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A note on Grundy colorings of central graphs∗

Brice Effantin

Université de Lyon, Université Lyon 1, CNRS

LIRIS, UMR5205, F-69622, France

Abstract

A Grundy coloring of a graph G is a proper vertex coloring of G where
any vertex x, colored with c(x), has a neighbor of any color 1, 2, . . . , c(x)−
1. A central graph Gc is obtained from G by adding an edge between any
two non adjacent vertices in G and subdividing any edge of G once. In this
note we focus on Grundy colorings of central graphs. We present some
bounds related to parameters of G and a Nordhaus-Gaddum inequality.
We also determine exact values for the Grundy coloring of some central
classical graphs.
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1 Introduction

We consider connected graphs without loops or multiple edges. In a graph
G = (V,E), the set V (G) is the set of vertices (|V (G)| = n is the order of G)
and E(G) is the set of edges (|E(G)| = m is the size of G). The number of
neighbors of a vertex x in G is its degree, denoted dG(x), and the maximum
(resp. minimum) degree of the graph is denoted ∆(G) (resp. δ(G)). The set of
neighbors of x in G is denoted NG(x).

For a graph G = (V,E), a k-coloring of G is defined as a function c on V (G)
into a set of colors C = {1, 2, . . . , k} such that for each vertex xi, 1 ≤ i ≤ |V (G)|,
we have c(xi) ∈ C. A proper k-coloring is a k-coloring satisfying c(xi) 6= c(xj)
for every pair of adjacent vertices xi, xj ∈ V (G). For a given proper k-coloring,
a vertex xi adjacent to a vertex of every color q, q < c(xi), is called a Grundy
vertex for the color c(xi). A Grundy k-coloring is a proper k-coloring where
any vertex is a Grundy vertex. In 1979 Christen and Selkow [4] introduced the
Grundy number, denoted by Γ(G), as the maximum number of colors among all
Grundy colorings ofG. It is obvious that Γ(G) ≤ ∆(G)+1 but the determination
of the Grundy number is NP-complete in general. This parameter was then
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studied for different classes of graphs (graph products [3, 5], power paths and
cycles [9], regular graphs [8], fat-extended P4-laden graphs [2], etc).

In this note we consider the family of central graphs. A central graph of a
graph G, denoted by Gc, is obtained by joining all the non adjacent vertices in
G and subdividing each edge of G exactly once. The set of vertices of Gc is then
given by V (Gc) = V1(G

c)∪ V2(G
c) where V1(G

c) is the set of vertices inherited
from G and V2(G

c) contains the added vertices (note that |V2(G
c)| = m). Thus

V1(G
c) = V (G) = {x1, x2, . . . , xn} and each vertex of V2(G

c) subdividing an
edge (xi, xj) of G is denoted xi,j . If there is no ambiguity, sets V1(G

c) and
V2(G

c) could be denoted V1 and V2 respectively.
In Section 2 we present some general bounds on the Grundy number of Gc

related to its independence number, the Grundy number of the complement
graph G and the minimum degree of G. These results allow us to bound the
Nordhaus-Gaddum inequality Γ(Gc) + Γ(Gc). In Section 3 we focus on the
Grundy colorings of some central classical graphs (complete graphs, complete
bipartite graphs, complete k-ary trees, paths and cycles) for which the deter-
mined exact values reach the lower and upper bounds given in Section 2. Finally
we conclude in Section 4 with an extension to a relaxed Grundy coloring, the
partial Grundy coloring.

2 Nordhaus-Gaddum inequality type for the Grundy

number of central graphs

In this section we present an upper bound for Nordhaus-Gaddum inequality
Γ(Gc) + Γ(Gc). Different studies consider Nordhaus-Gaddum inequalities type
for the Grundy number (see the survey [1] where such inequalities are presented
for several parameters). Zaker [11] proposed some results in 2006 and he conjec-
tured that Γ(G)+Γ(G) ≤ n+2 for any graph G. This conjecture was confirmed
by Füredi et al. [7] for general graphs with n ≤ 8 and disproved for n ≥ 9 and
they give the following result.

Theorem 2.1. ([7]) Let G be a graph of order n, then

Γ(G) + Γ(G) ≤







n+ 2 if n ≤ 8,
12 if n = 9,
⌊

5n+2

4

⌋

otherwise.

