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In the present article, we investigate nonparametric estimation of the unknown drift function b in an integrated Lévy driven jump diffusion model. Our aim will be to estimate the drift on a compact set based on a high-frequency data sample. Instead of observing the jump diffusion process V itself, we observe a discrete and high-frequent sample of the integrated process

Based on the available observations of Xt, we will construct an adaptive penalized least-squares estimate in order to compute an adaptive estimator of the corresponding drift function b. Under appropriate assumptions, we will bound the L 2 -risk of our proposed estimator. Moreover, we study the behavior of the proposed estimator in various Monte Carlo simulation setups.

Introduction

In this paper, we consider a two-dimensional stochastic process (X t , V t ) t≥0 such that dX t = V t dt, X 0 = 0,

dV t = b(V t )dt + σ(V t )dW t + ξ(V t-)dL t , V 0 D = η, (1) 
where W = (W t ) t≥0 is a standard Brownian Motion and L = (L t ) t≥0 is a centered Lévy process with finite variance E L 2 1 := R y 2 ν(dy) < ∞ such that

dL t = R z(µ(dt, dz) -ν(dz)dt).
W and L are independent and η is independent of both W and L. Moreover, µ denotes the corresponding Poisson random measure of L with intensity measure ν.

Our aim is the nonparametric estimation of the unknown drift function b exclusively based on observations of the first coordinate of (1). For our purposes the process X t will be called an integrated jump diffusion process.

Remark 1. We shortly remark, that the system (1) is a special case of a two-dimensional stochastic differential equation where no noise is contained in the first coordinate. Moreover, note that the pure jump Lévy process L is a centered L 2 -martingale with respect to its augmented canonical filtration under our assumptions.

In many applications in physics, economics or financial mathematics, several occurring stochastic processes can be interpreted as integrated processes, which, for instance, means that at time t they possess cumulatively all information up to this time point. For example, [START_REF] Comte | Nonparametric adaptive estimation for integrated diffusions[END_REF] refer to a model where V t denotes the velocity of a particle and X t represents its coordinate. Further models and applications of such processes in the context of paleoclimate data can be found in [START_REF] Ditlevsen | Inference for observations of integrated diffusion processes[END_REF] as well as in [START_REF] Lefebvre | On the inverse of the first hitting time problem for bidimensional processes[END_REF] and [START_REF] Baltazar-Larios | Maximum likelihood estimation for integrated diffusion processes[END_REF]. Especially in mathematical finance, if V t acts as a model for a certain asset price, then X t denotes the (log-) return of this asset up to time t. If, for instance, only the return series with time lag ∆

R t,∆ := X t∆ -X (t-1)∆ = t∆ (t-1)∆ b(V t )dt + t∆ (t-1)∆ σ(V t )dW t + t∆ (t-1)∆ ξ(V t-)dL t
is available, our approach allows us to reconstruct the underlying price process and to estimate its drift function; see also [START_REF] Campbell | The econometrics of financial markets[END_REF] for further reasons for investigating the return series rather than the price process itself. In addition, we emphasize that we deal with high-frequency data (∆ → 0), which is nowadays a common tool for investigating statistical properties of financial processes and which is often readily available to the practitioner. Moreover, we remark that X t is not assumed to be stationary and a quite simple example for a non-Markovian process with increasing observations as long as V t stays positive. In addition, many researchers have investigated the estimation of the integrated volatility in stochastic volatility models, which acts a variability measure; see for example [START_REF] Bollerslev | Estimating stochastic volatility diffusion using conditional moments of integrated volatility[END_REF] or [START_REF] Andersen | The distribution of exchange rate volatility[END_REF]. Hence, when assuming that V t is positive, our model and estimation approach can be applied in this context, too.

Usual estimation schemes for diffusion processes, as for example in [START_REF] Florens-Zmirou | On estimating the diffusion coefficient from discrete observations[END_REF], [START_REF] Bandi | Fully nonparametric estimation of scalar diffusion models[END_REF], [START_REF] Bandi | On the functional estimation of jump-diffusion models[END_REF] or [START_REF] Comte | Penalized nonparametric mean square error estimation of the coefficients of diffusion processes[END_REF], are based on a sample of the original process V . In contrast to this setting, we are now assuming that we cannot observe the process V itself but rather a running integral over this process. In particular, we only observe the first coordinate

X t = t 0 V s ds
of the original bidimensional process at equidistant time points k∆, k = 1, ..., n + 2, over the time interval [0, T ], such that

T := (n + 2)∆ → ∞ and ∆ → 0 as n → ∞.
Statistical inference for such integrated processes has been, to the best of our knowledge, sporadically investigated. Besides the mentioned articles, further parametric inference has been conducted in some additional works; see for example [START_REF] Gloter | Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient[END_REF], [START_REF] Gloter | Parameter estimation for a discretely observed integrated process[END_REF] as well as [START_REF] Gloter | LAMN property for hidden processes: the case of integrated diffusions[END_REF]. But in general, this topic has not arisen much attention, although it is quite interesting and important for real data applications. In the nonparametric framework, we are only aware of few works, in which the coefficients of such models have been consistently estimated. For example, [START_REF] Nicolau | Nonparametric estimation of second-order stochastic differential equations[END_REF] uses kernel estimators for the pointwise consistent estimation of b(x) and σ 2 (x). In contrast to the kernel based approach, [START_REF] Comte | Nonparametric adaptive estimation for integrated diffusions[END_REF] use a model selection approach to construct adaptive nonparametric estimators of b and σ on a fixed compact interval in an integrated diffusion model without jumps. This work extends their approach for estimating ordinary univariate diffusions and was also pursued by [START_REF] Schmisser | Nonparametric adaptive estimation of the drift for a jump diffusion process[END_REF] in the case of univariate jump diffusions. In view of these two papers, we will conduct an analogous approach for the case of estimating the drift in an integrated jump diffusion model. To the best of our knowledge, adaptive nonparametric inference for the drift function in an integrated jump diffusion model has not been investigated in the literature before. In contrast, empirical likelihood inference for this model has been conducted in Song and Lin (2013). Moreover, a re-weighted kernel estimation procedure has been used by Song et al. (2013) for estimating the function σ 2 + ξ 2 and a kernel based approach for estimating b pointwisely has been used in [START_REF] Song | Nonparametric estimation for second-order diffusion models in high frequency data[END_REF].

Assumptions

Let us at first impose the following assumptions, which guarantee the existence of a unique strong solution (V t ) in equation (1).

