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Abstract

In the present article, we investigate nonparametric estimation of the unknown drift function
b in an integrated Lévy driven jump diffusion model. Our aim will be to estimate the unknown
drift function on a compact set based on a high-frequency data sample.
Instead of observing the jump-diffusion process V itself, we observe a discrete and high-frequent
sample of the integrated process

Xt :=

∫ t

0

Vsds.

Based on the available observations of (Xt), we will construct an adaptive penalized least-
squares estimate in order to compute an adaptive estimator of the corresponding drift function
b. Under appropriate assumptions, we will bound the L2-risk of our proposed estimator. More-
over, we study the behavior of the proposed estimator in various Monte Carlo simulation setups.

1 Introduction
In many applications in economics or financial mathematics, several occurring stochastic processes
can be interpreted as integrated processes, which, for instance, means that at time t they possess
cumulatively all information up to this time point. In discrete time series analysis, integrated
processes play a significant role when dealing with nonstationary models of the AR-type. In contrast
to work with the original process, one uses linear combinations (e.g. differences) to get stationary
processes which allow for a more convenient treatment.
In this paper, we will focus on a continuous time model and, concretely, will face the problem
of estimating nonparametrically the unknown drift function in an integrated Lévy driven jump
diffusion model. We will at first concretize what is meant by an integrated process in our context
as follows.
Consider a two-dimensional stochastic process (Xt, Vt)t≥0 such that

dXt = Vtdt, X0 = 0

dVt = b(Vt)dt+ σ(Vt)dWt + ξ(Vt−)dLt, V0
D
= η, (1)
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where W = (Wt)t≥0 is a standard Brownian Motion and L = (Lt)t≥0 is a centered Lévy process
with finite variance E

(
L2

1

)
:=
∫
R y

2ν(dy) <∞ such that

dLt =

∫
R
z(µ(dt, dz)− ν(dz)dt).

W and L are independent and η is independent of both W and L. Moreover, µ denotes the
corresponding Poisson random measure of L with intensity measure ν. Note that L is a centered
L2-martingale with respect to its augmented canonical filtration under our conducted assumptions.

Remark 1. We shortly remark, that the system (1) is a special case of a two-dimensional stochastic
differential equation where no noise is contained in the first coordinate.

Our aim is the nonparametric estimation of the unknown drift function b exclusively based on
observations of the first coordinate of (1).
Usual estimation schemes for diffusion processes, as for example in Florens-Zmirou (1993), Bandi
and Phillips (2003), Bandi and Nguyen (2003) or Comte et al. (2007), are based on a sample of the
original process V . In contrast to this setting, we are now assuming that we cannot observe the
process V itself but rather a running integral over this process. In particular, we only observe the
first coordinate

Xt =

∫ t

0

Vsds

of the original bidimensional process at equidistant time points k∆, k = 1, ..., n + 3 over the time
interval [0, T ], such that

T := (n+ 3)∆→∞ and ∆→ 0.

Statistical inference for such integrated processes has been, to the best of our knowledge, sporadi-
cally investigated in the literature whereby applications in engineering science as well as in finance
and physics have been conducted. For example, Comte et al. (2009) refer to a model where V
denotes the velocity of a particle and X represents its coordinate. Further models and applications
of such processes in the context of paleoclimate data can be found in Ditlevsen and Sørensen (2004)
as well as in Lefebvre (1997) and Baltazar-Larios and Sørensen (2010). In mathematical finance, X
could model the integrated quarticity or the integrated volatility in a stochastic volatility model;
see for example Bollerslev and Zhou (2002) or Andersen et al. (2001).
For such models, parametric inference has been conducted in some works; see for example Ditlevsen
and Sørensen (2004), Gloter (2000) or Gloter (2006) as well as Gloter and Gobet (2006). But in
general, this topic has not arisen much attention, although it is quite interesting and important for
real data applications.
In the nonparametric framework, we are only aware of few works, in which the coefficients of such
models have been consistently estimated. For example, Nicolau (2007) uses kernel estimators for
the pointwise consistent estimation of b(x) and σ2(x). In contrast to the kernel based approach,
Comte et al. (2009) use a model selection approach to construct adaptive nonparametric estima-
tors of b and σ on a fixed compact interval in an integrated diffusion model without jumps. This
work extends their approach for estimating ordinary univariate diffusions and was also pursued by
Schmisser (2014) in the case of univariate jump diffusions.
In view of these two papers, we will conduct an analogous approach for the case of estimating the
drift in an integrated jump diffusion model. To the best of our knowledge, adaptive nonparametric
inference for the drift function in an integrated jump diffusion model has not been investigated in
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the literature before. In contrast, empirical likelihood inference for this model has been conducted
in Song and Lin (2013). Moreover, a re-weighted kernel estimation procedure has been used by
Song et al. (2013) for pointwise estimation of the function σ2 + ξ2.

2 Assumptions
Let us at first impose the following assumptions, which guarantee the existence of a unique strong
solution (Vt) in equation (1).

A 1. i) The functions b, σ and ξ are globally Lipschitz-continuous.

ii) The function σ is bounded away from zero as well as uniformly bounded for all x:

∃ σ1, σ0 ∈ R+ : ∀x ∈ R : 0 < σ1 ≤ σ(x) ≤ σ0.

iii) The function ξ is non-negative and also bounded:

∃ ξ0 ∈ R+ : ∀x ∈ R : 0 ≤ ξ(x) ≤ ξ0.

iv) The function b is elastic (cf. Masuda (2007)), which means that

∃ M > 0 : ∀x ∈ R, |x| > M : xb(x) . −x2.

We remark that b cannot be bounded as required in Bandi and Nguyen (2003).

v) The Lévy measure ν possesses the properties that

Var (L1) =

∫
R
y2ν(dy) = 1, ν({0}) = 0,

∫
R
y4ν(dy) <∞.

Under Assumption A1,i) a unique strong solution (Vt) of (1) exists (cf. Masuda (2007)). More-
over, under A1,i)-iv), this solution is equipped with a unique invariant probability distribution
Γ(dx). In addition, V is exponentially β-mixing.
Assumption A1,v) simply ensures that ν has moments up to order 4. Indeed, the condition
Var (L1) = 1 is only an identifiability condition. Using Theorem 2.1 in Masuda (2007), we can
deduce the ergodicity of (Vt), which means that for all measurable functions g ∈ L1(Γ(dx)):

1

T

∫ T

0

g(Vs)ds −→
∫
R
g(x)Γ(dx) a.s., as T →∞.

