + (1− ξ)y) dy.

To estimate the first derivative of φ, we use the following.

Lemma 2.3. There exists a positive function θ1(t), depending only on J, such
that, for any z ∈ R and t > 0,

|∂xφ(t, z)| ≤ θ1(t)φ(t, z),

and such that θ1(s)→ 0 as s→∞.

Proof. Using the form of J , we can rewrite φ(t, z) = (1 + ef(z)−t)−1. A direct
computation shows that, for all t > 0 and z ∈ R,

|∂xφ(t, z)| =
∣∣∣∣φ(t, z)f ′(z)

ef(z)−t

1 + ef(z)−t

∣∣∣∣ ,
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so that ∣∣∣∣∂xφφ
∣∣∣∣ (t, z) ≤ ef(z)−t

1 + ef(z)−t
f ′(z) .

To estimate the right hand side of the inequality above, fix α ∈ (0, 1). First, consider
the case when |z| ≤ f−1 (αt). Then ef(z)−t ≤ e−(1−α)t, and, hence∣∣∣∣∂xφφ

∣∣∣∣ (t, z) ≤ e−(1−α)t‖f ′‖∞.
On the other hand if |z| ≥ f−1(αt), then ef(z)−t

1+ef(z)−t
≤ 1 and, consequently,∣∣∣∣∂xφφ

∣∣∣∣ (t, z) ≤ sup
|z|≥f−1(αt)

|f ′(z)|.

Defining

(2.10) θ1(t) = max

{
‖f ′‖∞e−(1−α)t, sup

|z|≥f−1(αt)

|f ′(z)|

}
,

we conclude that, for all t > 0 and z ∈ R∣∣∣∣∂xφφ
∣∣∣∣ (t, z) ≤ θ1(t).

The convergence of θ1(s) to zero as s tends to infinity is clear from the definition and
the assumptions on f in Hypothesis 1.1. This concludes the proof of Lemma 2.3.

We deduce from Lemma 2.3, an estimate on I1

|I1| ≤ θ1(t)

∫
|x−y|≤γ(t)

J(x− y)|y − x|φ(t, xξ + (1− ξ)y) dy.

Changing variables, we must estimate

(2.11)

∫
|h|≤γ(t)

J(h)|h|φ(t, x+ (1− ξ)h) dh.

To do so, we bound φ(t, x + (1 − ξ)h) with φ(t, x) by choosing the function γ(t)
carefully. We first prove that we may choose the positive function γ(t) such that, for
all x ∈ E`(t), h ∈ (−γ(t), γ(t)), and ξ ∈ (0, 1),

(2.12) φ(t, x+ (1− ξ)h) ≤ eφ(t, x).

Indeed, we have

ln
(
φ(t,x+(1−ξ)h)

φ(t,x)

)
≤ | ln(φ(t, x+ (1− ξ)h))− ln(φ(t, x))|,
≤ supz∈[x−(1−ξ)|h|,x+(1−ξ)|h|] |∂x(lnφ)(t, z)| |h|.

Using the bound on ∂x (lnφ) of Lemma 2.3, we have

ln

(
φ(t, x+ (1− ξ)h)

φ(t, x)

)
≤ exp(θ1(t)γ(t)).
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Fixing γ such that θ1γ ≤ 1 yields (2.12). For technical reasons, discussed in the proof
of the estimate of I2, we define

(2.13) γ(t) = min

{
f ′
(
f−1(t)

2

)−1
, θ1(t)−1

}
It is clear that θ1γ ≤ 1, as desired. We point out that, from (2.10),

θ1(t)−1 = min
(
e(1−α)t,

[
f ′(f−1(αt))

]−1)
.

Our choice of γ implies

|I1| ≤ eθ1(t)

(∫
|h|≤γ(t)

J(h)|h| dy

)
φ(t, x).

We now show that

(2.14) lim
t→+∞

θ1(t)

∫
|h|<γ(t)

J(h)|h|dh = 0.

From our assumption Hypothesis 1.7 in Hypothesis 1.1 on J , there exists H > 0
such that if |h| > H, then J(h) ≤ |h|−µ. We deduce that there exists a constant C,
depending only on J such that, for all t > 0,

θ1(t)

∫
|h|<γ(t)

J(h)|h|dh ≤ θ1(t)

∫
|h|<H

J(h)|h|dh+ θ1(t)

∫
H<|h|<γ(t)

J(h)|h|dh

≤ θ1(t)C + θ1(t)

∫
H<|h|<γ(t)

|h|1−µdh,

where we interpret the last integral to be zero in the case when γ(t) ≤ H. Thus we
get

θ1(t)

∫
|h|<γ(t)

J(h)|h|dh ≤

{
C
(
θ1(t) + θ1(t)|γ(t)|2−µ

)
, if µ 6= 2,

C (θ1(t) + θ1(t) ln(γ(t))) , if µ = 2.

