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ABSTRACT
In this paper, we propose a complete pipeline for high

quality reconstruction of dynamic objects using 2D-3D cam-
era setup attached to a moving vehicle. Starting from the
segmented motion trajectories of individual objects, we com-
pute their precise motion parameters, register multiple sparse
point clouds to increase the density, and develop a smooth and
textured surface from the dense (but scattered) point cloud.
The success of our method relies on the proposed optimiza-
tion framework for accurate motion estimation between two
sparse point clouds. Our formulation for fusing closest-point
and consensus based motion estimations, respectively in the
absence and presence of motion trajectories, is the key to ob-
tain such accuracy. Several experiments performed on both
synthetic and real (KITTI) datasets show that the proposed
framework is very robust and accurate.

Index Terms— 3D Reconstruction, 2D-3D Fusion, Point
Cloud Registration, RANSAC, ICP

1. INTRODUCTION

Scene reconstruction and modelling are two major tasks of
3D Computer Vision. The reconstruction offers us the exact
observation of the 3-dimensional world, whereas, modelling
allows us to perceive it accurately. Both of these tasks have
always been active areas of research due to their wide range
of potential applications, such as scene representation, under-
standing, and robot navigation [1].

For a moving 2D-3D camera setup, the 3D reconstruc-
tion of the scene can be obtained by registering a sequence of
point clouds with the help of Visual Odometry (VO) measure-
ments [2,3]. However, the VO-based registration is valid only
for the static scene parts. Therefore, such reconstruction suf-
fers from several visual artefacts due to the dynamic parts. In
this regard, recent work by Jiang et al. [4, 5] categorizes the
scene into static and dynamic parts before performing VO.
Their method focuses on improving VO measurements, and
the attempted dynamic object reconstruction is rather prelim-
inary and naive. In this work, we focus on the high quality
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Fig. 1: Moving Car Reconstruction from a Mobile Platform:
Top are selected frames of a moving car. Middle show the reg-
istered sparse point cloud, the smoothed point cloud, and the
reconstructed mesh of the point cloud, respectively. Bottom
show the fine reconstruction in different views.

reconstruction of dynamic objects, making them dense, co-
herent, and complete, see Fig. 1 for instance.

The experimental setup of our work consists of calibrated
2D (Point Grey Flea 2 Colour Camera) and 3D (Velodyne Li-
DAR HDL-64E) cameras attached to a moving vehicle. Given
multiple sparse and partial point clouds of a rigidly moving
object, observed from different view ports, we aim to obtain
its high quality reconstruction by exploiting both 2D and 3D
observation. This paper harnesses the achievements of [4] on
detecting dynamic objects. In [4], dynamic objects are recon-
structed by registering the sparse point clouds with the help
of Random Sample Consensus (RANSAC) on 3D-3D corre-
spondences for this problem. Final results of [4] are noisy,
multi-layered and very often incomplete. We argue that such
reconstruction is not particularly suitable for the sparse point
clouds, since there exists no precise 3D-3D correspondence.

The main contributions of this paper are two-folded: (1)
A complete pipeline for high quality 3D reconstruction of dy-
namic objects using 2D-3D camera setup attached to a mov-
ing vehicle has been proposed; (2) Our formulation leverages
from the success of closest-point and consensus based meth-
ods, while complementing each other in their unfavourable
conditions. The proposed optimization framework is robust
as well as accurate.



2. LITERATURE REVIEW

Recent studies can be categorized as: Iterative Closest Point
(ICP) -based point cloud alignment [6–13], RANSAC-based
[2,4,14,15] point cloud registration, and volumetric represen-
tation -based point cloud fusion [16–18]. ICP-based meth-
ods are robust and accurate in general. Yet, it can easily fail
when point cloud’s geometric structure is low, which yields
to an ill-posed problem. RANSAC-based approaches are ro-
bust and efficient but require sufficient number of precise 3D-
3D matching pairs. Volumetric representation -based algo-
rithms utilize the Signed Distance Function to describe the
object surface using RGB-D camera. Volumetric representa-
tion methods work nicely for dense point cloud registration of
large scene, while they suffer over-smoothing problems.

3. ROBUST POINT CLOUDS REGISTRATION

To register a sequence of sparse point clouds in a common
coordinate frame, we formulate an optimization problem sup-
ported by their noisy motion trajectories. An accurate regis-
tration is the key for obtaining high quality textured surface
reconstruction of the dynamic objects.