Due to our assumptions on the Lévy measure ν and the Lipschitz-continuity of the coefficients
b, σ and ξ, we have that E

(
V 4
t

)
< ∞ for all t ≥ 0. This can easily be proven by applying the

Cauchy-Schwarz inequality successively. We will focus on this property later on.
Moreover, we impose that

A 2. vi) Γ is absolutely continuous with respect to the Lebesgue measure and, thus, possesses a
Lebesgue density πV such that Γ(dx) = πV (x)dx.
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vii) The process (Vt) starts in its invariant law:

V0 ∼ Γ(dx)

such that (Vt) is stationary.

Remark 2. These assumptions are largely congruent to those in Schmisser (2014), who investigated
the nonparametric estimation of b in the usual non-integrated setting.

We will now concretize our estimation approach. Hence, let us assume that we are aware of a
high-frequent data set {Xk∆, k = 1, ..., n + 3} of the process (Xt) given by (1). As mentioned,
the process (Vt) is not observable and has to be approximated. The idea behind our estimation
approach relies on the following transformation. We set

V̄k∆ := V̄k :=
1

∆

(
X(k+1)∆ −Xk∆

)
=

1

∆

∫ (k+1)∆

k∆

Vsds, 1 ≤ k ≤ n+ 2.

Figure 1: Example of trajectories of (Vt), (Xt) and (V̄k∆)
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−
2

−
1

0
1

t

V

− (Vt) . . . (Xt) - - (V̄k∆)

dXt = Vtdt, dVt = −2Vt + dWt + dLt ν(dz) =
1

2
1z=±1

n = 100, ∆ = 10−1.
Vt is simulated thanks to an Euler scheme of sampling interval δ = 10−2.

Remark 3. We point out that (V̄k)k≥0 shares some crucial properties of the underlying process
V . According to Comte et al. (2009), the averaged process (V̄k)k≥0 is stationary and exponentially
β-mixing, too. The latter fact can be seen due to the fact that

βV̄ (k) ≤ βV (k∆), k = 1, ..., n+ 3.
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Let us now start with a very useful proposition acting as a key point for our proofs. The
following proposition generalizes Lemmas 7.1-7.3 in Comte et al. (2009) to the case of integrated
jump diffusions.

Proposition 4. Under assumption A1, the following observations hold true:

a) We have that

V̄k +
1

∆

∫ (k+1)∆

k∆

(u− k∆)dVu = V(k+1)∆, 1 ≤ k ≤ n+ 2.

b) For 1 ≤ k ≤ n+ 2 it holds that

Yk+1 :=
V̄k+2 − V̄k+1

∆
=

1

∆2

∫ (k+3)∆

(k+1)∆

ψ(k+1)(u)dVu,

where
ψk(u) := (u− k∆)1[k∆,(k+1)∆[(u) + ((k + 2)∆− u)1[(k+1)∆,(k+2)∆[(u).

c) To value the goodness of our used approximation, we state that

E
(
(V(k+1)∆ − V̄k)2

)
. ∆, 1 ≤ k ≤ n+ 2.

d) Additionally, we state that

E
(
(V(k+1)∆ − V̄k)4

)
. ∆, 1 ≤ k ≤ n+ 2.

Based on the sample {V̄k, k = 1, ..., n + 2}, we will now propose the drift estimator for the
considered model and start with the following decomposition based on Proposition 4:

Y(k+1)∆ :=
V̄(k+2)∆ − V̄(k+1)∆

∆
=

1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)dVu

=
1

∆2

[∫ (k+3)∆

(k+1)∆

ψk+1(u)b(Vu)du+

∫ (k+3)∆

(k+1)∆

ψk+1(u)σ(Vu)dWu +

∫ (k+3)∆

(k+1)∆

ψk+1(u)ξ(Vu−)dLu

]

= b(V(k+1)∆) +
1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)(b(Vu)− b(V(k+1)∆))du

+
1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)σ(Vu)dWu +
1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)ξ(Vu−)dLu

= b(V̄k∆) + b(V(k+1)∆)− b(V̄k∆) +
1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)(b(Vu)− b(V(k+1)∆))du

+
1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)σ(Vu)dWu +
1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)ξ(Vu−)dLu

:= b(V̄k∆) +R
(1)
k∆ +R

(2)
k∆ + Z

(1)
k∆ + Z

(2)
k∆.
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Hence, Y(k+1)∆ will act as a good approximation of b(V̄k∆) with

R
(1)
k∆ = b(V(k+1)∆)− b(V̄k∆), R

(2)
k∆ =

1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)(b(Vu)− b(V(k+1)∆))du

and

Z
(1)
k∆ =

1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)σ(Vu)dWu Z
(2)
k∆ =

1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)ξ(Vu−)dLu.

We set
Rk∆ = R

(1)
k∆ +R

(2)
k∆

and
Zk∆ = Z

(1)
k∆ + Z

(2)
k∆.

and denote by
Ft = σ(V0, (Ws)0≤s≤t, (Ls)0≤s≤t)

the natural filtration of Vt. Let us remark that V̄k∆ belongs to F(k+1)∆ whereas Zk∆ and Rk∆

belong to F(k+3)∆. In order to control the approximation error Rk∆ as well as the noise term Zk∆

we will need the following lemma in order to bound the required moments.

Lemma 5. Under Assumption A1 we have that for 1 ≤ k ≤ n+ 2 and ∆ ≤ 1

a) E
(
R2
k∆

)
. ∆ and E

(
R4
k∆

)
. ∆.

b) E
(
Z

(1)
k∆|F(k+1)∆

)
= 0 and E

(
Z

(2)
k∆|F(k+1)∆

)
= 0

c) E
((

Z
(1)
k∆

)2

|F(k+1)∆

)
≤ σ2

0/∆ and E
((

Z
(2)
k∆

)2

|F(k+1)∆

)
≤ ξ2

0/∆

d) E
((

Z
(1)
k∆

)4

|F(k+1)∆

)
. 1/∆2 and E

((
Z

(2)
k∆

)4

|F(k+1)∆

)
. 1/∆3.

3 Spaces of approximation
Let us now turn to our essential aim, namely to estimate nonparametrically the drift function b
on a compact set K. To do this, we consider a sequence of nested subspaces S0, . . . , Sm, . . . such
that ∪mSm is dense in L2(K). We minimize a contrast function γn(t) on each Sm and then choose
the best estimator by introducing a penalty function (see for instance Barron et al. (1999)). The
rate of convergence of our estimator will depend on the regularity of the drift, i.e. its modulus of
smoothness.

