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Abstract

This paper lays the first stone on the use of Optimal Control theory to design
Radio-Frequency (RF) pulses that actively control the spatial distribution of
the MRI magnetization phase. The RF pulses are generated through the
application of the Pontryagin Maximum Principle and optimized so that
the resulting transverse magnetization reproduces various non-trivial and
spatial phase patterns. Three different target-states are defined and the
resulting optimal pulses are tested both numerically with the ODIN MRI
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simulator and experimentally with an Agar gel phantom on a 4.7 T small-
animal MR scanner. Phase images obtained in simulations and experiments
are both consistent with the defined phase patterns. A practical application
of phase control with OC pulses is also presented, with the generation of RF
pulses adapted for a Magnetic Resonance Elastography experiment. This
study demonstrates the possibility to use optimal control RF pulses to encode
information in the magnetization phase and thus opens the scope for accurate
and active RF-based phase control in all MR fields using phase images.

Keywords: Optimal Control Theory, MRI phase, RF Pulses design, Phase
control, MR elastography.

1. Introduction

Magnetic Resonance Imaging (MRI) techniques using the phase instead
or in addition to the magnitude of the MR signal are increasingly developing.
Phase images provide information on biological tissues that cannot be derived
from magnitude images alone, as for example information on flow velocity
[1] (phase-contrast cine MR imaging), magnetic susceptibility [2] (Suscep-
tibility Weighted Imaging), viscoelastic properties [3] (Magnetic Resonance
Elastography, MRE) or temperature [4] (MRI thermometry). Other phase-
based sequences, as Diffusion Tensor MRI (DTI) [5], use spin phase shift to
modify the magnitude signal intensity and thus extract information from sig-
nal attenuation. In these phase-based MRI techniques, the phase-encoding
process is mainly handled with gradients, which often present physical limi-
tations such as maximum amplitude or switching rate. For example, strong
gradients are typically used in DTI sequences, and induce eddy currents [5].
This can cause geometrical distortion and therefore lead to significant errors
in the estimation of diffusion parameters. In MRE, gradients have to be
synchronized with the motion induced in the tissue and gradients commu-
tations are physically limited at high frequencies: standard clinical systems
can hardly go above 1 kHz.

The objective of this paper is to present a novel approach, exclusively
based on RF pulses designed with Optimal Control (OC) theory in combina-
tion with a constant gradient, to encode the phase information. Magnetiza-
tion phase is actively controlled, spatially and temporally, during the appli-
cation of the RF pulse. The main benefit of this approach lies in the fact that
the phase information is encoded during the excitation process: the signal
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can be immediately acquired with extremely short TE values. Classical ap-
proaches actually use actually post-excitation gradients for phase-encoding,
and thus suffer from T2 or T ⋆

2 signal decay before acquisition.
Phase control with RF pulses has been investigated in some studies on

selective pulse design. Linear-phase Shinar Le Roux pulses [6] can generate
a linear phase pattern in the slice gradient direction. Carlson [7]-[8] used
inverse scattering theory to design selective excitation pulses and control the
phase distribution. His work aimed at finding a method to design pulses that
give a flat phase distribution and that remove non-linear phase contributions
but no general solution was presented to control the phase in a more general
and non-linear case.

On the other hand, the use of OC for RF pulse design in MRI has al-
ready been performed in different contexts [9]: we can mention studies on
robust (regarding field inhomogeneities) excitation and refocusing [10]-[13],
contrast optimization [14]-[17] or parallel transmit [18]-[20]. The possibility
to control the phase with OC has been mentioned and investigated in NMR
studies [21]-[22] and has been applied to create delayed echo sequences in
MRI [23]. However, to our knowledge the use of OC pulses to create a con-
trolled macroscopic spatial phase distribution for imaging applications has
not been explored. As a proof-of-concept, we design pulses achieving different
non-trivial and spatial phase patterns, represented as different target-states
in the transverse plane of the Bloch sphere (section III). These RF pulses are,
in a second step, integrated into classical MRI sequences: simulations with
the ODIN MRI simulator [24] (section IV) and experiments on a small-animal
MRI scanner (section V) with Agar phantoms are performed.