Using the definition of γ, (2.13), this inequality becomes

θ1(t)

∫
|h|<γ(t)

J(h)|h|dh ≤

{
C
(
θ1(t) + θ1(t)µ−1

)
, if µ 6= 2,

Cθ1(t)
(
1 + ln

(
θ1(t)−1

))
, if µ = 2.

In both cases, we have established that |I1|/φ(t, x) → 0 as t → ∞, as claimed. This
establishes (2.8) for k = 1.

2.3.2. Estimation of the integral I2. The arguments for the upper and lower
bounds are different. As it is simpler, we prove the lower bound first. Since φ is
positive,

I2(t, x) ≥ −
∫
|x−y|≥γ(t)

J(x− y)φ(t, x)dx = −φ(t, x)

∫
|h|≥γ(t)

J(h)dh.

Clearly lim inft→∞ I2/φ(t, x) ≥ 0.
This finishes the proof of the lower bound for I1 and I2. To conclude, we need only
obtain a matching upper bound of I2 in order to obtain (2.8) and thus Proposition 2.1.
The proof of this bound is somewhat involved. We break up our estimates based on
whether x is in the short-range or long-range regime.
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# The long range region:. We handle first the case when x ∈ E`(t), that is x ≥
f−1(t). We first split the integral I2 as

I2 =

∫
|x−y|≥γ(t)
|y|≥|x|

J(x− y)
(
φ(t, y)− φ(t, x)

)
dy +

∫
|x−y|≥γ(t)
|y|≤|x|

J(x− y)
(
φ(t, y)− φ(t, x)

)
dy,

≤

∫
|x−y|≥γ(t)
|y|≥|x|

J(x− y)
φ(t, y)

φ(t, x)
dy +

∫
|x−y|≥γ(t)
|y|≤|x|

J(x− y)
φ(t, y)

φ(t, x)
dy

φ(t, x),

≤ (II1 + II2)φ(t, x).

(2.15)

The first part of the integral, II1, is estimated using the monotonicity of φ in the
spatial variable to obtain

II1 ≤
∫
|x−y|≥γ(t)
|y|≥|x|

J(x− y) dy ≤
∫
|h|≥γ(t)

J(h) dh.

We now turn to the second part term in (2.15), II2. Recall that we are assuming,
by the symmetry of the problem that x is positive. We decompose the integral in
four pieces, one integral close to y = −x, two integrals close to y = 0 and the last one
centered around |y| = x/2. More precisely,

II2 =

∫
|x−y|≥γ(t)
|y|≤|x|

J(x− y)
φ(t, y)

φ(t, x)
dy ≤

∫ −γ(t)
−x
J(x− y)

φ(t, y)

φ(t, x)
dy +

∫ 0

−γ(t)
J(x− y)

φ(t, y)

φ(t, x)
dy

+

∫ γ(t)

0

J(x− y)
φ(t, y)

φ(t, x)
dy +

∫ x−γ(t)

γ(t)

J(x− y)
φ(t, y)

φ(t, x)
dy = III1 + III2 + III3 + III4.

We now estimate each of the four integrals III1, III2, III3, III4 in turn and show
that each tends to 0 in the limit t→∞.

Let us first notice that for all x, y ∈ R and t > 0,

(2.16) J(x− y)
φ(t, y)

φ(t, x)
=
J(x− y)J(y)

J(x)

J(x) + e−t

J(y) + e−t
.

In addition, for all x ∈ E`(t) and we have on the one hand

J(x) ≤ e−t,

and since y ∈ (−x, x),
J(x) + e−t

J(y) + e−t
≤ 1.

To proceed further, we require the following useful fact, in which we see the need for
the intricate description in (2.13). From its definition, it is clear that if t > 0 and
x ∈ E`(t), then 2γ(t) ≤ x.

## Estimation of III1:. First we estimate III1. Due to the limits of integration,
we have that |x− y| ≥ |x|, giving

III1 =

∫ −γ(t)
−x

J(x− y)J(y)

J(x)

J(x) + e−t

J(y) + e−t
dy ≤

∫ −γ(t)
−x

J(y) dy ≤
∫ ∞
γ(t)

J(y) dy.

Since J is integrable and since γ(t) → ∞ as t → ∞, this tends to zero as t tends to
infinity.
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## Estimation of III2.. Next we estimate III2. Due to the limits of integration
J(x− y) ≤ J(x). Using this and (2.16), we have

III2 =

∫ 0

−γ(t)

J(x− y)J(y)

J(x)

J(x) + e−t

J(y) + e−t
dy ≤

∫ 0

−γ(t)

J(x− y)

J(x)
(J(x) + e−t) dy

≤
∫ 0

−γ(t)
(J(x) + e−t) dy ≤

(
J(x) + e−t

)
γ(t) ≤ 2e−tγ(t) .

In the last step we used that x ≥ f−1(t) so that J(x) ≤ e−t. Then III2 tends to zero
as t→∞ because, by construction, γ(t) ≤ e(1−α)t.