We start our study with bounds for the Grundy numbers of Gc and its
complement.

Proposition 2.2. Let G be a graph of order n. Then 1 + Γ(G) ≤ Γ(Gc) ≤
min{n, n+2−δ(G)} if G is connected and Γ(G) ≤ Γ(Gc) ≤ min{n, n+2−δ(G)}
otherwise.

Proof. The bound Γ(Gc) ≥ Γ(G) is obvious since G ⊆ Gc. Consider a connected
graph G and a Grundy coloring C of G. In Gc put the coloring C on V1(G

c)
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shifted by 1 and put the color 1 on all the vertices of V2(G
c). Then Γ(Gc) ≥

Γ(G) + 1.
Next, since ∆(Gc) ≤ n − 1 we have Γ(Gc) ≤ ∆(Gc) + 1 ≤ n. Moreover every
vertex xi of V1 has degree dGc(xi) = n − 1 and it follows that the maximum
number of colors in NGc(xi) is (n − 1) − dG(xi) + 2 because dG(xi) neighbors
of xi in Gc are vertices of V2 which can be colored only by 1 or 2. Therefore
Γ(Gc) ≤ (n− 1)− δ(G) + 2 + 1 and the result holds.

Corollary 2.3. Let G be a graph of stability number α(G). Then Γ(Gc) ≥
α(G) + 1.

Proof. Let S be a stable set inG of size α(G) (S is a clique in G). By Proposition
2.2 we have Γ(Gc) ≥ Γ(G) + 1 ≥ α(G) + 1.

Proposition 2.4. Let G be a graph of order n and size m. Then m ≤ Γ(Gc) ≤
m+ n− 2.

Proof. By construction, vertices of V2(G
c) form a clique in Gc. Thus Γ(Gc) ≥

|V2(G
c)| = m. Moreover in Gc, each vertex of V2(G

c) has the maximum degree
∆(Gc) = (m− 1) + (n− 2) = n+m− 3 and Γ(Gc) ≤ ∆(Gc) + 1 = n+m− 2.

We then present an upper bound for Γ(Gc) + Γ(Gc) which improves the
bound of Theorem 2.1 for central graphs when n ≥ 10 and m is large enough.

Theorem 2.5. Let G be a graph of order n and size m. Then Γ(Gc)+Γ(Gc) ≤
min{m+ 2n− 2,m+ 2n− δ(G)}.

Proof. Deduced from Propositions 2.2 and 2.4.

Remark. Note that Gc is of order n′ = n+m. Consider δ(G) ≥ 2. Thus from
Theorem 2.5, if n ≥ 10 and m ≥ 3n+ 5− 4δ(G) then

m ≥ 3n+ 5− 4δ(G),

m+ (4m+ 5n− 1) ≥ 3n+ 5− 4δ(G) + (4m+ 5n− 1),

5n′ − 1 ≥ 4m+ 8n+ 4− 4δ(G),
⌊

5n′ + 2

4

⌋

≥
5n′ − 1

4
≥ m+ 2n+ 1− δ(G) > m+ 2n− δ(G),

and the upper bound of Theorem 2.1 is improved for central graphs. By the
same way if we consider δ(G) = 1, n ≥ 10 and m ≥ 3n − 3, we have a similar

relation
⌊

5n′
+2

4

⌋

> m+ 2n− 2.
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3 The Grundy number of some central graphs

In the above section we showed that α(G) + 1 ≤ Γ(Gc) ≤ min{n, n+2− δ(G)}.
Now we present exact values for the Grundy number of central graphs for some
classical graphs where the both bounds are reached. In particular we consider
the central graphs of complete graphs, complete bipartite graphs, complete k-
ary trees, paths and cycles.
Before studying these classes of graphs we can do some remarks on the Grundy
number of a central graph Gc versus the Grundy number of G. Indeed we have
G ⊆ Gc which gives the following bounds.

Proposition 3.1. Let G be a graph. Then, Γ(G) + 1 ≤ Γ(Gc) ≤ Γ(G) + 2 if G
is connected and Γ(G) ≤ Γ(Gc) ≤ Γ(G) + 2 otherwise.