A practical application of phase control with OC pulse is also presented in
this article, with MRE technique (section VI): wave propagation information
is directly encoded in the phase image with a RF pulse and a constant gradi-
ent, without post-excitation Motion-Encoding Gradients (MEG). A method
for motion detection without MEG, has already been proposed in a previous
paper [25]. This method is principally based on a hardware development
(with a RF field gradient obtained from a ladder-shape coil) and can detect
a mechanical vibration (and its direction, frequency and amplitude) but does
not give a 2D phase image showing wave propagation. Our approach yields
similar results to a classical MRE acquisition, using a software implemen-
tation (design of optimal RF pulse) and constant gradient (as opposed to
switching gradients as it is the case in classical MRE).
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2. Method: Optimal Control Theory

2.1. Optimal control theory framework in MRI

Optimal control theory, with the application of the Pontryagin Maximum
Principle (PMP) [26], enables the computation of the optimal trajectory of
a dynamic system - with regards to a given optimality criterion - and its
associated control.

In MRI application, the dynamic system corresponds to the macroscopic
magnetization ~M = (Mx,My,Mz) of spin ischromats (defined in the Bloch
sphere), whose evolution is governed by the Bloch equation:

d

dt
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with △B0
being the resonance offset, T1 and T2 the longitudinal and

transverse relaxation times, (ωx, ωy) the x and y components of the RF pulse
(corresponding to the control field of this optimal control problem) that will
bring the macroscopic magnetization to the user-defined target-state.

2.2. Pontryagin Maximum Principle

The OC problem is solved here with the application of the Pontryagin
Maximum Principle [26]. The PMP is formulated from the definition of a
pseudo-Hamiltonian:

H = ~P · ~̇M (2)

where ~P is the costate vector. It can be interpreted in this optimization
problem as a Lagrange multiplier associated to ~M .

The PMP states that the optimal control ωopt must minimize the Hamil-
tonian during the control time. Then, the optimal trajectories ( ~M opt and
~P opt) satisfy the following Hamiltonian equations:

~̇M opt =
∂H

∂ ~P opt
and ~̇P opt = −

∂H

∂ ~M opt
(3)

Moreover, the optimal trajectories must satisfy the following boundaries
conditions:

~M opt(t0) =





0
0
M0



 and ~P opt(tf ) =
∂C

∂ ~M opt(tf )
(4)
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with C being the cost function (defined by the user to achieve the desired
target-state), t0 (respectively tf ) the time at the beginning (respectively the
end) of the control field.

2.3. GRAPE algorithm

This optimal control problem is solved with the GRAPE (Gradient Ascent
Pulse Engineering) algorithm [27], which is a gradient ascent algorithm in-
troduced for Nuclear Magnetic Resonance pulse design. It was implemented
for this study on Matlab (The MathWorks, R2014b).

2.3.1. Steps of the algorithm

This part presents the different steps of the GRAPE algorithm as initially
proposed. Starting from an initial control field (defined by the user), this
algorithm optimizes the cost function iteratively by adjusting the control
field at each iteration, while respecting the PMP constraints. The different
steps are:

1. Choice of the initial control field ω0,

2. Forward propagation of ~M , from t0 to t = tf , starting from ~M0 (defined
from initial boundary condition (4)),

3. Backward propagation of ~P , from t = tf to t0, starting from ~Ptf (defined

from final boundary condition (4) and ~Mtf ),

4. Update of the control field: computation of the following control field
ω(k+1) from control field ω(k) with:

ω(k+1) = ω(k) − α
∂C

∂ω
(5)

with α > 0 the convergence step,

5. Repetition of steps 2-4 until the convergence criterion is reached.

Gradient term ∂C
∂ω

, in GRAPE algorithm, can be expressed as a function
of the backward propagation of the costate vector and forward propagation
of the magnetization vector and depends therefore only on two full time
evolutions.

2.3.2. Algorithm implementation details

Gradient ∂C
∂ω

needs to be calculated with an accurate approximation in
order to ensure fast and correct convergence. We use here complex differ-
entiation [28]-[29] to estimate this cost function derivative. Let f be a real
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function defined on real space (f : ℜn 7−→ ℜ), a small imaginary increment
iε is added to x and the Taylor series of f(x) writes:

f(x+ iε) = f(x) + iεf ′(x)−
ε2

2
f (2)(x) + ... (6)

Assuming that ε is small enough (ε ≪ 1), f ′(x) can be expressed as:

f ′(x) ≈
Im(f(x+ iε))

ε
(7)

The use of Equation 7 as a derivative approximation significantly improves
the estimation accuracy compared to finite differences, which is affected by
subtractive cancellation when small values of ε are used. In the following
sections, ε is set to 10−10.