Definition (Modulus of smoothness). The modulus of continuity of a function f at t is defined by

ω(f, t) = sup
|x−y|≤t

|f(x)− f(y)|.

If f is Lipschitz, the modulus of continuity is proportional to t. If ω(f, t) = o(t), then f is constant:
the modulus of continuity cannot measure higher smoothness.
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We define the modulus of smoothness by

ωr(f, t)p = sup
0<h≤t

‖∆r
h(f, .)‖Lp where ∆r

h(f, x) =

r∑
k=0

(−1)k
(
r

k

)
f(x+ kh).

If f ∈ C r, then for 1 ≤ p ≤ ∞:

ωr(f, t)p ≤ trω(f (r), t)p.

Definition (Besov space). The Besov space Bα2,∞ is the set of functions:

Bα2,∞ = {f ∈ L2, sup
t>0

t−αωr(f, t)2 <∞}

where r = bα+ 1c. The norm on a Besov space is defined by:

‖f‖Bα2,∞ := sup
t>0

t−αωr(f, t)2 + ‖f‖L2 .

For more details see DeVore and Lorentz (1993).

Figure 2: Example of approximation by piecewise linear functions
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f f0 f2

1. S0 = {linear functions on [0, 1]}.

2. S2 = {linear functions on [0, 1/4[, [1, 4, 1/2[, [1/2, 3/4[, [3/4, 1]}

We consider a series of nested vectorial subspaces satisfying the following assumptions:

A 3. i) The subspaces Sm have finite dimension Dm.

ii) On Sm, the L2-norm and the L∞-norm are connected:

∃φ1 > 0,∀m ∈ N,∀s ∈ Sm, ‖s‖2∞ ≤ φ1Dm ‖t‖2L2 .

This implies that, for an orthonormal basis ϕλ of Sm,
∥∥∥∑Dm

λ=1 ϕ
2
λ

∥∥∥
∞
≤ φ2

1Dm.
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iii) We can control the bias term: for an integer r called the regularity, there exists a constant
C > 0 such that for any function s ∈ Bα2,∞, α ≤ r, ∀m,

‖s− sm‖L2 ≤ C2−mα ‖s‖Bα2,∞ ,

where sm is the orthogonal projection of s in Sm.

iv) The subspaces are nested: let us set Mn = {m ∈ N, Dm ≤ Nn} where Nn is an integer. Then
there exists Sn, satisfying properties i), ii) and iii), such that ∀m ∈Mn, Sm ⊆ Sn.

Those assumptions are standard for estimation by projection. The subspaces generated by
wavelets of regularity r, piecewise polynomials of degree r or trigonometric polynomials satisfy
these assumptions (see Meyer (1990)).

4 Estimation of the drift function
We consider the mean square contrast function

γn(s) =
1

n

n∑
k=1

(s(V̄k∆)− Yk∆)2
1V̄k∆∈K .

For any m ∈Mn, where Mn = {m ∈ N, D2
m ≤ n∆/ ln(n)} we consider the contrast estimator

b̂m = arg min
s∈Sm

γn(s), where γn(s) =
1

n

n∑
k=1

(s(V̄k∆)− Yk∆)2.

As Vk∆ is not available, we consider the empirical risk

R(s) = E

(
1

n

n∑
k=1

(s(V̄k∆)− b(V̄k∆))2
1V̄k∆∈K

)
.

The process V̄k∆ is stationary like Vk∆. We denote by π its stationary density and we assume that
this density is bounded from below and above on K:

A 4. There exist π0, π1 such that for any x ∈ K:

0 < π0(x) ≤ π(x) ≤ π1 <∞.

We obtain the following bound:

Proposition 6. Under Assumptions A1-A4, for any m ∈Mn,

R(b̂m) ≤ 8

3
‖bm − b‖2π + 48(σ2

0 + ξ2
0)
Dm

n∆
+ C∆ +

C ′

n
,

where bm is the orthogonal projection of b on Sm and ‖s‖2π =
∫
K
s2(x)π(x)dx.
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The term ‖bm − b‖2π is a bias term, due to the fact that our estimator belongs to Sm. It de-
creases when m increases. The variance term Dm/(n∆) increases with m. ∆ and 1/n are two
remainders terms: ∆ appears because the observations are not continuous, it is linked with the
difference b(Vs)− b(V̄k∆), and the term in 1/n comes from our approximation method.

We obtain a collection of estimators (b̂0, b̂1, . . .) and would like to select the "best" estimator,
which is the estimator that minimizes the empirical risk and in particular the trade-off between
bias and variance terms. If the drift function b belongs to the Besov space Bα2,∞, then we have an
explicit bound for the bias term: ‖b− bm‖2π ≤ D−2α

m , and the risk of the estimator b̂m is bounded
by

R(b̂m) . D−2α
m +

Dm

n∆
+ ∆.

This quantity is minimal forDmopt ∝ (n∆)1/(2α+1). The risk of the optimal estimator b̂mopt satisfies:

R(b̂mopt) . (n∆)(−2α)/(2α+1) + ∆.

If n∆2 tends to 0, that is if we have high frequency data, b̂mopt converges towards b with the non-
parametric rate (n∆)−α/(2α+1).

As we do not usually know the regularity of the drift function b, we now aim at selecting the
best estimator without knowing it. Let us introduce the penalty function

pen(m) := κ(σ2
0 + ξ2

0)Dm/(n∆),

which is proportional to the variance term and let us also choose the "best" dimension according
to

m̂ = arg inf
m∈Mn

{γn(b̂m) + pen(m)}.

We obtain an adaptive estimator b̂m̂ and need the following additional assumption to control the
big jumps:

A 5. We assume that the Lévy measure ν is sub-exponential:

∃C, λ > 0,∀z > 1 ν(]− z, z[c) ≤ Ce−λ|z|.

Hence, the tails of the jumps cannot be too heavy.

Theorem 7. Under Assumptions A1-A5, there exists κ0 such that for any κ ≥ κ0

E
[∥∥∥b̂m̂ − bm∥∥∥2

n

]
≤ inf
m∈Mn

{
8

3
‖b− bm‖2π + 4pen(m)

}
+
c

n
+ C∆,

where pen(m) = κ(ξ2
0 + σ2

0)Dm/(n∆) is defined as above.