Proof. The lower bounds are given by Proposition 2.2. And if we suppose a
Grundy coloring of Gc with k ≥ Γ(G) + 3 colors, then a vertex x colored by
c(x) ≥ Γ(G) + 3 has a neighbor in V2(G

c) with color c′ ≥ 3 which cannot be
satisfied, a contradiction. Therefore Γ(Gc) ≤ Γ(G) + 2

From this relation we see that it is possible to determine the Grundy number
of a central graph Gc from the Grundy number of the complement graph G in
polynomial time.

Proposition 3.2. Let G be the complement graph of a connected graph G with
a Grundy coloring of Γ(G) colors. Then a coloring of Gc can be determined in
polynomial time.

Proof. By Proposition 3.1 we see that Γ(Gc) can have two possible values. For
the lower value, a polynomial coloring algorithm is given in Proposition 2.2.
Then note that Zaker [11] introduced the concept of t-atom which is a sufficient
and necessary condition to have a Grundy coloring of t colors (i.e. a minimal
induced subgraph of G, Grundy colorable with t colors). Moreover in [11], Zaker
shows how to construct the set of t-atoms (from (t − 1)-atoms) and he proves
(Theorem 1 and its corollary) that there exists a polynomial time algorithm to
determine whether Γ(G) ≥ t for any given graph G and integer t by determining
if one of the t-atoms (generated above) exists in G. If exists, the coloring of
such a t-atom can be extended in a polynomial time algorithm to the remaining
of G by a greedy algorithm and Γ(G) ≥ t. Therefore in a polynomial time
algorithm we can determine if Γ(Gc) ≥ Γ(G) + 2 (and by Proposition 3.1,
Γ(Gc) = Γ(G) + 2).

Despite the relation between central and complement graphs, for general cen-
tral graph the problem of determining the Grundy number stays a NP-complete
problem. This is why we focus on particular classes of central graphs. Firstly
we consider complete and bipartite graphs.

Theorem 3.3. Let Kn be a complete graph of order n ≥ 4. Then Γ(Kc
n) = 3.
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Proof. In Kc
n there exits an induced subpath P4 colorable with colors 1−2−3−1

(a Grundy coloring). Then remaining vertices are colorable in a proper coloring
and Γ(Kc

n) ≥ 3. Moreover δ(Kn) = n − 1 and Proposition 2.2 gives Γ(Kc
n) ≤

n+ 2− δ(Kn) = 3.

Theorem 3.4. Let Kp,q be a complete bipartite graph of order p + q, with
p ≥ q ≥ 2. Then Γ(Kc

p,q) = p+ 2.

Proof. Denote by Sp = {x1, x2, . . . , xp} and Sq = {xp+1, xp+2, . . . , xp+q} the
partitions of Kp,q. Vertices of Sp form a clique in Kc

p,q. Color these vertices with
colors 3, 4, . . . , p + 2. Then put c(xp+1) = 1 and color the vertices of V2(K

c
p,q)

as follows: c(xi,p+1) = 2 for any 1 ≤ i ≤ p and the others with color 1. Thus
each vertex of Sp is adjacent to all the colors (except its own color). Moreover
vertices xi,p+1 (1 ≤ i ≤ p) are also satisfied because c(xp+1) = 1. Remaining
vertices can be properly colored and the coloring is a Grundy coloring. Thus
Γ(Kc

p,q) ≥ p+ 2.
Furthermore we have δ(Kp,q) = q and Proposition 2.2 gives Γ(Kc

p,q) ≤ (p+
q) + 2− δ(Kp,q) = p+ 2.

Secondly we consider complete rooted trees. In a rooted tree of height h,
the root is on the level 0 while the leaves are on level h. Moreover for a vertex
x on level i (0 ≤ i < h), a son of x is a neighbor of x on level i+ 1.

Theorem 3.5. Let Tk,h be a complete k-ary tree of height h ≥ 4, with k ≥ 2.
Let L(i) be the number of vertices on the level i (L(i) = ki). Then Γ(T c

k,h) =
1 +

∑

i∈I L(i) where I = {0, 2, . . . , h} if h is even and I = {1, 3, . . . , h} if h is
odd.