## Estimation of III3.. To estimate the third integral, III3, we first notice that
J(x − y) ≤ J(x − γ(t)) for all y in the domain of integration [0, γ(t)]. Here we are
using the definition of γ (2.13) and the fact that x ≥ 2γ(t), observed above. Using
this inequality and (2.16), again, we obtain
(2.17)

III3 =

∫ γ(t)

0

J(x− y)J(y)

J(x)

J(x) + e−t

J(y) + e−t
dy ≤

∫ γ(t)

0

J(x− γ(t))

J(x)
(J(x) + e−t) dy.

The main difficulty is in obtaining a bound, independent of time, of J(x−γ(t))/J(x).
We obtain this bound now. From the definition of γ(t) (2.13), we see that
(2.18)

J(x− γ(t))

J(x)
= exp {f(x)− f (x− γ(t))} ,

≤ exp

{
max

z∈[x−γ(t),x]
f ′(z)γ(t)

}
,

≤ exp

{
max

z∈[f−1(t)/2,x]
f ′(z)γ(t)

}
≤ exp(f ′(f−1(t)/2)γ(t)) ≤ e.

The last step follows from the fact that x ≥ f−1(t) and that x − γ(t) ≥ x/2, which
follows from the inequality x ≥ 2γ(t).

When t is small, γ(t) is bounded; hence, maxz∈[γ(t),x] f
′(z)γ(t) is bounded. From

this and (2.18), it follows that J(x−γ(t))/J(x) ≤ C, for some constant C independent
of time. When t is sufficiently large, the concavity of f , given in Hypothesis 1.1, implies
that f ′ is monotonic so that (2.18) becomes

(2.19)
J(x− γ(t))

J(x)
≤ exp

{
f ′
(
f−1(t)

2

)
γ(t)

}
.

From the definition of γ, (2.13), we have that γ(t) ≤ f ′(f−1(t)/2)−1. Putting this
together with (2.19) yields

J(x− γ(t))

J(x)
≤ e.

Hence, there is a constant C, indepedent of time, such that J(x−γ(t))/J(x) ≤ C.
Using this in our estimate (2.17), we get the bound

III3 ≤ C(J(x) + e−t)γ(t) ≤ C(J(2γ(t)) + e−tγ(t)).

Using Hypothesis 1.1 and our arguments above, we see that the right hand side tends
to zero, as desired.
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## Estimation of III4. For all y in the domain of integration [γ(t), x − γ(t)],
we have that y ≤ x so that J(x) ≤ J(y). Re-arranging the fourth integral with this
inequality yields

III4 =

∫ x−γ(t)

γ(t)

J(x− y)J(y)

J(x)

J(x) + e−t

J(y) + e−t
dy ≤

∫ x−γ(t)

γ(t)

J(x− y)J(y)

J(x)
dy

=

∫ x/2

γ(t)

J(x− y)J(y)

J(x)
dy +

∫ x−γ(t)

x/2

J(x− y)J(y)

J(x)
dy = 2

∫ x/2

γ(t)

J(x− y)J(y)

J(x)
dy,

(2.20)

where we have changed the variable y 7→ x−y to obtain the last equality. Notice that
γ(t) ≤ x/2 ≤ x − γ(t) due to our observation that x ≥ 2γ(t). To estimate the last
term in (2.20), we need to distinguish between the cases when xf ′(x) is bounded and
when xf ′(x) is unbounded.

If xf ′(x) is bounded, we have

III4 ≤ 2
J(x/2)

J(x)

∫ x/2

γ(t)

J(y)dy ≤ 2
J(x/2)

J(x)

∫ ∞
γ(t)

J(y)dy,

because y ∈ (γ(t), x/2) and thus J(x − y) ≤ J(x/2). By Taylor’s theorem, we have
that

J(x/2)

J(x)
= exp {f(x)− f(x/2)} ≤ exp

{
sup

ξ∈(x/2,x)
f ′(ξ)

x

2

}
.

Using the eventual concavity of f along with the boundedness of f ′(
x

2
)
x

2
, we have

that J(x/2)/J(x) ≤ C. Hence

III4 ≤ C
∫ ∞
γ(t)

J(y)dy,

which tends to 0 as t tends to infinity.
If xf ′(x) tends to infinity, we require a different argument. First, notice that, if

J(x− y)J(y)/J(x) is bounded above by an integrable function J uniformly in x, then
we are finished because

III4 ≤ 2

∫ ∞
γ(t)

J(y)dy,

which tends to 0 as t tends to infinity. We prove this now.
When t is small, the domain of integration in III4 is bounded as is J(x −

y)J(y)/J(x). Hence, we may restrict to considering only the case when t is large
enough that f ′ is decreasing on (γ(t),∞).

First, notice that

J(x− y)J(y)

J(x)
= exp {f(x)− f(y)− f(x− y)} = exp

{
y

∫ 1

0

f ′(x− ys)ds− f(y)

}
.