3.1. Liniarized Rigid Motion Formulation
Given a set of correspondences between two 3D point clouds,
the exact solution for rigid motion parameters, i.e. R and t,
can be obtained in a linear manner. Let X = [x, y, z]T and
Y = [x′, y′, z′]T be two corresponding 3D points under rigid
transformation, denoted as X = RY + t. In which, R is the
3 × 3 rotation matrix and t is the 3 × 1 translation matrix.
By employing the Gibbs representation [19] and the Cayley
transform [20], the 3D registration problem can be formulated
as a linear system [4]:

x− x′

y − y′

z − z′

 =

 0 z + z′ −(y + y′) 1 0 0
−(z + z′) 0 (x + x′) 0 1 0
y + y′ −(x + x′) 0 0 0 1



gx
gy
gz
t̃x
t̃y
t̃z

 .

(1)

where [gx, gy, gz]
T are the three rotation elements of Gibbs

rotation representation. [t̃x, t̃y, t̃z]
T = (I3 + G)t, in which

I3 is the 3 × 3 identity matrix and G is the skew-symmetric
form of Gibbs rotation angles. Since each matching pair
provides 2 independent equations, solving the 6 unknown
Eq. (1) requires minimum 3 pairs of correspondences. More-
over, a Random Sample Consensus (RANSAC) framework is
adopted for the robustness toward outliers. In the presence
of inaccurate correspondences, obtained from noisy motion
trajectories, the quality of RANSAC registration is usually
not very satisfactory. Therefore, this is further refined by
minimizing the dual-weighted closet-point energy.

3.2. Robust Closest-Point Energy Minimization
When two overlapping point clouds of the same rigid object
are given, the transformation between them is generally ob-

tained by minimizing the energy derived from the closest-
points distance. In most of the cases, this energy is min-
imized using an iterative method – also known as Iterative
Closest Point (ICP) algorithm [9, 10]. In every step, the ICP
algorithm considers closest points across two point clouds,
say reference and model, to be the corresponding ones. Let
X = {X1, ...,Xn} be the reference point cloud, and Y =
{Y1, ...,Ym} be the new model, the robust method of ICP
iteratively minimizes the following energy:

EI(T̂) = min
T

n∑
i=1

ρ( min
j∈{1,··· ,m}

‖Xi − TYj‖2), (2)

where T̂ is the desired transformation matrix that relates two
point clouds. Note that the energy term EI includes a robust
cost function to handle noisy and partial data. Our choice of
robust cost, say ρ(x), is the Tukey’s biweight function [21]:

ρ(x) =

{
(τ2/6)(1− [1− (x/τ)2]

3
) if |x| ≤ τ

(τ2/6) if |x| > τ
, (3)

and the weight of each corresponding pair is defined by:

w(x) =
1

x

dρ(x)
dx

=

{
[1− (x/τ)2]2 if |x| ≤ τ

0 if |x| > τ
, (4)

where τ is the inlier threshold, such that outliers (|x| > τ ) are
assigned zero weights.

3.3. Modified Closest-Point Energy Minimization

While consensus-based registration method requires a subset
of accurate correspondences, closest-point-based method re-
quires rich structure of the point clouds. This prohibits us
to make a choice of one method over another. Therefore,
we propose to minimize a combined energy function – one
from consensus, say ER, and the other from closest-point, say
EI . We minimize the energy function in an iterative manner,
hence use the terminology Dual-Weighted Iterative Closest
Point (DW-ICP) for this method.

First, we define an energy function that measures the qual-
ity of the inlier set obtained form 3-point RANSAC. Note that
due to the sparsity and noisy points, the inlier set obtained
from RANSAC is not precise. Let {Xi ↔ Yi}, i = 1, . . . , k
be the inlier set, the energy ER for matching consensus can be
expressed as:

ER(T̂) = min
T

k∑
i=1

ρ̃(‖Xi − TYi‖2), (5)

where k ≤ m,n, and ρ̃(·) is the Huber’s weight function:

ρ̃(x) =

{
(x2/2) if |x| ≤ τ̃

τ̃ [|x| − (τ̃ /2)] if |x| > τ̃
, (6)

w̃(x) =
1

x

dρ̃(x)
dx

=

{
1 if |x| ≤ τ̃

(τ̃ /|x|) if |x| > τ̃
, (7)
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Fig. 2: Framework for High Quality Rigid Object Reconstruction: the Point Clouds Registration and Mesh Reconstruction.

where τ̃ is the threshold for inlier matches. The Huber loss
function is selected under the assumption that the provided
inlier set is noisy with no severe outlier that needs to be com-
pletely discarded. In the spirit of Eq. (2) and Eq. (5), we for-
mulate our combined energy function as follows:

E(T̂) = min
T̂

α
√√√√ 1

n

n∑
i=1

ρ( min
j∈{1,··· ,m}

‖Xi − TYj‖2) +

(1− α)

√√√√ 1

k

k∑
i=1

ρ̃(‖Xi − TYi‖2)

 ,

(8)

where α is the regularization term to control the influence
of the EI and ER energy terms. Rather than optimizing the
closest-point energy EI or matching consensus energy ER in-
dependently, the DW-ICP aims to iteratively and simultane-
ously optimize the joint energy E of Eq. (8).