5 Simulations
To construct our estimators, we choose the vectorial subspaces generated by spline functions. In
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Figure 3: Spline functions ϕ(r)
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 r=1

r=2

r=3

r=4

that case,

Sm,r =

{
Vect

((
ϕ

(r)
λ,m

)
0≤m≤2m−1

)}
where ϕ

(r)
λ,m(x) = 2m/2ϕ(r)(2m(x− λ))

and
ϕ(r) = 1[0,1] ∗ . . . ∗ 1[0,1]

is the r-times convolution product of the indicator function of [0, 1]. The subspace Sm can also be
described as the subspace of all the piecewise polynomials of degree r which belong to C r−1. To
obtain the adaptive estimator, we select both (m, r) (0 ≤ r ≤ 7) simultaneously. We have the same
rate of convergence as if the regularity r was equal to 7.

Let us now focus on the Monte Carlo simulation settings. For each model, we are interested in
estimating the drift b on the compact interval K := [−1, 1]. Thanks to an Euler scheme, we realize
for each model five simulations of (X0, . . . , Xn∆) for the number of observations n = 105 and the
sampling interval ∆ = 10−2 and draw the estimators. We also realize fifty simulations and compute
the estimators b̂m̂ and b̂mopt . We compute the empirical risks R̂n(b̂m̂) and R̂n(b̂mopt), where

R̂n(t) =
1

n

n∑
k=1

(t(V̄k∆)− b(V̄k∆))2.

Moreover, we derive the means of R̂n(b̂m̂), denoted by risk, as well as the means of m̂ and r̂.
In addition, we compute

or := mean

(
R̂n(b̂m̂)

R̂n(b̂mopt)

)
to check that our estimator is really adaptive. Indeed, if the choice of m̂ is in some sense good,
this quantity should be close to 1. For the sake of completeness, we also give Tc, the mean of the
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computation times. Tc depends on both n∆ (and therefore Mn and the number of estimators b̂m
computed) and n.

From the results it can be seen that for the number of observation n = 105 and the sampling
interval ∆ = 10−2, the adaptive estimators are very close to the true drift function (they are nearly
superposed). Moreover, the risk of our estimator decreases as the observed time horizon of the
underlying process, T = n∆, increases. This coincides with our theoretical findings in the previous
sections. The best results are obtained for n = 105,∆ = 10−2, that is, ∆ small enough, and n∆
large enough.

Model 1: Ornstein Uhlenbeck process with binomial jumps

dVt = −2Vtdt+ dWt + dLt

with binomial jumps: ν(dz) = 1
21z=±1.

Figure 4: Model 1

b(x) = −2x, σ(x) = ξ(x) = 1, ν(dz) =
1

2
1z=±1.

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

− : true drift - - : estimators
n = 105, ∆ = 10−2

∆ n risk or m̂ r̂ Tc
01−1 103 0.074 2.03 0.14 1.12 0.13
10−1 104 0.041 1.09 0.14 1.18 2.06
10−1 105 0.037 1 0.06 1.06 51.77
10−2 103 1.24 5.88 0.66 1.08 0.05
10−2 104 0.078 6.71 0.38 1.16 1.12
10−2 105 0.0099 5 0.3 1.28 17.67
10−3 104 1.26 11.38 0.58 1.12 0.32
10−3 105 0.16 16.2 0.72 1.56 10.74
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Model 2: Cubic function with Laplace jumps

dVt =
(
−(Vt − 1/4)3 − (Vt + 1/4)3

)
dt+

V 2
t− + 3

V 2
t− + 1

dWt + dLt

with Laplace jumps:
f(dz) = ν(dz) = 0.5e−|2

1/3z|.

Figure 5: Model 2

b(x) = −(x+ 1/4)3 − (x− 1/4)3, σ(x) =
x2 + 3

x2 + 1
, ξ2(x) = 1, ν(dz) = 0.5e−|2

1/3z|.

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

−: true drift - - : estimators
n = 105, ∆ = 10−2

∆ n risk or m̂ r̂ Tc
10−1 103 0.38 1.2 0.08 0.96 0.11
10−1 104 0.27 1.08 0 1 1.54
10−1 105 0.26 1.03 0 1 44.96
10−2 103 3.34 3.64 0.28 0.54 0.04
10−2 104 0.52 2.06 0.4 1.06 0.89
10−2 105 0.09 1.4 0.42 2.14 13.3
10−3 014 4.95 4.51 0.56 0.46 0.25
10−5 105 0.63 2.74 0.64 1.24 8.14

Model 3: Sine function with normal jumps

dVt = (−2Vt + sin(3Vt))dt+

√
V 2
t + 3

V 2
t + 1

dWt +
√

2 + 0.5 sin(πVt−)dLt

with normal jumps: ν(dz) = 1√
2π
e−z

2/2.
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Figure 6: Model 3

b(x) = −2x+ sin(3x), σ(x) =

√
x2 + 3

x2 + 1
, ξ(x) =

√
2 + 0.5 sin(πx), ν(dz) =

e−z
2/2

√
2π

.

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

− : true drift - - : estimators
n = 105, ∆ = 10−2

∆ n risk or m̂ r̂ Tc
10−1 103 0.36 1.32 0.08 0.96 0.11
10−1 104 0.27 1.08 0 1.04 1.49
10−1 105 0.25 1.04 0.04 1.02 44.82
10−2 103 3.43 3.42 0.26 0.68 0.04
10−2 104 0.48 1.76 0.36 1.16 0.87
10−2 105 0.1 1.48 0.7 2.04 13.45
10−3 105 5.24 4.05 0.44 0.72 0.24
10−3 105 0.84 3.27 0.92 0.98 8.11

Model 4: Nearly stable Ornstein Uhlenbeck process

dVt = −2Vtdt+ dWt + dLt with ν(dz) =
1

4z5/2
1|z|≤1dz.

Note that in this model, the jumps have infinite intensity.

6 Proofs
In this section, we will present the proofs of the stated results. The Burkholder-Davis-Gundy
inequality for stochastic integrals driven by L2-martingales will be one of the keys for the proofs.
For the sake of completeness, we will state its formulation at first.

Proposition 8 (Applebaum (2009); denoted as Kunita’s first inequality). Let

Ft = σ(V0, (Ws)s≤t, (Ls)s≤t).

13



Figure 7: Model 4

b(x) = −2x, σ(x) = ξ(x) = 1, ν(dz) =
1

4z5/2
1|z|≤1dz.

