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Routes for Efficient Computational Homogenization of Nonlinear 
Materials Using the Proper Generalized Decompositions

H. Lamari · A. Ammar · P. Cartraud · G. Legrain · F. Chinesta · F. Jacquemin

Abstract Computational homogenization is nowadays one
of the most active research topics in computational me-
chanics. Different strategies have been proposed, the main
challenge being the computing cost induced by complex
microstructures exhibiting nonlinear behaviors. Two quite
tricky scenarios lie in (i) the necessity of applying the
homogenization procedure for many microstructures (e.g.
material microstructure evolving at the macroscopic level
or stochastic microstructure); the second situation con-
cerns the homogenization of nonlinear behaviors imply-
ing the necessity of solving microscopic problems for each
macroscopic state (history independent nonlinear models)
or for each macroscopic history (history dependant non-

H. Lamari · P. Cartraud · G. Legrain
GeM, UMR CNRS-Centrale de Nantes-Université de Nantes, 
1 rue de la Noe, BP 92101, 44321 Nantes cedex 3, France 
e-mail: Hajer.Lamari@ec-nantes.fr

P. Cartraud
e-mail: Patrice.Cartraud@ec-nantes.fr

G. Legrain
e-mail: Gregory.Legrain@ec-nantes.fr

A. Ammar
Arts et Métiers ParisTech, 2 boulevard du Ronceray, BP 93525,
49035 Angers cedex 01, France
e-mail: Amine.AMMAR@ensam.eu

F. Chinesta
EADS Corporate Foundation International Chair, GeM,
UMR CNRS-Centrale de Nantes-Université de Nantes,
1 rue de la Noe, BP 92101, 44321 Nantes cedex 3, France
e-mail: Francisco.Chinesta@ec-nantes.fr

F. Jacquemin
GeM, UMR CNRS-Centrale de Nantes-Université de Nantes,
58, rue Michel Ange, BP 420, 44606 Saint Nazaire cedex, France
e-mail: Frederic.Jacquemin@univ-nantes.fr

linear models). In this paper we present some preliminary
results concerning the application of Proper Generalized
Decompositions—PGD—for addressing the efficien solu-
tion of homogenization problems. This numerical technique
could allow to compute the homogenized properties for any
microstructure or for any macroscopic loading history by
solving a single but highly multidimensional model. The
PGD allows circumventing the so called curse of dimen-
sionality that mesh based representations suffer. Even if this
work only describes the firs steps in a very ambitious ob-
jective, many original ideas are launched that could be at the
origin of impressive progresses.

1 Introduction

Homogenization approaches are now intensively used in
numerous engineering applications. These approaches be-
long to the more general category of multiscale methods,
in which it is usually distinguished two main families of ap-
proaches, namely hierarchical and concurrent, see for exam-
ple [15, 18, 29].

In hierarchical approaches, the behavior at the higher—
macro—scale is obtained from the solution of a boundary
value problem solved at the lower—micro—scale and posed
on a representative volume element (RVE) of the material.
This behavior can be determined under the form of macro-
scopic constitutive relations whose effective properties are
identifie from the solution of the microscopic problem. Mi-
cromechanical approaches fall in this category [6, 44]. The
microscopic solution can also be incorporated in the macro-
scopic problem through a numerical scheme. It can be con-
densed at the macroscale as in the case of the variational
multiscale method [20], or within a decomposition domain
framework for structural mechanics applications [31]. The
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microscopic solution may also enrich the macroscale solu-
tion using strategies such as X-FEM and G-FEM, see e.g.
[17] and [38] respectively. One of the major feature of hier-
archical approaches is that the macroscopic and microscopic
problems are not coupled. This means that the microscopic
problems can be solved once for all, and consequently that
only a finit number of microscopic solutions have to be
known.

By contrast, the microscopic and macroscopic scales are
solved simultaneously in concurrent approaches. This is re-
quired when the macroscopic behavior can not be obtained
explicitly, which occurs as soon as microscopic nonlinear
behaviors are involved. The area where the microscopic de-
scription is needed can be isolated but in this paper we will
focus on problems where the whole domain is characterized
by an underlying microstructure exhibiting a nonlinear be-
havior. These methods were reviewed in [24] in the contin-
uum mechanics framework. The most popular approach is
the FE2 method initiated by Feyel in [16], which has also be
named later on computational homogenization, see e.g. [19].
This method assumes that the microstructure is very small
compared to the macroscopic domain. So at the macroscopic
scale, it plays the role of a material point—an integration
point if the finit element is used—at which a RVE is at-
tached.

As noticed in [29], both the hierarchical and concurrent
simulation approaches offer cost savings over large scale di-
rect numerical simulation of the microstructure. However
efforts are directed towards improving their numerical ef-
ficien y.

In hierarchical multiscale methods, one current challenge
is the analysis of a representative volume element with
a highly complex geometry. Powerful techniques such as
computer tomography actually enable to obtain high reso-
lution 3D images of material microstructures. Thus an im-
age with 1024 × 1024 × 1024 voxels is now common, but
its incorporation in a numerical model requires the use of an
appropriate solution method.

In concurrent multiscale methods, such as the FE2 ap-
proach, one main limitation is its computational cost, since
several microscopic problems have to be solved at each in-
tegration point of the macroscopic domain. Therefore at-
tempts have been made to build hierarchical approaches for
nonlinear materials. One can thus defin approximate non-
linear constitutive relations, see e.g. [30]. Another possibil-
ity is to build a discrete material map (see Refs. [40, 41, 43]
for the case of nonlinear elasticity). This approach has been
used in these references in nonlinear elasticity. It consists in
discretizing the macroscopic strain space and determine the
microscopic solution for each node of this space. Even if the
number of microscopic problems to be solved is large, this
method is much more efficien than the FE2 approach.

Recently, the authors have proposed a solution method
based on the separated representation of the unknown fields

coined Proper Generalized Decomposition—PGD—. This
technique was successfully applied for solving multidimen-
sional models encountered in the kinetic theory description
of complex fluids involving steady state and transient lin-
ear and non-linear models [2–4, 32]. Time-space separated
representations were originally introduced many years ago
by P. Ladeveze for addressing complex time-dependent non-
linear models within the LATIN framework (see [26] and
the references therein). Some recent works proving the po-
tentiality of this approach can be found in [27, 33] among
many others. In [2, 3] we generalized the separated represen-
tation for treating general multidimensional models. Obvi-
ously, a firs possibility of separated representations consists
of a separated representation of the physical space, by writ-
ing a generic function as a finit sums of functional prod-
ucts whose involved functions only depends on a single co-
ordinate. This strategy was applied in [11] in high resolu-
tion linear homogenization. The computational complexity
of separated representations scales linearly with the dimen-
sion of the space instead the exponential growing character-
istic of mesh-based descriptions. Obviously, the use of the
PGD allows for impressive computing cost savings, making
possible the solution of models never until now solved (e.g.
models define in spaces involving hundreds dimensions
[3, 12]).