In the initial version of GRAPE algorithm, update of the control field
(step 4) is performed iteratively with a constant convergence step α. In this
study, in order to improve the convergence speed and accuracy (compared to
the simple gradient ascent optimisation method used in Equation 5), a second
order approximation scheme was performed, with the implementation of a
lBFGS quasi-Newton algorithm [30].

3. RF pulses generation with OC for phase control

3.1. Definition of cost function

Optimal control framework requires the formulation of a cost function,
that will be minimized during the optimization process.

The purpose of this paper is to bring the magnetization of spins in a de-
fined target-state in the transverse plane (MX ,MY ) of Bloch sphere. There-
fore, we define the cost function to be minimized as:

C(ωx, ωy) =
∑

i

‖ ~M i − ~M i
TS ‖2 (8)

This cost function tends towards zero as the distance between the mag-
netization of the ith spin ~M i and its target-state ~M i

TS decreases. In these
defined target-states, magnitude of the magnetization is sought to be con-
stant and as high as possible for all spins, whatever their positions on the
transverse plane of Bloch sphere.
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3.2. Definition of target-states and phase patterns
For each spin, the target-state (i.e. state at the end of the optimal RF

pulse) will depend on its position in readout direction. Spins positions are
discriminated through the application of a gradient, which we shall call the
phase sensitizing gradient, in the readout direction during the optimal RF
pulse. Thus, the pulse will lead spins in a certain state in the transverse plane,
depending on their perceived magnetic field (parameter △B0

in Equation 1,
which changes with the application of a gradient), and thus resonance offset
fi.

The frequency resonance offset range ∆f = [fimin
, fimax

] (proportional
to the magnetic field offset) that should be controlled for a field of view
FOVx in the readout direction (let us denote x this direction) with the phase
sensitizing gradient GOC applied during the OC pulse, is:

∆f =
γ

2π
.GOC .FOVx (9)

with γ
2π

being the gyromagnetic ratio of proton (equal to 42.58 MHz/T).
This resonance offset range, set to 10 kHz for all calculated pulses, will

be divided in three or four intervals. Each resonance offset interval will be
assigned a target position in the transverse plane.

Three different non-trivial phase patterns in the transverse plane (MX ,MY )
of Bloch sphere were defined in this study, corresponding to different phase
images patterns. One of these patterns consists in having three different
phase evolutions along the readout direction: a linear phase increase, a con-
stant level and a linear decrease. The two other patterns present four different
areas, with different constant values of phase. They are represented in Figure
1, with their corresponding profile along the readout direction.

More precisely, the first one (A) divides the readout direction in four
areas, with respectively a magnetization phase equal to 0, π

2
, π and 3π

2
. The

second one (B) defines four states in the transverse plane, in which phases are
equal to 0, π, 0 and π. Finally, the third target-state (C) defines three areas
along the readout direction: the phase of the first area increases linearly from
0 to π, the phase of the second one is constant and equal to π, and the phase
of the last one decreases linearly from π to 0.

3.3. RF pulses generation for phase control
3.3.1. Temporal resolution of the RF pulses

As the optimal control problem gives here a numerical solution of the
optimal RF pulses, they should be discretized in N time steps of duration
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Figure 1: Three phase patterns defined for the phase control experiment with optimal con-
trol theory. Top row represents the spin target positions in the transverse plane (MX ,MY )
of the Bloch sphere. Bottom row displays the profile of spin phases along the readout di-
rection.

∆t during the time interval [t0, tf ]. In this work, the following values were
chosen: N = 300, tf = 6 ms and consequently, ∆t = 20 µs.

3.3.2. Relaxation times

RF pulses were generated with T1 and T2 values (that appear in Bloch
equation, and so in the forward and backward propagation in GRAPE algo-
rithm) corresponding to the one of the Agar gel phantom (Agar concentration
1.5% in weight) used in the MRI experiments, i.e. T1 = 1500 ms and T2 = 130
ms (see below).