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

−: true drift - - : estimators
n = 105, ∆ = 10−2

∆ n risk or m̂ r̂ Tc
10−1 103 0.093 1.37 0.08 1.04 0.13
10−1 104 0.046 1.02 0.02 1.1 1.79
10−1 105 0.041 1 0.04 1.1 56.24
10−2 103 1.13 3.15 0.54 0.84 0.04
10−2 104 0.12 6.07 0.44 1.38 1.02
10−2 105 0.012 5.28 0.5 1.26 16.65
10−3 104 1.1 7.24 0.44 1.08 0.29
10−3 105 0.14 6.87 0.52 1.44 9.81

Then, for any p ≥ 2 such that
∫
R |y|

pν(dy) < ∞ and
∫
R y

2ν(dy) = 1, there exists a deterministic
positive constant Cp such that

E

(
sup

s∈[t,t+∆]

∣∣∣∣ ∫ s

t

σ(Vu)dWu

∣∣∣∣p∣∣∣∣Ft

)
≤ Cp

(
E

(∣∣∣∣ ∫ t+∆

t

σ2(Vu)du

∣∣∣∣p/2∣∣∣∣Ft

))
as well as

E

(
sup

s∈[t,t+∆]

∣∣∣∣ ∫ s

t

ξ(Vu−)dLu

∣∣∣∣p∣∣∣∣Ft

)
≤ CpE

(∣∣∣∣ ∫ t+∆

t

ξ2(Vu)du

∣∣∣∣p/2∣∣∣∣Ft

)

+ Cp

∫
R
|y|pν(dy)E

((∫ t+∆

t

|ξ(Vu)|pds

)∣∣∣∣Ft

)
A consequence of this proposition is the following corollary. Its proof its fairly classical and can

be found for instance in Gloter (2000, Proposition A) for diffusion processes.
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Corollary 9. Let V = (Vt)t≥0 be the second coordinate of the solution of (1). Under assumptions
A1,i)-vi), it exists a constant C > 0 such that

E

(
sup

s∈[t,t+∆]

(Vs − Vt)2

)
≤ C∆,

for every t ≥ 0, provided that ∆ ≤ 1.
Moreover, the fourth moment can also be bounded by

E

(
sup

s∈[t,t+∆]

(Vs − Vt)4

)
≤ C̃∆,

for every t ≥ 0 provided that ∆ ≤ 1 and whereby C̃ denotes another positive and deterministic
constant.

6.1 Proof of Proposition 4
We start with the proof of a), which is more or less an interchange of integrals according to

V̄k =
1

∆

∫ (k+1)∆

k∆

Vsds =
1

∆

∫ (k+1)∆

k∆

(V(k+1)∆ + Vs − V(k+1)∆)ds

=
1

∆

∫ (k+1)∆

k∆

(
V(k+1)∆ −

∫ (k+1)∆

s

dVu

)
ds = V(k+1)∆ −

1

∆

∫ (k+1)∆

k∆

(∫ u

k∆

ds

)
dVu

= V(k+1)∆ −
1

∆

∫ (k+1)∆

k∆

(u− k∆)dVu = V(k+1)∆ +
1

∆

∫ (k+1)∆

k∆

(k∆− u)dVu.

By the use of a), we are able to deduce statement b) as follows:

Yk+1 =
1

∆

(
V(k+3)∆ −

1

∆

∫ (k+3)∆

(k+2)∆

(u− (k + 2)∆)dVu

− V(k+2)∆ +
1

∆

∫ (k+2)∆

(k+1)∆

(u− (k + 1)∆)dVu

)
=

1

∆2

∫ (k+3)∆

(k+1)∆

(
(u− (k + 1)∆)1[(k+1)∆,(k+2)∆)(u) + ((k + 3)∆− u)1[(k+2)∆,(k+3)∆)(u)

)
dVu

=
1

∆2

∫ (k+3)∆

(k+1)∆

ψ(k+1)∆(u)dVu.

The proof of c) is based on Corollary 9 as well as the Cauchy-Schwarz inequality and is derived as
follows:

E
(
(V(k+1)∆ − V̄k)2

)
=

1

∆2
E

(∫ (k+1)∆

k∆

(V(k+1)∆ − Vs)ds

)2


≤ 1

∆2

∫ (k+1)∆

k∆

∆E
(
(V(k+1)∆ − Vs)2

)
ds . ∆.
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Statement d) can be deduced by using a) and the Cauchy-Schwarz inequality twice as follows

E
(
(V(k+1)∆ − V̄k)4

)
=

1

∆4
E

(∫ (k+1)∆

k∆

(V(k+1)∆ − Vs)ds

)4


≤ 1

∆4
· E

(∆

∫ (k+1)∆

k∆

(V(k+1)∆ − Vs)2ds

)2


≤ 1

∆2
· E

(∫ (k+1)∆

k∆

(V(k+1)∆ − Vs)2ds

)2


≤ 1

∆2
·∆
∫ (k+1)∆

k∆

E
(
(V(k+1)∆ − Vs)4

)
ds

.
1

∆
·∆2 = ∆.

6.2 Proof of Lemma 5
Let us start with a). Obviously, we have that

E
(
R2
k∆

)
≤ 2

(
E
((

R
(1)
k∆

)2
)

+ E
((

R
(2)
k∆

)2
))

.

By using the Lipschitz-continuity of b as well as Proposition 4 we can conclude that

E
(

(R
(1)
k∆)2

)
= E

(
(b(V(k+1)∆)− b(V̄k∆))2

)
≤ C2

b · E
(
(V(k+1)∆ − V̄k∆)2

)
. ∆,

where Cb denotes the Lipschitz constant of the drift function b.
Using the Cauchy-Schwarz inequality as well as the fact that∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)du =

2∆3

3
,

the second term can be handled as follows

E
((

R
(2)
k∆

)2
)

= E

( 1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)(b(Vu)− b(V(k+1)∆))du

)2


≤ 1

∆4

∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)du · E

(∫ (k+3)∆

(k+1)∆

(b(Vu)− b(V(k+1)∆))2du

)

=
2

3∆

∫ (k+3)∆

(k+1)∆

E
(
(b(Vu)− b(V(k+1)∆))2

)
du

≤ 2C2
b

3∆

∫ (k+3)∆

(k+1)∆

E
(
(Vu − V(k+1)∆)2

)
du

.
1

∆
·∆2 = ∆.
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The fourth moment of Rk∆ is treated in an analogous manner. At first, it holds that

E
(
R4
k∆

)
≤ 8

(
E
(

(R
(1)
k∆)4

)
+ E

(
(R

(2)
k∆)4

))
.

Again by Proposition 4, statement d), we have that

E
((

R
(1)
k∆

)4
)

= E
((
b(V(k+1)∆)− b(V̄k∆)

)4) ≤ C4
b · E

((
V(k+1)∆ − V̄k∆

)4)
. ∆.