A 1.

i) The functions b, σ and ξ are globally Lipschitz-continuous.

ii) The function σ is bounded away from zero as well as uniformly bounded for all x:

∃ σ 1 , σ 0 ∈ R + : ∀x ∈ R : 0 < σ 1 ≤ σ(x) ≤ σ 0 .
iii) The function ξ is non-negative and also bounded:

∃ ξ 0 ∈ R + : ∀x ∈ R : 0 ≤ ξ(x) ≤ ξ 0 .
iv) The function b is elastic (cf. [START_REF] Masuda | Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps[END_REF]), which means that

∃ M > 0 : ∀x ∈ R, |x| > M : xb(x) -x 2 .
We remark that b cannot be bounded as required in [START_REF] Bandi | On the functional estimation of jump-diffusion models[END_REF].

v) The Lévy measure ν possesses the properties that

Var (L 1 ) = R y 2 ν(dy) = 1, ν({0}) = 0, R y 4 ν(dy) < ∞.
Under Assumption A1,i) a unique strong solution (V t ) of ( 1) exists (cf. [START_REF] Masuda | Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps[END_REF]). Moreover, under A1,i)-iv), this solution is equipped with a unique invariant probability distribution Γ(dx). In addition, V is exponentially β-mixing with mixing coefficient β V (t), which means that

∃ γ > 0 : β V (t) := R ||P t (x, •) -Γ(•)|| T V Γ(dx) = O(e -γt ), as t → ∞,
where (P t ) t∈R+ denotes the transition probability of the underlying process V and || • || T V defines the total variation norm, see [START_REF] Comte | Nonparametric adaptive estimation for integrated diffusions[END_REF]. Assumption A1,v) simply ensures that ν has moments up to order 4. Indeed, the condition Var (L 1 ) = 1 is only an identifiability condition.

Using Theorem 2.1 in [START_REF] Masuda | Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps[END_REF], we can deduce the ergodicity of (V t ), which means that for all measurable functions g ∈ L 1 (Γ(dx)):

1 T T 0 g(V s )ds -→ R g(x)Γ(dx) a.s., as T → ∞.
Due to our assumptions on the Lévy measure ν and the Lipschitz-continuity of the coefficients b, σ and ξ, we have that E V 4 t < ∞ for all t ≥ 0. This can easily be proven by applying the Cauchy-Schwarz inequality successively. We will focus on this property later on. Moreover, we impose that A 2. vi) Γ is absolutely continuous with respect to the Lebesgue measure and, thus, possesses a Lebesgue density π V such that Γ(dx) = π V (x)dx.

vii) The process (V t ) starts in its invariant law:

V 0 ∼ Γ(dx)
such that (V t ) is stationary.

Remark 2. These assumptions are largely congruent to those in [START_REF] Schmisser | Nonparametric adaptive estimation of the drift for a jump diffusion process[END_REF], who investigated the nonparametric estimation of b in the usual non-integrated setting.

We will now concretize our estimation approach. Hence, let us assume that we are aware of a high-frequent data set {X k∆ , k = 1, ..., n + 2} of the process (X t ) given by (1). As mentioned, the process (V t ) is not observable and has to be approximated. The idea behind our estimation approach relies on the following transformation. We set

Vk∆ := Vk := 1 ∆ X (k+1)∆ -X k∆ = 1 ∆ (k+1)∆ k∆ V s ds, 1 ≤ k ≤ n + 1.
Remark 3. We point out that ( Vk ) k≥0 shares some crucial properties of the underlying process V . According to [START_REF] Comte | Nonparametric adaptive estimation for integrated diffusions[END_REF], the averaged process ( Vk ) k≥0 is stationary and exponentially β-mixing, too. The latter fact can be seen due to the fact that

β V (k) ≤ β V (k∆), k = 1, ..., n + 1.
Let us now start with a very useful proposition acting as a key point for our proofs. The following proposition generalizes Lemmas 7.1-7.3 in [START_REF] Comte | Nonparametric adaptive estimation for integrated diffusions[END_REF] to the case of integrated jump diffusions.

Proposition 4. Under assumptions A1 and A2, the following observations hold true: a) We have that

Vk + 1 ∆ (k+1)∆ k∆ (u -k∆)dV u = V (k+1)∆ , 1 ≤ k ≤ n + 1.
Figure 1: Example of trajectories of (V t ), (X t ) and ( Vk∆ )

0 2 4 6 8 10 -2 -1 0 1 t V -(V t ) . . . (X t ) --( Vk∆ ) dX t = V t dt, dV t = -2V t + dW t + dL t , ν(dz) = 1 2 1 z=±1 n = 100, ∆ = 10 -1 . V t is simulated thanks to an Euler scheme. b) For 1 ≤ k ≤ n -1 it holds that Y k+1 := Vk+2 -Vk+1 ∆ = 1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)dV u , where ψ k (u) := (u -k∆)1 [k∆,(k+1)∆[ (u) + ((k + 2)∆ -u)1 [(k+1)∆,(k+2)∆[ (u).
c) To value the goodness of our used approximation, we state that

E (V (k+1)∆ -Vk ) 2 ∆, 1 ≤ k ≤ n + 1.
d) Additionally, we state that

E (V (k+1)∆ -Vk ) 4 ∆, 1 ≤ k ≤ n + 1.
Based on the sample { Vk , k = 1, ..., n + 1}, we will now propose the drift estimator for the considered model and start with the following decomposition based on Proposition 4:

Y (k+1)∆ := V(k+2)∆ -V(k+1)∆ ∆ = 1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)dV u = 1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)b(V u )du + (k+3)∆ (k+1)∆ ψ k+1 (u)σ(V u )dW u + (k+3)∆ (k+1)∆ ψ k+1 (u)ξ(V u-)dL u = b(V (k+1)∆ ) + 1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)(b(V u ) -b(V (k+1)∆ ))du + 1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)σ(V u )dW u + 1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)ξ(V u-)dL u = b( Vk∆ ) + b(V (k+1)∆ ) -b( Vk∆ ) + 1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)(b(V u ) -b(V (k+1)∆ ))du + 1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)σ(V u )dW u + 1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)ξ(V u-)dL u := b( Vk∆ ) + R (1) k∆ + R (2) k∆ + Z (1) k∆ + Z (2)
k∆ . Hence, Y (k+1)∆ will act as an approximation of b( Vk∆ ) with

R (1) k∆ = b(V (k+1)∆ ) -b( Vk∆ ), R (2) k∆ = 1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)(b(V u ) -b(V (k+1)∆ ))du and Z (1) k∆ = 1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)σ(V u )dW u , Z (2) k∆ = 1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)ξ(V u-)dL u . We set R k∆ := R (1) k∆ + R (2) k∆ and Z k∆ := Z (1) k∆ + Z (2)
k∆ . and denote by

F t := σ(V 0 , (W s ) 0≤s≤t , (L s ) 0≤s≤t )
the natural filtration of V t . Let us remark that Vk∆ belongs to F (k+1)∆ whereas Z k∆ and R k∆ belong to F (k+3)∆ . In order to control the approximation error R k∆ as well as the noise term Z k∆ we will need the following lemma in order to bound the required moments.