Since f ′ is decreasing, we have that

J(x− y)J(y)

J(x)
≤ exp {yf ′(y)− f(y)} .
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From Hypothesis 1.1, there exists ε0 ∈ (0, 1) such that yf ′(y)/f(y) ≤ 1 − ε0 for
y ≥ γ(t) and t sufficiently large. Hence, we obtain that

J(x− y)J(y)

J(x)
≤ exp {−ε0f(y)} .

On the other hand, since yf ′(y) tends to infinity, it is clear that e−ε0f is integrable,
finishing the proof that III4 tends to 0 as t tends to infinity.

In conclusion, we have show that when x ∈ E`(t),

I2(t, x) = (II1 + (III1 + III2 + III3 + III4))φ(t, x)

where II1 and IIIk tend to zero as t → ∞ uniformly in x for k ∈ {1, 2, 3, 4}. This
concludes the proof in the long range region x ∈ E`(t).

# The short range region x ∈ Es(t).. We now turn to the simpler case where x
is in the short range region Es(t), that is |x| ≤ f−1(t). In this region, notice that the
function φ is bounded from below φ(t, x) ≥ 1/2. We can estimate directly as follows

I2 =

∫
|x−y|≥γ(t)

J(x− y)
(
φ(t, y)− φ(t, x)

)
dy ≤ 2

(∫
|h|≥γ(t)

J(h) dh

)
φ(t, x).

Of course,
∫
|h|≥γ(t) J(h)dh tends to 0 as t tends to infinity.

This concludes the proof of (2.8) and, thus, the proof of Proposition 2.1.

3. The propagation regime: the proof of Theorem 1.6.

We now deduce from Theorem 1.5 the asymptotic behaviour of nε as ε tends to 0.

Proof of Theorem 1.6. We first look at the limit in any compact subset of
{u > 0}, and then we focus on the limit in any compact subset of Int{u = 0}.

Part (a): convergence of nε in Int{u > 0}. Fix any compact subset K ⊂ {u >
0}, there exists a positive constant α such that for all (t, x) ∈ K, we have u(t, x) > α.
Due to Theorem 1.5, we know that uε converges locally uniformly on (0,+∞) × R
to u(t, x) = max(f(x) − t, 0). Hence, for all ε sufficiently small, uε(t, x) ≥ α/2 for
(t, x) ∈ K. Then for ε sufficiently small, we have that, for (t, x) ∈ K,

nε(t, x) = e−
uε(t,x)

ε ≤ e− α
2ε .

Taking the limit ε→ 0 yields the uniform convergence of nε to zero on K. This proves
point (a) of Theorem 1.6.

Part (b): convergence of nε in Int{u = 0}. First, we use the maximum
principle to show that, locally uniformly on {t > 0},

(3.1) lim sup
ε→0

‖nε(t, ·)‖∞ ≤ 1.

Indeed, it follows from Hypothesis 1.10 that there exists C, independent of ε such
that nε(0, x) ≤ C for all ε > 0. From (1.11), n(t) := 1 +Ce−t/ε is a super-solution to
nε. Hence, we have that nε(t, x) ≤ 1 + Ce−t/ε, which establishes the estimate (3.1).

Let K be a compact subset of Int{u = 0}. Our goal is to show that nε =
exp(−uε/ε) converges to 1 uniformly in K. Recall that uε is a solution to (1.13); that
is, for all (t, x) ∈ R+ × R,

nε(t, x) = 1 + ∂tuε(t, x)−
∫ ∞
−∞

J(h)
[
1− e−

1
ε (uε(t,ψ

−1
ε (ψε(x)−h))−uε(t,x))

]
dh.(3.2)
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We need a lower–bound for the right hand side to conclude. To do so, we follow the
approach of [16, 29] which consists of replacing uε by a well chosen test function to
obtain a sharp estimate. Fix any (t0, x0) ∈ K. Then, since K ⊂ {u < 0}, we may fix
δ0 > 0 such that f(x0) < t0 − δ0. For all (t, x) ∈ R+ × R, let

χ(t, x) = max {0, f(x)− (t0 − δ0)}+ (t− t0)2.

Since χ is nonnegative and u = 0 on K, u− χ has a maximum at (t0, x0), strict and
local in t, global in x. In order to follow the convergence, we also define the following
perturbed test function χε as follows. For any (t, x) ∈ R+ × R, let

χε(t, x) := ε ln
(

1 + e−
t0−δ0
ε J(x)−

1
ε

)
+ (t− t0)2.

Observe that we may reformulate χε in term of φ, defined in (2.5), and the space
scaling ψε as

(3.3) χε(t, x) = −ε ln

(
φ

(
t0 − δ0
ε

, ψε(x)

))
+ (t− t0)2.