In order to derive the second summand, we make use of the Cauchy-Schwarz inequality twice:

E
((

R
(2)
k∆

)4
)

= E

( 1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)(b(Vu)− b(V(k+1)∆))du

)4


=
1

∆8

(∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)du

)2

· E

(∫ (k+3)∆

(k+1)∆

(b(Vu)− b(V(k+1)∆))2du

)2


≤ 4∆6

9∆8
E

(
∆

∫ (k+3)∆

(k+1)∆

(b(Vu)− b(V(k+1)∆))4du

)

≤ 4C4
b

9∆

∫ (k+3)∆

(k+1)∆

E
(
(Vu − V(k+1)∆)4

)
du

.
1

∆
·∆2 = ∆,

which concludes the proof of statement a).
Statement b) is a direct consequence of the fact that both Z(1)

k∆ and Z(2)
k∆ are martingale difference

sequences with respect to the canonical filtration Ft. We explicitly remark that V̄k∆ belongs to
F(k+1)∆ such that Zk∆ is centered, conditionally on V̄k∆, by the use of the martingale property of
(Wt) and (Lt).
Concerning statement c), we make use of Proposition 8 as follows

E
((

Z
(1)
k∆

)2
∣∣∣∣F(k+1)∆

)
=

1

∆4
E

(∫ (k+3)∆

(k+1)∆

ψk+1(u)σ(Vu)dWu

)2 ∣∣∣∣F(k+1)∆


=

1

∆4
E

(∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)σ2(Vu)du

∣∣∣∣F(k+1)∆

)

≤ σ2
0

∆4

∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)du =

σ2
0

∆4
· 2∆3

3
≤ 2σ2

0

3∆
.
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In order to handle the Lévy-driven part Z(2)
k∆ we proceed analogously

E
((

Z
(2)
k∆

)2
∣∣∣∣F(k+1)∆

)
=

1

∆4
E

(∫ (k+3)∆

(k+1)∆

ψk+1(u)ξ(Vu−)dLu

)2 ∣∣∣∣F(k+1)∆


=

1

∆4
E

(∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)ξ2(Vu)du

∣∣∣∣F(k+1)∆

)

≤ ξ2
0

∆4

∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)du =

ξ2
0

∆4
· 2∆3

3
=

2ξ2
0

3∆
.

The fourth conditional moments of Z(1)
k∆ and Z(2)

k∆ can also be treated by Proposition 8:

E
((

Z
(1)
k∆

)4
∣∣∣∣F(k+1)∆

)
=

1

∆8
E

(∫ (k+3)∆

(k+1)∆

ψk+1(u)σ(Vu)dWu

)4 ∣∣∣∣F(k+1)∆


.

1

∆8
E

(∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)σ2(Vu)du

)2 ∣∣∣∣F(k+1)∆


≤ σ4

0

∆8

(∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)du

)2

=
σ4

0

∆8
· 4∆6

9
.

1

∆2

as well as

E
((

Z
(2)
k∆

)4
∣∣∣∣F(k+1)∆

)
=

1

∆8
E

(∫ (k+3)∆

(k+1)∆

ψk+1(u)ξ(Vu−)dLu

)4 ∣∣∣∣F(k+1)∆


.

1

∆8
E

(∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)ξ2(Vu)du

)2 ∣∣∣∣F(k+1)∆


+

1

∆8

∫
R
y4ν(dy) · E

(∫ (k+3)∆

(k+1)∆

ψ4
k+1(u)ξ4(Vu)du

∣∣∣∣F(k+1)∆

)

≤ ξ4
0

∆8

(∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)du

)2

+

∫
R
y4ν(dy)

∫ (k+3)∆

(k+1)∆

ψ4
k+1(u)du


=

ξ4
0

∆8

(
4∆6

9
+

∫
R
y4ν(dy)

2∆5

5

)
.

1

∆8

(
∆6 + ∆5

)
=

1

∆2
+

1

∆3
.

1

∆3

with regard on ∆ ≤ 1 and ∫ (k+3)∆

(k+1)∆

ψ4
k+1(u)du =

2∆5

5
.
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6.3 Proof of Proposition 6
We introduce the empirical norm

‖s‖2n =
1

n

n∑
k=1

s2(V̄k∆).

We have that

γn(s) =
1

n

n∑
k=1

(
s(V̄k∆)− Yk∆

)2
=

1

n

n∑
k=1

(
s(V̄k∆)− b(V̄k∆) + b(V̄k∆)− Yk∆

)2
= ‖b− s‖2n + γn(b) +

2

n

n∑
k=1

(
s(V̄k∆)− b(V̄k∆)

) (
b(V̄k∆)− Yk∆

)
.

Therefore, as Yk∆ = b(V̄k∆) +Rk∆ + Zk∆,

γn(s)− γn(b) = ‖s− b‖2n −
2

n

n∑
k=1

(s(V̄k∆)− b(V̄k∆))(Rk∆ + Zk∆).

By definition, γn(b̂m) ≤ γn(bm) and thus∥∥∥b− b̂m∥∥∥2

n
≤ ‖b− bm‖2n +

2

n

n∑
k=1

(b̂m(V̄k∆)− bm(Vk∆))(Rk∆ + Zk∆). (2)

With Cauchy-Schwarz inequality, for any a > 0:

2

n

n∑
k=1

(b̂m(V̄k∆)− bm(Vk∆))Rk∆ ≤
1

a

∥∥∥b̂m − bm∥∥∥2

n
+
a

n

n∑
k=1

R2
k∆. (3)

By Proposition 4, it holds that E
(
R2
k∆

)
. ∆. Let us consider the linear form

νn(s) =
1

n

n∑
k=1

s(V̄k∆)Zk∆.

Moreover, let us define Bm := {s ∈ Sm, ‖s‖2π = 1}, the unit ball (for the ‖.‖π norm) of Sm. We
have, for any c > 0, by the use of the Cauchy-Schwarz inequality:

2

n

n∑
k=1

(b̂m(V̄k∆)− bm(V̄k∆))Zk∆ ≤ 2
∥∥∥b̂m − bm∥∥∥

π
· sup
s∈Bm

νn(s) ≤ 1

c

∥∥∥b̂m − bm∥∥∥2

π
+ c sup

s∈Bm

ν2
n(s). (4)

Let us introduce the event

Ωn =

{
ω ∈ Ω,∀m ∈Mn,∀s ∈ Sm,

∣∣∣∣∣‖s‖2n‖s‖2π
− 1

∣∣∣∣∣ ≤ 1/2

}
on which the norms ‖.‖π and ‖.‖n are equivalent.
Note that for any deterministic function s, it holds that

E [‖s‖n] = ‖s‖π .