Lemma 5. Under assumptions A1 and A2 we have that for ∆ ≤ 1

a) E R 2 k∆ ∆ and E R 4 k∆ ∆. b) E Z (1) k∆ |F (k+1)∆ = 0 and E Z (2) k∆ |F (k+1)∆ = 0 c) E Z (1) k∆ 2 |F (k+1)∆ 1/∆ and E Z (2) k∆ 2 |F (k+1)∆ 1/∆ d) E Z (1) k∆ 4 |F (k+1)∆ 1/∆ 2 and E Z (2) k∆ 4 |F (k+1)∆ 1/∆ 3 .

Spaces of approximation

Let us now turn to our essential aim, namely to estimate nonparametrically the drift function b on a compact set K. To do this, we consider a sequence of nested subspaces S 0 , . . . , S m , . . . such that m∈N0 S m is dense in L 2 (K). We minimize a contrast function γ n (t) on each S m and then choose the best estimator by introducing a penalty function (see for instance [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]). The rate of convergence of our estimator will depend on the regularity of the drift, i.e. its modulus of smoothness.

Definition (Modulus of smoothness). The modulus of continuity of a function f at t is defined by

ω(f, t) = sup |x-y|≤t |f (x) -f (y)|. If f is Lipschitz, the modulus of continuity is proportional to t. If ω(f, t) = o(t), then f is constant:
the modulus of continuity cannot measure higher smoothness.

We define the modulus of smoothness by

ω r (f, t) p = sup 0<h≤t ∆ r h (f, .) L p where ∆ r h (f, x) = r k=0 (-1) k r k f (x + kh). If f ∈ C r , then for 1 ≤ p ≤ ∞: ω r (f, t) p ≤ t r ω(f (r) , t) p .
Definition (Besov space). The Besov space B α 2,∞ is the set of functions:

B α 2,∞ := f ∈ L 2 , sup t>0 t -α ω r (f, t) 2 < ∞
where r = α + 1 . The norm on a Besov space is defined by:

f B α 2,∞ := sup t>0 t -α ω r (f, t) 2 + f L 2 .
For more details see [START_REF] Devore | of Grundlehren der Mathematischen Wissenschaften[END_REF].

We consider a series of nested vectorial subspaces satisfying the following assumptions:

A 3. i) The subspaces S m have finite dimension D m .
ii) On S m , the L 2 -norm and the L ∞ -norm are connected:

∃φ 1 > 0, ∀m ∈ N, ∀s ∈ S m , s 2 ∞ ≤ φ 1 D m t 2 L 2 .
This implies that, for an orthonormal basis

ϕ λ of S m , Dm λ=1 ϕ 2 λ ∞ ≤ φ 2 1 D m .
iii) We can control the bias term: for an integer r called the regularity, there exists a constant C > 0 such that for any function

s ∈ B α 2,∞ , α ≤ r, ∀m ∈ N, s -s m L 2 ≤ C2 -mα s B α 2,∞
, where s m is the orthogonal projection of s in S m . 

f f 0 f 2 1. S 0 = {linear functions on [0, 1]}. 2. S 2 = {linear functions on [0, 1/4[, [1, 4, 1/2[, [1/2, 3/4[, [3/4, 1]} iv)
The subspaces are nested: let us set

Mn := {m ∈ N, D m ≤ N n },
where N n is an integer. Then there exists S n , satisfying properties i), ii) and iii), such that ∀m ∈ Mn , S m ⊆ S n .

Those assumptions are standard for estimation by projection. The subspaces generated by wavelets of regularity r, piecewise polynomials of degree r or trigonometric polynomials satisfy these assumptions (see Meyer (1990)).

Estimation of the drift function

We consider the mean square contrast function

γ n (s) := 1 n n k=1 (s( Vk∆ ) -Y k∆ ) 2 1 Vk∆ ∈K .
For any m ∈ M n , where

M n := {m ∈ N, D 2 m ≤ n∆/ ln(n)} we consider the contrast estimator bm = arg min s∈Sm γ n (s).
As V k∆ is not available, we consider the empirical risk

R(s) = E 1 n n k=1 (s( Vk∆ ) -b( Vk∆ )) 2 1 Vk∆ ∈K .
The process Vk∆ is stationary like V k∆ . We denote by π its stationary density and we assume that this density is bounded from below and above on K:

A 4. There exist π 0 , π 1 such that for any x ∈ K:

0 < π 1 (x) ≤ π(x) ≤ π 0 < ∞.
Remark 6. Assumption A4 is quite mild, as it only assumes that the stationary density of Vk∆ is bounded on a compact set. However, it is not easy to prove. For diffusions, the stationary density of V t is explicit and [START_REF] Gloter | LAMN property for hidden processes: the case of integrated diffusions[END_REF] give some conditions on the coefficients which ensure the boundedness of π: b and σ have to be bounded, C 3 and their derivatives must also be bounded. However, it is not a necessary condition, as it is also satisfied for Ornstein-Uhlenbeck processes. For jump diffusions, to our knowledge, there do not exist any explicit expression of the stationary density of V t and it will be quite difficult to express assumption A4 with respect to certain conditions on the coefficients. However, the simulations show that A4 is satisfied for our Monte Carlo simulation setups.

We obtain the following bound:

Proposition 7. Under Assumptions A1-A4, for any m ∈ M n , R( bm ) ≤ 8 3 b -b m 2 π + 48(σ 2 0 + ξ 2 0 ) D m n∆ + C∆ + C n ,
where b m is the orthogonal projection of b on S m and s

2 π = K s 2 (x)π(x)dx.
The term bb m 2 π is a bias term, which occurs due to the fact that our estimator belongs to S m . It decreases when m increases. The variance term D m /(n∆) increases with m. ∆ and 1/n are two remainders terms: ∆ appears because the observations are not continuous, it is linked with the difference b(V s ) -b( Vk∆ ), and the term in 1/n comes from our approximation method.