Models usually encountered in computational mechan-
ics that generally involve space and time as coordinates can
be transformed, as we illustrate later, into highly multidi-
mensional models. Obviously, the resulting models suffers
of the curse of dimensionality if mesh-based representations
are considered. However, the Proper Generalized Decompo-
sition allows to circumvent efficientl such illness. For the
sake of clarity, the use of a multidimensional modeling is
illustrated and motivated in a quite simple physics. Imagine
for example that you are interested in solving the heat equa-
tion without knowing the microscopic material thermal con-
ductivity (because of its stochastic nature or simply because
it has not been measured prior to solve the thermal model).
You have three possibilities: (i) wait to know the conductiv-
ity before solving the heat equation (conservative solution !);
(ii) solve the equation for many values of the conductivity
(a sort of Monte Carlo) (brute force approach !); or (iii) solve
the heat equation only once for any value of the conductivity
(cleverest alternative !). Obviously the third alternative is the
most exciting one. The computation of this general solution
consists in introducing the conductivity as an extra coordi-
nate, playing the same role than the standard space and time
coordinates, even if it is not derivated. This procedure works
very well, and can be extended for introducing many other
extra-coordinates: source terms, initial conditions . . . [13].
This is the basic idea of spectral approaches in stochastic
analysis, which are receiving a growing interest in computa-
tional science [34].
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In the fiel of homogenization, two simpler scenarii can
be considered: (i) defin a generic microstructure from a
voxel description and assume the conductivity of each voxel
as an extra-coordinate; and (ii) address non-linear homoge-
nization by solving the model at the microscopic level for
any macroscopic state or history. This paper has as main ob-
jective opening some routes for addressing both scenarios
thanks to the use of Proper Generalized Decompositions.
For the sake of simplicity, and because this work is a firs
attempt in this ambitious objective, we will focus on the
homogenization of linear and non-linear (time-independent
and time-dependent) thermal models. We are aware that this
contribution is opening many routes without closing any of
them, but as just mentioned this is not more than a prelim-
inary analysis of the potential application of PGD for some
multidimensional descriptions related to computational ho-
mogenization. The application of these ideas to more real-
istic scenarios as well as to thermomechanical models is a
work in progress.

This paper is be organized as follows: After illustrating
the use of Proper Generalized Decomposition for address-
ing parametric models, it will be applied to the computa-
tion of effective conductivity of linear heterogeneous mate-
rials. The benefit of the PGD will be demonstrated for the
analysis of random materials, for which numerous analyses
are performed on mesoscale windows in order to defin the
RVE, see e.g. [22, 23]. Then, nonlinear thermal models will
be addressed. In this case, the PGD enables to obtain an ex-
plicit representation of the nonlinear macroscopic behavior,
for both history independent and history dependent micro-
scopic behaviors. Finally, numerical examples are given in
the last section to illustrate the performance of the approach.

2 Illustrating the Solution of Multidimensional
Parametric Models by Using the PGD

In what follows, the construction of the Proper Generalized
Decomposition is illustrated by considering a quite simple
parametric heat transfer equation:

∂u

∂t
− k�u − f = 0 (1)

where (x, t, k) ∈ �×I ×� and for the sake of simplicity the
source term is assumed constant, i.e.f = cte. Because the
conductivity is considered unknown, it is assumed as a new
coordinate define in the interval �. Thus, instead of solving
the thermal model for different values of the conductivity
parameter we prefer introducing it as a new coordinate. The
price to be paid is the increase of the model dimensionality;
however, as the complexity of PGD scales linearly with the
space dimension the consideration of the conductivity as a
new coordinate allows fast and cheap solutions.

The solution of (1) is searched under the form:

u (x, t, k) ≈
i=N∑

i=1
Xi (x) · Ti (t) · Ki (k) (2)

In what follows we are assuming that the approximation at
iteration n is already done:

un (x, t, k) =
i=n∑

i=1
Xi (x) · Ti (t) · Ki (k) (3)

and that at present iteration we look for the next functional
product Xn+1(x) · Tn+1(t) · Kn+1(k) that for alleviating the
notation will be denoted by R(x) ·S(t) ·W(k). Prior to solve
the resulting non linear model related to the calculation of
these three functions, a model linearization is compulsory.
The simplest choice consists in using an alternating direc-
tions fi ed point algorithm. It proceeds by assuming S(t)

and W(k) given at the previous iteration of the non-linear
solver and then computingR(x). From the just updatedR(x)
andW(k) we can update S(t), and finall from the just com-
puted R(x) and S(t) we compute W(k). The procedure con-
tinues until reaching convergence. The converged functions
R(x), S(t) and W(k) allow definin the searched functions:
Xn+1(x) = R(x), Tn+1(t) = S(t) and Kn+1(k) = W(k). We
are illustrating each one of the just referred steps.

Computing R(x) from S(t) and W(k) We consider the
global weak form of (1):
∫

�×I×�
u∗

(
∂u

∂t
− k�u − f

)
dxdt dk = 0 (4)

where the trial and test functions write respectively:

u (x, t, k) =
i=n∑

i=1
Xi (x) · Ti (t) · Ki (k)

+ R (x) · S (t) · W (k) (5)

and

u∗ (x, t, k) = R∗ (x) · S (t) · W (k) (6)

Introducing (5) and (6) into (4) it results
∫

�×I×�
R∗ · S · W ·

(
R · ∂S

∂t
· W − k · �R · S · W

)
dxdt dk

= −
∫

�×I×�
R∗ · S · W ·Rn dxdt dk (7)

where Rn define the residual at iteration n that reads:

Rn =
i=n∑

i=1
Xi ·∂Ti

∂t
· Ki −

i=n∑

i=1
k · �Xi · Ti · Ki − f (8)
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Now, being known all the functions involving the time
and the parametric coordinate, we can integrate (7) in their
respective domains I × �. Integrating in I × � and taking
into account the following notations

w1 =
∫

�
W 2 dk s1 =

∫

I

S2 dt r1 =
∫

�

R2 dx

w2 =
∫

�
kW 2 dk s2 =

∫

I

S · dS

dt
dt

r2 =
∫

�

R · �R dx w3 =
∫

�
W dk s3 =

∫

I

S dt

r3 =
∫

�

R dx wi
4 =

∫

�
W · Ki dk

si
4 =

∫

I

S · dTi

dt
dt ri

4 =
∫

�

R · �Xi dx

wi
5 =

∫

�
kW · Ki dk si

5 =
∫

I

S · Ti dt

ri
5 =

∫

�

R · Xi dx

(9)

Equation (7) reduces to:
∫

�

R∗· (w1 · s2 · R − w2 · s1 · �R) dx

= −
∫

�

R∗·
(

i=n∑

i=1
wi
4 · si

4 · Xi −
i=n∑

i=1
wi
5 · si

5 · �Xi

− w3 · s3 · f
)

dx (10)

Equation (10) define an elliptic steady state boundary value
problem that can be solved by using any discretization tech-
nique operating on the model weak form (finit elements,
f nite volumes . . . ). Another possibility consists in coming
back to the strong form of (10):

w1 · s2 · R − w2 · s1 · �R

= −
(

i=n∑

i=1
wi
4 · si

4 · Xi −
i=n∑

i=1
wi
5 · si

5 · �Xi − w3 · s3 · f
)

(11)

that could be solved by using any collocation technique (fi
nite differences, SPH . . . ).