3.3.3. Optimal RF pulses

Figures 2, 3 and 4 present the three computed RF pulses A, B and C
(magnitude and phase as a function of time). These figures also show the
simulated transverse magnetization trajectories of spins during the applica-
tion of computed pulses, for different spins belonging to the various defined
offset frequency intervals (and so final spin positions). For clarity purpose,
the spins trajectories of pulse C are divided in three plots, corresponding
to the three intervals (linear increase, constant level and linear decrease of
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Figure 2: Magnitude and phase of the optimal RF pulse associated to target-state A as a
function of time. Projections in the transverse plane of the trajectories of selected spins
belonging to the different frequency intervals are displayed on the right: Spin 1 (resp. 2,
3 and 4) corresponds to a resonance offset belonging to the first (resp second, third and
fourth) area of the pattern displayed on figure 1a. Final states are marked with a dot.
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Figure 3: Magnitude and phase of the optimal RF pulse associated to target-state B as a
function of time. Projections in the transverse plane of the trajectories of selected spins
belonging to the different frequency intervals are displayed on the right: Spin 1 (resp. 2,
3 and 4) corresponds to a resonance offset belonging to the first (resp second, third and
fourth) area of the pattern displayed on figure 1b. Final states are marked with a dot.

phase). Final states are marked with a dot and are consistent with the
target-states defined on Figure 1.

For the RF pulse corresponding to phase pattern C, the resulting phase
for different resonance offsets (blue asterisks) is presented on figure 5 and
compared to the profile of the target phase (dark line). This figure highlights
the correct convergence of the algorithm: the resulting magnetization phase
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Figure 4: Magnitude and phase of the optimal RF pulse associated to target-state C as a
function of time. Projections of the spins trajectories in the transverse plane of the Bloch
sphere are displayed on different figures for each target-state area (see on Figure 1c): three
different resonance offsets were taken in each of the three areas of the pattern. Final states
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Figure 5: Phase profile as a function of resonance offset (as a reminder, frequency resonance
offset range is set to 10 kHz in all pulses), obtained from pulse C (blue asterisks), and
compared to the profile of the target phase pattern of pulse C (dark line).

associated with pulse C is very close to the profile of the target phase patterns.
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Figure 6: ODIN spin-echo sequence adapted for the optimal control pulse experiment.

4. MRI simulations of phase control with ODIN

4.1. Simulation conditions

Simulations were performed using the MRI simulator ODIN [24]. ODIN is
a C++ software framework designed to develop and simulate MR sequences.
Once a virtual phantom and a MRI sequence have been specified, it prop-
agates the Bloch equations in the defined virtual phantom throughout the
whole sequence.

4.1.1. Generation of virtual phantom

Virtual phantom was generated while specifying constant T1, T2 and pro-
ton density maps. The T1 and T2 values remain constant on the whole maps
(corresponding to an assumption of homogeneous phantom) and are equal
to the relaxation times of the Agar phantom used in MRI experiments. Di-
mensions of the virtual phantom were set to 20 x 20 x 3 mm.

4.1.2. Sequence parameters

A spin-echo sequence, adapted for the OC pulse experiment, was imple-
mented in ODIN. The phase sensitizing gradient GOC was applied simulta-
neously with the OC pulse, to discriminate spins positions along the readout
direction. The slice selective gradient, applied usually during the excitation
pulse, was removed, but the refocusing pulse was kept selective. A chrono-
gram of the sequence is presented on Figure 6.

The echo-time was set to the minimum value possible in order to allow
maximum signal, and was fixed to TE = 6.6 ms. The repetition-time was
sufficiently long to ensure full longitudinal magnetization relaxation, and was
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fixed to TR = 5 s. The phase sensitizing gradient (GOC) was fixed to 11.7
mT/m, according to Equation 9 with frequency range ∆f = 10 kHz and
FOVx = 20 mm. Bandwidth of the acquisition was equal to 25 kHz. Matrix
size was 64 x 64 pixels.