Proof. Let q =
∑

i∈I L(i) with I = {0, 2, . . . , h} if h is even and I = {1, 3, . . . , h}
if h is odd. Note that q corresponds to the number of vertices in the even levels
if h is even (resp. odd levels if h is odd) of the tree Tk,h. In Tk,h we have
α(Tk,h) ≥ q and by Corollary 2.3 we deduce Γ(T c

k,h) ≥ 1 + q.
The upper bound can be proved by contradiction. Suppose there exists a

Grundy coloring of T c
k,h with q′ colors such that q′ ≥ 2 + q. We see that Tk,h

can be decomposed into two cliques Ko and Ke (due to respectively odd and
even levels) where there exists an edge between each vertex of a set and at most
k + 1 vertices of the other set (corresponding to its neighbor in the previous
level, if exists, and its k neighbors in the next level in Tk,h, if exist). The graph
T c
k,h is the same one where each edge between cliques is splitted by a vertex of

V2. Note that since h ≥ 4 and k ≥ 2 we have q > max{4, k + 1}.
Thus we have q = |Ko| > |Ke| if h is odd while q = |Ke| > |Ko| otherwise.
Without loss of generality, consider h is odd and q = |Ko| > |Ke|. We see that
color 2 cannot be on a vertex of Ko, otherwise any vertex of Ko with color c > 3
must have a neighbor in V2 colored by 3, a contradiction. Then Ko contains
colors 3 to q + 2 and these vertices need colors 1 and 2 on V2. Thus at least q
vertices of V2 have color 2. Since each vertex of Ke has at most k+1 neighbors
of V2 and q > k + 1, then at least two vertices of Ke are adjacent to vertices of
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V2 colored by 2 and must be colored with color 1. This implies a non proper
coloring because Ke is a clique, a contradiction. Therefore Γ(T c

k,h) ≤ 1+ q.

Finally we focus on central graphs of paths and cycles. Paths and cycles are
classical graphs. Several graphs based on them have been studied. For instance
the Grundy number of power paths and power cycles was studied in [9]. Power
graphs Gp are obtained from G by adding edges between vertices at distance at
most p in G. A central graph is then a power graph (where p is the diameter of
G) with new added vertices. Moreover recently central paths and central cycles
were considered for another maximal coloring called the b-coloring [10].

We start with some results on the number of colors used on Grundy colorings.

Lemma 3.6. Let G be either a path Pn or a cycle Cn of order n ≥ 6. In Gc,
denote by Ci the set of colors used on Vi, with i ∈ {1, 2}. In any Grundy coloring
of Gc only the color c = 1 can satisfy c ∈ C2 and c /∈ C1.

Proof. Suppose that two distinct colors c1 and c2 appear only on V2, i.e. c1, c2 ∈
C2 and c1, c2 /∈ C1 (assume c1 > c2). To satisfy a vertex colored by c1 the color c2
must be repeated on V1. This is a contradiction and a unique color c can appear
only on V2. Suppose that c > 1. To satisfy the vertices of V2 and since n ≥ 6
(so |V2| ≥ 4), there exist two vertices of V1 colored by 1 such that the distance
between them is 2 or more (i.e. they are adjacent in Gc). This contradicts the
property of the coloring. Hence all vertices of V2 are colored with color 1.

Lemma 3.7. Let Pn and Cn be respectively a path and a cycle of order n =
3q + r ≥ 6, with 0 ≤ r ≤ 2. Then,

a) any Grundy coloring of P c
n or Cc

n using k ≥ 2
⌊

n
3

⌋

+ 1 colors has at least
⌊

k−1

2

⌋

repeated colors.

b) any Grundy coloring of Cc
n using k > 2

⌊

n
3

⌋

+1 colors has at least
⌊

k−1

2

⌋

+1
repeated colors, if r ∈ {1, 2}.