4. 3D RECONSTRUCTION FRAMEWORK

A complete pipeline for high quality 3D reconstruction of
rigidly moving objects, using 2D-3D camera setup attached
to a moving vehicle, is shown in Fig. 2. There are two ma-
jor steps involved, namely the Point Clouds Registration and
Smooth Mesh Reconstruction.

4.1. Point Cloud Registration
Our method takes the 3D motion trajectories of a sequence
of segmented point clouds obtained from [4] as input. First,
we use the 3-Point RANSAC registration to roughly register
the point clouds as initialization. Afterwards, the DW-ICP
is applied to refine the registration. Note that (also refer to
Eq. (8)) the DW-ICP iteratively minimizes a combined energy
term, one from consensus ER and other from closest-point EI ,
during the optimization process. On one hand, EI minimizes
the overall registration error of the whole 3D point clouds.
On the other hand, ER minimizes the registration error of the
inliers obtained form RANSAC. These two terms are usually
complementary to each other, which is the key to the success
of the proposed optimization framework.

On top of traditional ICP, there are two main advan-
tages of DW-ICP: (a) Feature matching constraint promises
a proper registration regardless the poor geometry structure
of the point clouds. (b) Robust estimation framework is pre-
served such that the algorithm is generic and robust to outliers
during a long term registration.

4.2. Mesh Reconstruction
To reconstruct a photo-realistic high quality 3D model, a
full pipeline is presented in Fig. 2 (blue box). There are
three major steps involved, namely Moving Least Square
(MLS) [22] point cloud smoothing, 3D Mesh Reconstruction,
and Weighted Blend Texture Mapping [23].

Point Cloud Smoothing Due to the measurement noise
of the laser scanner and imperfect registrations, a long se-
quenced registered point cloud consists of outliers and multi-
layer effects. Surface reconstructed from such point cloud
suffers from many visual artefacts, such as spiky mesh and
holes. Thus, a MLS algorithm, which smooths an unorga-
nized point could using a polynomial fitting, is applied.

Surface Reconstruction Prior to the surface reconstruc-
tion, a sub-sampling processing according to the points’
poisson-disk distribution [24] is applied. This avoids the
repetition of redundant points (overlapped points) due to the
multiple observations of the same scene. Later, a Ball Piv-
oting Triangulation algorithm [25] is used to establish the
neighbour-points relationships, followed by a dilation op-
eration for hole filling. Next, a Taubin Surface Smoothing
method is adopted to smooth the reconstructed surface while
preserving the sharp edges. Finally, a Least Square Subdi-
vision approach [26] is performed to up-sample followed by
re-meshing the point cloud to produce high quality meshes.

Texture Mapping We make use of 2D images acquired
by the 2D-3D camera setup for texture mapping. During this
process, photographic alignment between 3D mesh and im-
ages are required. Since the 2D-3D camera setup is already
calibrated, and the motion of the camera is known, all the im-
ages are aligned with respect to the mesh reconstructed frame.
The camera poses (between the camera and the reconstructed
mesh) are estimated by computing the inverse of the trans-
formation matrices (obtained from registration) and using the
camera calibration parameters. Furthermore, the blurring dur-
ing the texture fusion from multiple images is reduced by us-
ing a Weighted Blending algorithm.

5. EXPERIMENTS

For the evaluation, experiments were conducted on both syn-
thetic and real (KITTI [1]) datasets. We generated three sets
of synthetic data to quantify the robustness and accuracy of
the proposed algorithms. Qualitative results of the proposed
framework is presented using real data. In all of our ex-



Fig. 3: Reconstructed Van and Cola Truck: top are registered point clouds using [4]; bottom are our high quality meshes.

periments, the algorithm parameters were set as: α = 0.8,
τ = 0.08m, τ̃ = 0.03m. The stopping conditions of the DW-
ICP optimization are: rotation tolerance εR = 10e-6, transla-
tion tolerance εT = 10e-6, and maximum DW-ICP iteration
as 100. All the experiments are conducted in a computer with
Intel Quad Core i7-2640M, 2.80GHz, 8GB Memory.