Computing S(t) from R(x) and W(k) In the present case
the test function writes:

u∗ (x, t, k) = S∗ (t) · R (x) · W (k) (12)

Now, the weak form reads
∫

�×I×�
S∗ · R · W ·

(
R · ∂S

∂t
· W − k · �R · S · W

)
dxdt dk

= −
∫

�×I×�
S∗ · R · W ·Rn dxdt dk (13)

that integrating in the space � × � and taking into account
the notation (9) results:
∫

I

S∗·
(

w1 · r1 · dS

dt
− w2 · r2 · S

)
dt

= −
∫

I

S∗·
(

i=n∑

i=1
wi
4 · ri

5 · dTi

dt
−

i=n∑

i=1
wi
5 · ri

4 · Ti

− w3 · r3 · f
)

dt (14)

Equation (14) represents the weak form of the ODE definin
the time evolution of the fiel S that can be solved by using
any stabilized discretization technique (SU, Discontinuous
Galerkin, . . . ). The strong form of (14) reads:

w1 · r1 · dS

dt
− w2 · r2 · S

= −
(

i=n∑

i=1
wi
4 · ri

5 · dTi

dt
−

i=n∑

i=1
wi
5 · ri

4 · Ti − w3 · r3 · f
)

(15)

than can be solved by using backward finit differences, or
higher order Runge-Kutta schemes, among many other pos-
sibilities.

Computing W(k) from R(x) and S(t) In the present case
the test function writes:

u∗ (x, t, k) = W ∗ (k) · R (x) · S (t) (16)

Now, the weak form reads
∫

�×I×�
W ∗ · R · S·

(
R · ∂S

∂t
· W − k · �R · S · W

)
dxdt dk

= −
∫

�×I×�
W ∗ · R · S·Rn dxdt dk (17)

that integrating in the space � × I and taking into account
the notation (9) results:
∫

�
W ∗· (r1 · s2 · W − r2 · s1 · k · W) dk

= −
∫

�
W ∗·

(
i=n∑

i=1
ri
5 · si

4 · Ki −
i=n∑

i=1
ri
4 · si

5 · k · Ki

− r3 · s3 · f
)

dk (18)
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Equation (18) does not involve any differential operator. The
strong form of (18) reads:

(r1 · s2 − r2 · s1 · k) · W

= −
(

i=n∑

i=1

(
ri
5 · si

4 − ri
4 · si

5 · k
)

· Ki − r3 · s3 · f
)

(19)

that represents an algebraic equation. Thus, the introduction
of parameters as additional model coordinates has not a no-
ticeable effect in the computational cost, because the orig-
inal equation does not contain derivatives with respect to
those parameters.

Finally, note that other minimization strategies have been
proposed, leading to more robust and faster convergence for
building-up the PGD [13].

Remark 1 The construction of each term in the sum (2)
needs a certain number of iterations because of the non lin-
earity of the problem related with the approximation (3).
We denote by mi the number of iterations that were needed
for computing the i-sum in (2). Let m = ∑i=N

i=1 be the total
number of iterations involved in the construction of the sep-
arated approximation (2). It is easy to note that the solution
procedure needs the solution of m 3D problems related to
the construction of the space functions Xi(x), i = 1, . . . ,N ,
m 1D ordinary differential equations related to the construc-
tion of functions Ti(t) and m linear systems related to the
definitio of functions Ki(k). In general m rarely exceeds
ten. On the other hand the number of sums N needed to ap-
proximate the solution of a given problem depends on the
solution regularity itself, but all the experiments carried out
until now reveal that this number ranges from few tens to
few hundreds. Thus, we can conclude that the complexity of
the solution procedure is of some hundreds of 3D solutions
(the cost related to the one dimensional problems being neg-
ligible with respect to the one related to the 3D problems).
Now, if we assume a classical approach one should solve
a 3D problem at each time step and for each value of the
parameter k. In usual applications the complexity reaches
millions of 3D solutions. In [14] we proved that the CPU
time savings by applying the PGD can be of several orders
of magnitude.

3 Homogenization of Linear Heterogeneous Models

3.1 Formulation of the Homogenization Problem

Due to the microscopic heterogeneity, the macroscopic ther-
mal modeling needs an homogenized thermal conductivity
which depends on the microscopic details.

To compute this homogenized thermal conductivity in the
linear case, one could isolate a representative volume ele-
ment at position X, �rve(X) (this representative volume el-
ement is supposed to be defined using for example meth-
ods which are proposed in [22, 23, 35]) and assume that the
microstructure is perfectly define at such scale. Thus, the
microscopic conductivity k(x) is known at each point in the
microscopic domain x ∈ �rve(X).

We can defin the macroscopic temperature gradient at
position X, G(X), from:

G(X) = 〈g〉 = 1
|�rve(X)|

∫

�rve(X)

g(x) d� (20)

where g(x) = ∇T (x).
We also assume the existence of a localization tensor

L(x,X) such that

g(x) = L(x,X) ·G(X) (21)

Now, we consider the microscopic heat flu q according
to the Fourier’s law

q(x) = −k(x) · g(x) (22)

and the macroscopic counterpart Q(X) that writes:

Q(X) = 〈q(x)〉 = 〈−k(x) · g(x)〉 = 〈−k(x) ·L(x,X)〉 ·G(X)

(23)

from which the homogenized thermal conductivity can be
define from

K(X) = 〈−k(x) ·L(x,X)〉 (24)

As k(x) is perfectly known everywhere in the represen-
tative volume element, the definitio of the homogenized
thermal conductivity tensor only requires the computation
of the localization tensor L(x,X). Several approaches are
proposed in the literature to defin this tensor, according to
the choice of the boundary conditions. Our objective here
is not to discuss this choice. The interested reader can fin
some details in [21, 22, 37], or [36]. For sake of simplic-
ity, we use essential boundary conditions corresponding to
the assumption of uniform temperature gradient on the RVE
boundary. Hence we are led to consider in the 3D case the
solution of the three boundary value problems related to the
steady state heat transfer model in the microscopic domain,
define by:
{∇ · (k(x) · ∇T 1(x)) = 0

T 1(x ∈ ∂�rve) = x
(25)

{∇ · (k(x) · ∇T 2(x)) = 0

T 2(x ∈ ∂�rve) = y
(26)
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Fig. 1 Homogenization
procedure of linear
heterogeneous models

and
{∇ · (k(x) · ∇T 3(x)) = 0

T 3(x ∈ ∂�rve) = z
(27)

It is easy to prove that these three solutions verify
⎧
⎪⎪⎨

⎪⎪⎩

G1 = 〈∇T 1(x)〉T = (1,0,0)

G2 = 〈∇T 2(x)〉T = (0,1,0)

G3 = 〈∇T 3(x)〉T = (0,0,1)

(28)

where (·)T denotes the transpose. Thus, the localization ten-
sor results finally

L(x,X) =
(
∇T 1(x) ∇T 2(x) ∇T 3(x)

)
(29)

The resulting non-concurrent homogenization procedure
is illustrated in Fig. 1. As soon as tensor L(x,X) is known
at each position X, the constitutive law relating the macro-
scopic temperature gradient and macroscopic heat flu be-
comes defined

From the computational point of view the main difficult
concerns the solution of the three boundary value problems
using very fin meshes required to represent accurately all
the microscopic details as well as the application of this pro-
cedure at different places for accounting for the spatial evo-
lution of the microstructure of its stochastic nature [9].