We obtain a collection of estimators ( b0 , b1 , . . .) and would like to select the "best" estimator, which is the estimator that minimizes the empirical risk and, in particular, the trade-off between bias and variance terms. 

R( bm ) D -2α m + D m n∆ + ∆.
This quantity is minimal for D mopt ∝ (n∆) 1/(2α+1) . The risk of the optimal estimator bmopt satisfies:

R( bmopt ) (n∆) (-2α)/(2α+1) + ∆.
If n∆ 2 tends to 0, that is if we have high frequency data, bmopt converges towards b with the nonparametric rate (n∆) -2α/(2α+1) .

As we do not usually know the regularity of the drift function b, we now aim at selecting the best estimator without knowing it. Let us introduce the penalty function

pen(m) := κ(σ 2 0 + ξ 2 0 )D m /(n∆),
which is proportional to the variance term and let us also choose the "best" dimension according to m = arg inf m∈Mn {γ n ( bm ) + pen(m)}.

We obtain an adaptive estimator b m. To prove that our estimator selects the "best" dimension m, we make use of Bernstein-type inequalities. We need the following additional assumption in order to control the big jumps of V :

A 5. We assume that the Lévy measure ν is sub-exponential:

∃C, λ > 0, ∀z > 1 ν(] -z, z[ c ) ≤ Ce -λ|z| .
Hence, the tails of the jumps cannot be too heavy.

Remark 8. We remark that we only need to control the tail of the jumps. For example, Poisson processes with sub-exponential tails, nearly stable processes or CGMY processes satisfy our assumptions.

We are now ready to state the bound of the L 2 -risk of the proposed adaptive drift estimator b m.

Theorem 9. Under Assumptions A1-A5, there exists κ 0 such that for any

κ ≥ κ 0 E b m -b m 2 n ≤ inf m∈Mn 8 3 b -b m 2 π + 4pen(m) + c n + C∆,
where pen(m) = κ(ξ 2 0 + σ 2 0 )D m /(n∆) is defined as above.

Remark 10. In a comparable model, [START_REF] Song | Nonparametric estimation for second-order diffusion models in high frequency data[END_REF] investigated the nonparametric pointwise estimation of the unknown drift b as well as of the function σ 2 + ξ 2 in an integrated jump diffusion model using a kernel based approach. The resulting estimator is consistent and asymptotically normal distributed possessing a rate of convergence of √ n∆h. In contrast to [START_REF] Song | Nonparametric estimation for second-order diffusion models in high frequency data[END_REF], we are interested in estimating adaptively the unknown function b on a compact set K using a model selection approach under quite general assumptions on the driving jump process L. Moreover, we derive the empirical L 2 -risk and state assumptions under which the usual nonparametric rate of (n∆) -2α/(2α+1) is reached by our estimator as long as b ∈ B α 2,∞ .

Simulations

In order to practically construct our estimators, we choose the vectorial subspaces generated by spline functions. In that case,

S m,r = Vect ϕ (r) λ,m 0≤m≤2 m -1
, where ϕ

(r) λ,m (x) = 2 m/2 ϕ (r) (2 m (x -λ))
and

ϕ (r) = 1 [0,1] * . . . * 1 [0,1]
is the r-times convolution product of the indicator function of [0, 1]. The subspace S m can also be described as the subspace of all the piecewise polynomials of degree r which belong to C r-1 . To obtain the adaptive estimator, we select both (m, r) (0 ≤ r ≤ 7) simultaneously. We have the same rate of convergence as if the regularity r was equal to 7.

Let us now focus on the Monte Carlo simulation settings. For each model, we are interested in estimating the drift b on the compact interval K := [-1, 1]. Thanks to an Euler scheme, we realize for each model five simulations of (X 0 , . . . , X n∆ ) for the number of observations n = 10 5 and the sampling interval ∆ = 10 -2 and draw the estimators. We also estimate the stationary densities for each model. They look very much alike, therefore we only draw the estimated density of Model 1.

For each value of (n, ∆), we also realize fifty simulations by an Euler scheme of sampling interval δ = ∆/10. We compute the estimators b m and bmopt as well as the empirical risks Rn ( b m) and Rn ( bmopt ), where

Rn (t) = 1 n n k=1 (t( Vk∆ ) -b( Vk∆ )) 2 .
Moreover, we derive the means of Rn ( b m), denoted by risk, as well as the means of m and r.

In addition, we compute

or := mean Rn ( b m)

Rn ( bmopt )

to check that our estimator is really adaptive. Indeed, if the choice of m is in some sense good, this quantity should be close to 1. For the sake of completeness, we also give T c , the mean of the computation times. T c depends on both n∆ (and therefore M n and the number of estimators bm computed) and n. 1 From the results it can be seen that for the number of observation n = 10 5 and the sampling interval ∆ = 10 -2 , the adaptive estimators are very close to the true drift function (they are nearly superposed). Moreover, the risk of our estimator decreases as the observed time horizon of the underlying process, T = n∆, increases. This coincides with our theoretical findings in the previous sections. The best results are obtained for n = 10 5 , ∆ = 10 -2 , that is, ∆ small enough, and n∆ large enough. The oracle is greater for Model 3 (which does not satisfy Assumption A5) than for the other models, especially when n∆ is big, that is when we can try more models. The choice of the best dimension seems more difficult.

Model 1: Ornstein-Uhlenbeck process with binomial jumps 

dV t = -2V t dt + dW t + dL t with binomial jumps: ν(dz) = 1 2 1 z=±1 .
dV t = -(V t -1/4) 3 -(V t + 1/4) 3 dt + V 2 t -+ 3 V 2 t -+ 1 dW t + dL t
with Laplace jumps: 

f (dz) = ν(dz) = 0.5e -|2 1/3 z| . Figure 5: Model 1 b(x) = -2x, σ(x) = ξ(x) = 1, ν(dz) = 1 2 1 z=±1 . -1.0 -0.5 0.0 0.5 1.0 -2 -1 0 1 2 -: true drift --: estimators n = 10 5 , ∆ = 10 -2 ∆ n risk or m r T c 10 -1 10 3 0.
f (dz) = ν(dz) = 1 √ 8π Γ(9/2) Γ(4) 1 + z 2 8 -9 2 .
This process satisfies Assumptions A1-A2 and A4, but not Assumption A5. Indeed, E L 8 t = ∞.