Observe that χε(t, x) → χ(t, x) as ε → 0 locally uniformly on (0,∞) × R. Then
there exists a sequence (tε, xε) such that uε−χε has a maximum on (t0−r, t0+r)×R for
some small r > 0 at (tε, xε) that is strict in t and such that tε → t0 as ε→ 0. We note
that the fact that uε−χε has a maximum that is global in x is not immediate from the
locally uniform convergence of uε to u; however, it follows easily from Proposition 2.1.
We now plug our test functions χε into (3.2) and obtain

nε(t, x) = 1 + ∂tuε(t, x)

−
∫
R
J(h)

[
1− e−

1
ε ((uε−χε)(t,ψ

−1
ε (|ψε(x)−h|))−(uε−χε)(t,x)+χε(t,ψ−1

ε (|ψε(x)−h|))−χε(t,x))
]
dh.

(3.4)

From the maximum property of uε − χε at (tε, xε), we know that ∂tχε(tε, xε) =
∂tuε(tε, xε) = 2(tε − t0) and that for all h ∈ R,

(uε − χε)
(
tε, ψ

−1
ε (|ψε(xε)− h|)

)
− (uε − χε) (tε, xε) ≤ 0.

Thus, we obtain, at (tε, xε),

nε(tε, xε) ≥ 1 + 2(tε − t0)−
∫
R
J(h)

[
1− e−

1
ε (χε(tε,ψ

−1
ε (ψε(x)−h))−χε(tε,xε))

]
dh.

Then, the link between χε and φ yields

nε(tε, xε) ≥ 1 + 2(tε − t0)−
∫
R
J(h)

[
1−

φ
(
t0−δ0
ε , ψε(xε)− h

)
φ
(
t0−δ0
ε , ψε(xε)

) ]
dh

= 1 + 2(tε − t0) +
J ∗ φ− φ

φ

(
t0 − δ0
ε

, ψε(xε)

)
.

(3.5)

Using (2.6), this implies

nε(tε, xε) ≥ 1 + 2(tε − t0)− θ
(
t0 − δ0
ε

)
,
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where we recall that θ(s) → 0 as s → ∞. Since tε → t0 as ε → ∞ and since
t0 − δ0 > f(x0) ≥ 0, we obtain

(3.6) lim inf
ε→0

nε(tε, xε) ≥ 1.

To conclude, we must bootstrap (3.6) to deduce information about nε(t0, x0). By
construction of (tε, xε),

uε(tε, xε)− χε(tε, xε) ≥ uε(t0, x0)− χε(t0, x0),

which implies that

uε(t0, x0)− uε(tε, xε) ≤ χε(t0, x0)− χε(tε, xε)
≤ χε(t0, x0) = ε ln

(
1 + e−

t0−δ0
ε [J(ψε(x0))]

−1
)
.

Since nε = exp(−uε/ε), we obtain

nε(xε, tε) ≤ nε(x0, t0)

(
1 +

(
e−(t0−δ0)J(x0)−1

) 1
ε

)
.

Using that f(x0) < t0 + δ0 along with (3.6), we obtain

(3.7) 1 ≤ lim inf
ε→0

nε(tε, xε) ≤ lim inf
ε→0

nε(t0, x0).

The combination of (3.1) and (3.7) concludes the proof.

4. The small mutation regime.

This section is devoted to the proof of Theorem 1.10. We obtain some a priori
estimates on uε and ∂xuε in order to take the half–relaxed limits of uε to obtain u,
the solution of (1.22). We then use this limit u to estimate the level sets of nε as
ε→ 0. With the strategy in mind, we proceed with the proof of Theorem 1.10.

4.1. Proof of Theorem 1.10. We start with the proof of Theorem 1.10 (i),
which we rephrase into the following lemma for legibility.

Lemma 4.1. Let u and u be defined by (1.21). Then u and u satisfy

min

{
∂tu+

∫
R

[
e

sign(h)f(h)

f′(0) ∂xu − 1

]
J(h) dh+ 1, u

}
≥ 0, and

min

{
∂tu+

∫
R

[
e

sign(h)f(h)

f′(0) ∂xu − 1

]
J(h) dh+ 1, u

}
≤ 0

on (0,+∞)× R.

Proof. We first prove that the lower half–relaxed limit u of uε is a viscosity super–
solution to (1.22), where we recall that u is defined by

u(t, x) := lim inf
ε→0

(s,y)→(t,x)

uε(s, y).

First, u ≥ 0 because uε ≥ 0 for all ε. Let ϕ be a test function in C1((0,+∞) × R)
such that u − ϕ has a strict global minimum equal to 0 at some point (t0, x0) with
t0 > 0. Our goal is to show that

(4.1) ∂tϕ(t0, x0) +

∫
R

[
e

sign(h)f(h)

f′(0) ∂xϕ(t0,x0) − 1

]
J(h) dh+ 1 ≥ 0.
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Fix any M > 0. We eventually take the limit M →∞. Using the definition of u and
classical arguments (see [5]), we find r > 0 and a sequence (tε, xε) such that uε − ϕ
has a minimum at (tε, xε) in (t0−r, t0 +r)×B2M (x0) and such that (tε, xε) converges
to (t0, x0) as ε → 0 after passing to a sub-sequence, which we denote the same way,
if necessary. Since uε is a solution of (1.16),

(4.2) ∂tϕ(tε, xε) +

∫
R

[
e−

1
ε (uε(tε,xε−sign(h)f

−1(εf(h)))−uε(tε,xε)) − 1
]
J(h)dh+ 1 ≥ 0.