Proof. Colors 2 to k are on vertices of V1 (by Lemma 3.6). Let nu and nr

be the numbers of respectively unique and repeated colors on V1 (note that
nu+nr = k− 1). Moreover two vertices with unique colors must be adjacent to
satisfy the largest one (i.e. they cannot be on consecutive vertices of V1), thus
nr ≥ nu.

a) Suppose that nr <
⌊

k−1

2

⌋

. Then we have
⌊

k−1

2

⌋

> nr ≥ nu = k−1−nr ≥
⌊

k−1

2

⌋

, a contradiction. Thus at least
⌊

k−1

2

⌋

vertices of V1 have repeated colors.

b) Since we have at least
⌊

k−1

2

⌋

repeated colors, suppose the coloring has

exactly nr =
⌊

k−1

2

⌋

repeated colors. If k is even then nr =
k−2

2
and k−2

2
= nr ≥

nu = k− 1−nr =
k
2
, a contradiction. If k is odd (thus k ≥ 2q+3) then we have

nr =
k−1

2
and nu = k− 1− nr = k−1

2
. Since the colors of nu (put once) and nr
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(put twice) allow to color V1, we have n ≥ nu + 2nr ≥ k−1

2
+ k − 1 ≥ 3q + 3, a

contradiction. Therefore we have nr >
⌊

k−1

2

⌋

.

We then propose the following exact value for the Grundy number of central
paths.

Theorem 3.8. Let Pn be a path of order n = 3q + r ≥ 6, with 0 ≤ r ≤ 2. The
Grundy number of P c

n is given by

Γ(P c
n) =

{

2n
3
+ 1 if r = 0,

2
⌊

n
3

⌋

+ 2 otherwise.

Proof. By construction only two consecutive vertices on V1 can have the same
color in a proper coloring of P c

n. Suppose there exists a Grundy coloring of P c
n

on k colors where k > 2n
3
+ 1 if r = 0 and k > 2

⌊

n
3

⌋

+ 2 otherwise. Lemma

3.7 shows that at least N ≥
⌊

k−1

2

⌋

colors are repeated on the vertices of V1

(remaining colors are then put once). Since a color is repeated at most twice,
the n vertices of V1 are colored by at least (k− 1)+N colors (color 1 on V2, see
Lemma 3.6). We distinguish two cases:

• case r = 0 (n = 3q): we have k > 2n
3
+ 1 = 2q + 1, N ≥

⌊

k−1

2

⌋

≥ q and
n ≥ k +N − 1 > (2q + 1) + q − 1 = 3q,

• case r = {1, 2} (n = 3q+r): we have k ≥ 2
⌊

n
3

⌋

+3 = 2q+3,N ≥
⌊

k−1

2

⌋

> q
and n ≥ k +N − 1 > (2q + 3) + q − 1 = 3q + 2.

We obtain a contradiction for each case. Therefore Γ(P c
n) ≤ 2n

3
+1 if r = 0 and

Γ(P c
n) ≤ 2

⌊

n
3

⌋

+ 2 otherwise.

The lower bounds are given by construction. Let k = 2
⌊

n
3

⌋

+ 2. We color
all the vertices of V2 with the color 1. Then we color c(x3i−1) = c(x3i) = i + 1
for 1 ≤ i ≤

⌊

n
3

⌋

. Next we put c(x3i+1) =
⌊

n
3

⌋

+ 2 + i for 0 ≤ i ≤
⌊

n
3

⌋

− 1.
Thus if r = 0 the graph is completely colored. The colors used on V1 are 2 to
2
⌊

n
3

⌋

+ 1 = k − 1. Then if r = 1 it remains to color c(xn) = c(xn−3) + 1 = k.
Finally if r = 2 we color c(xn−1) = c(xn) = c(xn−4) + 1 = k. The coloring is
then a Grundy coloring. Indeed first note that each vertex of V1 is adjacent to
the color 1 since it is put on all the vertices of V2. Then since every color c of
the interval [2,

⌊

n
3

⌋

+ 1] is put twice, every vertex of V1 can reach the color c
(except the vertices colored by c). Moreover, since the distance in Pn between
two vertices with colors from [

⌊

n
3

⌋

+ 2; k] (resp. [
⌊

n
3

⌋

+ 2; k − 1] if r = 0) is
at least two, they are adjacent in P c

n. Therefore each vertex of V1 is a Grundy
vertex and Γ(P c

n) ≥ 2n
3
+ 1 if r = 0 and Γ(P c

n) ≥ 2
⌊

n
3

⌋

+ 2 otherwise.

Finally we determine the exact value of the Grundy number of central cycles.