Model 4: Nearly stable Ornstein-Uhlenbeck process

dV t = -2V t dt + dW t + dL t with ν(dz) = 1 4z 5/2 1 |z|≤1 dz.
Note that in this model, the jumps have infinite intensity. 

(x) = -(x + 1/4) 3 -(x -1/4) 3 , σ(x) = x 2 + 3 x 2 + 1 , ξ 2 (x) = 1, ν(dz) = 0.5e -|2 1/3 z| . -1.0 -0.5 0.0 0.5 1.0 -2 -1 0 1 2 -: true drift --: estimators n = 10 5 , ∆ = 10 -2 ∆ n risk or m r
T c 10 -1 10 3 0.36 1.23 0.04 0.96 0.077 10 -1 10 4 0.27 1.06 0 1 1.00 10 -1 10 5 0.25 1.05 0 1 27.2 10 -2 10 3 3.58 2.48 0.1 0.2 0.027 10 -2 10 4 0.41 1.66 0.1 0.94 0.57 10 -2 10 5 0.12 1.95 0.2 1.66 8.50 10 -3 10 4 3.71 2.34 0.08 0.22 0.17 10 -3 10 5 0.45 2.01 0.14 0.98 5.37

Proofs

In this section, we will present the proofs of the stated results. The Burkholder-Davis-Gundy inequality for stochastic integrals driven by L 2 -martingales will be one of the keys for the proofs. For the sake of completeness, we will state its formulation at first.

Proposition 11 [START_REF] Applebaum | Lévy Processes and Stochastic Calculus[END_REF]; denoted as Kunita's first inequality). Let V = (V t ) t≥0 be the solution of (1) and let

F t := σ(V 0 , (W s ) s≤t , (L s ) s≤t ).
Then, under assumptions A1 and A2 for any p ≥ 2 such that R |y| p ν(dy) < ∞ and R y 2 ν(dy) = 1, there exists a deterministic positive constant C p such that 0.051 1 0 1 0.12 10 -1 10 4 0.038 1 0 1 1.81 10 -1 10 5 0.036 1 0 1 37.1 10 -2 10 3 0.93 8.37 0.12 0.34 0.034 10 -2 10 4 0.060 1.05 0 1.02 0.81 10 -2 10 5 0.0060 1.97 0.02 1.02 12.6 10 -3 10 4 0.94 7.75 0.1 0.4 0.24 10 -3 10 5 0.058 1.18 0.02 1.02 7.90

E sup s∈[t,t+∆] s t σ(V u )dW u p F t ≤ C p E t+∆ t σ 2 (V u )du p/2 F t
as well as

E sup s∈[t,t+∆] s t ξ(V u-)dL u p F t ≤ C p E t+∆ t ξ 2 (V u )du p/2 F t + C p R |y| p ν(dy)E t+∆ t |ξ(V u )| p du F t
A consequence of this proposition is the following corollary. Its proof is fairly classical and can be found for instance in Gloter (2000, Proposition A) for diffusion processes.

Corollary 12. Let V = (V t ) t≥0 be defined as in Proposition 11. Under assumptions A1 and A2 it exists a constant C > 0 such that

E sup s∈[t,t+∆] (V s -V t ) 2 ≤ C∆,
for every t ≥ 0, provided that ∆ ≤ 1. 0.080 1.95 0.18 1.04 0.66 10 -2 10 5 0.0051 1.44 0.04 1.02 10.8 10 -3 10 4 0.96 5.12 0.22 0.64 0.20 10 -3 10 5 0.068 1.27 0.1 1 6.67

Moreover, the fourth moment can also be bounded by

E sup s∈[t,t+∆] (V s -V t ) 4 ≤ C∆,
for every t ≥ 0 provided that ∆ ≤ 1 and whereby C denotes another positive and deterministic constant.

Proof of Proposition 4

We start with the proof of a), which is more or less an interchanging of integrals according to

Vk = 1 ∆ (k+1)∆ k∆ V s ds = 1 ∆ (k+1)∆ k∆ (V (k+1)∆ + V s -V (k+1)∆ )ds = 1 ∆ (k+1)∆ k∆ V (k+1)∆ - (k+1)∆ s dV u ds = V (k+1)∆ - 1 ∆ (k+1)∆ k∆ u k∆ ds dV u = V (k+1)∆ - 1 ∆ (k+1)∆ k∆ (u -k∆)dV u = V (k+1)∆ + 1 ∆ (k+1)∆ k∆ (k∆ -u)dV u .
By the use of a), we are able to deduce statement b) as follows:

Y k+1 = 1 ∆ V (k+3)∆ - 1 ∆ (k+3)∆ (k+2)∆ (u -(k + 2)∆)dV u -V (k+2)∆ + 1 ∆ (k+2)∆ (k+1)∆ (u -(k + 1)∆)dV u = 1 ∆ 2 (k+3)∆ (k+1)∆ (u -(k + 1)∆)1 [(k+1)∆,(k+2)∆) (u) + ((k + 3)∆ -u)1 [(k+2)∆,(k+3)∆) (u) dV u = 1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)dV u .
The proof of c) is based on Corollary 12 as well as the Cauchy-Schwarz inequality and is derived as follows:

E (V (k+1)∆ -Vk ) 2 = 1 ∆ 2 E   (k+1)∆ k∆ (V (k+1)∆ -V s )ds 2   ≤ 1 ∆ 2 (k+1)∆ k∆ ∆E (V (k+1)∆ -V s ) 2 ds ∆.
Statement d) can be deduced by using a) and the Cauchy-Schwarz inequality twice as follows

E V (k+1)∆ -Vk 4 = 1 ∆ 4 E   (k+1)∆ k∆ (V (k+1)∆ -V s )ds 4   ≤ 1 ∆ 4 • E   ∆ (k+1)∆ k∆ (V (k+1)∆ -V s ) 2 ds 2   ≤ 1 ∆ 2 • E   (k+1)∆ k∆ (V (k+1)∆ -V s ) 2 ds 2   ≤ 1 ∆ 2 • ∆ (k+1)∆ k∆ E (V (k+1)∆ -V s ) 4 ds 1 ∆ • ∆ 2 = ∆.

Proof of Lemma 5

Let us start with a). Obviously, we have that

E R 2 k∆ ≤ 2 E R (1) k∆ 2 + E R (2) k∆ 2 .
By using the Lipschitz-continuity of b as well as Proposition 4 we can conclude that

E (R (1) k∆ ) 2 = E b(V (k+1)∆ ) -b( Vk∆ ) 2 ≤ C 2 b • E V (k+1)∆ -Vk∆ 2 ∆,
where C b denotes the Lipschitz constant of the drift function b.

