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Metric gradient flows with state dependent
functionals: the Nash-MFG equilibrium flows

and their numerical schemes

Gabriel Turinici∗

October 7, 2017

Abstract

We investigate the convergence of a relaxed version of the best reply
numerical schemes (also known as best response or fictitious play) used
to find Nash-mean field games equilibriums. This leads us to consider
evolution equations in metric spaces similar to gradient flows except
that the functional to be differentiated depends on the current point;
these are called equilibrium flows. We give two definitions of solutions
and prove, through the introduction of a specific index Υ depending on
the trajectory, that, as the time step tends to zero, the interpolated (à
la de Giorgi) numerical curves converge to equilibrium flows. As a by-
product we obtain a sufficient condition for the uniqueness of a mean
field games equilibrium. We close with applications to congestion and
vaccination mean field games.
Keywords: gradient flows; mean field games; vaccination games;

1 Introduction

Let X be a a Polish geodesic metric space (see [11] for an introduction to
metric spaces) and C(·, ·) : X × X → R a functional. We investigate in this
work the equation:

∂txt +∇1C(xt, xt) = 0, x0 = x̄. (1)
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REMADE, 75016 PARIS, FRANCE & Institut Universitaire de France, ga-
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Such an equation is called an equilibrium flow or partial flow for reasons that
will be made clear in the sequel.

Discrete (numerically computable) versions of this evolution equation are
the numerical schemes defined by the recurrence:

xτ0 = x̄, xτk+1 ∈ argminy∈X
d(y, xτk)

2

2τ
+ C(y, xτk), k ≥ 0. (2)

These numerical schemes are relaxed versions of the best reply / best response
/ fictitious play algorithms (see [7]); the original schemes take sometimes
τ =∞ i.e., omit the first term in (2).

Our goal is to give a rigorous definition of the concept of solution of
(1) and show that the numerical schemes (2) converges, when τ → 0, to a
solution of (1). Finally we give examples that show that the equilibrium
flows can be successfully used in the study of mean field games equilibriums.

The present work provides thus a rigorous treatment of a two-argument
(partial) gradient flow distinct from previous, time-dependent approaches;
this allows to obtain the convergence of the ”best reply” numerical schemes
(2) but also novel uniqueness results for MFGs.

These results are not available with previous techniques from [1, 17, 29,
17, 42, 37, 38]), see remark 5 after the proof of theorem 1; in order to succeed,
we introduce a new index Υ dependent of the trajectory (see definition 16)
and formalize its expected properties in assumptions (A7) and (A8), which
we prove to be compatible with many different MFG applications (see secti-
ons 3.1 to 3.4 and their application-dependent metric spaces that fulfill as-
sumptions (A7) and (A8)); the manipulation of the index Υ requires to
obtain some upper bounds (see the proof of theorem 1, one of our main re-
sults); finally we are able to obtain estimates of the partial flow divergence
by making use of the hypothesis (A8).

1.1 Motivation and literature review

The equilibrium in non-cooperative multi-player games are often formulated
as mixed strategy Nash equilibriums (see [39]). The computation of such
equilibriums and the procedure for players to reach them has been the ob-
ject of many contributions and give rise to several proposals e.g., replicator
dynamics and fictitious play / best reply / best response dynamics, see [19]
for details.

The relatively recent introduction of the mean field games (abbreviated
from now on as MFG) by Lasry and Lions [34, 33, 35] and conjointly by
Huang, Malhamé and Caines [26, 25] (see also [36, 12, 6, 24, 14, 13, 22, 23,
41, 40, 15] for entry points to the literature) allow to extend this concept
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to games with an infinite number of players. In this context the players are
considered similar (or decomposed in several classes, each with an infinite
number of individuals) and an equilibrium is attained when all agents in a
class use same mixed strategy, which is optimal in the Nash sense. Mixed
strategies are probability measures over the state of pure strategies and thus
form a metric space (we will come back later to the topological description of
that space); in order to gain in generality we will suppose from now on that
the space of all mixed strategies is metrizable and will be denoted X . The
cost of the individual strategy x depends on the choice of everybody else’s
strategy y ∈ X and is encoded through the cost function C(x, y). A MFG
equilibrium is thus a point x ∈ X such that

C(x, x) ≤ C(z, x),∀z ∈ X . (3)

In this context, the relaxed best reply algorithm, which corresponds to
(2) has been proposed and tested (see e.g., [7, 8]) with successful results.
However only very few works concern the behavior of solutions for τ → 0 in
the general framework of metric spaces or the meaning to be given to the
limit equation (1).

Note that when C is independent of the second argument, i.e.,

C(x, y) = E(x), (4)

the relation (2) becomes the celebrated implicit Euler-type scheme of Jordan,
Kinderlehrer and Otto [28] for the definition of gradient flows in metric spaces

∂tyt +∇E(yt) = 0, y0 = ȳ, (5)

and received considerable attention (see [44, 43, 2] for instance). However,
the situation when E has dependence on other variables has not been treated
to the same extent and the related contributions involve gradient flows of
time dependent functionals E(t, u) with a known dependence on time (see
[29, 17, 42, 37, 38]). Of course, formally one can set

E(t, u) = C(u, xt). (6)

However the cited papers use implicit (in time) optimization

yτ0 = x̄, yτk+1 ∈ argminy∈X
d(y, yτk)2

2τ
+ E((k + 1)τ, yτk), k ≥ 0, (7)

which are not equivalent to the numerical scheme (2) because (7) is fully
implicit while the (relaxed) best-reply scheme is semi-explicit. Further-
more, technical assumptions invoked in previous works assume that the time-
dependence of E(t, u) is smooth (e.g., in [42, assumption (2.19c) page 109])
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or that its differentiability points have additional properties (for instance
independent of x in [17, assumption E3.1], [29, assumption A4]) while here
the mere absolute continuity of t 7→ xt does not allow to fulfill a priori such
assumptions. Nevertheless our contribution ows much to all these previous
works which it translates to this specific setting.

2 Theoretical results

2.1 Basic reminders and motivation

The absence of a vector operations in a metric space does no allow to develop
fully a differential calculus and requires adaptation of notions of derivative.
Accordingly the definition of evolution equations have to use alternative pro-
perties.

We recall below the main ideas of such an alternative formulation (see [1])
for the particular case (4)-(5); suppose for a moment than X is an Euclidian
space and E a smooth (C1 or above) function; then:

d

dt
E(xt) = 〈∇E(xt), x

′
t〉 ≥ − |∇E(xt)| · |x′t| ≥ −

1

2
|x′t|

2 − 1

2
|∇E|2 (xt),

or equivalently,

d

dt
E(xt) +

1

2
|x′t|

2
+

1

2
|∇E|2 (xt) ≥ 0 ∀t, (8)

with equality only if x is solution of (5). Therefore asking that

d

dt
E(xt) +

1

2
|x′t|

2
+

1

2
|∇E|2 (xt) ≤ 0 ∀t, (9)

is an equivalent characterization of (5) (more preciselly called the EDI for-
mulation). The integral form can also be used:

E(xb)− E(xa) +

∫ b

a

(
1

2
|x′t|

2
+

1

2
|∇E|2 (xt)

)
dt ≤ 0 ∀ 0 ≤ a ≤ b. (10)

The advantage of formulation (10) is that it only uses quantities that can
be defined in a metric space (see below for definition of |x′t| and |∇E|). The
corresponding computation for a bi-variate functional C is:∫ b

a

(
d

dt
C(xt, ν)

∣∣∣
ν=xt

)
dt+

∫ b

a

(
1

2
|x′t|

2
+

1

2
|∇1C|2 (xt, xt)

)
dt ≤ 0 ∀ 0 ≤ a ≤ b.

