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Abstract – Filamentary regions of high vorticity irregularly form and disappear in the turbulent
flows of classical fluids. We report an experimental comparative study of these so-called “coherent
structures” in a classical vs. quantum fluid, using liquid helium with a superfluid fraction varied
from 0% up to 83%. The low-pressure core of the vorticity filaments is detected by pressure
probes located on the sidewall of a 78-cm-diameter von Kármán cell driven up to record turbulent
intensity (Rλ ∼

√
Re ≃ 10000). The statistics of occurrence, magnitude and relative distribution

of the filaments in a classical fluid are found indistinguishable from their superfluid counterpart,
namely the bundles of quantized vortex lines. This suggests that the internal structure of vortex
filaments, as well as their dissipative properties have a negligible impact on their macroscopic
dynamics, such as lifetime and intermittent properties.

Copyright c⃝ EPLA, 2017

Introduction. –

Motivation. Turbulent flows of water, air or other
classical fluids are populated by so-called “coherent struc-
tures”. These structures are localized in space and char-
acterized by an organized flow motion. In particular,
worm-shaped regions of high vorticity —often referred to
as “vortex filaments”— irregularly spring up, and after
a lifetime significantly larger than their turnover time,
destabilize and vanish [1–5].

A few numerical studies of superfluid helium have shown
that bundles of quantum vortex lines should be the coun-
terparts of classical vortex filaments in quantum fluids.
The formation of such bundles in a freely evolving quan-
tum fluid have been recently reported in ref. [6]. This re-
sult was preceded by a number of numerical studies where
an external field was promoting the formation of vortex
bundles in a superfluid (e.g., see refs. [7,8]).

The motivation of the present study is to detect exper-
imentally coherent structures in quantum turbulence.

Experimental context. The comparison between clas-
sical and quantum (or superfluid) turbulence has focused
a lot of attention over the last years [9]. Regarding exper-
imental studies of turbulent fluctuations, the situation is
contrasted [10]. On the one hand, several similarities have
been reported including on velocity spectra [11,12] and en-
ergy transfer between eddies of different sizes [13]. On the

other hand, differences between classical and quantum tur-
bulences are reported when vorticity (instead of velocity)
is directly or indirectly probed, by spectral measurements
of the vortex line density [14,15] and by visualization of
reconnections of individual vortices [16,17].

In this context, coherent vortex structures are interest-
ing objects to compare classical and quantum turbulence.
Indeed, a bundle of quantum vortices is an intermedi-
ate structure living between the quantum scales (where
a quantized vortex line can move without dissipation) and
macroscopic scales (where classical turbulent properties
are expected).

Methodology. We use liquid helium 4He, both above
its superfluid transition (where it is a classical fluid)
and below it, where it acquires properties of a quantum
fluid [18,19]. In the latter case, according to the two-fluid
model of Landau and Tisza, it behaves as an intimate mix-
ture of a “normal” fluid and a “superfluid”, which are cou-
pled by a mutual friction force. The normal fluid follows
the Navier-Stokes equation, while the superfluid has zero
viscosity and can be described as a tangle of quantized
vortex lines. In the zero-temperature limit, the normal
fluid density (volumetric mass) ρn vanishes and 4He be-
comes a pure superfluid. Conversely, near the transition
temperature (≃ 2 K), the superfluid density ρs = ρ − ρn

vanishes. In the present study, the superfluid fraction ρs/ρ
varies from 0% to 83% (2.46 K ≥ T ≥ 1.58 K).
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To detect coherent vortex structures, we look for the low
pressure appearing in their core due to centrifugal force.
This pressure depletion can be assessed from the Poisson
equation for pressure p in an incompressible flow [20], de-
rived by taking the divergence of Navier-Stokes equation
(a generalization for compressible flow is proposed in [21]):

∆p =
ρ

2
(ω2 − σ2), (1)

where ρ are the fluid density, ω, and σ are the flow vorticity
and rate of strain defined as

ω2 =
1

2

∑

i,j

(∂ivj − ∂jvi)
2, (2)

σ2 =
1

2

∑

i,j

(∂ivj + ∂jvi)
2. (3)

By analogy with electrostatics, eq. (1) shows that a
localized region of high vorticity is a (negative) source
term for pressure1. The technique of tracking low-pressure
spikes to detect coherent structures has been widely used
in classical turbulent flows, in particular the von Kármán
geometry (e.g., see refs. [23–28]). In practice, a pres-
sure transducer is imbedded in the sidewall of the cell;
when a vortex filament passes by the probe, the result-
ing negative spike greatly exceeds in magnitude the stan-
dard deviation of the pressure fluctuations generated by
the “background” turbulence. Thus, the vortex filament
can be detected.