The proof now hinges on estimating the integral in (4.2). By construction of
(tε, xε) we have

uε(tε, xε)− ϕ(tε, xε) ≤ uε(t, x)− ϕ(t, x)

for all (t, x) ∈ (t0 − r, t0 + r) × B2M (x0). Also, notice that |x0 − xε| ≤ M and
| sign(h)f−1(εf(h))| ≤M for all h ∈ [0,M ] for ε small enough. Hence, we have∫

R
e−

1
ε (uε(tε,xε−sign(h)f

−1(εf(h)))−uε(tε,xε))J(h)dh

≤
∫
[−M,M ]

e−
1
ε (ϕ(tε,xε−sign(h)f−1(εf(h)))−ϕ(tε,xε))J(h)dh

+

∫
R\[−M,M ]

e−
1
ε (uε(tε,xε−sign(h)f

−1(εf(h)))−uε(tε,xε))J(h)dh.

:= I
(M,ε)
1 + I

(M,ε)
2 .

(4.3)

First, we address the integral set on [−M,M ], which we denote I
(M,ε)
1 . Since h

lies in a bounded set in this integral, ϕ is C1, and limε→0(tε, xε) = (t0, x0), we have

lim
ε→0

1

ε

(
ϕ
(
tε, xε − sign(h)f−1(εf(h))

)
− ϕ(tε, xε)

)
=

sign(h)f(h)

f ′(0)
∂xϕ(t0, x0)

uniformly in [−M,M ]. Hence, we obtain

(4.4) lim
ε→0

I
(M,ε)
1 =

∫
[−M,M ]

e
sign(h)f(h)

f′(0) ∂xϕJ(h) dh.

Next, we address the integral set on R \ [−M,M ], which we denote I
(M,ε)
2 . Using

estimate (1.19) from Lemma 1.9 on uε, we have that, for all h ∈ R,

uε
(
tε, xε − sign(h)f−1(εf(h))

)
− uε(tε, xε) ≥ −Af(sign(h)f−1(εf(h))) = −Aεf(h),

so that

I
(M,ε)
2 ≤

∫
R\[−M,M ]

eAf(h)J(h)dh = 2

∫ ∞
M

e−(1−A)f(h)dh.

Recall, from Hypothesis 1.17, that A < 1 − 1/µ where µ = lim infx→∞ xf ′(x) > 1.
This implies that the integrand above is integrable. Indeed, fix αA := µ/2 − 1/(2 −
2A). An easy computation using only that A < 1 − 1/µ shows that αA > 0. Then
from Hypothesis 1.1 on the kernel J , we have that, if M is sufficiently large, f(h) ≥
(µ − αA) ln(|h|) − C for some constant C > 0, depending only on f and A, and all
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|h| > M . Then

I
(M,ε)
2 ≤ 2

∫ ∞
M

e−(1−A)f(h)dh ≤ 2

∫ ∞
M

e−(1−A)(µ−αA) ln(|h|)+(1−A)Cdh

≤ 2e(1−A)C

∫ ∞
M

|h|−(1−A)(µ−αA)dh.

By our choice of αA, it follows that (1− A)(µ− αA) > 1. Hence the right hand side
tends to 0 as M →∞, uniformly in ε.

From the estimates (4.3) and (4.4), we can pass to the limit ε → 0 and then
M → ∞ in (4.2) to obtain the inequality (4.1). This concludes the proof that u is a
viscosity super–solution to (1.22) as desired.

In order to show that u is a viscosity sub–solution to (1.22), the steps are almost
identical. The only difference being that one must deal with the term exp(−uε/ε).
However, this is easily dealt with by splitting into cases when u = 0 and when u > 0.
As such, we omit the proof.

We now move on to the proof of Theorem 1.10 (ii).

Proof of Theorem 1.10(ii). The first step is to state and prove that u and u
satisfy related initial conditions so that we may apply the comparison principle to
conclude that u ≤ u. As before, we detail the proof for u but the proof for u is very
similar. The initial condition is

(4.5) max

{
min

{
∂tu−

(
1−

∫
R
e

sign(h)f(h)

f′(0) ∂xuJ(h) dh

)
+ 1, u

}
, u− u0

}
≥ 0,

on {t = 0} × R in the viscosity sense, where u0 is the limit as ε → 0 of the initial
data sequence (u0ε)ε. To prove the inequality (4.5), let φ ∈ C1 ((0,+∞)× R) be a test
function such that u− φ has a strict global minimum at (t0 = 0, x0). We now prove
that either

u(0, x0) ≥ u0(x0)

or

∂tφ−
(

1−
∫
R
e

sign(h)f(h)

f′(0) ∂xφJ(h) dh

)
+ 1 ≥ 0 on {t = 0, } × R and : u(0, x0) ≥ 0.