(11)
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However this formulation poses specific problems (see also section 3.1) as in
general the solution (xt)t≥0 is only absolutely continuous (with respect to

time) while the manipulation of the term d
dt
C(xt, ν)

∣∣∣
ν=xt

requires additional

assumptions. This is the object of the next section.
Before that, let us recall the following definition:

Definition 1 A curve x : [0, T ] → (X , d) is called absolutely continuous if
there exists f ∈ L1(0, T ) such that

d(xt1 , xt2) ≤
∫ t2

t1

f(t)dt, ∀t1 < t2, t1, t2 ∈ [0, T ]. (12)

For an absolutely continuous curve (xt)t∈[0,T ] the metric derivative of x at r
defined by

|x′r| = lim
h→0

d(xr+h, xr)

|h|
, (13)

exists a.e., belongs to L1(0, T ) and is the smallest L1 function that verifies
(12).

2.2 Definition of EDI / EVI equilibrium flows

Let us denote
Ds(C) = {x ∈ X |C(x, x) <∞}. (14)

We suppose from now on that C satisfies the assumption:

(A1) There exists C1 <∞ such that C(y, x) ≥ −C1, ∀x, y ∈ X .

For any α, β ∈ R, α ≤ β, we denote by S(α, β) the set of divisions of the
interval [α, β]. Let x = (xt)t∈[0,T ] ⊂ Ds(C) be an absolutely continuous curve
in X ; define for 0 ≤ a ≤ b ≤ T and a division ∆ = {a = t0 < t1 < ...tN∆

=
b} ∈ S(a, b):

Υ(∆;x, a, b) =
∑
k

C(xk+1, xk)− C(xk, xk). (15)

Υ(x, a, b) = lim inf
∆∈S(a,b), |∆|→0

Υ(∆;x, a, b). (16)

To ease notations, when there is no ambiguity about the set S(·, ·) we will
omit it and write for instance Υ(x, a, b) = lim inf |∆|→0 Υ(∆;x, a, b) instead of
(16).

Remark 1 When X is e.g., Euclidian and under regularity assumptions on

C it is easy to check that Υ(x, a, b) =
∫ b
a

d
dt
C(xt, ν)

∣∣∣
ν=xt

dt.
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Definition 2 (EDI equilibrium flow) An absolutely continuous curve (xt)t∈[0,T ]

is called an EDI-equlibrium flow starting from x̄ if limt→0 xt = x̄ and:

∀s ≥ 0, Υ(x, 0, s) +
1

2

∫ s

0

|x′r|
2

dr +
1

2

∫ s

0

|∇1C|2 (xr, xr) dr ≤ 0, (17)

a.e. t > 0, ∀s ≥ t, Υ(x, t, s) +
1

2

∫ s

t

|x′r|
2

dr +
1

2

∫ s

t

|∇1C|2 (xr, xr) dr ≤ 0,

(18)

where, for any y ∈ Ds(C) and any point (x, y) with C(x, y) < ∞, the slope
|∇1C| (x, y) of C(·, ·) with respect to the first argument evaluated at (x, y) is:

|∇1C| (x, y) = lim sup
z→x

(C(x, y)− C(z, y))+

d(x, z)
= max

{
lim sup
z→x

C(x, y)− C(z, y)

d(x, z)
, 0

}
.

Remark 2 For the particular case (4) the definition above coincides with
the definition of a EDI gradient flow, see [1]. Moreover an equilibrium flow
for C(x, y) is also an equilibrium flow for C(x, y) +G(y) for any function G.

Remark 3 A natural question is if there exist functions C that satisfy the
above assumptions and that cannot be treated with developments in previous
works [29, 17]; the answer is positive, see for instance [29, Example 3 page
11]) for X = R, d(x, y) = |x−y|, C(x, y) = d(x, y) (and also d(x, y)+F(x)+
G(y) with F(x) smooth). One cannot use previous theories because setting
E(t, u) = C(u, xt) = |u−xt| the derivative with respect to t exists except when
u = xt, or it is exactly there that it should be used (see [17, equation 2.3] and
the curve xt = t). See also section 3.1 below.

As the previous works concerned a different setting we do not claim that
this contribution is a generalization but rather an extension of these results
for our situation.

When C has further convexity properties one can adapt the EVI formu-
lation as in [29, 30]. We introduce the following assumption (corresponding
to [1, Assumption 4.24 page 77]):

(A2) Suppose C is a lower semicontinuous functional with respect to the first
argument and there exists λ ∈ R such that for any x0, x1, z, v ∈ X there
exists a curve γ connecting x0 and x1 such that for all s ∈ [0, 1]:

C(γ(s), z) ≤ (1− s)C(x0, z) + sC(x1, z)− λ
(1− s)s

2
d2(x0, x1). (19)

d2(γ(s), v) ≤ (1− s)d2(x0, v) + sd2(x1, v)− (1− s)sd2(x0, x1). (20)
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In general a function (of one or several variables) that satisfies (19)-(20)
with respect to one of its variables is called λ-convex in that variable.

Definition 3 (EVI equilibrium flow) An absolutely continuous curve (xt)t∈[0,T ]

is called an EVI-equlibrium flow starting from x̄ if limt→0 xt = x̄ and :

C(xt, xt) +
1

2

d

dt
d2(xt, y) +

λ

2
d2(xt, y) ≤ C(y, xt), ∀y, a.e. t ≥ 0. (21)

Note that the definition is valid because if (xt)t∈[0,T ] is absolutely conti-
nuous then t 7→ d2(xt, y) is also absolutely continuous thus differentiable a.e.
with respect to t.

2.3 Convergence of numerical schemes: general situa-
tion

Let us denote

M(x, τ) = argminy∈X
d(y, x)2

2τ
+ C(y, x). (22)

With this definition the relaxed best reply (or fictitious play) (see e.g., [7, 8])
numerical scheme in equation (2) can be written as xτk+1 ∈M(xτk, τ).

We investigate in this section whether when τ → 0 the set {xτk, k ≥ 1}
converges to a solution of (1) as defined in (17)-(18) or (21).

In order to work with meaningful objects, we introduce the following
assumption which is the analogue of [1, Assumption 4.8 page 67]:

(A3) There exists τ̄ > 0 such that for any τ ≤ τ̄ and x̄ ∈ Ds(C):

M(x̄, τ) 6= ∅. (23)

We will make use of the de Giorgi interpolation introduced in [16] under
the name of ”minimizing movement” which was originally designed to give a
unified formulation of many problems such as time-dependent PDE, steepest
descent methods, heat equation. The method starts from a set of points
obtained by parameter-indexed minimizations and constructs a continuous
curve of minimizers ; the construction keeps many important properties of
the original set of points such as compactness and equicontinuity and allows
to find limit curves (see also [1] and [2, Definition 2.0.6 page 42]).