Ωn happens nearly all the time, as shown by the following lemma from (Comte et al., 2007, Lemma
6.1).
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Lemma 10. As

i) V̄k is exponentially β-mixing,

ii) V̄k is stationary and its stationary density π is bounded from below and above on K,

iii) the vectorial subspaces Sm satisfy Assumption A3,

then
P(Ωcn) ≤ c/n6. (5)

We first control the risk on Ωn. Gathering (2), (3) and (4),

E
(∥∥∥b− b̂m∥∥∥2

n
1Ωn

)
≤ E

(
‖b− bm‖2n

)
+

1

a
E
(∥∥∥b̂m − bm∥∥∥2

n

)
+

1

c
E
(∥∥∥b̂m − bm∥∥∥2

π

)
+ cE

(
sup
s∈Bm

ν2
n(s)

)
+ aE

(
R2

∆

)
.

By the triangular inequality, it holds for any norm that∥∥∥b̂m − bm∥∥∥2

≤ 2
∥∥∥b̂m − b∥∥∥2

+ 2 ‖bm − b‖2 .

As b− bm is a deterministic function, we have that

E
[
‖b− bm‖2n

]
= ‖b− bm‖2π .

Moreover, on Ωn, we conclude the relation ‖s‖2π ≤ 2 ‖s‖2n. Therefore, it holds that

E
(∥∥∥b̂m − bm∥∥∥2

π
1Ωn

)
≤ 4E

(∥∥∥b̂m − b∥∥∥2

n

)
+ 2 ‖b− bm‖2π

and
E
(∥∥∥b̂m − bm∥∥∥2

n

)
≤ 2E

(∥∥∥b̂m − b∥∥∥2

n

)
+ 2 ‖b− bm‖2π

such that consequently

E
(∥∥∥b− b̂m∥∥∥2

n
1Ωn

)(
1− 2

a
− 4

c

)
≤ ‖b− bm‖2π

(
1 +

2

a
+

2

c

)
+ aE

(
R2

∆

)
+ cE

(
sup
s∈Bm

ν2
n(s)

)
.

Let us set a = c = 12, then we have

E
(∥∥∥b− b̂m∥∥∥2

n
1Ωn

)
≤ 8

3
‖b− bm‖2π + C∆ + 24E

(
sup
s∈Bm

ν2
n(s)

)
(6)

and, moreover, let us consider (ϕλ), an orthonormal basis (for the norm ‖.‖π) of Sm. We have that

Bm =

{
s =

∑
λ

aλϕλ,
∑
λ

a2
λ ≤ 1

}
.
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Using the Cauchy-Schwarz inequality, we obtain that

E
(

sup
s∈Bm

ν2
n(s)

)
= E

 sup∑
λ

a2
λ≤1

(∑
λ

aλνn(ϕλ)

)2


≤ sup∑
λ

a2
λ≤1

(∑
λ

E
(
ν2
n(ϕλ)

))(∑
λ

a2
λ

)
≤
∑
λ

E
(
ν2
n(ϕλ)

)
.

Moreover,

E
(
ν2
n(ϕλ)

)
= E

( 1

n

n∑
k=1

ϕλ(V̄k∆)Zk∆

)2


= E

(
1

n2

n∑
k=1

ϕ2
λ(V̄k∆)Z2

k∆

)
+

2

n2

∑
j<k

E
[
ϕλ(V̄k∆)ϕλ(V̄j∆)Zk∆Zj∆

]
.

We first bound the square terms:

E
(
ϕ2
λ(V̄k∆)Z2

k∆

)
= E

(
ϕ2
λ(V̄k∆)E

(
Z2
k∆|F(k+1)∆

))
≤ 2

3

σ2
0 + ξ2

0

∆
‖ϕλ‖2π =

2

3

σ2
0 + ξ2

0

∆
.

If |j − k| ≥ 2, then Zj∆ ∈ F(j+3)∆ ⊆ F(k+1)∆ and the expectation of the product is null:

E
(
ϕλ(V̄k∆)ϕλ(V̄j∆)Zk∆Zj∆

)
= E

(
ϕλ(V̄k∆)ϕλ(V̄j∆)Zj∆E

(
Zk∆|F(k+1)∆

))
= 0

and if j = k − 1, by the Cauchy-Schwarz inequality,

E
(
ϕλ(V̄k∆)ϕλ(V̄j∆)Zj∆Zk∆

)
≤
(
E
(
ϕ2
λ(V̄k∆)Z2

k∆

)
E
(
ϕ2
λ(V̄j∆)Z2

j∆

))1/2 ≤ 2

3

σ2
0 + ξ2

0

∆
.

Therefore:

E
(

sup
s∈Bm

ν2
n(s)

)
≤ 2

σ2
0 + ξ2

0

n∆

and by (6),

E
(∥∥∥b− b̂m∥∥∥1Ωn

)
≤ 8

3
‖b− bm‖2π + C∆ + 48(σ2

0 + ξ2
0)
Dm

n∆
.

It remains to bound the risk on Ωcn. We can remark that (b̂m(V̄∆), b̂m(V̄2∆), . . . , b̂m(V̄n∆)) is the
orthogonal projection for the ‖.‖n-norm of (Y∆, . . . , Yn∆). We denote this projection by Πm and
define Y := (Y∆, . . . , Yn∆), R := (R∆, . . . , Rn∆) and Z := (Z∆, . . . , Zn∆).
We have that Yk∆ = b(V̄k∆) +Rk∆ + Zk∆ and∥∥∥b− b̂m∥∥∥2

n
= ‖b−ΠmY‖2n = ‖b−Πmb‖2n + ‖ΠmR + ΠmZ‖2n
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and, hence, by the Cauchy-Schwarz inequality

E
[∥∥∥b− b̂m∥∥∥2

n
1Ωcn

]
.

(
1

n

n∑
k=1

E
(
b4(V̄k∆)1V̄k∆∈K

)
P(Ωcn)

)1/2

+

(
1

n

n∑
k=1

(E
[
R4
k∆

]
+ E

[
Z4
k∆

]
)

)1/2

(P(Ωcn))1/2.

By Lemmas 5 and 10 we finally conclude that

E
[∥∥∥b− b̂m∥∥∥2

n
1Ωcn

]
.

1

n
,

which ends the proof.