Suppose that u(0, x0) < u0(x0). The argument now starts similarly as in the proof
above. By the definition of the lower half–relaxed limit, there exists a sequence (tε, xε)
of minimum points of uε−ψ satisfying (tε, xε)→ (0, x0) as ε→ 0. We first claim that
there exists a sub–sequence (tεk , xεk)k of the above sequence, with εk → 0 as k →∞,
such that tεk > 0, for all k.

Suppose that this is not true. Then, for ε small enough, tε = 0 and thus uε − φ
has a local minimum at (0, xε). It follows that, for all (t, x) in some neighborhood of
(0, xε), we have

u0ε (xε)− φ (0, xε) ≤ uε (0, xε)− φ (0, xε) ≤ uε (t, x)− φ (t, x) .

Taking the lower half–relaxed limit as ε → 0 and (t, x) → (0, x0) on the right hand
side of the above inequality, we obtain

u0(x0)− φ (0, x0) ≤ u(0, x0)− φ (0, x0) .
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This contradicts our assumption u(0, x0) < u0(x0).
Hence, there exists a sub–sequence (tεk , xεk)k such that tεk > 0, for all k > 0. We

can reproduce the same argument as in the proof of Lemma 4.1 above to conclude
that (4.5) holds.

We are now ready to conclude the proof of (ii). Due to standard arguments of
viscosity solutions, see [8, 6], we know that equation (1.22) has a comparison principle
for possibly discontinuous viscosity solutions. As such, Lemma 4.1 implies that u ≤ u.
On the other hand, we recall that, u ≥ u by construction. It follows that u = u,
which in turn implies that uε converges locally uniformly to a function u satisfying
the equation (1.22). Moreover u inherits the gradient bound Lemma 1.9

(4.6) ‖∂xu‖L∞((0,∞)×R) ≤ Af
′(0).

This concludes the proof.

4.2. Proof of Theorem 1.11: convergence of nε. We now return to the
behavior of nε as ε→ 0.

Proof of Theorem 1.11.

# Convergence on the positive set. Fix any (t0, x0) ∈ {(t, x) ∈ R × (0,∞) :
u(t, x) > 0}. Since uε converges locally uniformly to u, then on a small ball around
(t0, x0), there exists α > 0, such that uε(t, x) ≥ α > 0 for all ε sufficiently small. Using
the Hopf–Cole transform, we see that for all (t, x) in a small ball around (t0, x0),

nε(t, x) = e−
uε(t,x)

ε ≤ e−αε .

Taking the limit ε → 0 clearly yields the convergence of nε to zero. Hence nε(t, x)
converges to 0 locally uniformly on {(t, x) ∈ R× (0,∞) : u(t, x) > 0}.

# Convergence on the null set. We next consider the case when (t0, x0) is an
element of the interior of {(t, x) ∈ R× (0,∞) : u(t, x) = 0}. Take r sufficiently small
so that u vanishes on the ball Br(t0, x0). Consider the test function

φ(t, x) =
2Af ′(0)

r
|x− x0|2 + |t− t0|2, for all t > 0 and x ∈ R;

Due to the finite difference bound that u inherits from Lemma 1.9, it is easy to
check that (u − φ) has a strict local maximum at (t0, x0). In addition, the function
x 7→ (u− φ)(t0, x) has a strict global maximum at x0. Indeed, we have that

u(t0, x) = u(t0, x)− u(t0, x0) ≤ Af(x− x0) ≤ A|x− x0|f ′(ξ),

for some ξ ∈ [0, |x−x0|]. Since f is concave, then f ′(ξ) ≤ f ′(0). Consider first x such
that |x− x0| > r. In this case, we have that

u(t0, x) ≤ A|x− x0|f ′(0) ≤ Af ′(0)

r
|x− x0|2 < φ(t0, x).

Hence we have that u(t0, x) − φ(t0, x) < 0 = u(t0, x0) − φ(t0, x0) for all x such that
|x − x0| > r. On the other hand, if 0 < |x − x0| ≤ r then u(t0, x) = 0 and we have
that u(t0, x) − φ(t0, x) < 0 = u(t0, x0) − φ(t0, x0). In both cases, we see that x0 is a
strict global maximum in x of u− φ at time t0.

Since uε converges locally uniformly to u, for ε small enough, we can construct
sequence of points (tε, xε) such that (tε, xε) is the location of a maximum of uε−φ in
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Br(t0, x0) and (tε, xε)→ (t0, x0) as ε→ 0. In addition, arguing as above, the function
x 7→ (uε − φ)(tε, x) has a global maximum in xε. This gives us the inequalities, for
all x ∈ R,

(4.7) uε(tε, x)− uε(tε, xε) ≤ φ(tε, x)− φ(tε, xε), and ∂tuε(tε, xε) = 2(tε − t0).