Generalization of this equation in a quantum fluid at
finite temperature is straightforward in the framework of
HVBK equations, discussed in [29]. In this approach, the
superfluid tangle is coarse-grained into continuous veloc-
ity v⃗s and vorticity ω⃗s fields. The detail of individual vor-
tices is lost but the resulting equation for the superfluid
can account for fluid motion at scales much larger than
the typical inter-vortex distance. The HVBK equations
are an Euler equation for the superfluid (subscript s) and
a Navier-Stokes equation for normal fluid (subscript n),
both coupled together:

ρs [(∂v⃗s/∂t) + (v⃗s · ∇)v⃗s] = −
ρs

ρ
∇p+ρsS∇T − F⃗ , (4)

ρn

[

(∂v⃗n/∂t) + (v⃗n · ∇)v⃗n

]

= −
ρn

ρ
∇p−ρsS∇T

+ F⃗ + µ∇2v⃗n, (5)

where µ is the dynamic viscosity, S is the entropy, and
where the coupling term F⃗ accounts for mutual coupling.

Assuming incompressibility, and taking the divergence
of the sum of eqs. (4) and (5), one gets a generalized Pois-
son equation in the two-fluid model:

∆p =
ρs

2
(ω2

s − σ2
s) +

ρn

2
(ω2

n − σ2
n). (6)

1Contrary to a frequent assumption, ω
2 and σ

2 do not balance
each other on average in closed flows [22].
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Fig. 1: (Colour online) Schematic of the experiment.

The above equation shows that negative-pressure spikes
in a quantum fluid remain markers of high-vorticity re-
gions. Superfluid and normal fluid vorticities are probed
simultaneouly, and weighted in proportion of the density
of each fluid. Note that the low pressure on individual
quantum vortices has been invoked to explain the trap-
ping of light particles along vortices (see [16,30,31] and
references therein).

Experimental set-up. –

The von Kármán flow. The von Kármán flow used
for this experiment has been extensively described in a
dedicated paper [32]. We only recall below its main spec-
ifications, see fig. 1.

The liquid helium 4He used in this experiment was se-
quentially set to temperatures of 2.4 K, 2.1 K and 1.6 K,
that is both above and below the superfluid transition tem-
perature (Tλ ≃ 2.15 K at 3 bars). These three tempera-
tures correspond respectively to superfluid fractions of 0%,
19% and 80% at the pressures of interest (see table 1).
The pressurization of the flow prevents the occurrence of
cavitation for all flow conditions.

The flow is enclosed in a 780-mm-diameter cylindri-
cal vessel and it is mechanically stirred by two co-axial
bladed disks of radius R = 360 mm, located 702 mm away,
counter-rotating in this work. The 8 blades on each disk
are curved, and the direction of rotation is such that the
convex side of the blades moves into the fluid. This specific
direction is chosen because it results in a stable large-scale
circulation between the disks [32].

Such a stirring gives rise to two counter-rotating sub-
flows separated by a mixing layer, as depicted in, fig. 1.
The (mean) position of this mixing layer is determined by
the relative angular velocities Ωb and Ωt of the bottom
and top disks. For exact counter-rotation (Ωb = Ωt), the
mixing layer is located at mid-height. In this study, we set
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Table 1: Characteristics of the times series.

Superfluid Temperature Pressure Reynolds Rotation Mean rotation Azimutal velocity Skewness Flatness
fraction ρs/ρ (K) (bar) number Re dissym. θ Ω (rad/s) V ⋆ (m/s)

0% 2.42 (> Tλ) 3.4 5.5 × 107 0.20 8.2 1.9 −0.64 5.3
0% 2.41 (> Tλ) 3.4 5.5 × 107 0.12 8.2 1.3 −1.59 14.4
0% 2.46 (> Tλ) 3.6 6.6 × 107 0.12 10.2 1.3 −1.62 12.9
19% 2.10 (< Tλ) 2.7 5.9 × 107 0.20 5.7 1.4 −0.48 4.6
19% 2.10 (< Tλ) 2.7 8.6 × 107 0.12 8.3 1.2 −1.50 15.6
19% 2.10 (< Tλ) 2.8 1.1 × 108 0.12 10.2 1.3 −1.63 14.0
79% 1.64 (< Tλ) 3.0 1.3 × 108 0.20 8.3 1.9 −0.45 4.5
79% 1.64 (< Tλ) 3.0 1.3 × 108 0.11 8.2 1.1 −1.55 13.3
83% 1.58 (< Tλ) 3.1 8.9 × 107 0.11 5.7 0.8 −1.98 17.8