4.2. Results

Magnitude and phase images resulting from ODIN simulations are pre-
sented on Figure 7, for the three optimal RF pulses A, B, C (plotted on
Figures 2, 3 and 4). Moreover, mean phase of each column on the phase
images has been calculated and the resulting profiles plotted.

For these three pulses, phase and magnitude images are consistent with
the expected results. Notice that the slight phase decrease in area 2 of
pulse C is consistent with the profile obtained from pulse C, as shown on
figure 5. Standard deviations of the magnitude images were calculated over
the whole phantom, excluding phase transitions areas, and are presented in
Table 1: signal magnitude presents very small standard deviations for the
three pulses and is therefore nearly constant, as expected. For each area of
phase images (excepted areas 1 and 3 of pulse C), a Region of Interest (ROI)
was defined by taking all pixels within the considered area, and mean and
standard deviations were extracted. Results are presented in Table 1. Phase
values in the different areas correspond to the expected one.

For the linear phase variations of pulse C (area 1 and 3), mean of each
phase image column has been calculated and the obtained profile has been
linearly fitted to a linear curve. The coefficient of determination, R2, has been
extracted, with the slope value normalized to the frequency offset control
range (10 kHz divided in three intervals). The high values obtained for R2

(values close to 1) indicate that phase variations are linear in these two areas
and the slope in both areas are close to the expected ones (expected slopes:
± π

10/3
rad/kHz = ± 0.942 rad/kHz).

The phase images of pulses A and B present sharp transitions between the
different areas. This demonstrates that optimal RF pulses accurately control
the phase, with good frequency selectivity. It is also interesting to notice that
in sharp phase transition areas, a decrease of magnitude signal is observed,
due to the signal cancellation that occurs when summing out-of-phase spins.
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Figure 7: Magnitude and phase (in radians) images obtained from ODIN MRI simulations,
with the three RF pulses A, B and C and corresponding mean phase profiles on bottom
row.

5. MRI experiments on phase control

5.1. Experimental conditions

Experiments were carried out on a homogeneous Agar phantom (Agar
concentration 1.5% in weight). T1 and T2 values were measured using an ex-
ponential fit of the water peak acquired with a localized PRESS spectroscopy
sequence, for different TE and TR. They were found to be T1= 1500 ms and
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Table 1: Standard deviations of magnitude images and average phase angles in radian and
corresponding standard deviations obtained from the three different pulses A, B and C
(figures 7 and 8).

ODIN MRI

Pulse A

Area Expected phase
1 0 0.04 ± 0.06 -0.19 ± 0.08
2 π/2 1.57 ± 0.03 1.41 ± 0.18
3 π 3.12 ± 0.05 3.18 ± 0.15
4 3π/2 = −π/2 -1.55 ± 0.01 -1.78 ± 0.17

Standard deviation of magnitude 3.0 % 6.6 %

Pulse B

Area Expected phase
1 0 -0.01 ± 0.14 -0.16 ± 0.17
2 π 3.13 ± 0.06 2.99 ± 0.07
3 0 -0.01 ± 0.18 -0.20 ± 0.08
4 π 3.12 ± 0.13 3.02 ± 0.07

Standard deviation of magnitude 4.0 % 8.6 %

Pulse C

Area Expected phase and linearity
1 R2 value 0.9865 0.9951
1 Slope (exp. 0.942 rad/kHz) 0.950 0.969
2 π 3.12 ± 0.11 3.02 ± 0.09
3 R2 value 0.9988 0.9961
3 Slope (exp. -0.942 rad/kHz) -0.893 -0.888
Standard deviation of magnitude 3.1 % 7.3 %

T2 = 130 ms. The phantom was cylindrically-shaped, with a diameter equal
to 27 mm and a height of 50 mm.

MRI measurements were run on a Bruker 4.7 T small-animal MRI system,
with a cylindrical inner-diameter 30 mm bird-cage mouse coil. A spin-echo
sequence, similar to the one used for ODIN simulations (Figure 6), was used
with 64× 64 matrix and FOV = 3.25× 3.25 cm2. GOC was set to 8 mT/m,
according to Equation 9, with ∆f = 10 kHz for the RF pulses. Optimal RF
pulses used in the following three MRI experiments were exactly the same
as the ones used for the ODIN simulations. The echo-time was set to 9.8 ms
and the repetition-time to 5 s.