3.2 Separated Representation of the Physical Space

As mentioned in introduction, recent advances in imaging
techniques offer the opportunity to obtain high resolution
images of material microstructures. This leads to very large
finit element models which can reach one billion of degrees

of freedom, see e.g. [5]. Nowadays, the performance of com-
puters fails to solve, in a reasonable time and with classical
solvers, problems of this size. In order to circumvent this
difficult we propose to use a separated representation of
the physical space.

Thus, the temperature field involved in the thermal mod-
els (25)–(27) are searched in a separated form. Therefore, at
iteration n the solution writes

T n(x, y, z) =
i=n∑

i=1
Xi(x) · Yi(y) · Zi(z) (30)

and it is enriched until reaching convergence by computing
the next term in the finit sums decomposition

T n+1(x, y, z) = T n(x, y, z) + R(x) · S(y) · W(z) (31)

Applying the strategy described in the previous section
we compute the function R(x) assuming known S(y) and
W(z), then S(y) from the just computed R(x) and W(z)

and finall W(z) from R(x) and S(x). After reaching con-
vergence we can assign R(x) → Xn+1(x), S(y) → Yn+1(y)

and W(z) → Zn+1(z).
We assume that the microscopic conductivity can be writ-

ten in a separated form, i.e. each component of the conduc-
tivity tensor kij (x) can be expressed from:

kij (x) ≈
p=M∑

p=1
(k1ij )p(x) · (k2ij )p(y) · (k3ij )p(z) (32)

This representation can be performed by applying for exam-
ple a multidimensional singular value decomposition (SVD)
[25]. Following the procedure described in Sect. 2, the com-
putation of R(x) implies the solution of the second order
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BVP

αx

d2R(x)

dx2
+ βx

dR(x)

dx
+ γxR(x) = fx(x) (33)

where the coefficient depend on the integrals of functions
depending on y and z in their respective domains. Analo-
gously, the calculation of functions S(y) and W(z) implies
the solution of similar equations but implying different co-
efficient and source terms:

αy

d2S(y)

dy2
+ βy

dS(y)

dy
+ γyS(y) = fy(y) (34)

and

αz

d2W(z)

dz2
+ βz

dW(z)

dz
+ γzW(z) = fz(z) (35)

Thus, as proved in [11], models involving millions of
nodes in each direction can be solved because the procedure
based on separated representations avoids the definitio of
a mesh. This enables degrees of resolution never until now
reached, the main issue being the solution of the one dimen-
sional boundary value problems. In general the discrete form
of these problems leads to tridiagonal matrices that can be
easily solved. In the next section we are describing a pro-
cedure, originally proposed in [7], specially adapted to such
kind of solutions that avoids the solution of a large size lin-
ear system.

Remark 2 The main limitation in using this fully separated
representation is precisely the necessity of build-up a sepa-
rated approximation of the microscopic thermal conductiv-
ity (32) because complex microstructures imply thousands
of terms in the sum (32) as well as the necessity of defin
ing the conductivity in a grid of the representative volume
element prior to apply a singular value decomposition—
SVD—. The separated representation of the conductivity at
the microscopic level is not mandatory, but without such
a representation, integrals in the whole domain have to be
computed, which can dramatically reduce the computational
efficien y. In Sect. 3.3 we explore some possibilities for al-
leviating this drawback.

3.3 Efficien Solvers of One-Dimensional BVP

Consider the generic second order BVP implying the fiel
u(x), x ∈ [0,L]

a
d2u

dx2
+ b

du

dx
+ cu = f (x) (36)

with u(x = 0) = ul and u(x = L) = ur .
The solution of this equation can be written as the ad-

dition of the general solution of the homogeneous equation

and a particular solution of the complete equation, that is
denoted by hh(x) and uc(x) respectively.

The solution uc(x) can be computed by integrating equa-
tion

a
d2uc

dx2
+ b

duc

dx
+ cuc = f (x) (37)

from uc(x = 0) = 0 and duc

dx
|x=0 = 0. The integration can

be performed by using a standard backward finit difference
scheme, avoiding the solution of any linear system.

Now the solution of the homogeneous equation can be
expressed as uh(x) = αuh

1(x) + βuh
2(x), where uh

1(x) and
uh
2(x) results from the backward integration of

a
d2uh

1
dx2

+ b
duh

1
dx

+ cuh
1 = 0 (38)

with uh
1(x = 0) = 0 and duh

1
dx

|x=0 = 1; and

a
d2uh

2
dx2

+ b
duh

2
dx

+ cuh
2 = 0 (39)

with uh
2(x = 0) = 1 and duh

2
dx

|x=0 = 0.
Thus, finall , the general solution writes u(x) = uc(x) +

αuh
1(x) + βuh

2(x). The coefficient α and β can be easily
computed by enforcing the model boundary conditions:

β = ul (40)

because uc(x = 0) = uh
1(x = 0) = 0 and uh

2(x = 0) = 1, and

α = ur − uc(x = L) − ul · uh
2(x = L)

uh
1(x = L)

(41)

The advantage of such procedure lies in its simplicity to
be implemented in any computing platform even when con-
sidering thousands of millions of discrete values [7, 8, 10].

3.4 Enriched Parametric Models

Many materials exhibit a random microstructure, needing
the solutions of different realizations of the microstructure.
Such situation is also encountered for the numerical deter-
mination of the RVE size, see e.g. [22, 23, 41]. Other times
the microstructure is known everywhere, but as it could
evolve in the macroscopic scale, one should solve a ho-
mogenization problem at each integration point (or nodal
position) at the macroscopic scale. In this section we are
describing an efficien way of circumventing this computa-
tional complexity.

For the sake of simplicity, a two dimensional thermal
model define in � ⊂ �2 is considered. It is characterized
by a microstructure that evolves in the macroscopic scale
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(X). Thus, at each position X, a representative volume ele-
ment �rve(X) = [0,L]2 can be extracted.

In the following, points in �rve(X) are denoted by x. We
assume that the microstructure in each �rve(X) consists of
M × M cells, each one characterized by a value of the ther-
mal conductivity.

If h = L
M
, the cells boundaries are define by the seg-

ments (xi = (i −1)×h,y), i = 1, . . . ,M +1 and y ∈ [0,L];
and (x, yi = (i − 1) × h), i = 1, . . . ,M + 1 and x ∈ [0,L].