Using the Cauchy-Schwarz inequality as well as the fact that

(k+3)∆ (k+1)∆ ψ 2 k+1 (u)du = 2∆ 3 3 ,
the second term can be handled as follows

E R (2) k∆ 2 = E   1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)(b(V u ) -b(V (k+1)∆ ))du 2   ≤ 1 ∆ 4 (k+3)∆ (k+1)∆ ψ 2 k+1 (u)du • E (k+3)∆ (k+1)∆ (b(V u ) -b(V (k+1)∆ )) 2 du = 2 3∆ (k+3)∆ (k+1)∆ E (b(V u ) -b(V (k+1)∆ )) 2 du ≤ 2C 2 b 3∆ (k+3)∆ (k+1)∆ E (V u -V (k+1)∆ ) 2 du 1 ∆ • ∆ 2 = ∆.
The fourth moment of R k∆ is treated in an analogous manner. At first, it holds that

E R 4 k∆ ≤ 8 E (R (1) k∆ ) 4 + E (R (2) k∆ ) 4 .
Again by Proposition 4, statement d), we have that

E R (1) k∆ 4 = E b(V (k+1)∆ ) -b( Vk∆ ) 4 ≤ C 4 b • E V (k+1)∆ -Vk∆ 4 ∆.
In order to derive the second summand, we make use of the Cauchy-Schwarz inequality twice:

E R (2) k∆ 4 = E   1 ∆ 2 (k+3)∆ (k+1)∆ ψ k+1 (u)(b(V u ) -b(V (k+1)∆ ))du 4   ≤ 1 ∆ 8 (k+3)∆ (k+1)∆ ψ 2 k+1 (u)du 2 • E   (k+3)∆ (k+1)∆ (b(V u ) -b(V (k+1)∆ )) 2 du 2   ≤ 4∆ 6 9∆ 8 E ∆ (k+3)∆ (k+1)∆ (b(V u ) -b(V (k+1)∆ )) 4 du ≤ 4C 4 b 9∆ (k+3)∆ (k+1)∆ E (V u -V (k+1)∆ ) 4 du 1 ∆ • ∆ 2 = ∆,
which concludes the proof of statement a). Statement b) is a direct consequence of the fact that both Z

(1) k∆ and Z

(2)

k∆ are martingale difference sequences with respect to the canonical filtration F t . We explicitly remark that Vk∆ belongs to F (k+1)∆ such that Z k∆ is centered, conditionally on Vk∆ , by the use of the martingale property of (W t ) and (L t ). Concerning statement c), we make use of Proposition 11 as follows

E Z (1) k∆ 2 F (k+1)∆ = 1 ∆ 4 E   (k+3)∆ (k+1)∆ ψ k+1 (u)σ(V u )dW u 2 F (k+1)∆   = 1 ∆ 4 E (k+3)∆ (k+1)∆ ψ 2 k+1 (u)σ 2 (V u )du F (k+1)∆ ≤ σ 2 0 ∆ 4 (k+3)∆ (k+1)∆ ψ 2 k+1 (u)du = σ 2 0 ∆ 4 • 2∆ 3 3 ≤ 2σ 2 0 3∆ .
In order to handle the Lévy-driven part Z

(2)

k∆ we proceed analogously

E Z (2) k∆ 2 F (k+1)∆ = 1 ∆ 4 E   (k+3)∆ (k+1)∆ ψ k+1 (u)ξ(V u-)dL u 2 F (k+1)∆   = 1 ∆ 4 E (k+3)∆ (k+1)∆ ψ 2 k+1 (u)ξ 2 (V u )du F (k+1)∆ ≤ ξ 2 0 ∆ 4 (k+3)∆ (k+1)∆ ψ 2 k+1 (u)du = ξ 2 0 ∆ 4 • 2∆ 3 3 = 2ξ 2 0 3∆ .
The fourth conditional moments of Z

(1) k∆ and Z

(2) k∆ can also be treated by Proposition 11:

E Z (1) k∆ 4 F (k+1)∆ = 1 ∆ 8 E   (k+3)∆ (k+1)∆ ψ k+1 (u)σ(V u )dW u 4 F (k+1)∆   1 ∆ 8 E   (k+3)∆ (k+1)∆ ψ 2 k+1 (u)σ 2 (V u )du 2 F (k+1)∆   ≤ σ 4 0 ∆ 8 (k+3)∆ (k+1)∆ ψ 2 k+1 (u)du 2 = σ 4 0 ∆ 8 • 4∆ 6 9 1 ∆ 2
as well as

E Z (2) k∆ 4 F (k+1)∆ = 1 ∆ 8 E   (k+3)∆ (k+1)∆ ψ k+1 (u)ξ(V u-)dL u 4 F (k+1)∆   1 ∆ 8 E   (k+3)∆ (k+1)∆ ψ 2 k+1 (u)ξ 2 (V u )du 2 F (k+1)∆   + 1 ∆ 8 R y 4 ν(dy) • E (k+3)∆ (k+1)∆ ψ 4 k+1 (u)ξ 4 (V u )du F (k+1)∆ ≤ ξ 4 0 ∆ 8   (k+3)∆ (k+1)∆ ψ 2 k+1 (u)du 2 + R y 4 ν(dy) (k+3)∆ (k+1)∆ ψ 4 k+1 (u)du   = ξ 4 0 ∆ 8 4∆ 6 9 + R y 4 ν(dy) 2∆ 5 5 1 ∆ 8 ∆ 6 + ∆ 5 = 1 ∆ 2 + 1 ∆ 3 1 ∆ 3
with regard on ∆ ≤ 1 and

(k+3)∆ (k+1)∆ ψ 4 k+1 (u)du = 2∆ 5 5 .

Proof of Proposition 7

We introduce the empirical norm

s 2 n = 1 n n k=1
s 2 ( Vk∆ ).