14



5.2. Slice selectivity

The optimal RF pulses are applied without slice selective gradients. There-
fore the obtained signal comes from the overall sample. In order to get rid of
refocused artefactual signal coming from extremities of the phantom, spatial
saturation bands have been added in the slice direction and, similarly to the
Odin simulation, the refocusing pulse has been kept selective.

5.3. Results

Figure 8 presents the resulting magnitude and phase images obtained from
MRI measurements, for the three optimal pulses A, B and C. Mean phase
of each column on the phase images has been calculated and the resulting
profiles are also presented on Figure 8.

Here again, magnitude and phase images are consistent with expected
results. Resulting magnitude images are nearly homogeneous in the whole
phantom, as shown on Table 1. They present however some inhomogeneities
close to the coil, corresponding to the magnetic field inhomogeneities coming
from the copper rungs of the volume coil. Phase values, presented in Table 1,
also correspond well to the defined target-states. Note that a slight difference
of less than 0.2 rad.s−1 can be observed between expected values and obtained
phase patterns.

Finally, resulting phase images present the same sharp profiles than the
ones obtained in simulation, showing that the RF pulses accurately control
the phase in real conditions.

6. An example of application: Magnetic Resonance Elastography

Results presented in previous parts validate the possibility to master the
magnetization phase with RF pulses, in a simple experiment with a static
resonance offset applied (through a gradient) during the pulse. A practical
application of this phase control is now presented with the generation of
RF pulses adapted for Magnetic Resonance Elastography. This is a more
complex framework as, in this application, the resonance offset △B0 is time-
dependant and thus changes during the application of the RF pulse.

6.1. Introduction on Magnetic Resonance Elastography

Magnetic Resonance Elastography is a MR non-invasive method enabling
characterization of viscoelastic properties of tissues [3]. Shear waves are
induced in the tissue of interest using an external driver. Tissue motion is
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Figure 8: Magnitude and phase (in radians) images obtained from MRI measurements,
with the three optimal RF pulses A, B and C and corresponding mean phase profiles on
bottom row.

then encoded in phase images with a motion-sensitive MR imaging sequence
and these images are finally processed to map and quantify the viscoelastic
properties of the tissue.

In MRE sequences, a periodic gradient, called Motion-Encoding Gradient
(MEG) is applied synchronously with the external harmonic excitation, typ-
ically at the same frequency and along the direction of the cyclic motion of
spins. The cyclic spin motion in combination with the MEG causes a mea-
surable phase-shift in the NMR signal, proportional to the scalar product
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Figure 9: a) Wave propagation pattern at a given fixed time. The wave propagates in
the x-direction and spin motion is in the y-direction. A gradient, Gy, is applied in the
y-direction. This wave oscillates at frequency fe, corresponding to the wavelength λ. b)
Discretization of one wavelength into 12 phase offsets.

of the displacement vector and the MEG vector, and to the duration of the
MEG. Acquired phase images correspond to a snapshot of the mechanical
wave propagation within the tissue.

6.2. Adaptation of Bloch equations for MRE

In presence of a gradient in the motion direction (the MEG), motion
induced by shear waves creates a variation in the perceived magnetic field by
spins. Figure 9a presents the wave propagation and coordinate system used
here for the definition of the optimal control problem.

Variation of the time-dependent perceived magnetic field can be expressed
as the product of the oscillating motion and the MEG:

∆B0(x, y, t) = Gy(t)× A× sin(−2πfet+ 2π
x

λ
) (10)

with y the cyclic spin motion direction, Gy being the amplitude of the
gradient (here y), x the direction of wave propagation, A the amplitude of
periodic motion, fe the motion frequency, and λ the wavelength.

During the optimal RF pulse, a constant gradient Gy(t) = G0
y will be ap-

plied in the motion direction. The dynamic resulting resonance offset △B0(t)
is integrated in the Bloch equations (Equation 1) during the optimization
process.