If we defin the characteristic function χx
k (x), k =

1, . . . ,M by

χx
k (x) =

{
1 if xk < x < xk+1
0 otherwise

(42)

and analogously χ
y
k (y), k = 1, . . . ,M by

χ
y
k (y) =

{
1 if yk < y < yk+1
0 otherwise (43)

any cell Cij with i, j = 1, . . . ,M , can be define by Cij =
χx

i (x) × χ
y
j (y).

Using this notation the thermal conductivity at the micro-
scopic level can be expressed in the separated form:

k(x) =
i=M∑

i=1

j=M∑

j=1
kij χx

i (x) × χ
y
j (y) (44)

In what follows for the sake of simplicity we are assum-
ing that the thermal conductivity is isotropic in each cell,
assumption that allows writing

k(x) =
i=M∑

i=1

j=M∑

j=1
kij χx

i (x) × χ
y
j (y) (45)

Now, two possibilities can be considered for performing
the homogenization:

1. The simplest one consists in applying the procedure de-
scribed in Sect. 3. Thus, three steady state thermal mod-
els should be solved at each point X on the correspond-
ing microscopic domain�rve(X)where the homogenized
thermal properties are searched.

2. The second possibility consists in introducing the cell
thermal conductivities as extra-coordinates of the ther-
mal model, which implies the following separated form
of the temperature field

T (x, y, k1,1, k1,2, . . . , kM,M)

≈
l=N∑

l=1
Xl(x) · Yl(y) ·

p=M∏

p=1

q=M∏

q=1
	l

pq(kp,q) (46)

Now, by solving the resulting thermal model only
once, but define in a space involving 2+M ×M dimen-
sions, one could have direct access to the temperature at
each point for any value of the thermal conductivities in
each cell composing the microscopic representative el-
ement volume. Consequently, when we move from one
position X to another one X′, as soon as the different
cell thermal conductivities are known at this new posi-
tion X′, the temperature fiel is determined from (46).
This allows the computation of the homogenized ther-
mal conductivity without the necessity of solving a ther-
mal model at each location in the macroscopic domain.
The price to be paid is the solution of a thermal model
in a multidimensional space, but this solution, thanks to
the proper generalized decomposition can be performed,
only once and off-line.

Remark 3 As just argued in Sect. 2, the fact that the ther-
mal model does not contain derivatives with respect to the
thermal conductivity, implies that the introduction of the dif-
ferent cell conductivities as extra-coordinates has not a sig-
nifican impact in the computational efforts needed to con-
struct the separated representation. However, the number of
terms involved in the separated representation, N , can in-
crease significantl with the number of extra-coordinates in-
troduced in the model. In [3] the solution of models contain-
ing hundreds of dimensions was performed in some minutes
using a standard laptop, however, the solution of the models
just described needed hundreds of terms and computations
ranging from some hours to some days. In any case, as indi-
cated previously, this multidimensional problem should be
solved only once and off-line.

4 Advanced Non-concurrent Non-linear
Homogenization

Until now only linear behaviors were addressed, however in
practice the most serious difficultie appear as soon as non-
linear behaviors are considered. In this section, we focus on
this issue, and more precisely in two scenarii: The firs one
concerns non-linear behaviors independent on the thermal
history, and the second one consider the more general case
in which the thermal properties at a certain point and time
depends not only on the present temperature, but also on its
entire thermal history.

4.1 History Independent Non-linear Behaviors

Using the notation introduced previously we assume that in
a certain representative volume element �rve(X) located at
position X, the temperature gradient G(X) is known (from
the previous homogenized macroscopic thermal model solu-
tion). We are interested in knowing the associated heat flu
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Fig. 2 Concurrent
homogenization of non-linear
history independent thermal
models

Q(X) at that position. In the present case, the non-linearity is
coming from the fact that the thermal conductivity depends
on the temperature itself, i.e. k(T ).

Usual concurrent homogenization proceeds as illustrated
in Fig. 2. The macroscopic temperature and the macroscopic
temperature gradient are used for computing at the micro-
scopic level the averaged heat flu that corresponds to the
macroscopic heat flux

If one solves the thermal model in �rve(X)

{∇ · (k(T ) · ∇T (x)) = 0

T (x ∈ ∂�rve) =G · x (47)

it is easy to prove that 〈∇T (x)〉 =G.
The main difficult lies in the fact that as soon as the

gradient of temperature changes at position X a new ther-
mal model must be solved in the associated representative
volume element �rve(X). In the linear case, only a 3D ther-
mal model for each space coordinate must be solved in each
representative volume element �rve(X). But now, as just ar-
gued, the complexity increases because the dependence of
the homogenized thermal properties on the thermal state and
not only on the microstructure.

For simplifying the solution process, the thermal model
in �rve(X) could be solved for any macroscopic gradient G.
Thus, as soon as the macroscopic gradient is known, the
macroscopic heat flu Q could be obtained without the ne-
cessity of solving a new thermal model. The main idea lies in
introducing the components of G (denoted by G1,G2,G3)
as extra-coordinates in the thermal model.

The main issue is how to transfer G from the boundary
conditions to the partial differential equation itself. For this
purpose, a new temperature fiel θ(x) is define as:

θ(x) = T (x) −G · x (48)

The thermal model (47) becomes:
{∇ · (k(θ,G) · ∇(θ(x) +G · x)) = 0

θ(x ∈ ∂�rve) = 0
(49)

whose solution is searched in a separated form

θ(x, y, z,G1,G2,G3)

≈
i=N∑

i=1
Xi(x) · Yi(y) · Zi(z) · �1

i (G1) · �2
i (G2) · �3

i (G3)

(50)

by applying the proper generalized decomposition as de-
scribed in Sect. 2.

In mechanics, (for example non linear elasticity), this
procedure suffice for determining the macroscopic stress
� from the macroscopic deformation tensor E. This ap-
proach is sufficien because prescribing a displacement fiel
u= E · x on the boundary of �rve ensures that the resulting
microscopic displacement fiel verifie 〈ε〉 = E. Obviously,
a displacement given by E ·x+U0 (with U0 a uniform trans-
lation) could be prescribed on the boundary without modi-
fying the solution because 〈ε〉 = E is still satisfie as the
elastic constants depend on the strain but not on the dis-
placement. In mechanical models only the gradient of the
displacement plays a role. Thus, if a new displacement fiel
is define as:

ũ(x) = u(x) −E · x−U0 (51)

The introduction of the resulting expression of u(x) into
the non-linear elastic problem, would make the translation
fiel U0 disappears because (i) it is constant and then it van-
ishes when derivatives apply, and (ii) the elastic coefficient
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only depends on the gradient of the displacement (strain)
and not on the displacement itself.