7



Assuming that assumption (A3) is satisfied, we can define the interpo-
lation à la de Giorgi which is a curve t ∈ [0, T ] 7→ xτt such that xτ0 = x̄
and

xτt ∈M(xτkτ , t− kτ), ∀t ∈]kτ, (k + 1)τ ], k ≥ 1. (24)

For such a map, we define the discrete speed Dspτ : [0,+∞)→ [0,+∞)
by

Dspτt =
d(xτnτ , x

τ
(n+1)τ )

τ
for t in (nτ, (n+ 1)τ),

and the discrete slope Dslτ : [0,+∞)→ [0,+∞) by

Dslτt =
d(xτnτ , x

τ
t )

t− nτ
for t in (nτ, (n+ 1)τ).

We will need some additional hypothesis:

(A4) For any c ∈ R, r > 0 and x ∈ X the set {y ∈ X |C(y, y) ≤ c, d(y, x) ≤ r}
is compact.

(A5) The slope |∇1C| is lower semicontinuous.

(A6) Lipschitz property with respect to the second argument: there exists
L > 0 such that:

C(x, y) ≤ Ld(y, z) + C(x, z), ∀x, y, z ∈ X . (25)

(A7) For any absolutely continuous curve (xt)t∈[a,b]:

Υ(x, a, b) ≤ lim inf
|∆n|→0,yn→x,yn⊂Ds(C),supn

∫ b
a |ẏn(t)|<∞

Υ(∆n; yn, a, b), (26)

where the convergence of the curve yn to x is in the uniform (on com-
pacts) norm.

(A8) There exists CL <∞ such that for any x, y, z ∈ Ds(C):

|C(x, y) + C(y, z)− C(x, z)− C(y, y)| ≤ CLd(x, y)d(y, z). (27)

Remark 4 The assumption (A8) implies (see Lemma 2 in the appendix):

Υ(x, a, b) = lim
|∆|→0

Υ(∆;x, a, b) = lim
|∆n|→0,yn→x,yn⊂Ds(C),supn

∫ b
a |ẏn(t)|<∞

Υ(∆n; yn, a, b),

(28)
which implies (A7).
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In particular note that C(x, y) = d(x, y) satisfies (A7) but does not sa-
tisfy (28) (thus neither (A8)) while C(x, y) = d2(x, y) satisfies (A8) with
CL = 2. On the other hand for X = R the mapping (x, y) 7→ C(x, y) =∫ x

0

∫ y
0
f(s, t)dsdt, with f a bounded function will also satisfy assumption

(A8).

Assumptions (A1),(A4), (A5) are classical (see for instance [1, Assump-
tion 4.13 page 69]) and (A7) belongs to the same class; on the other hand,
the assumption (A6) is the analogue of [29, assumption A4 page 11] through
the correspondence in equation (6).

The properties of the curves obtained by the numerical scheme (2) are
detailed in the following result.

Theorem 1 Let C satisfying assumptions (A1), (A3), (A4), (A5), (A6)
and (A7). Take x0 ∈ Ds(C). Then the set of curves {(xτt )t∈[0,T ]; τ ≤ τ̄}
defined in (24) is relatively compact in the set of curves in X with local
uniform convergence and any limit curve is an EDI equilibrium flow in the
sense of Definition 2.

Proof We follow, when possible, the proof of [1, Theorem 4.14 page 69]; first
we proceed as in [1, Theorem 4.9 page 67] and note that for fixed x ∈ X ,

τ ≤ τ̄ and xτ ∈M(x, τ), the map τ 7→ d(xτ ,x)2

2τ
+ C(xτ , x), is locally Lipschitz

and
d

dτ

(
d(xτ , x)2

2τ
+ C(xτ , x)

)
= −d

2(x, xτ )

2τ 2
. (29)

The proof of this identity follow precisely the reference and the details are
left to the reader.

The minimal property of xτ(k+1)τ implies that for any k: C(xτ(k+1)τ , x
τ
kτ )−

C(xτkτ , xτkτ ) ≤ 0; combined with (25) this shows that C(xτ(k+1)τ , x
τ
(k+1)τ ) <∞.

On the other hand, as in [1, Lemma 4.10 page 67] we obtain (again we
skip the details) that τ 7→ d(x, xτ ) is non decreasing and

|∇1C| (xτ , x) ≤ d(x, xτ )

2τ
. (30)

Integrating (29) we obtain the following identity:

m−1∑
k=n

C(xτ(k+1)τ , x
τ
kτ )− C(xτkτ , xτkτ ) +

1

2

∫ mτ

nτ

(Dspτr)
2 dr +

1

2

∫ mτ

nτ

(Dslτr)
2 dr = 0,

(31)
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or equivalently, denoting ∆τ the division of [0, T ] containing the points kτ
(1 ≤ k ≤ T/τ):

Υ(∆τ , xτ , nτ,mτ) +
1

2

∫ mτ

nτ

(Dspτr)
2 dr +

1

2

∫ mτ

nτ

(Dslτr)
2 dr = 0. (32)

In particular for any k ∈ N∗:(
k∑
`=0

d(xτ`τ , x
τ
`+1τ )

)2

≤

(∫ (k+1)τ

0

|Dspτr | dr

)2

≤ (k + 1)τ

∫ (k+1)τ

0

|Dspτr |
2 dr

≤ −2(k + 1)τΥ(∆τ ;xτ , 0, (k + 1)τ)

≤ −2(k + 1)τ

(
C(x̄, x̄)− C(xτ(k+1)τ , x

τ
(k+1)τ ) + L

k∑
`=0

d(xτ`τ , x
τ
`+1τ )

)
. (33)

This shows that in particular
∑k

`=0 d(xτ`τ , x
τ
`+1τ ) is bounded by a constant

depending on T , L, C(x̄, x̄) and C1 but independent on τ . On the other hand
for t ∈]kτ, (k + 1)τ ], t ≤ T :

d2(xτt , x̄) ≤

(
d(xτt , x

τ
kτ ) +

k−1∑
`=0

d(xτ`τ , x
τ
`+1τ )

)2

≤

(
k∑
`=0

d(xτ`τ , x
τ
`+1τ )

)2

,

where we used that τ 7→ d(xτt , x
τ
kτ ) is non decreasing. Thus the set of curves

{(xτt )t∈[0,T ]; τ ≤ τ̄} is uniformly bounded with respect to τ . As a by-product
Υ(∆τ ;xτ , nτ,mτ) is bounded uniformly with respect to τ , and n,m ≤ T/τ .

A similar estimation starting from:

d2(xτnτ , x
τ
nτ ) ≤

(∫ mτ

nτ

|Dspτr | dr
)2

≤ (nτ −mτ)

∫ mτ

nτ

|Dspτr |
2 dr, (34)

allows to see that the set of curves is also equicontinuous. By Arzela-Ascoli
one obtains the relative compactness.