6.3. Definition of target-state and cost function

W propose to design a RF pulse that encodes wave propagation in the
phase image. For that purpose, we define a cost function that: i) linearly
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distributes the spins phase on the interval [0, 2π[, and ii) maximizes the spins
transverse magnetization. The successive target states thus lie on the unit
circle of the normalized transverse magnetization plane. LetN be the number
of considered spins equally spaced along a wavelength of the propagation wave
(Figure 9b), and the spin index s ∈ [0, N − 1], the cost function writes:

C(ωx, ωy) =
N−1
∑

s=0

‖
−→
M⊥

s (tf )−
−→
T s‖

2 (11)

with
−→
T s the target-state vector (in the transverse plane), defined as:

−→
T s =

(

cos(s× 2π
N
)

sin(s× 2π
N
)

)

(12)

Depending on their positions along the wavelength, spins will be assigned
a different magnetization phase target-state.

6.4. RF pulse generation

6.4.1. RF pulse parameters

The RF pulse was optimized for a motion amplitude A = 9 µm, and
for an excitation frequency fe = 600 Hz. Constant gradient in the spin
motion direction was set to 8 mT/m. Pulse was optimized by discretizing
the wavelength in N = 10 spins (cf. Equations 11 and 12). Its duration was
fixed to 40 ms. It should be noted that this duration is just an example and
can be optimized for a shorter duration.

6.4.2. Pulse bandwidth

Since we are interested in producing 2D images and since a constant gra-
dient is applied to encode the spins motion, it seems natural to use the latter
as our slice selective gradient. Therefore, the optimal pulse must ensure a
consistent spins distribution throughout the whole bandwidth corresponding
to the desired slice thickness. In practice, this is done by discretizing a fre-
quency interval, on which the pulse is optimized, and by increasing iteratively
the frequency interval (and thus increasing the total number of spins to be
controlled), in order to control a larger slice thickness. The slice thickness
is directly determined by the considered frequency range (bandwidth), and
the strength of the gradient applied in slice direction (that is also the motion
direction).
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Figure 10: Magnitude and phase of the optimal RF pulse associated to the elastography
problem, as a function of time.

6.4.3. MRI coil physical constraints

RF pulses calculated through OC theory must respect practical con-
straints of the coils and the RF amplifiers used in experiments, in particular
their peak amplitude. Thus, during optimization process, the maximum RF
amplitude was constrained to 500 Hz, corresponding to an attenuation of 9.8
dB with the 70 mm volume coil used in MRI experiments.

. Figure 10 presents the generated RF pulse (magnitude and phase).

6.5. Simulation with ODIN

A dynamic numerical phantom, with dimensions 4 x 4 cm2, was generated
with pre-defined T1 and T2 maps (same as for MRI experiments, see below).
The effect of the motion in the virtual phantom was directly encoded as a
B0 field shift (in ppm) [31], given by:

∆B0(x, t) =
106

B0

(AG× sin(2πfet)× sin(2πfet− 2π
x

λ
)× e−αx) (13)

with B0 the static magnetic field, and λ the wavelength of the propagating
wave set to 10 mm. Exponential term α represents the attenuation of the
wave during its propagation, due to viscosity effects, and was fixed to 50
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Figure 11: Phase image (in radians) obtained from the optimal RF pulse associated to the
elastography problem, with the ODIN MRI simulation, and its corresponding profile.

m−1. A gradient-echo was used: the echo-time was set to 4 ms and the
repetition-time to 1500 ms.

Obtained phase image, with the optimal RF pulse (plotted on Figure 10),
is presented on Figure 11 with its profile along the motion direction. Wave
propagation pattern is clearly visible on this figure, with an attenuation of
phase during its propagation from top to bottom, and the wavelength corre-
sponds to the value attributed to the phantom during phantom generation
(Equation 13).

6.6. MRE experiment

MRE experiment was performed on the Bruker 4.7 T MRI system, with a
70 mm volume coil. Shear waves were induced in the phantom using a non-
invasive custom-made device maintaining the medium between two plates
[32], the upper one being fixed while the lower one being activated by a
piezoelectric actuator (CEDRAT Technologies). Acquisition was performed
for an excitation frequency equal to 600 Hz, corresponding to the one used
for the pulse generation.

A standard plastisol phantom was prepared (Plastileurre Standard, Brico-
leurre, France), its response to excitation frequency at 600 Hz was well known
[32]. T1 and T2 values were found to be 300 and 25 ms respectively.