Other models however exhibit such a dependence on the
fiel itself. For example in thermal models, the Fourier’s law
relates the temperature gradient with the heat flu trough the
material conductivity that usually depends on the tempera-
ture itself. The same situation can be found in the Fick’s dif-
fusion law relating the concentration gradient and the chemi-
cal species flu es through the so-called diffusion coefficien
that is usually assumed depending on the concentration it-
self. In all these cases the procedure just described for com-
puting the macroscopic flu from the macroscopic gradi-
ent (in our case Q from G) fails: Prescribing the tempera-
ture G · x + T0 on the boundary of �rve ensures condition
〈∇T 〉 = G. However, the validity of the computed Q can-
not be guaranteed because the computed temperature fiel
depends on T0, due to the dependence of the thermal con-
ductivity on the temperature itself.

This problem of transferring the macroscopic tempera-
ture to the microscopic problem is addressed in [36]. In
this reference, the microscopic temperature over the RVE
is linked to the macroscopic temperature through an equa-
tion which expresses the consistency of the stored heat at
the macro and the micro level.

So we can see that as in [36], the data of the macroscopic
problem are composed with the macroscopic temperature
and the gradient of temperature. Therefore, the temperature
fiel is searched under the following form, after applying the
change of variable for transferring the boundary condition to
the equation itself:

θ(x, y, z,G1,G2,G3, T0)

≈
i=N∑

i=1
Xi(x) · Yi(y) · Zi(z) · �1

i (G1) · �2
i (G2) · �3

i (G3)

· ϒi(T0) (52)

4.2 History Independent Non-linear Behaviors:
A Simplifie Procedure

We have just proven that the accurate homogenization of
non-linear behaviors, in absence of internal variables (and
then in absence of history dependencies), needs to transfer
two key information from the macroscopic scale to the mi-
croscopic one: (i) the gradient of the macroscopic tempera-
ture and (ii) the macroscopic temperature itself. The result-
ing microscopic problem is non-linear (the thermal proper-
ties depend on the microscopic temperature) and as just de-
scribed, one equation links the microscopic temperature to
the macroscopic one.

Even if the procedure is conceptually simple, its numeri-
cal implementation deserves certain difficultie since the so-
lution is nonlinear with respect to the gradient of the macro-

scopic temperature. Thus, many authors proposed a simpli-
fie modeling in which the thermal properties at the micro-
scopic level (that depend on the existing local temperature)
are frozen to values corresponding to the macroscopic tem-
perature. That is, the thermal conductivity at any point in
the microscopic RVE is fi ed according to the macroscopic
temperature, and then it does not evolve with the local mi-
croscopic temperature. This approach has been rigorously
justifie from the asymptotic expansion method for materi-
als with periodic microstructure in [42]. In a few words, in
this paper, the authors have shown that for a given 0-th or-
der temperature—i.e. macroscopic temperature—the effec-
tive conductivity of the non-linear temperature dependent
problem is equal to that of the linear problem with ther-
mal properties fi ed at the macroscopic temperature. There-
fore this paper provides a justificatio of an approach which
was widely applied in the context of computational homog-
enization of non-linear thermal models, see for example
[1, 28, 39].

Now, with the thermal properties frozen at the micro-
scopic scale, the non-linearity of the microscopic model dis-
appears. Thus, the microscopic solution only needs the pre-
scription of the macroscopic temperature gradient G(X) as
soon as the thermal conductivity is assumed known every-
where in the microscopic representative volume.

The simplest possibility for computing a general solution
is solving the microscopic linear models define in Sect. 3.1.
(two in the 2D case and 3 in the 3D case) for the mate-
rial thermal conductivity related to any macroscopic tem-
perature �(X). The solution of these microscopic problems
(T 1(x), T 2(x) and T 3(x) in Sect. 3.1.) for any macroscopic
temperature � suggests the separated representation:

T j (x, y, z,�) ≈
i=N∑

i=1
Xi(x) · Yi(y) · Zi(z) · θi(�)

j = 1,2,3 (53)

These solutions allow computing the homogenized con-
ductivity tensor for any value of the macroscopic tempera-
ture �. Through the dependence of the conductivity tensor
to the macroscopic temperature, this homogenization prob-
lem displays similarities with homogenization in nonlinear
elasticity, for which non-concurrent multiscale approaches
have been recently proposed [40, 41, 43]. In these refer-
ences, the macroscopic nonlinear behavior is computed after
the discretization of the macroscopic strain space. Then, in a
second step, a continuous representation is determined by an
interpolation technique. It can be seen that our approach pro-
vides automatically this interpolation and therefore enables
to compute in an elegant and efficien way the homogenized
behavior of non linear models.
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Fig. 3 Concurrent
homogenization of non-linear
history dependent thermal
models

Remark 4 The gradient of the temperature field given by
(53) allows computing the homogenized macroscopic con-
ductivity tensor within a non-concurrent framework. How-
ever, because of the non-linearity of the macroscopic ho-
mogenized thermal model (i.e. the macroscopic homog-
enized thermal conductivity depends on the macroscopic
temperature) we should determine an expression of the
macroscopic tangent conductivity. This can be easily ob-
tained from the derivatives of the different components of
the homogenized conductivity tensor with respect to the
macroscopic temperature. From (53) we can actually notice
that for this purpose it suffice to take the derivative of the
spatial gradient of the microscopic temperatures ∇T 1, ∇T 2

and ∇T 3 involved in the definitio of K(X) with respect to
the macroscopic temperature �. Obviously, this procedure
is very easy to use, whereas in [40, 43] the tangent oper-
ators are computed once the interpolation of the solutions
obtained in the discretized macroscopic space is built.

4.3 History Dependent Non-linear Behaviors

In the previous section we assumed that the thermal model
coefficien depends on the instantaneous temperature, but
for the sake of generality we extend the previous procedure
(which consists in introducing all the thermal loads as extra-
coordinates) to models in which the thermal parameters also
depend on the thermal history. This scenario is the equiv-
alent of mechanical models involving internal variables, as
elastoplasticity for example.

Usual concurrent homogenization proceeds as illustrated
in Fig. 3. The macroscopic temperature and the macroscopic
temperature gradient histories are used for computing at the
microscopic level the averaged heat flu at present time that
corresponds to the macroscopic heat flux

In what follows, we assume, without looking for any
physical interpretation, that the thermal conductivity at a

certain location x ∈ �rve(X) depends on the thermal history
at that position, i.e. k= k(T (τ )), 0≤ τ ≤ t .

Now, as in the previous case, we should solve the thermal
model define in �rve(X), but in this case the thermal model
must be integrated in the whole time interval 0≤ t ≤ tmax:

∂T

∂t
− ∇ · (k(T (t)) · ∇T ) = 0 (54)

with T (x ∈ ∂�rve, t) =G(t) · x+ T0(t).
We would like to introduce the components of G(t) and

T0(t) as extra-coordinates in the partial differential equation
describing the thermal model. However, as these potential
candidates become coordinates, which still depend on the
time, they cannot be at present assumed as coordinates in
the model (the model coordinates must be independent).