We have that

γ n (s) = 1 n n k=1 s( Vk∆ ) -Y k∆ 2 = 1 n n k=1 s( Vk∆ ) -b( Vk∆ ) + b( Vk∆ ) -Y k∆ 2 = s -b 2 n + γ n (b) + 2 n n k=1 s( Vk∆ ) -b( Vk∆ ) b( Vk∆ ) -Y k∆ .
Therefore, as

Y k∆ = b( Vk∆ ) + R k∆ + Z k∆ , γ n (s) -γ n (b) = s -b 2 n - 2 n n k=1 (s( Vk∆ ) -b( Vk∆ ))(R k∆ + Z k∆ ). By definition, γ n ( bm ) ≤ γ n (b m ) and thus b -bm 2 n ≤ b -b m 2 n + 2 n n k=1 ( bm ( Vk∆ ) -b m (V k∆ ))(R k∆ + Z k∆ ). (2) 
By the use of the Cauchy-Schwarz inequality, it holds for any a > 0:

2 n n k=1 ( bm ( Vk∆ ) -b m (V k∆ ))R k∆ ≤ 1 a bm -b m 2 n + a n n k=1 R 2 k∆ . (3) 
Due to Proposition 4, it holds that E R 2 k∆ ∆. Let us consider the linear form

ν n (s) = 1 n n k=1 s( Vk∆ )Z k∆ .
Moreover, let us define B m := s ∈ S m , s 2 π = 1 , the unit ball (for the . π norm) of S m . We have, for any c > 0, by the use of the Cauchy-Schwarz inequality:

2 n n k=1 ( bm ( Vk∆ ) -b m ( Vk∆ ))Z k∆ ≤ 2 bm -b m π • sup s∈Bm ν n (s) ≤ 1 c bm -b m 2 π + c sup s∈Bm ν 2 n (s). (4)
Let us introduce the event

Ω n := ω ∈ Ω, ∀m ∈ M n , ∀s ∈ S m , s 2 n s 2 π -1 ≤ 1/2
on which the norms . π and . n are equivalent. Note that for any deterministic function s, it holds that

E [ s n ] = s π .
Ω n happens nearly all the time, as shown by the following lemma from (Comte et al., 2007, Lemma 6.1).

Lemma 13. As i) Vk is exponentially β-mixing, ii) Vk is stationary and its stationary density π is bounded from below and above on K, iii) the vectorial subspaces S m satisfy Assumption A3, then P(Ω c n ) ≤ c/n 6 .

(5)

We first control the risk on Ω n . Gathering (2), ( 3) and ( 4),

E b -bm 2 n 1 Ωn ≤ E b -b m 2 n + 1 a E bm -b m 2 n + 1 c E bm -b m 2 π + cE sup s∈Bm ν 2 n (s) + aE R 2 ∆ .
By the triangular inequality, it holds for any norm that

bm -b m 2 ≤ 2 bm -b 2 + 2 b -b m 2 . As b -b m is a deterministic function, we have that E b -b m 2 n = b -b m 2 π .
21 Moreover, on Ω n , we conclude the relation s

2 π ≤ 2 s 2 n . Therefore, it holds that E bm -b m 2 π 1 Ωn ≤ 4E bm -b 2 n + 2 b -b m 2 π and E bm -b m 2 n ≤ 2E bm -b 2 n + 2 b -b m 2 π such that consequently E b -bm 2 n 1 Ωn 1 - 2 a - 4 c ≤ b -b m 2 π 1 + 2 a + 2 c + aE R 2 ∆ + cE sup s∈Bm ν 2 n (s) .
Let us set a = c = 12, then we have

E b -bm 2 n 1 Ωn ≤ 8 3 b -b m 2 π + C∆ + 24E sup s∈Bm ν 2 n (s) (6) 
and, moreover, let us consider (ϕ λ ), an orthonormal basis (for the norm . π ) of S m . We have that

B m = s ∈ S m , s = λ a λ ϕ λ , λ a 2 λ ≤ 1 .
Using the Cauchy-Schwarz inequality, we obtain that

E sup s∈Bm ν 2 n (s) = E    sup λ a 2 λ ≤1 λ a λ ν n (ϕ λ ) 2    ≤ sup λ a 2 λ ≤1 λ E ν 2 n (ϕ λ ) λ a 2 λ ≤ λ E ν 2 n (ϕ λ ) .
Moreover,

E ν 2 n (ϕ λ ) = E   1 n n k=1 ϕ λ ( Vk∆ )Z k∆ 2   = E 1 n 2 n k=1 ϕ 2 λ ( Vk∆ )Z 2 k∆ + 2 n 2 j<k E ϕ λ ( Vk∆ )ϕ λ ( Vj∆ )Z k∆ Z j∆ .
We first bound the square terms:

E ϕ 2 λ ( Vk∆ )Z 2 k∆ = E ϕ 2 λ ( Vk∆ )E Z 2 k∆ |F (k+1)∆ ≤ 2 3 σ 2 0 + ξ 2 0 ∆ ϕ λ 2 π = 2 3 σ 2 0 + ξ 2 0 ∆ . If |j -k| ≥ 2, then Z j∆ ∈ F (j+3)∆ ⊆ F (k+1)
∆ and the expectation of the product is null:

E ϕ λ ( Vk∆ )ϕ λ ( Vj∆ )Z k∆ Z j∆ = E ϕ λ ( Vk∆ )ϕ λ ( Vj∆ )Z j∆ E Z k∆ |F (k+1)∆ = 0 and if j = k -1, by the Cauchy-Schwarz inequality, E ϕ λ ( Vk∆ )ϕ λ ( Vj∆ )Z j∆ Z k∆ ≤ E ϕ 2 λ ( Vk∆ )Z 2 k∆ E ϕ 2 λ ( Vj∆ )Z 2 j∆ 1/2 ≤ 2 3 σ 2 0 + ξ 2 0 ∆ .
Therefore:

E sup s∈Bm ν 2 n (s) ≤ 2 σ 2 0 + ξ 2 0 n∆
and by ( 6),

E b -bm 1 Ωn ≤ 8 3 b -b m 2 π + C∆ + 48(σ 2 0 + ξ 2 0 ) D m n∆ .
It remains to bound the risk on Ω c n . We can remark that ( bm ( V∆ ), bm ( V2∆ ), . . . , bm ( Vn∆ )) is the orthogonal projection for the . n -norm of (Y ∆ , . . . , Y n∆ ). We denote this projection by Π m and define

Y := (Y ∆ , . . . , Y n∆ ), R := (R ∆ , . . . , R n∆ ) and Z := (Z ∆ , . . . , Z n∆ ). We have that Y k∆ = b( Vk∆ ) + R k∆ + Z k∆ and b -bm 2 n = b -Π m Y 2 n = b -Π m b 2 n + Π m R + Π m Z 2 n
and, hence, by the Cauchy-Schwarz inequality

E b -bm 2 n 1 Ω c n 1 n n k=1 E b 4 ( Vk∆ )1 Vk∆ ∈K P(Ω c n ) 1/2 + 1 n n k=1 (E R 4 k∆ + E Z 4 k∆ ) 1/2 (P(Ω c n )) 1/2 .
By Lemmas 5 and 13 we finally conclude that

E b -bm 2 n 1 Ω c n 1 n ,
which ends the proof.