Ωb > Ωt, to position the mixing layer above the mid-plane
away from the probes which are located 34 mm below this
mid-plane. The relative angular velocity of the disks is
characterized by

θ =
Ωb − Ωt

Ωb + Ωt
. (7)

The parameter θ was set to 11–12% and 20% to probe the
flow at two distances from the mixing layer. In classical
von Kármán flow, the Reynolds number is often defined as

Re =
ρR2(Ωb + Ωt)

2µ
=

ρR2Ω

µ
, (8)

where ρ is the density of the fluid and Ω is the mean
angular velocity. For our purposes, this definition re-
mains a convenient control parameter below the super-
fluid transition. Indeed, at large scales, the superfluid and
normal fluid are strongly locked by the mutual coupling
force which make them behave as a single fluid of viscosity
µ [8,33].

The flow parameters θ and Re used in the present study
are given in table 1. We stress that this study is performed
at ultra-large Reynolds number, of order Re ≃ 108 rarely
reached in laboratory conditions. Following [34], the typ-
ical Taylor microscale Reynolds number can be assessed
from Re as Rλ ≃

√

(Re) ≃ 10000.

Instrumentation. –

The parietal pressure probes. Fluctuations of parietal
pressure are monitored at two locations, both 34 mm be-
low the mid-plane and at 80 mm from each other (mea-
sured along the sidewall circumference). At each location,
a differential transducer senses the pressure difference be-
tween an orifice in the sidewall and a pressure reference.

The pressure reference is low-pass-filtered by an hy-
draulic impedance so that it mirrors the static pressure
inside the flow, and follows its possible slow drift. From
the spectral analysis of the measured pressure fluctuations,
this lower cut-off frequency of the probe is estimated to
be significantly lower than 100 mHz.

The orifice in the flow sidewall is a square-edge 1-mm-
diameter hole, perpendicular to the wall, with an effective

depth of around 20 mm. The membrane of the pressure
transducer is mounted at the end of this connecting pipe.
The Helmholtz resonance is close to 1 kHz and mechanical
vibrations of the transducers are damped using a mechan-
ical filter.

In practice, the largest useful frequencies of the mea-
sured signal was not limited by the probe itself but by
broadband pressure oscillations in the flow, in the hun-
dreds of hertz range. Those oscillations were probably
originating from the cryogenic system maintaining the ex-
periment cold.

Electronics and acquisition. Each piezo-resistive pres-
sure transducer consists in a Wheatstone bridge laying
over a deflecting membrane. Each bridge is polarized by
a battery-based ∼ 350 mA current source. The bridge
output voltage is amplified using a low-noise instrumen-
tation preamplifier (0.6 nV/

√
Hz, model EPC1-B). A 8th-

order linear-phase anti-alias filter at frequency fc (Kemo
1208/20/41LP) is inserted before an 18-bits acquisition
board (National Instrument 6289). Acquisitions are per-
formed at sampling frequency 20 kHz (with fc = 6 kHz)
and last between 25 and 45 min, except for a few sam-
pled at 1 kHz (with fc = 200 Hz) for practical reasons. All
times series are post-processed by a numerical low-pass
filter at 160 Hz to avoid possible post-processing artifacts
caused by the Helmholtz resonance.

Results. –

Detection of coherent structures in turbulent superfluid.
We first discuss the classical flow regime (ρs/ρ = 0). The
red time series plotted in fig. 2 illustrates the recording of
several sharp depressions during 100 rotations of the disks.
The time axis is scaled by 2π/Ω so that it corresponds to
a number of turns of the disks.

Two possible artifacts of the measurements are acoustic
noise within the fluid and mechanical noise propagating
along the mechanical structure of the experiment. Pres-
sure fluctuations were simultaneously recorded from two
nearby sensors (as previously done in [24], for example),
and were compared. Most depressions are only captured
by one probe, which would not be the case if they were
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Fig. 2: (Colour online) Pressure time series at 3 temperatures
for roughly similar forcing. The superfluid fraction ranges from
0% to 84%. Time on the x-axis is rescaled by the mean rotation
time 2π/Ω of the disks. The sharp depressions are interpreted
as the signature of vortical coherent structures passing over the
pressure tap.

caused by an external noise source. Occasionally, depres-
sions are recorded by both probes with mean delays con-
sistent with the mean direction of the flow, which confirms
that the measured signal corresponds to localized coherent
structures carried in the fluid.