Let Gi (t), i = 1,2,3 be the components of vector G(t).
We could approximate the evolution of each one of these
components using a set of discrete values. The simplest
choice consists of using a simple linear finit element in-
terpolation:

Gi (t) =
j=M∑

j=1
Nj(t) ·Gi

j (55)

where Gi
j = Gi (t = tj ), tj = (j − 1) × �t , and Nj(t) the

standard linear finit element shape functions.
We proceed in a similar way for approximating T0(t)

T0(t) =
j=M∑

j=1
Nj(t) · (T0)j (56)

Now, the discrete valuesGi
j , i = 1,2,3 and j = 1, . . . ,M ;

and (T0)j , j = 1, . . . ,M , all them being independent, can
be considered as extra-coordinates in the transient thermal
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model. By solving it only once, and possibly off-line, we
have direct access to the solution of the thermal model for
any prescribed macroscopic history of the thermal loadG(t)

and T0(t). The price to be paid is the solution of a transient
model in a space of dimension 3+ 1+ 4× M .

As proposed earlier, the solution of the resulting multidi-
mensional model is searched in a separated form (to allow a
linearly scaling complexity with respect to dimensionality).
Thus, the solution results in:

T (x, y, z, t,G1
1, . . . ,G

1
M, . . . ,G3

1, . . . ,

G3
M, (T0)1, . . . , (T0)M)

≈
k=N∑

k=1
Xi(x) · Yi(y) · Zi(z) · �i(t) ·

(
j=3∏

j=1

k=M∏

k=1
�

j,k
i (Gj

k )

)

·
(

k=M∏

k=1
ϒk

i ((T0)k)

)
(57)

Remark 5 As in the previous case, prior to introduce these
extra-coordinates in the transient thermal model, they should
be transferred from the boundary condition into the PDE it-
self. This transfer is performed as in the former case by ap-
plying the change of variable θ(x, t) = T (x, t) −G(t) · x−
T0(t).

4.4 History Dependent Non-linear Behaviors: A Simplifie
Procedure

Even in the case of history dependent models, the complex-
ity of the computation can be drastically reduced when con-
sidering the simplifying hypothesis proposed in Sect. 4.2
(thermal properties frozen to the values dictated by the
macroscopic scale).

As just described, the proper solution of this kind of mod-
els needs the introduction of many time evolutions: Those
related to each component of the macroscopic temperature
gradient and the one related to the time evolution of T0 that
is prescribed on the domain boundary to enforce that the mi-
croscopic averaged temperature equals the macroscopic one
at any time. Thus, the use of M values for describing the
time evolution of these fields implies the introduction, in
the general 3D case, of 3×M +M extra-coordinates as just
described in the previous section. However, if the thermal
properties are assumed evolving as dictated by the macro-
scopic temperature evolution, the non-linearity at the micro-
scopic level disappears, and it suffice to compute the ho-
mogenized conductivity tensor as described in Sect. 4.1. for
any evolution of the macroscopic temperature, i.e.:

T j (x, y, z, t,�1, . . . ,�M)

≈
i=N∑

i=1
Xi(x) · Yi(y) · Zi(z) · �i(t) ·

(
k=M∏

k=1
θk
i (�k)

)
(58)

that reduces the dimensionality of the problem with respect
to problem (57) by removing 3× M coordinates.

5 Numerical Examples

5.1 Homogenization of Linear Models

In [11] the use of separated representations for computing
the homogenized behavior of linear thermal models was al-
ready addressed. In this paper we retained the use of such
technique (see Sect. 3.2), because it is used in Sect. 4 and in
the numerical examples related to the procedures introduced
in this section.

In what follows, we focus on the homogenization of ma-
terials whose microstructure can be accurately described by
a microscopic representative volume element consisting of
a certain number of cells, according to the description ad-
dressed in Sect. 3.4. For the sake of simplicity in what fol-
lows, and without loss of generality, only the 2D case is con-
sidered.

More precisely, we assume a 2D microscopic RVE
�vre = (0,1) × (0,1) composed of 5× 5 cells whose con-
ductivity can take any value in the interval [kmin, kmax], with
kmin = 1 and kmax = 2 in the following.

According to the procedure described in Sect. 3.4, the
linear thermal model is solved in �rve for two different
boundary conditions: T (x ∈ ∂�rve) = x in the firs case and
T (x ∈ ∂�rve) = y in the second case. The resulting solutions
are denoted T 1(x) and T 2(x) respectively. As described in
Sect. 3.2 these solutions suffic for definin the homoge-
nized conductivity tensor. On the other hand, in order to
compute solutions whose validity does not depend on the
particular value of the conductivity of each cell, both solu-
tions are computed by considering the thermal conductivi-
ties of all the cells as extra-coordinates, i.e. both solutions
are searched under the form:

T j (x, y, k1,1, k1,2, . . . , k5,5)

≈
l=N∑

l=1
Xl(x) · Yl(y) ·

p=5∏

p=1

q=5∏

q=1
	l

pq(kp,q) (59)

for j = 1,2.
Thus, instead of solving two thermal models for each dif-

ferent microstructure, the solution of two multidimensional
models (define in a space of dimension 2 + 5 × 5 = 27)
suffice to give access to the temperature fiel for any pos-
sible microstructure define on this grid. Moreover, thanks
to the PGD, the solution of these multidimensional models
does not introduce major difficulties
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Fig. 4 Microstructure composed of 5 × 5 cells. Each color denotes
a value of the thermal conductivity assumed isotropic and constant in
each cell: blue, green and red colors denote k = 1, k = 1.5 and k = 2
respectively

With these solutions computed, and as soon as the mi-
crostructure is given, (value of the conductivity in each cell),
the homogenized conductivity tensor can be computed.

In order to validate the solutions, a particular microstruc-
ture is define by taking random values of the components of
the conductivity tensor kij that we denote by k

g
ik (see Fig. 4).

Then, the solution is obtained by particularizing the general
PGD solution

T 1(x, y) ≈
l=N∑

l=1
Xl(x) · Yl(y) ·

p=5∏

p=1

q=5∏

q=1
	l

pq(k
g
p,q)

T 1(x ∈ ∂�rve) = x

(60)

Temperatures T 1(x, y) and T 2(x, y) obtained using the
PGD are compared with finit element solutions define on
the same microstructure. The PGD results were obtained by
considering a 101 nodes F.E. discretization for functions of
x and y and a three nodes discretization for the functions

depending on the different conductivities. The classical F.E.
solution was obtained by mean of a 100× 100 quadrilateral
mesh (which leads to the same geometrical accuracy as the
PGD).

Figure 5 depicts both solutions: the one related to the
PGD on the left and the one associated with the application
of the finit element on the right. The comparison of both so-
lutions illustrates the performance of the PGD for comput-
ing the solution (the norm of the difference of both solutions
is lower than 1 percent). It is important to recall that such
solution define in a space of dimension 27 cannot be com-
puted by using a standard mesh based discretization tech-
nique. It was also verifie that an increasing number of terms
N in the sum (59) makes the norm of the difference between
the PGD and the FEM solutions decrease. Finally Fig. 6 de-
picts the functions Xi(x), Yi(y), 	i

11(k1,1) and 	i
55(k5,5)

involved in the decomposition (59) for N = 83.