Let now τn ↓ 0 and (xt)t∈[0,T ] a limit curve of {(xτnt )t∈[0,T ];n ≥ 1}. From
(34) one obtains that (xt)t∈[0,T ] is absolutely continuous and for t ≤ s ≤ T :∫ s

t

|ẋr|2 dr ≤ lim inf
n→∞

∫ s

t

|Dspτnr |
2 dr. (35)

On the other hand, from the lower semicontinuity of |∇1C| and (30) we obtain

|∇1C| (xt, xt) ≤ lim inf
n→∞

|∇1C| (xτnt , xτnknτn) ≤ lim inf
n→∞

Dslτnt . (36)

where kn is such that t ∈]knτn, (kn + 1)τn].
Using (A7) and similar arguments as in the end of the proof of [1, The-

orem 4.14 page 69] (details are left to the reader) one can pass to the limit
in (32) and obtain relations (17)-(18). �
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Remark 5 The previous works (see e.g. [1]) take advantage of a simplifica-
tion occurring in the treatment of the term

∑m−1
k=n C(xτ(k+1)τ , x

τ
kτ )−C(xτkτ , xτkτ )

in (31) because, when (4) is valid, this term reduces to E(xτm) − E(xτn); the
same is true to some extent for time-dependent approaches in [17] (recall
equation (6)) which exploit the fully-implicit scheme (7), not available in our
setting. For us, the absence of such a simplification does not allow to obtain
the uniform boundedness of xτ directly and requires care when passing to the
limit τ → 0. These points are addressed by a specific treatment of the index
Υ, some upper bounds on xτ from the assumption (A6) and, latter in theo-
rem 2, by making use of the hypothesis (A2) and (A8), see both proofs for
details.

2.4 Convergence of numerical schemes: convex case

For the convex case more precise information can be obtained and is gathered
in the following theorem.

Theorem 2 Let C satisfying assumptions (A1), (A2), (A4) and (A6).

1. For every x ∈ Ds(C), the set M(x, τ) contains exactly one element for
any τ ≤ 1/λ−. Moreover, for x0 ∈ Ds(C) the set of curves {(xτt )t∈[0,T ]; τ ≤
τ̄} defined in (24) is relatively compact and any limit curve (xt)t∈[0,T ]

is an EVI equilibrium flow in the sense of Definition 3.

2. Suppose in addition that for any x ∈ Ds(C) and u, v ∈ Ds(C) in a
neighborhood of x:

|C(u, v) + C(v, u)− C(u, u)− C(v, v)| = O(d(u, v)2). (37)

Then the (EVI) equilibrium flow is unique.

3. If the stronger assumption (A8) (instead of (37) ) is satisfied, then for
any two EVI equilibrium flows (xt)t∈[0,T ] and (yt)t∈[0,T ] starting from
x̄ ∈ Ds(C) and ȳ ∈ Ds(C) respectively:

d(xt, yt) ≤ e−(λ−CL)td(x̄, ȳ), a.e., t ≥ 0. (38)

4. Under assumption (A8) if λ > CL then the mean field game with cost
functional C(·, ·) has an unique Nash-MFG equilibrium xC and any equi-
librium flow (xt)t≥0 starting from some x(0) = x̄ ∈ Ds(C) converges
exponentially fast to xC.

11



Proof
Proof of item 1: Following the proof of [1, Theorem 4.25 page 77] it is
possible to prove the existence and uniqueness of the minimizers inM(x, τ)
using the same arguments i.e. taking a minimizing sequence (xn)n≥1 and
using assumption (A2) for s = 1/2, x0 = xn, x1 = xm, y = x, v = x.
Moreover, the following estimation (replacing [1, equation (69) page 78] ) is
obtained using arguments in the same proof as soon as xτ ∈M(x, τ) :

d2(xτ , y)− d2(x, y)

2τ
+
λ

2
d2(xτ , y) ≤ C(y, x)− C(xτ , x), ∀y ∈ X . (39)

Summing up such estimations it follows that for t = nτ < mτ = s:

d2(xτt , y)− d2(xτs , y)

2(s− t)
+

λτ

2(s− t)

m−1∑
`=n

d2(xτ(`+1)τ , y)

≤ τ

s− t

(
m−1∑
`=n

C(y, xτ`τ )− C(xτ(`+1)τ , x
τ
`τ )

)
, ∀y ∈ X . (40)

We can prove as in theorem 1 that the curves {xτt }τ≤1/λ− form a relatively
compact set. Taking τn ↓ 0 one obtains for 0 ≤ t < s ≤ T :

d2(xt, y)− d2(xs, y)

2(s− t)
+

λ

2(s− t)

∫ s

t

d2(xr, y)dr

≤ 1

s− t

(∫ s

t

[C(y, xr)− C(xr, xr)] dr
)
, ∀y ∈ X , (41)

which is the integral form of the definition 3 of a EVI equilibrium flow. In the
passage from (40) to (41) the terms

∑m−1
`=n d

2(xτ(`+1)τ , y) and
∑m−1

`=n C(y, xτ`τ )
are, thanks to the Lipschitz property of C(y, ·) and d2(·, y), arbitrarily close
to Riemann sums of the corresponding integrals. On the other hand for the
term

∑m−1
`=n C(xτ(`+1)τ , x

τ
`τ ) the inequality is obtained from the Fatou lemma

applied to fn(r) =
∑m−1

`=n 1[`τn,(`+1)τn[(r)C(xτn(`+1)τn
, xτn`τn) (recall that we have

a lower bound on C from assumption (A1)) and the lower semi-continuity of
C.
Proof of item 3 To prove contraction (38) we use the EVI inequality for xt
and yt and write:

1

2

d

ds
d2(xs, yt)

∣∣∣
s=t

+
λ

2
d2(xt, yt) ≤ C(yt, xt)− C(xt, xt) a.e. t ≥ 0.

1

2

d

ds
d2(ys, xt)

∣∣∣
s=t

+
λ

2
d2(yt, xt) ≤ C(xt, yt)− C(yt, yt) a.e. t ≥ 0. (42)

12



Adding up the two identities and invoking (27) for x = z = xt, y = yt we
obtain (heuristically for the moment):

1

2

d

dt
d2(xt, yt) + λd2(xt, yt) ≤ CLd

2(xt, yt) a.e. t ≥ 0, (43)

and (38) follows. In practice, the manipulations above can be made precise
by a doubling of variables argument (see [1, page 80], [31], [9, pages 179,
183]).
Proof of item 2: the proof is similar to that of item 3: let (xt)t∈[0,T ]

and (yt)t∈[0,T ] be two EVI equilibrium flows starting from the same point
x̄ ∈ Ds(C) and CM > 0 a constant (large enough). Since the flows are
continuous in time, for some small time TM > 0 we have d(xt, yt) small
enough such that the O(d(xt, yt)

2) appearing in (42) via (37) is smaller than
CMd

2(xt, yt). Then, a computation similar to (43) shows that:

d(xt, yt) ≤ e−(λ−CM )td(x̄, x̄) = 0, ∀t ∈ [0, TM ]. (44)