The MR sequence was a gradient-echo sequence, with an echo-time equal
to 5.2 ms, a repetition-time set to 1500 ms, a FOV = 4 x 4 cm2, 32 x 32
matrix, and NA = 8.
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Figure 12: Phase images (in radians) obtained from MRE experiments, at two different
time steps of wave propagation (π/2 phase shift between these two images).

Phase-opposite wave images were acquired and then subtracted, as per-
formed in usual MRE experiments to remove static phase contributions. Re-
sulting phase images, at two different time steps of the wave propagation, are
displayed in Figure 12. Notice that no filtering was applied to these phase
images. Despite the presence of noise, wave pattern is clearly visible on this
figure and consistent with the expected wavelength at 600 Hz (9 mm) for
plastisol phantom [32]. The non-plane wave aspect (compared to the ones
obtained with ODIN) is due to inhomogeneities of the mechanical excita-
tion surface and similar wave patterns were obtained with classical MRE
acquisition.

7. Discussion

Our goal in this paper was to explore the use of RF pulses, designed with
optimal control theory, to actively control the MR phase signal.

First, resulting phase images in sections 4 and 5 present a very good
agreement with the desired phase patterns, in both simulations and experi-
ments on phantom. These initial experiments validate the ability of optimal
RF pulses to control the magnetization phase based on the spins oscillation
frequency. Note that in this study, the phase pattern was arbitrarily created
in the readout direction. The results can be extended to any other dimension
with the same RF pulses.

Computation times required for the design of the RF pulses A, B and
C depend on the frequency range offset. Running the algorithm on a 4 x
2.7 GHz machine using Matlab (The MathWorks, Inc., Natick, MA, USA,
R2014b) takes less than fifteen minutes for a frequency range of 10 kHz, with
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a discretization of 50 Hz (201 spins considered in the frequency range offset),
as it has been chosen in this study.

The current implementation of the optimization algorithm requires a
unique magnetization state as a boundary condition, which was chosen here
as the thermal equilibrium. Thus, the acquisition strategy requires long TRs,
as we have to wait for full longitudinal relaxation after each excitation, before
performing the next RF pulse. However a turbo spin echo sequence could be
used to accelerate the acquisition.

After these initial experiments, the use of optimal RF pulses in a more
practical framework was investigated. MRE was chosen as a proof-of-concept,
and results presented in section 6 show, for the first time, the possibility to
to acquire MRE phase images with RF pulses, and a constant gradient.

A first advantage of using optimal RF pulses here is the very short echo-
time achievable. In standard MRE sequences, motion-encoding gradients
typically last between 5 and 10 ms and lengthen therefore the echo-time.
During this time, magnetization relaxation occurs and this echo-time increase
can be critical for some tissues with very short T2, as in the healthy mouse
liver where T2 value is equal to about 20 ms, or at low frequency (where
duration of the MEG is longer).

Moreover, using OC RF pulses relaxes the constraint on having a peri-
odic gradient, and thus avoids fast gradients switching which is a hardware
limitation.

Slice selectivity is controlled in this MRE case by the combination of a
frequency offset range (on which the pulse has been optimized) and a gradient
in the slice direction, that is also the motion direction. However, it is hard
to predict the behaviour of the spins that lie outside the control range. This
could explain the noise observed in the MRE phase images in Figure 12.
Results presented here on MRE are preliminary but encouraging, as wave
propagation is clearly visible on phase images. Future improvements will
imply a better understanding of spin behaviour outside the control range,
and the investigation of new cost functions definition.

8. Conclusion

This work validates the use of optimal control RF pulses to accurately and
actively control the magnetization phase in MRI. As a proof-of-concept, RF
pulses were computed to create non-trivial phase patterns. Both simulation
and experiments on phantom present good match with the desired pattern.
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Optimal RF pulses were also designed in the context of MR elastography,
to show their interest in a more practical framework. Preliminary results
demonstrate, for the first time, that optimal RF pulses can be used to encode
the dynamic wave propagation in the presence of a constant gradient.

RF-based phase encoding would present several advantages over standard
techniques based on gradient switching (shorter TE, reduction of eddy cur-
rents, ability to overcome limitations due to gradient switching rates). This
work can open new research projects on MRI phase-based sequences, with the
use of RF pulses that directly encode physical and biochemical information
in the MR phase image.
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