Assuming a passive transport of the coherent structures
between the two probes, the delay can be interpreted as a
“time of flight” and gives the local flow (azimutal) veloc-
ity V ⋆ using the 8 cm probe separation. It is found in the
m · s−1 range, as given in table 1. With V ⋆ = 1.6 m · s−1

and taking 160 Hz as the effective noise-free probe dynam-
ics, we find a noise-free effective probe resolution of 1 cm
but the wavelet analysis of the raw time series (without
the 160 Hz low-pass filter) allows to track the signature of
the depression nearly up to the ≃ 1 kHz probe resonance
frequency, showing that the coherent structures can be at
least as thin as 1.6 m · s−1/1 kHz ≃ 2 mm, to be compared
with the large scale L of such von Kármán flows [28],

L ≃ R/2 ≃ 200 mm, (9)

and to rough estimates of the Taylor and Kolmogorov dis-
sipative scales λ and η based on the homogeneous isotropic
turbulence equations,

λ ∼ L ·
√

10/Re⋆ ≃ 0.2 mm, (10)

η ∼ L/Re⋆3/4 ≃ 10−3 mm, (11)

where we took Re⋆ = LV ⋆ρ/µ ≃ 1.4 · 107. Surely, the
flow is neither homogeneous nor isotropic, but these equa-
tions can still provide useful orders of magnitude, and
show that the present probe is partly resolving the in-
ertial range of the turbulent cascade, which extends from
∼ L down to ∼ 10η.
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Fig. 3: (Colour online) Probability density function (pdf) of the
pressure fluctuations normalized to unity standard deviation.

We now address the superfluid regime. Figure 2 illus-
trates two typical times series with superfluid fractions of
ρs/ρ = 19% and 83% acquired at Reynolds numbers sim-
ilar to the classical regime (Re = 7.107 ± 16%). As in the
classical case, sharp depressions are found. No qualitative
difference is found between the classical and superfluid
regimes when all the acquired time series are scrutinized.

To the best of our knowledge, this is the first experimen-
tal evidence of coherent structures detected in a turbulent
superfluid. We present below a quantitative analysis of
the strength, density spatial distribution of those coher-
ent structures with respect to their classical counterpart.

Histogram of pressure: density and strength of coher-
ent structures. Figure 3 shows the probability den-
sity functions (pdf) of pressure time series normalized by
the standard deviation of their positive pressure fluctua-
tions. The pdf shape is compatible with the description
given in classical turbulence literature for von Kármán
flows [23,24,26–28]. It can be approximated as Gaus-
sian complemented with a long exponential tail associated
to the rare but intense negative pressures spikes associ-
ated with the coherent structures. Such skewed pressure
pdf have been reported in a number of classical turbu-
lent flows, for instance in homogeneous isotropic turbu-
lence [35,36], along the centerline of pipes [37] and in
jets [38]2. One advantage of the von Kármán geometry
over these other flows is the efficient generation of vortex
filaments in its mixing layer, and the resulting significant
enhancement of the pressure skewness compared to the
background skewness resulting from the quadratic veloc-
ity dependence of pressure [40].

Whatever the superfluid fraction and Reynolds num-
ber, all the pdf corresponding to a given θ are found
to collapse, up to our statistical uncertainty. In other
words, the density and strength of coherent structures are

2In boundary layers more symmetrical pdf can be found, see,
e.g., [37,39].
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Fig. 4: (Colour online) Upper (lower) plot: skewness (flatness)
of pressure fluctuations. The open (full) symbols correspond
to measurements in superfluid (in classical liquid helium). The
square-shaped (circle-shape) symbols are for a differential ro-
tation parameter of θ = 0.2 (θ = 0.11–0.12). The crosses and
pluses symbols correspond to the probe-bandwidth check with
53 Hz low-pass filtering (see text).

found independent of the superfluid fraction from 0% up
to 83% of superfluid. This is the second important result
of this study. When θ is lowered, the mixing layer gets
closer to the probes and the density of coherent structures
increases. This suggests that the mixing layer is an intense
source of coherent structures, both in classical and super-
fluid turbulence. The dependence with the distance to the
mixing layer can then be understood as the result of the
finite lifetime [27] of the vortical coherent structures. This
provides an indirect indication that the lifetime of the co-
herent structures is similar in the classical and superfluid
cases.