This shows that the solution is locally unique on [0, TM ] and then globally
unique by a standard maximal interval argument (for instance using Zorn’s
lemma).
Proof of item 4: the proof is a consequence of item 3 as soon as one proves
that the curve yt = xC is an EVI equilibrium flow. To prove this, note that
the definition (3) of a Nash-MFG equilibrium implies M(xC, τ) = {xC} for
all τ > 0. Then xτt = xC for any τ, t ≥ 0 thus the (only) limit curve is yt = xC

and by item 1 it is an EVI equilibrium flow. �

Remark 6 The uniqueness of the mean field games equilibrium is often a by-
product of the monotonicity of the payoff function, as in [34, 33, 12] or in [21,
Section 2.8 page 109]; however the monotonicity of the payoff is not a generic
property for general MFG. On the other hand recall that MFG with multiple
equilibria exist, see the example in section 3.3 below. The item 4 gives a
novel route to prove the uniqueness of mean field games equilibriums, which
is worth exploring because very few such procedures exist in the literature.
The requirements here are

• a weak form of convexity: note that assumption (A2) only uses con-
vexity in the first argument, which is a consequence of the linearity of
C with respect to the strategy of the player;

• a regularity assumption (hypothesis (A8));

• and the important upper bound λ > CL.

Among the three, it is the latter property that seems to be the most restrictive
in applications.
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3 Applications

For the notations used in this section see the appendix A.

3.1 The treatment of the term
∫ b
a
d
dtC(xt, ν)

∣∣
ν=xt

dt

We consider first an example that shows how our proposed methodology
avoids problems with the term

∫ b
a

d
dt
C(xt, ν)

∣∣
ν=xt

dt which does not always
has a well-defined meaning, even when the dynamics is C∞ with respect to
time.

Set X = R and C(x, y) = x2

2
+ θ|x − y| for some fixed θ > 0. After

elementary computations we obtain from the definition (3) that the set of
Nash equilibriums is the entire interval [−θ, θ]. In particular there is no
uniqueness; we check thus the assumptions of the theorem 1:

• (A1) is valid with C1 = 0;

• (A3) is valid because we minimize a continuous coercive real function;

• (A4) is valid trivially on R;

• (A5) results from the computation |∇1C| (x, y) = (x− θ · 1x≤y + θ · 1x>y)+

• (A6) is valid with L = θ;

• (A7) results from the formula Υ(x, a, b) =
x2
b−x

2
a

2
+ length(x, a, b) (with

length(x, a, b) being the length of the curve (xt)t≥0 between t = a and
t = b ); note that (A8) does not hold in this case.

We can apply the theorem 1 to conclude that at least an equilibrium flow
exists. In fact, a more careful inspection reveals that the flow is:

- when |x0| ≤ θ: the flow is the constant curve xt = x0;
- when x0 > θ: xt = θ + e−t(x0 − θ);
- when x0 < θ: xt = −θ + e−t(x0 + θ).

The dynamics is thus smooth; however the term
∫ b
a

d
dt
C(xt, ν)

∣∣
ν=xt

dt can-
not be given any meaning because of the non-differentiability with respect
to t of |xt − xs| in s = t.

Remark 7 In this case the assumption (A2) is also valid thus one can ap-
ply the first point of the theorem 2 to conclude to the existence of a EVI
- equilibrium flow. However one can propose examples of C being the sum
of a smooth, coercive but non-convex function of x (as (x2 − 1)2) and the
term θ|x− y| that can still check the hypothesis of theorem 1 but not those of
the theorem 2. Here we took the first term to be quadratic in order to have
explicit analytic solutions.

14



3.2 Multiple agent types games with potential and in-
teraction terms

We follow here the framework in [7] and in particular show how their Corro-
lary 5.2 (corresponding to their example in equation (5.9) Section 5) can be
treated with tools provided in this work. In this situation, the players are
assigned to one of several types x ∈ X; once an agent is given a type x it
cannot change it. As a consequence, the probability measure on the set X
is fixed, let us denote it by µ ∈ P(X). Each agent can take actions y in a
set Y . Both X and Y are supposed compact and moreover Y is a convex,
closed subset of an Euclidian space. A strategy is a joint probability measure
γ ∈ P(X × Y ) with π1

#γ = µ. We assign:

X̃ =
{
γ ∈ P(X × Y )|π1

#γ = µ
}
. (45)

The cost of the action y for the individual of type x ∈ X when everybody
else is doing γ is C(x, y, γ). Denote C(γ1, γ2) =

∫
X×Y C(x, y, γ2)γ1(dx, dy).

The Nash equilibrium (termed Cournot-Nash in [7]) is defined as in equation
(3).

Note that by the disintegration theorem [2, Theorem 5.3.1 page 121] for
any γ ∈ X̃ there exist a a unique (µ- a.e. ) set (γx)x∈X ⊂ P(Y ) such that
for any Borel function f :∫

X×Y
f(x, y)γ(dx, dy) =

∫
X

(∫
Y

f(x, y)γx(dy)

)
µ(dx). (46)

When there is no ambiguity, we will use the notation (γx)x∈X ⊂ P(Y ) to
designate the disintegration of the measure γ along the elements x ∈ X.

The measure γx can be interpreted as the strategy of the agents of type
x.

Remark 8 In [7] a specific situation is considered when the cost does not
depend on the type of other agents choosing a given action in Y but only
on how many they are i.e., on the measure π2

#γ. In this case C(x, y, γ) =
C(x, y, π2

#γ).

For p ≥ 1 take ν ∈ Pp(Y ) (arbitrary but fixed) and define

Xp =

{
γ ∈ X̃

∣∣∣∣∫
X

Wp(γx, ν)pµ(dx) <∞
}
. (47)

Note that the definition of Xp does not depend on ν. When we do not mention
the p index we mean p = 2, i.e, X = X2. We introduce on Xp the distance:

∀ γ0, γ1 ∈ Xp : dX ,p(γ0, γ1) =

(∫
X

Wp(γ0,x, γ1,x)
pµ(dx)

)1/p

. (48)
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Note that from (70) using the Holder inequality we obtain a similar rela-
tion for dX ,p(γ0, γ1):

∀1 ≤ p1 ≤ p2, γ0, γ1 ∈ Xp1 : dX ,p1(γ0, γ1) ≤ dX ,p2(γ0, γ1). (49)

With these provisions we can state the following result (compare with [7,
Corrolary 5.2 page 425]):

Proposition 1 Suppose Y is the closure of some open set in Rd. Let V0 be a
smooth function satisfying the hypothesis of Lemma 1 (in the appendix) and
φ : Rd × Rd → R a function with continuous second derivatives everywhere.
Then, if ε > 0 is small enough, the game with payoff

C(x, y, γ) =
|x− y|2

2
+ V0(y) + ε

∫
X×Y

φ(y, y2)γ(dx, dy2), (50)

admits a unique Nash-MFG equilibrium and any EVI-equilibrium flow (as in
theorem 2) converges exponentially fast to it.