Theorem 3.9. Let Cn be a cycle of order n, with n = 3q+r ≥ 6 and 0 ≤ r ≤ 2.
Then the Grundy number of Cc

n is given by

Γ(Cc
n) =

{

2n
3
+ 1 if r = 0,

2
⌊

n
3

⌋

+ r otherwise.
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Proof. As in Theorem 3.8 we can prove the upper bound by contradiction.
Suppose there exists a Grundy coloring of Cc

n with k colors where k > 2n
3
+ 1

if r = 0 and k > 2
⌊

n
3

⌋

+ r otherwise. Lemma 3.7 shows that at least N colors
are repeated on the vertices of V1 (remaining colors are then put once), with
N ≥

⌊

k−1

2

⌋

if r = 0 and N ≥ 1 +
⌊

k−1

2

⌋

otherwise. Thus the n vertices of V1

must be colored by at least (k− 1)+N colors (color 1 is on V2, by Lemma 3.6).
We distinguish three cases:

• case r = 0 (n = 3q) then k > 2n
3
+ 1 = 2q + 1. By Lemma 3.7.a we have

N ≥
⌊

k−1

2

⌋

≥ q. Thus n ≥ k +N − 1 > (2q + 1) + q − 1 = 3q,

• case r = 1 (n = 3q+ 1) then k ≥ 2
⌊

n
3

⌋

+ 2 = 2q + 2. By Lemma 3.7.b we

have N >
⌊

k−1

2

⌋

≥ q. Thus n ≥ k +N − 1 > (2q + 2) + q − 1 = 3q + 1,

• case r = 2 (n = 3q + 2) then k ≥ 2
⌊

n
3

⌋

+ 3 = 2q + 3. By Lemma 3.7.a we

have N ≥
⌊

k−1

2

⌋

> q and n ≥ k +N − 1 > (2q + 3) + q − 1 = 3q + 2.

These contradictions imply Γ(Cc
n) ≤ 2n

3
+ 1 if r = 0 and Γ(Cc

n) ≤ 2
⌊

n
3

⌋

+ r
otherwise.

The lower bounds are deduced from the constructions given in Theorem 3.8
for the central graphs of paths. Let G be the induced subgraph of Cc

n defined
by V (G) = V (Cc

n)\{xn,1}. Remark that P c
n ≡ G ∪ {(x1, xn)}. We distinguish

three cases. Consider r = 0. Put the coloring of Theorem 3.8 (case r = 0) on G.
Since c(xn) = c(xn−1) the vertex x1 is satisfied in both G and Cc

n. We complete
the coloring of Cc

n by c(xn,1) = 1. Therefore Γ(Cc
n) = Γ(C(Pn)) = 2n

3
+ 1.

Next consider r = 1. By the same way, put the coloring of Theorem 3.8 (case
r = 1) on G. Note that since x1 is not adjacent to xn (which is the unique
vertex of its color) in Cc

n, we recolor xn such that c(xn) = c(x1). Moreover
since c(xn−1) = c(xn−2) then xn is a Grundy vertex. We complete the coloring
of Cc

n by c(xn,1) = 1. Therefore Γ(Cc
n) = Γ(C(Pn)) − 1 = 2

⌊

n
3

⌋

+ 1. Finally
consider r = 2. Put the coloring of Theorem 3.8 (case r = 2) on G and recolor
xn such that c(xn) = c(x1) (xn is a Grundy vertex since xn and xn−1 are not
adjacent in Cc

n and c(xn) < c(xn−1)). Note that xn−1 remains the last vertex
of its color but it stays a Grundy vertex. We complete the coloring of Cc

n by
c(xn,1) = 1 and we have Γ(Cc

n) = Γ(C(Pn)) = 2
⌊

n
3

⌋

+ 2.

4 Conclusion

We have presented some results on the Grundy colorings of central graphs. In
particular we have given exact values for the central graphs of some classical
graphs and have shown that lower and upper bounds given in Proposition 2.2
and Corollary 2.3 are reached.