6.4 Proof of Theorem 7
As previously, we decompose the risk on Ωn and Ωcn. On Ωcn, we obtain the same bound as for the
non-adaptive estimator. We bound the risk on Ωn. We have, for any m, like in (6):

E
[∥∥∥b̂m̂ − b∥∥∥2

n
1Ωn

]
≤ 8

3
‖b− bm‖2π + 2pen(m)− 2pen(m̂) + C∆ + 24E

[
sup

s∈Bm,m̂

ν2
n(s)

]
where Bm,m′ is the random ball of the set Sm + Sm′ . Let us introduce the function p(m,m′) as
follows:

12p(m,m′) := pen(m) + pen(m′).

Then

E
[∥∥∥b̂m̂ − b∥∥∥2

n
1Ωn

]
≤ 8

3
‖b− bm‖2π + 4pen(m) + C∆ + 24E

[
sup

s∈Bm,m̂

ν2
n(s)− p(m, m̂)

]
.

The problem is to bound ν2
n(s) on a random ball. We have:

E

[
sup

s∈Bm,m̂

ν2
n(s)− p(m, m̂)

]
≤
∑
m′

E

[
sup

s∈Bm,m′

ν2
n(s)− p(m,m′)

]
.

We follow straightly the proof of Theorem 2 in Schmisser (2014). To bound this term, we use a
Bernstein inequality and, moreover, we need to apply a Markov inequality on the term exp(νn(s)).
The following proposition is exactly Corollary 5.2.2 of Applebaum (2009).

Proposition 11. Let Ft and Kt be two locally integrable and previsible processes and let

Yt :=

∫ t

0

FudWu +

∫ t

0

KudLu −
∫ t

0

[
F 2
u

2
+

∫
R

(
eKuz − 1−Kuz

)
ν(dz)

]
du.

If

∀t > 0 , E

(∫ t

0

∫
|z|>1

∣∣eKuz − 1
∣∣ ν(dz)du

)
<∞,

then eYt is a Ft-local martingale.
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We set

Fu :=
1

∆

n∑
k=1

s(V̄k∆)σ(Vu)ψk+1(u), Ku :=
1

∆

n∑
k=0

s(V̄k∆)ξ(Vu−)ψk+1(u),

Aε,t :=
ε2

2

∫ t

0

F 2
udu, Bε,t :=

∫ t

0

∫
R

(
eεKuz − εKuz − 1

)
ν(dz)du

and consider

Mt :=

∫ t

0

FudWu +

∫ t

0

KudLu, and Yε,t = εMt −Aε,t −Bε,t.

As ψk+1(u) ≤ ∆, |Ku| ≤ n ‖s‖∞ ξ0 and for ε ≤ ε1 := (λ ∧ 1)/(2n ‖s‖∞ ξ0), by Assumption A5,

E

(∫ t

0

∫
|z|>1

∣∣eεKuz − 1
∣∣ ν(dz)

)
<∞.

Then, by Proposition 11, eYε,t is a local martingale for ε ≤ ε1. It remains to compute its expectation.
We can remark that ∫ t

0

ψ2
k(u)du =

2∆3

3
,

∫ t

0

ψk(u)ψ(k+1)(u)du =
∆3

6

and the function ψkψj is identically null if |k − j| ≥ 2. Then

Aε,t ≤
ε2

2∆2
σ2

0

∑
k,j

s(V̄k∆)s(V̄j∆)

∫ t

0

ψ(k+1)(u)ψ(j+1)(u)du

≤ ε2

2∆2
σ2

0 ‖s‖
2
n

∑
k

(
2∆3

3
+ 2

∆3

6

)
=
ε2

2
∆n ‖s‖2n σ

2
0 .

Moreover, if α ≤ 1 ∧ λ, ∫
R

(eαz − αz − 1)ν(dz) ≤ Cα2.

Then, if ε ≤ ε1,

Bε,t .
∫ t

0

ε2K2
udu .

ε2

∆2
ξ2
0

∑
k,j

s(V̄j∆)s(V̄k∆)

∫ t

0

ψk+1(u)ψj+1(u)du . ε2∆n ‖s‖2n ξ
2
0 .

Hence, there exists a c > 0, such that for any ε ≤ ε1,

Aε,t +Bε,t ≤ cn∆ε2(σ2
0 + ξ2

0) ‖s‖2n .

Using the fact that νn(s) = 1
n∆Mn∆, we conclude for ε ≤ ε1:

P
(
νn(s) ≥ η, ‖s‖2n ≤ ζ

2
)
≤ P

(
eεMn∆ ≥ eεn∆η, Aε,n∆ +Bε,n∆ ≤ cn∆ε2(σ2

0 + ξ2
0)ζ2

)
≤ P

(
eYε,n∆ ≥ exp

(
n∆ηε− cn∆ε2(σ2

0 + ξ2
0)ζ2

))
.
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We choose
ε =

η

2c(σ2
0 + ξ2

0)ζ2 + η/ε1

such that ε ≤ ε1 as well as

n∆ηε− cn∆ε2(σ2
0 + ξ2

0)ζ2 ≤ − η2n∆

4c((σ2
0 + ξ2

0)ζ2 + c′ηξ0 ‖s‖∞
.

Let us consider a sequence {τN} of increasing stopping times such that limN→∞ τN =∞. Then, as
eYε,t is a local martingale, the following equality for the corresponding expectation holds:

E
(
eYε,t∧τN

)
= E

(
eYε,0

)
= 1.

Moreover, we have that:
P
(
eYε,t∧τN ≥ a

)
≤ e−a.

Letting N →∞, we obtain P
(
eYε,t ≥ a

)
≤ e−a such that

P
(
νn(s) ≥ η, ‖s‖2n ≤ ζ

2
)
≤ exp

(
− η2n∆

4c ((σ2
0 + ξ2

0)ζ2 + c′ηξ0 ‖s‖∞)

)
.

To conclude the proof, we use a L2
π − L∞ chaining technique (see (Schmisser, 2014, Proposition

20)).
We finally obtain that

E

(
sup

s∈Bm,m′

ν2
n(s)− p(m,m′)

)
. (ξ2

0 + σ2
0)
D3/2

n∆
e−
√
D

and, therefore, as
∑
m′ D

3/2
m,m′e

−
√
Dm,m′ = O(1),

E

(
sup

t∈Bm,m̂

ν2
n(s)− p(m, m̂)

)
≤
∑
m′

E

(
sup

s∈Bm,m′

ν2
n(s)− p(m,m′)

)
.
ξ2
0 + σ2

0

n∆
,

which concludes the proof.
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