Proof We derive first a duality formula for the distance dX ,1; for any g :
X × Y → R, γ0, γ1 ∈ X1, we obtain from (71):∫

X×Y
g(x, y)(γ0(dx, dy)− γ1(dx, dy)) =

∫
X

(∫
Y

g(x, y) [γ0,x(dy)− γ1,x(dy)]

)
µ(dx)

≤
∫
X

‖g(x, ·)‖Lip ·W1(γ0,x, γ1,x)µ(dx) ≤
[
sup
x∈X
‖g(x, ·)‖Lip

]
· dX ,1(γ0, γ1). (51)

We use theorem 2 on (X , dX ,2) and check all assumptions.
• First, since V0 and φ are smooth and X, Y are compact one obtains as-
sumption (A1).
• The assumption (A2) is also verified because the function C(x, y, γ) is
1+λV − εC2-convex (C2 being a constant that only depends on φ and Y ). In
this case the geodesics between γ0 and γ1 are the curves γt such that t 7→ γt,x
is the generalized geodesic (with some fixed base ν, ν ∈ P(Y ), ν being
absolutely continuous with respect to the Lebesgue measure dx) having end
points γ0,x and γ1,x. Here (γt,x)x∈X is the disintegration of γt for any t ∈ [0, 1].
• Assumption (A4) is obvious since X is compact.
• Remain only assumptions (A6) and (A8). We only prove (A8), the other
being easier to obtain (and uses essentially the same arguments). The idea
is to prove the upper bound for the distance dX ,1 invoking (51) then use the
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ordering in (49). Let γ0, γ1, γ2 ∈ X . Then

|C(γ0, γ1) + C(γ1, γ2)− C(γ0, γ2)− C(γ1, γ1)| =

ε

∣∣∣∣∫
X×Y

∫
X×Y

φ(y1, y2) [γ1(dx, dy2)− γ2(dx, dy2)] [γ0(dx, dy1)− γ1(dx, dy1)]

∣∣∣∣
≤ ε

∥∥∥∥∫
X×Y

φ(·, y2) [γ1(dx, dy2)− γ2(dx, dy2)]

∥∥∥∥
Lip

dX ,1(γ0, γ1), (52)

where (51) has been used. It remains to see that the Lipschitz norm of∫
X×Y φ(·, y2) [γ1(dx, dy2)− γ2(dx, dy2)] can be upper bounded by dX ,1(γ1, γ2).

But for any y, ỹ ∈ Y with y 6= ỹ:∣∣∣∣∫
X×Y

φ(y, y2) [γ1(dx, dy2)− γ2(dx, dy2)]−
∫
X×Y

φ(ỹ, y2) [γ1(dx, dy2)− γ2(dx, dy2)]

∣∣∣∣
=

∣∣∣∣∫
X×Y

[φ(y, y2)− φ(ỹ, y2)] [γ1(dx, dy2)− γ2(dx, dy2)]

∣∣∣∣
≤ |y − ỹ| · dX ,1(γ1, γ2)

[
sup
y,ỹ∈Y

∥∥∥∥φ(y, ·)− φ(ỹ, ·)
|y − ỹ|

∥∥∥∥
Lip

]
. (53)

Since φ is twice differentiable, assumption (A8) follows with CL = εC3 where
C3 is a constant depending only on φ and the space Y . �

3.2.1 Congestion Mean Field Games

We consider next a congestion mean field game. Consider a population that
has to choose a place on a real line (an adaptation of the ”beach example” in
P.L. Lions’ lectures at Collège de France). The strategy of any individual is
a probability law ξ on R. The individuals prefer to be at the origin and the
cost increases with the distance from the origin; this is modeled by a term∫
R F0(x)ξ(dx) with, for instance, F0(x) = c0x

2/2, c0 > 0. The individuals
dislike congestion which means that there is a penalty to choose a location
where the local density of others is large. If the mean field density of others
is m(dx) the term that models congestion is

∫
R

∫
R ρσ(y−x)m(dx)ξ(dy) where

ρσ is a given kernel, for instance ρσ(x) = 1
σ
√

2π
exp

(
− x2

2σ2

)
, for some σ ≥ 0

(σ models the range of interaction). Thus the cost functional is:

C(ξ,m) =

∫
R
F0(y)ξ(dy) +

∫
R

∫
R
ρσ(y − x)m(dx)ξ(dy). (54)

This can be put into the framework of the previous section taking X to
be a singleton (all individuals are alike) but here Y is potentially the whole
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real line (thus in particular not compact). However, since the individual
minimizes his / her cost, any Nash-MFG equilibrium strategy ξ, if it exists,
must satisfy

supp(ξ) ⊂ argminy∈R

{
F0(y) +

∫
R
ρσ(y − x)ξ(dx)

}
. (55)

In particular any y in the support of ξ will satisfy c0y
2/2 ≤ 1/(σ

√
2π), thus

the support of ξ is included in Y =
[
− 2
c0σ
√

2π
, 2
c0σ
√

2π

]
.

Corrolary 1 Define X = (P2(Y ),W2) and consider the congestion MFG
defined in (54) for ξ,m ∈ X . For c0 large enough, and any x̄ ∈ X there exists
a unique EVI equilibrium flow (1) starting in x̄. Moreover the congestion
MFG (54) admits a unique equilibrium and the EVI-equilibrium flow starting
from x̄ converges exponentially fast to it.

Proof We apply the Proposition 1 on X taking into account that any equi-
librium is an element of X . �

Remark 9 When σ → 0 the equilibrium is the semicircle law [3]: ξ(x) =
2
πr2

0
(r2

0 − x2)+dx for some constant r0 > 0. Note however that the approach

above does not guarantee convexity for any choice of c0 and in particular when
σ → 0 no value of c0 is large enough. On the contrary, a metric similar to
that in section 3.4 is 0-convex for any c0 and allows to use theorem 2.

Remark 10 Other choices of functions F0 can also be treated with the above
methodology (keeping the coercivity at infinity and λ-convexity). On the other
hand, the congestion term

∫
R

∫
R ρσ(y − x)m(dx)ξ(dy) may also be modified

but it should remain compatible with the assumptions (A6) and (A8).

3.3 Non-smooth interaction Mean Field Games with
multiple equilibria

Consider now the cost

C(ξ, η) =

∫
R
F0(x)ξ(dx) +

∫
R

∫
R
|x− y|ξ(dx)η(dy). (56)

This is a MFG model similar to that in sections 3.1 and 3.2.1 where indivi-
duals prefer to be at the origin but here they also prefer to be close together.
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With the same technique as in (55) we can prove that it is enough to

restrict to the domain [−R,R] with R =
√

2M1(ξ)
c0

, whereM1(ξ) =
∫
R |x|ξ(dx).

But then

M1(ξ) =

∫
R
|x|ξ(dx) =

∫ R

−R
|x|ξ(dx) ≤ R =

√
2M1(ξ)

c0

, (57)

thus R ≤ 2/c0.