Proof of Theorem 9

As previously, we decompose the risk on Ω n and Ω c n . On Ω c n , we obtain the same bound as for the non-adaptive estimator. We bound the risk on Ω n . We have, for any m, like in ( 6): The problem is to bound ν 2 n (s) on a random ball. We have:

E b m -b 2 n 1 Ωn ≤ 8 3 b -b m 2 π + 2pen(m) -2pen( m) + C∆ + 24E sup s∈B m, m ν 2 n (s) , where 
E sup s∈B m, m ν 2 n (s) -p(m, m) ≤ m E sup s∈B m,m
ν 2 n (s) -p(m, m ) .

We follow straightly the proof of Theorem 2 in [START_REF] Schmisser | Nonparametric adaptive estimation of the drift for a jump diffusion process[END_REF]. To bound this term, we use a Bernstein inequality and, moreover, we need to apply a Markov inequality on the term exp(ν n (s)).

The following proposition is exactly Corollary 5.2.2 of [START_REF] Applebaum | Lévy Processes and Stochastic Calculus[END_REF].

Proposition 14. Let F t and K t be two locally integrable and previsible processes and let

Y t := t 0 F u dW u + t 0 K u dL u - t 0 F 2 u 2 + R e Kuz -1 -K u z ν(dz) du. If ∀t > 0 , E t 0 |z|>1
e Kuz -1 ν(dz)du < ∞, then e Yt is a F t -local martingale.

We set e εKuz -1 ν(dz) < ∞.

Then, by Proposition 14, e Yε,t is a local martingale for ε ≤ ε 1 . It remains to compute its expectation. We can remark that ≤ P e Yε,n∆ ≥ exp n∆ηε -cn∆ε 2 (σ 2 0 + ξ 2 0 )ζ 2 . We choose ε = η 2c(σ 2 0 + ξ 2 0 )ζ 2 + η/ε 1 such that ε ≤ ε 1 as well as

n∆ηε -cn∆ε 2 (σ 2 0 + ξ 2 0 )ζ 2 ≤ - η 2 n∆ 4c((σ 2 0 + ξ 2 0 )ζ 2 + c ηξ 0 s ∞ .
Let us consider a sequence {τ N } of increasing stopping times such that lim N →∞ τ N = ∞. Then, as e Yε,t is a local martingale, the following equality for the corresponding expectation holds: E e Yε,t∧τ N = E e Yε,0 = 1.

Moreover, we have that: P e Yε,t∧τ N ≥ a ≤ e -a . Letting N → ∞, we obtain P e Yε,t ≥ a ≤ e -a such that

P ν n (s) ≥ η, s 2 n ≤ ζ 2 ≤ exp - η 2 n∆ 4c ((σ 2 0 + ξ 2 0 )ζ 2 + c ηξ 0 s ∞ )
.

To conclude the proof, we use a L 2 π -L ∞ chaining technique (see (Schmisser, 2014, Proposition 20)). Let D m,m := dim(S m + S m ). We finally obtain that 
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 2 Figure 2: Example of approximation by piecewise linear functions

  If the drift function b belongs to the Besov space B α 2,∞ , then we have an explicit bound for the bias term: bb m 2 π ≤ D -2α m and the risk of the estimator bm is bounded by
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 3 Figure 3: Spline functions ϕ (r)
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 4 Figure 4: Density estimate of Vk∆ .
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  Figure 6: Model 2 b(x) = -(x + 1/4) 3 -(x -1/4) 3 , σ(x) = x 2 + 3 x 2 + 1 , ξ 2 (x) = 1, ν(dz) = 0.5e -|2 1/3 z| .
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  Figure 7: Model 3
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 8 Figure 8: Model 4 b(x) = -2x, σ(x) = ξ(x) = 1, ν(dz) = 1 4z 5/2 1 |z|≤1 dz.

  B m,m is the random ball of the set S m + S m . Let us introduce the function p(m, m ) as follows: 12p(m, m ) := pen(m) + pen(m ). (m) + C∆ + 24E sup s∈B m, m ν 2 n (s) -p(m, m) .

FF u dW u + t 0 K

 0 u dL u , and Y ε,t = εM t -A ε,t -B ε,t .As ψ k+1 (u) ≤ ∆, |K u | ≤ n s ∞ ξ 0 and for ε ≤ ε 1 := (λ ∧ 1)/(2n s ∞ ξ 0 ), by Assumption A5,

  and the function ψ k ψ j is identically null if |k -j| ≥ 2. Then αzαz -1)ν(dz) ≤ Cα 2 .Hence, there exists a c > 0, such that for any ε ≤ ε 1 ,A ε,t + B ε,t ≤ cn∆ε 2 (σ 2 0 + ξ 2 0 ) s Using the fact that ν n (s) = 1 n∆ M n∆ , we conclude for ε ≤ ε 1 : P ν n (s) ≥ η, s 2 n ≤ ζ 2 ≤ P e εMn∆ ≥ e εn∆η , A ε,n∆ + B ε,n∆ ≤ cn∆ε 2 (σ 2 0 + ξ 2 0 )ζ 2

	Moreover, if α ≤ 1 ∧ λ,							
	Then, if ε ≤ ε 1 ,										
	B ε,t	0	t	ε 2 K 2 u du		ε 2 ∆ 2 ξ 2 0	k,j	s( Vj∆ )s( Vk∆ )	0	t	ψ k+1 (u)ψ j+1 (u)du ε 2 ∆n s	2 n ξ 2 0 .
												2 n .
				0	t	ψ 2 k (u)du =	2∆ 3 3	,	0	t	ψ k (u)ψ k+1 (u)du =	∆ 3 6
				A ε,t ≤	ε 2 2∆ 2 σ 2 0	0≤k,j≤n	s( Vk∆ )s( Vj∆ )	0	t	ψ k+1 (u)ψ j+1 (u)du
				≤	ε 2 2∆ 2 σ 2 0 s	2 n	n k=0		2∆ 3 3	+ 2	∆ 3 6	=	ε 2 2	∆n s	2 n σ 2 0 .
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The programming was done with the software R, the code is available on http://math.univ-lille1.fr/ ~schmisse/recherche.html