The asymmetry and flatness of the pdf can be assessed
quantitatively from two statistical quantities: the skew-
ness and kurtosis of the pressure fluctuations. They are
respectively defined as the centered third and fourth mo-
ments of the fluctuations normalized by their standard
deviation.

Figure 4 shows the measured skewness and flatness
(kurtosis) below and above the superfluid transition tem-
perature. The numerical values are given in table 1. Ap-
plication of an additional 160 Hz/3 ≃ 53 Hz low-pass filter
on the time series does not alter significantly those quanti-
ties suggesting that we do not have time resolution issues.
For a given value of θ, no Reynolds number dependence
emerges from our measurements when Re ∼ 108 is varied
by a factor 2.3, justifying a posteriori that the definition
of a Reynolds number below the superfluid transition is
not critical in the present study. On the contrary, the
dependence of both parameters vs. θ is around a factor 3.

Spatial distribution of superfluid coherent structures.
To go one step further in the comparison of coherent
structures, we now address their relative spatial distri-
bution in the classical and superfluid regimes. To this
end, we focus on the statistics of time interval δT between
two consecutive coherent structures passing by one probe.
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/ρ=0%), Re = 5.5e7 [θ=0.12]
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s
/ρ = 83 %), Re = 8.9e7 [θ=0.11]

independent events stat. (1 mean occurence / 11.5 turns)

Fig. 5: (Colour online) Histogram of the intervals between
successive coherent structures which are larger than δT . To
improve statistical convergence, the statistics from two pres-
sure taps (thin lines) have been averaged (thicker line). The
dashed line corresponds to the expected dependence of inde-
pendent events with a mean separation of 11.5 mean rotations
(see text).

We need to choose an arbitrary criterion for identifica-
tion of coherent structures. Several criteria have been
proposed and studied in the classical turbulence litera-
ture, with little incidence in the respective conclusions
(e.g., see [24–26,41]). Following [26], we choose a pres-
sure threshold at −3 in standard deviation units. Larger
thresholds of 4 and 5 were also tested and gave compatible
results but with a worse statistical convergence. In fig. 5,
the y-axis represents the number of intervals between suc-
cessive coherent structures which are larger than δT (x-
axis). For the best convergence, the longest time series at
temperatures corresponding to 0% and 83% of superfluid
have been chosen and the times series from the two probes
(thin lines) were averaged together (thick lines).

If coherent structures were fully independent of each
other, we would expect a Poisson statistics for the inter-
vals p(δT ) ∼ e−δT/τ . By integration, the probability of an
interval larger than δT is proportional to τe−δT/τ . This
exponential law accounts reasonably well for the results
for intervals δT longer than a characteristic correlation
time of ∼ 10 mean rotation periods, in good agreement
with the classical turbulence literature [26,41]. A fit gives
a mean separation time τ = 11.5± 1.5 in units of rotation
period. For shorter intervals, the statistics is no longer
exponential. This reveals a trend for coherent structures
to cluster, which is found similar in the classical and su-
perfluid cases. In a frozen turbulence picture, this result
means that the spatial distribution of the coherent struc-
tures is found similar in classical and quantum flows.

Concluding remarks. – If the pressure probes were
able to resolve individual quantum vortices, dissipative
scales or the genuine pressure profile of a vortex bundle,
some differences between measurements in a classical and
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in a quantum flows would be apparent. Obviously, the
resolution of the present probes is not as such, but we
showed that it is sufficient to clearly detect the individ-
ual coherent structures, from their measured (low-pass-
filtered) pressure profile. Thus, the statistics of occurrence
and strength of coherent structures could be characterized
and we found that they are statistically indistinguishable
when measured in a classical flow and with a superfluid
fraction of 19% and 79% to 83%. In other words, the
microscopic differences in internal structures of classical
vorticity filaments and superfluid vortex bundles do not
prevent both types of coherent structures from recovering
similar macroscopic properties.

Among the perspectives, it would be interesting to re-
late these findings to the unexpected f−5/3 vortex line
spectra [14], which have been interpreted as passive scalar
spectra postulating that a large amount of vorticity was
localized at small scales and carried by the flow [42,43].
The presence of vortex bundles could support well this
interpretation (for an alternative interpretation, see [44]).
Another interesting perspective is to explore temperatures
around 1.9 K where a singular behavior has been numeri-
cally predicted for intermittency [45,46], but not yet evi-
denced experimentally [11,47]. A third perspective would
be understand the dissipative interaction between the bun-
dles of superfluid vortices and the (possibly overlapping)
filaments of normal fluid.
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