Corrolary 2 Consider Ω = [−2/c0, 2/c0], (X , d) = (P2(Ω),W2) and the
cost functional:

C(ξ, η) =

∫
Ω

F0(x)ξ(dx) +

∫
Ω

∫
Ω

|x− y|ξ(dx)η(dy). (58)

Then for any x0 ∈ X the set of curves {(xτt )t∈[0,T ]; τ ≤ τ̄} defined in (24) is
relatively compact and any limit curve (xt)t∈[0,T ] is an EVI equilibrium flow
in the sense of the Definition 3.

Proof We start checking the assumptions of the theorem 2:
• (A1) is verified with C1 = 0;
• (A2) is verified with λ = c0 taking as interpolating curves the generalized
geodesics with some arbitrary, fixed, base; note that there is no restriction
on c0 except strict positivity, in particular it does need to be large;
• (A6) is verified for L = 1, using arguments similar to those in the proof of
Proposition 1 (i.e., bounding first by the W1 distance);
• (A4) is also satisfied. �

Note that (A8) is not valid here. Based on section 3.1 we do not expect
to have uniqueness of the Nash-MFG equilibria. Indeed one can check that
any δx∗ with |x∗| ≤ 1/c0 is a Nash-MFG equilibrium:

∀ξ ∈ X : C(ξ, δx∗) =

∫
Ω

(F0(x) + |x− x∗|)ξ(dx) ≥
∫

Ω

F0(x∗)ξ(dx)

= F0(x∗) =

∫
Ω

(F0(x) + |x− x∗|)δx∗(dx) = C(δx∗ , δx∗). (59)

3.4 Vaccination Mean Field Games

An important class of MFG examples that go beyond potential or interaction
terms are vaccination mean field games (see [18, 4, 5, 32] and more generally
[10, 20, 46] for vaccination coverage dynamics). In this framework the indi-
vidual can choose his / her vaccination strategy which is a probability law
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set on Ω = [0, T ]∪{∞} (the point at infinity meaning no vaccination). Thus
X is the space of probability measures on Ω; we can also see it as a subset of
Ḣ−1(Ω) (the dual of the space of zero-mean H1(Ω)-Sobolev functions) with
metric:

d2(m1,m2) =
∑

ω∈{0,T,∞}

[m1({ω})−m2({ω})]2

+ sup
‖∇φ‖L2([0,T ];R)≤1,

∫ T
0 φ=0

{∫ T

0

φ(m1 −m2)

}2

. (60)

This metric can also be given another expression (see [43, Section 5.5.2
page 210]: denote by um1,m2 the solution on ]0, T [ of the Laplace problem
−∆um1,m2 = m1 − m2 with homogeneous Neumann boundary conditions
∂u
∂n

= 0 in 0 and T ; note that um1,m2 depends linearly of m1 −m2. Then:

d2(m1,m2) =

 ∑
ω∈{0,T,∞}

[m1({ω})−m2({ω})]2
+ ‖∇um1,m2‖2

L2([0,T ];R).

(61)
The cost can be expressed, for some functional F : (X , d)→ C(Ω;R), as

C(ξ,m) =

∫
Ω

F (m)(x)ξ(dx). (62)

The functional F is highly non-linear and depends on the solution of a system
of measure-driven ODEs, see [32, equations (1) and (4)] for details. More
precisely, for some constants β, γ > 0, 0 < rV < rI < ∞, S0, I0 ≥ 0,
S0 + I0 < 1, consider the system (see also [9, Theorem 10.2.3 page 246] for
the well-posedness):

dSm(t) = −βSm(t)Im(t)dt− dm(t), Sm(0−) = S0,

dIm(t) =
(
βSm(t)− γ

)
Im(t)dt, Im(0−) = I0,

dϕm(t) = βIm(t)(1− ϕm(t))dt, ϕm(0−) = 0,

(63)

where m is prolonged by 0 on ]T,∞[. Note that Sm(t), Sm(t) and ϕm(t) take
values in [0, 1]. The cost is:

C(ξ,m) = −ξ({∞})rIϕm(∞) +

∫ T

0

(
rV + (rI − rV )ϕm(t)

)
ξ(dt), (64)

and thus

F (m)(t) = rV + (rI − rV )ϕm(t) for t <∞, F (m)(∞) = −rIϕm(∞). (65)
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Corrolary 3 Consider X as above and MFG with cost functional (64).
Then for any x0 ∈ X the set of curves {(xτt )t∈[0,T ]; τ ≤ τ̄} defined in (24)
converges when τ → 0 to a limit curve (xt)t∈[0,T ] which is the unique EVI
equilibrium flow in the sense of Definition 3 starting from x0.

Proof We check the hypothesis of items 1 and 2 in the theorem 2:
• F is bounded from below which implies hypothesis (A1).
• we move next to the assumption (A2). Note that there is no apparent
convexity in the function x 7→ F (m)(x). But, the cost C is linear in the first
variable with respect to affine combinations of measures. Therefore we choose
as curves in the assumption (A2) the segments γ(t) = (1 − t)γ(0) + tγ(1).
With this choice the distance (61) satisfies the equation (20) ( in fact we have
equality) while C will satisfy (19) with λ = 0 thus assumption (A2) is valid.
• Assumption (A4) is immediate, the space being compact.
• Assumptions (A6) follows immediately after noting that d

dt
F (m)(t) is boun-

ded independently on m and t because d
dt
ϕm(t) is.

• Assumption (A8) requires longer computations and is left as an exercise
for the reader. �

Remark 11 Within the vaccination MFG framework one can encounter also
different, more exotic, metric spaces, see for instance [27] where:

X = {u : [0,∞[→ R|u(0) = 0,∀b ≥ a ≥ 0 : |u(a)−u(b)| ≤ |a−b|, u(b) ≥ u(a)},
(66)

the metric d2 (f, g) =
∑

n∈N∗

‖f−g‖2
L2([0,n])

2n
, and the cost functional

C(ξ,m) =

∫
R
F (m)(t)u̇(t)e−rtdt, (67)

for some functional F : X → C(R;R).
In all cases, the numerical simulations show that the algorithm (2) con-

verges to a MFG equilibrium.
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A Notations

We recall below some notations and results used in the paper.
For any set Ω we denote by P(Ω) the ensemble of probability laws on Ω.

For a general application f defined on Ω with values in a measure space, f#ν
is the push-forward (image) measure of ν ∈ P(Ω) through f characterized
by f#ν(A) = ν(f−1(A)) for any measurable set A in the image. When Ω is
a metric space, for p ≥ 1 and some x0 ∈ Ω:

Pp(Ω) =

{
ν ∈ P(Ω)

∣∣∣∣∫
Ω

d(x, x0)pν(dx) <∞
}
, (68)

i.e., Pp(Ω) is the set of probability laws on Ω with finite p-th moment. Note
that the definition does not depend on the choice of x0.

When Ω is a tensor product Ω = Ω1 × Ω2 × ... × ΩM , and γ ∈ P(Ω) we
denote π1

#γ ∈ P(Ω1) the first marginal, π2
#γ ∈ P(Ω2) the second marginal,

π1,2
# γ ∈ P(Ω1 × Ω2) the marginal with respect to the first two coordinates,

etc.
The set Pp(Ω) can be given the structure of a metric space with the

p-Wasserstein metric [43, Section 5] denoted Wp with

Wp(ν1, ν2) =

(
inf

{∫
Ω×Ω

d(x, y)pγ(x, y)

∣∣∣∣ γ ∈ P(Ω× Ω), π1
#γ = ν1, π

2
#γ = ν2

})1/p

.