Synthetic Point Cloud Trajectory

Zoom in View Zoom in Region Side View

Fig. 4: Synthetic Trajectory of Van Object.

Synthetic Datasets: The synthetic datasets were gener-
ated for three objects from KITTI dataset, namely Van, Red
Car, and Cola Truck. An example of synthetic trajectory and
visible parts are shown in Fig. 4. Note that some frames in
the trajectory consist of different views (sides or back views),
resembling the partial overlapping and poor 3D geometric
structure problems. To evaluate the robustness of the algo-
rithm, different levels of Gaussian noise were added to the
model. We applied 10 different levels of noise, from 0.005
to 0.050 in meters. The maximum noise level is chosen as
2.5 times higher than the expected accuracy (0.02m) of the
Velodyne laser scanner.

Figure 5 shows the performances of 4 different algo-
rithms, namely 3-Point RANSAC [4], 3-Point RANSAC +
ICP refinement [9], 3-Point RANSAC + Robust-ICP [12] and
3-Point RANSAC + DW-ICP. The overall performance of the
algorithms are (top-down) ranked as: DW-ICP, Robust-ICP,
RANSAC+ICP and RANSAC. The Robust-ICP (using M-
Estimator) has significantly better performance against that
of traditional ICP. Most importantly, the proposed DW-ICP
constantly outperforms the other approaches, regardless of
rotation and translation.

Real Datasets: Table 1 depicts the dataset information,
where the 3D Error (averaged Leave-One-Out Error) metric
is used to quantify the registration performance. The reg-
istration error of our method is consistently lower than [4],

0.05 0.025 0.55

Noise Level

0

0.02

0.04

0.06

E
rr

o
r(

m
)

Van

RANSAC

RANSAC+ICP

RANSAC+R-ICP

DW-ICP

0 0.025 0.05

Noise Level

0

0.05

0.1

E
rr

o
r(

m
)

Red Car

RANSAC

RANSAC+ICP

RANSAC+R-ICP

DW-ICP

0 0.025 0.05

Noise Level

0

0.02

0.04

0.06

0.08

E
rr

o
r(

m
)

Cola Truck

RANSAC

RANSAC+ICP

RANSAC+R-ICP

DW-ICP

0 0.025 0.05

Noise Level

0

0.05

0.1

0.15

E
rr

o
r(

R
a
d
.)

RANSAC

RANSAC+ICP

RANSAC+R-ICP

DW-ICP

0 0.025 0.05

Noise Level

0

0.05

0.1

0.15

E
rr

o
r(

R
a
d
.)

RANSAC

RANSAC+ICP

RANSAC+R-ICP

DW-ICP

0 0.025 0.05

Noise Level

0

0.02

0.04

E
rr

o
r(

R
a
d
.)

RANSAC

RANSAC+ICP

RANSAC+R-ICP

DW-ICP

Fig. 5: Synthetic Data Quantification: top and bottom are
averaged translation and rotation errors on Van, Red Car, and
Cola Truck dataset, respectively.

although we have slightly more computation time due to
the DW-ICP refinement process. Moreover, the high qual-
ity reconstructions of Fig. 1 and Fig. 3 are obtained using
the proposed framework of Fig. 2. Note that the objects are
reconstructed from long-term and faraway observations (see
column Dist. of Table 1), under the situations that both target
objects and camera system are moving in high speeds. The
framework effectively overcomes the accumulation errors
during the registration process and products very satisfactory
results. Figure 3 demonstrates that significantly better results
of our method are achieved comparing to [4].

Object # Frame Sides Dist. 3-Point RANSAC [4] Ours
(m) Error (m) Time (s) Error (m) Time (s)

Van 44 3 16.5 0.0150 3.1 0.0131 4.6
Red Car 60 3 10.8 0.0084 2.8 0.0080 4.3

Cola Truck 48 2 30.0 0.0234 3.7 0.0229 4.1

Table 1: Dataset Information: Col. Sides is number of object
sides (left, right, back, and front) being captured. Col. Dist. is
the averaged distance from the camera to the object. Col. 3-
Point RANSAC [4] and Col. Ours show their respective aver-
aged 3D error and computation time.

6. CONCLUSION
We have proposed an effective optimization method, which
combines the idea of consensus and closest-point in a com-
mon framework, to register highly sparse 3D point clouds
from long term observations. Furthermore, We present a com-
plete pipeline for high quality 3D mesh reconstruction. Re-
sults obtained from several experiments on both synthetic and
real data were very satisfactory.
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