A relaxed approach of the Grundy coloring, called the partial Grundy col-
oring, was introduced by Erdős et al. [6] where every color has at least one
Grundy vertex. The partial Grundy number, denoted δΓ(G), is then defined as
the maximum integer k such that G admits a partial Grundy k-coloring. The

8



determination of the partial Grundy number is also NP-complete in general but
it is obvious that δΓ(G) ≥ Γ(G).
The results presented above on Grundy colorings give first bounds for the partial
Grundy number of central graphs.

Corollary 4.1. Let G be a graph of order n and size m. Then,
a) 1 + Γ(G) ≤ δΓ(Gc) ≤ n,
b) δΓ(Gc) ≥ α(G) + 1,
c) m ≤ δΓ(Gc) ≤ m+ n− 2,
d) δΓ(Gc) + δΓ(Gc) ≤ m+ 2n− 2.

Proof. This is deduced from the fact that Γ(G) ≤ δΓ(G) ≤ ∆(G) + 1 for any
graph G. For case c, see Proposition 2.4.

However even for such a coloring we can find classes of central graphs for
which the upper bound δΓ(Gc) ≤ n is reached (for instance central chordal
graphs) while it is not for some others (for instance central even paths). A
graph is a chordal graph if each induced cycle of length 4 or more has a chord
(an edge connecting two non adjacent vertices). Chordal graphs are sometimes
called triangulated graphs.

Theorem 4.2. Let G be a chordal graph of order n ≥ 3. Then δΓ(Gc) = n.

Proof. By Corollary 4.1 we have δΓ(Gc) ≤ n. The lower bound is given by
construction. Color the vertices of V1 with colors 1, 2, . . . , n. Then in Gc, for
every triangle {xi, xj , xk}, with c(xi) > c(xj) > c(xk), vertex xi does not reach
colors c(xj) and c(xk) (and vertex xj does not reach color c(xk)). Then put
c(xi,j) = c(xk) and c(xi,k) = c(xj) to make xi and xj Grundy vertices. Thus
all the vertices of V1 are Grundy vertices. If it remains non colored vertices of
V2 they can be properly colored with color 1, 2 or 3 since they have degree 2.
Therefore δΓ(Gc) ≥ n.

Theorem 4.3. Let Pn be a path of order n ≥ 7. Then,

δΓ(P c
n) =

{

n if n is odd,
n− 1 otherwise.

Proof. Consider n odd. Color c(xi) = i for odd i and c(xi) = i + 2 for even
i, with 1 ≤ i ≤ n − 2. Then put c(xn−1) = n and c(xn) = 2. Vertices xi,
with odd i, are already Grundy vertices. Finally color c(xi,i−1) = c(xi+1) and
c(xi,i+1) = c(xi−1) for even i with 1 ≤ i ≤ n. Thus all the vertices are colored
and each vertex of V1 is a Grundy vertex (δΓ(P c

n) ≥ n). And by Corollary 4.1
we have δΓ(P c

n) ≤ n.

Consider n even. The lower bound is given by construction. Put c(xi) = i
for any 1 ≤ i ≤ n−1, and c(xj,j+1) = c(xj−1) for any 2 ≤ j ≤ n−1. Thus every
colored vertex of V1 is a Grundy vertex. Remaining vertices can be properly
colored and δΓ(P c

n) ≥ n−1. Next suppose there exists a partial Grundy coloring
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of P c
n using q ≥ n colors. Note that c(x1) ≤ c(x2) and c(xn) ≤ c(xn−1) to have

a proper coloring of c(x1,2) and c(xn−1,n). Moreover we also observe that either
c(x1) < c(x2) or c(xn) < xn−1 (or both), otherwise the q−1 ≥ n−1 colors (only
one color can appear only on V2) are on the n − 2 remaining vertices of V1, a
contradiction. Then there exist four consecutive vertices xi, xi+1, xi+2, xi+3 such
that c(xi) < c(xi+1) < c(xi+2) and c(xi+2) > c(xi+3) (or c(xi+1) > c(xi+2) >
c(xi+3) and c(xi) < c(xi+1)). In both cases vertices xi+1 and xi+2 are Grundy
vertices in a proper coloring of P c

n which implies c(xi+1,i+2) = c(xi) (for xi+1)
and c(xi+1,i+2) = c(xi+3) (for xi+2), a contradiction. Therefore δΓ(P c

n) ≤ n−1.
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