(69)
The set of γ that realize the ”inf” in (69) is denoted Γo(ν1, ν2).

Proving that Wp is a distance can be performed with usual techniques [43,
Lemmas 5.4 and 5.5 page 182]; also standard is to note that these distances
are ordered i.e.

Wp1(γ0, γ1) ≤Wp2(γ0, γ1), ∀ 1 ≤ p1 ≤ p2, ∀γ0, γ1 ∈ Pp1(Ω). (70)

Recall that the norm ‖f‖Lip of a function f is its smallest Lipschitz con-
stant (and +∞ if no such constant exists). Then (see [45, Remark 6.5 page
95]):

W1(γ0, γ1) = sup

{∫
Ω

f(γ0 − γ1)

∣∣∣∣ ‖f‖Lip ≤ 1

}
. (71)

In order to exploit convexity, we need to define the notion of (generalized)
geodesics (see [2, Definition 9.2.2. page 207]): let ν0, ν1, ν ∈ Pp(Ω) and ξ ∈
P(Ω× Ω× Ω) such that π1,2

# ξ ∈ Γ0(ν, ν0), π1,3
# ξ ∈ Γ0(ν, ν1). The generalized

geodesic between ν0 and ν1 with base ν is the curve (νξ(t))t∈[0,1] ⊂ Pp(Ω)
with

νξ(t) = [(y1, y2, y3) 7→ ((1− t)y2 + ty3)]# ξ. (72)
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In particular νξ(0) = ν0, νξ(1) = ν1. When ν = ν0 the generalized geodesic
is a (ordinary) geodesic in the space Pp(Ω); in this case we do not mention
the base any more.

This definition allows to state the following result (for the proof see [2,
Lemma 9.2.1 page 206, Proposition 9.3.2 page 210]):

Lemma 1 Take p = 2, λV ≥ 0 and V : Ω → R be a λV -convex function in
the sense that for any y1, y2 ∈ Ω, t ∈ [0, 1]:

V ((1− t)y1 + ty2) ≤ (1− t)V (y1) + tV (y2)− λV
2
d2(y1, y2). (73)

Then the functional V : Pp(Ω)→ R:

V(γ) =

∫
Ω

V (y)γ(dy), (74)

is λV -convex on (Pp(Ω),Wp) in the sense of the assumption (A2) on the
generalized geodesics with base ν for any ν ∈ Pp(Ω).

A.1 Relationship between assumptions (A8) and (A7)

We prove below the identity (28) in Remark 4.

Lemma 2 Suppose that C satisfies assumptions (A1), (A6) and (A8) and
α 7→ C(α, α) is continuous over Ds(C). Then (28) holds true.

Proof . Step 1 First we prove that (α, β) 7→ C(α, β) is continuous over
Ds(C)×Ds(C). Let αn → α and βn → β be two converging sequences. Then

|C(αn, βn)− C(α, β)| ≤ |C(αn, βn)− C(αn, β)|+ |C(αn, β)− C(α, β)|
≤ Ld(βn, β) + |C(α, αn) + C(αn, β)− C(α, β)− C(αn, αn)|+
|C(αn, αn)− C(α, αn)| ≤ Ld(βn, β) + CLd(αn, β)d(αn, α)

+|C(αn, αn)− C(α, α)|+ |C(α, α)− C(α, αn)|
≤ (L+ CLd(αn, β))Ld(αn, α) + Ld(βn, β) + |C(αn, αn)− C(α, α)|,(75)

which, under present hypothesis, tends to zero when αn → α and βn → β.
In particular the continuity of C implies that, with the notations in (A8), for
any fixed ∆ ∈ S(a, b): limn→∞Υ(∆; yn, a, b) = Υ(∆; x, a, b).

Step 2 Let now yn be as in the assumption (A7) and ω(·) a joint con-
tinuity modulus for the curves {x} ∪ {yk, k ≥ 1} as functions over [a, b] i.e.,
for any z ∈ {x} ∪ {yk, k ≥ 1}:

d(zt1 , zt2) ≤ ω(|t2 − t1|), ∀t1, t2 ∈ [a, b]. (76)
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Let further ML be a common bound for the length of all curves z ∈ {x}∪
{yk, k ≥ 1}, which implies

∑`−1
k=0 d(ztk+1

, ztk) ≤ML, ∀{t0, ..., t`} ∈ S(a, b).
We invoke the following reformulation of (A8): for any curve z ∈ {x} ∪

{yk, k ≥ 1} and {s0, ..., sk−1, sk, sk+1, ..., s`} ∈ S(a, b):

|Υ({s0, ..., sk−1, sk, sk+1, ..., s`}; z, a, b)
−Υ({s0, ..., sk−1, sk+1, ..., s`}; z, a, b)| ≤ CLd(zsk−1

, zsk)d(zsk , zsk+1
).(77)

Repeated application of the inequality (77) for ∆1,∆2 ∈ S(a, b) allows to
obtain for any z ∈ {x} ∪ {yk, k ≥ 1}:

|Υ(∆1; z, a, b)−Υ(∆1 ∪∆2; z, a, b)| ≤ CLMLω(|∆1|), (78)

and thus

|Υ(∆1; z, a, b)−Υ(∆2; z, a, b)| ≤ CLML (ω(|∆1|) + ω(|∆2|)) . (79)

For z = x this means that for |∆| → 0 the set {Υ(∆;x, a, b),∆} has a unique
limit which has to be Υ(x, a, b) (recall the definition (16)).

Consider now a subsequence of {n ≥ 1} (which, without loss of generality
we can consider to be {n ≥ 1} itself) such that Υ(∆n; yn, a, b) is converging
to some value J . Then, for fixed ∆ ∈ S(a, b):

|Υ(∆; yn, a, b)−Υ(∆n; yn, a, b)| ≤ CLML (ω(|∆|) + ω(|∆n|)) . (80)

Passing to the limit when n → ∞ allows to write |Υ(∆;x, a, b) − J | ≤
CLMLω(|∆|); passing again to the limit when |∆| → 0 and taking into
account the first, already proven, identity in (28), we obtain Υ(x, a, b) = J ,
hence the conclusion. �
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[20] Sebastian Funk, Marcel Salathé, and Vincent A. A. Jansen. Modelling
the influence of human behaviour on the spread of infectious diseases: a
review. J. R. Soc. Interface, 7:1247–1256, 2010.

[21] Diogo A. Gomes, Joana Mohr, and Rafael Rigão Souza. Continuous time
finite state mean field games. Applied Mathematics & Optimization,
68(1):99–143, 2013.

[22] Diogo A. Gomes, Edgard Pimentel, and Héctor Sánchez-Morgado. Time-
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convergence of gradient flows and rate-independent evolutions in metric
spaces. Milan J. Math., 80(2):381–410, 2012.

[38] Alexander Mielke, Riccarda Rossi, and Giuseppe Savaré. Nonsmooth
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