Since uε solves (1.16), we deduce from (4.7) that for (tε, xε),

nε(tε, xε)− 1 = ∂tuε(tε, xε)−
(

1−
∫
R
e−

1
ε (uε(tε,xε−sign(h)f

−1(εf(h)))−uε(tε,xε))J(h)dh

)
= 2(tε − t0)−

(
1−

∫
R
e−

1
ε (uε(tε,xε−sign(h)f

−1(εf(h)))−uε(tε,xε))J(h)dh

)
.

(4.8)

Arguing as above and using (4.7) with the integral term in (4.8), it follows that

lim
ε→0

(
1−

∫
R
e−

1
ε (uε(tε,xε−sign(h)f

−1(εf(h)))−uε(tε,xε))J(h)dh

)
≤ 1−

∫
R
e

sign(h)f(h)

f′(0) ∂xφ(t0,x0)J(h) dh = 0.

Here, the last equality used the explicit expression of φ, which gives ∂xφ(t0, x0) = 0.
The above yields, along with (4.8)

(4.9) lim inf
ε→0

nε(tε, xε) ≥ 1.

Since tε → t0 as ε→ 0, we may conclude that lim inf
ε→0

nε(tε, xε) ≥ 1. On the other

hand, we have that

lim inf
ε→0

nε(t0, x0) ≥ lim inf
ε→0

nε(tε, xε)e
φ(tε,xε)

ε ≥ 1,

where the first inequality is due to (4.7) and the second is due to the non-negativity
of φ along with (4.9). Using that nε ≤ 1, we conclude that limε→0 nε(t0, x0) = 1 as
claimed.

4.3. Proof of Lemma 1.9: the a priori bounds. The only remaining ingre-
dient is to prove the a priori bounds on uε. We proceed by constructing explicit sub-
and super-solutions.

Proof of Lemma 1.9. To estimate uε from above, we first observe that nε is
positive and bounded by 1 and uε solves (1.16). Thus{

∂tuε(t, x) ≤ 1, on (0,∞)× R
uε(0, ·) = u0ε.

As a consequence, for all t ≥ 0 and x ∈ R,

uε(t, x) ≤ u0ε(x) + t.

To get a bound from below, we define s(t, x) = u0ε(x) − rt, where r is chosen
below. We prove that s is a super–solution. Using assumption Hypothesis 1.17, for
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all ε > 0 and x ∈ R,∫ ∞
−∞

e−
1
ε (u

0
ε(x−ψε(h))−u

0
ε(x))J(h)dh ≤

∫ ∞
−∞

e
A
ε f(|ψε(h)|)J(h)dh

=

∫ ∞
−∞

eAf(h)J(h)dh < +∞.

Define r :=
∫
R e

Af(h)dh. We deduce that s satisfies∂ts−
(

1−
∫
R
e−

1
ε (s(t,x−ψε(h))−s(t,x))J(h)dh

)
+ 1 ≤ 0, on (0,∞)× R,

s(0, x) ≤ u0ε(x), x ∈ R.

The function s is a sub–solution to (1.16). Hence, for all t ≥ 0 and x ∈ R,

−rt ≤ uε(t, x)− u0ε(x) ≤ t.

To conclude the proof of the lemma, we now prove the inequality on the finite
difference of uε, namely (1.19). To this end, we define for all t ≥ 0, x ∈ R and h ∈ R,

wε,h(t, x) := uε(t, x)− uε(t, x+ h).

Then, using (1.16) we see that wε,h satisfies the equation

∂twε,h +

∫
R

(
e−

1
ε (uε(t,x−ψε(h))−uε(t,x))− e−

1
ε (uε(t,x−ψε(h)+h)−uε(t,x+h))

)
J(h)dh

=
(

1− e
wε,h
ε

)
nε, on (0,∞)× R,

wε,h(0, x) = u0ε(x)− u0ε(x+ h), for all x ∈ R.

This reduces to

∂twε,h +

∫
R

e−
1
ε (uε(t,x−ψε(h))−uε(t,x))

(
1− e 1

ε (wε,h(t,x−ψε(h))−wε,h(t,x))
)
J(h)dh

=
(

1− e
wε,h
ε

)
nε, on (0,∞)× R,

wε,h(0, x) = u0ε(x)− u0ε(x+ h), for all x ∈ R.

We apply the maximum principle to deduce that

sup
x∈R

wε,h(t, x) ≤ max

{
0, sup
x∈R

wε,h(0, x)

}
.

This implies that for all x ∈ R and h ∈ R,

uε(t, x+ h)− uε(t, x) ≥ min

{
0, inf
y∈R

(
u0ε(y + h)− u0ε(y)

)}
≥ min {0,−Af(h)} = −Af(h).

This finishes the proof.
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