5.2 Homogenization of Nonlinear History Independent
Models

In this section we focus on the homogenization of a sim-
ple non-linear thermal model. The representative volume
element �rve = (0,1) × (0,1) is composed of two mate-
rials of different conductivities k1 and k2. The zone ω =
(xl, xr) × (yd, yt ) ⊂ � involves a material with conductiv-
ity k2 whereas the material occupying the complementary
region � − ω involves a material of conductivity k1 (see
Fig. 7).

The region of conductivity k2 can be expressed by the
following separate form:

ω = χx(x) × χy(y) (61)

Fig. 5 T (x) − x computed by applying both the PGD (left), and the finit element method (right) for the microstructure depicted in Fig. 1 and for
the boundary condition T (x ∈ ∂�rve) = x
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Fig. 6 Functions Xi(x)

(top-left), Yi(y) (top-right),
	11(k1,1) (down-left) and
	55(k5,5) (down-right)

where both characteristic functions are define by:

χx(x) =
{
1 if xl < x < xr

0 otherwise (62)

and

χy(y) =
{
1 if yd < x < yt

0 otherwise (63)

In the computations, we considered the following val-
ues for the geometrical parameters: xl = 0.4, xr = 0.6,
yd = 0.4 and yt = 0.6. The microscopic conductivities are
supposed to be linearly temperature dependent. As justi-
fie in Sect. 4.1 , their values are obtained considering that
the microscopic temperature equals the macroscopic tem-
perature � i.e. k1 = 10 + 9 × � and k2 = 90 + �, with
� ∈ [0,20]. One can notice that this choice for the conduc-
tivities implies that when � = 10 both conductivities take
the same value and the microstructure becomes homoge-
neous.

With both conductivities define and frozen during the
microscopic step, the solution of the microscopic thermal
model can be computed as previously for two different
boundary conditions T (x ∈ ∂�rve) = x and
T (x ∈ ∂�rve) = y, leading to the homogenized conductiv-
ity tensor. If one proceeds in this manner, as soon as the
macroscopic temperature � evolves in time, the homoge-
nized conductivity tensor should be recomputed for the ther-
mal properties related to the new macroscopic temperature.

Fig. 7 Two phase microstructure

As discussed in Sect. 4.1 this procedure is very expensive
from a computational point of view. An alternative lies in
the solution of those microscopic models for any value of the
macroscopic temperature, i.e. the calculation of T 1(x, y,�)

and T 2(x, y,�) allowing to solve two higher dimensional
problems from which the temperature field can be com-
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puted. Then, the homogenized conductivity tensor can be
obtained for any macroscopic temperature.

In order to illustrate the feasibility of this approach, both
solutions T 1(x, y,�) and T 2(x, y,�) are computed. Then,
the resulting temperature fiel for a given macroscopic tem-

perature � = �g (obtained by particularizing the general
solution, T 1(x, y,� = �g)) is compared with the one com-
puted by applying the finit element method (with the ther-
mal properties define at temperature �g). These results are
depicted in Fig. 8 (left PGD, right FE) proving the ability

Fig. 8 T (x) − x computed by applying the PGD (left) and the FEM (right) for different macroscopic temperatures � = 0 (top), � = 10 (middle)
and � = 20 (down), when the thermal model in �rve was solved by assuming T (x ∈ ∂�rve) = x
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Fig. 9 Functions Xi(x)

(top-left), Yi(y) (top-right) and
θi(�) (down)

of the multidimensional model to represent accurately the
solution of any particular scenario, since the norm of the
difference between the PGD and FE solutions is very small.

Finally Fig. 9 shows the most significan functionsXi(x),
Yi(y) and θi(�) (i = 1, . . . ,100) related to the proper gen-
eralized decomposition. In this simulation, 1001 nodes were
considered for the discretization of functions of x and y and
200 for those depending on the macroscopic temperature �.

From these results we can conclude on the ability of
the PGD to capture the main features of the homogenized
thermal model related to non-linear behaviors. By solving
a slightly higher dimensional model involving an extra-
coordinate (the macroscopic temperature at the location
of the RVE �rve), the necessity of solving a microscopic
model for each value of the macroscopic temperature can be
avoided.

5.3 Homogenization of Non-linear History Dependent
Models

In this case we consider the scenario described in the pre-
vious example, but also assume that the thermal properties
depend on the thermal history. Thus, a transient thermal
model should be solved. Moreover, as the thermal properties
at each time depend on the thermal history, a microscopic
thermal model should be solved at each time step. In addi-
tion, the thermal properties in the RVE are assumed fi ed
(equal to �(τ), 0 ≤ τ ≤ t ), following the simplifie model
described in Sect. 4.4. To alleviate this solution one could

try to solve the microscopic thermal model for any thermal
history, from which the thermal properties in �rve could be
computed and frozen.

Following the description given in Sect. 4.4, the approx-
imation of �(t) in the whole time interval was interpolated
from a polynomial of degree 4 that can be expressed from 5
nodal values of �, denoted by �i , i = 1, . . . ,M where M

was set to M = 5 in our simulations.
Finally, the solutions for the two different boundary con-

ditions are searched in the separated form T 1(x, y,�1,
. . . ,�M) and T 2(x, y,�1, . . . ,�M) according to (58). In
this case, two problems define in a space involving x, y,
t and the f ve temperatures �i , i = 1, . . . ,5 (8 dimensions)
need to be solved in order to compute the homogenized con-
ductivity tensor.

Functions depending on the space (x and y) where dis-
cretized by employing 101 nodes, whereas functions of time
were integrated using also a coarse description involving
101 nodes. The length of the space and time interval were
fi ed arbitrarily to one. Finally the f ve extra-coordinates
related to the intermediate macroscopic temperatures �i ,
i = 1, . . . ,5 were discretized by employing 10 nodes uni-
formly distributed in the interval of variation of those tem-
peratures ([0,10] here).

After computing both solutions T 1(x, y,�1, . . . ,�M)

and T 2(x, y,�1, . . . ,�M) for any macroscopic thermal his-
tory described by the fourth order polynomial just defined
these solutions are particularized for a thermal history given
by a linear thermal evolution from zero to 10 and then it
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Fig. 10 T (x) − x computed by applying the PGD for �1 = 0, �2 = 5, �3 = 10, �4 = 5 and �5 = 0 at times t = 0.25 (top-left), t = 0.5
(top-right), t = 0.75 (down-left) and t = 1 (down-right) when the thermal model in �rve was solved by assuming T (x ∈ ∂�rve) = x

decreases again linearly until reaching a null temperature
at the fina time. This problem, as soon as the thermal his-
tory is fi ed, was also solved by mean of the finit element
method. To validate the proposed approach we depicts in
Fig. 10 the solutions computed at the time t = 0.25, t = 0.5,
t = 0.75 and t = 1 obtained by particularizing the solu-
tion T 1(x, y,�1, . . . ,�M) for the macroscopic thermal his-
tory just defined i.e. T 1(x, y,�1 = 0,�2 = 5, �3 = 10,
�4 = 5,�5 = 0). The corresponding solutions, computed
by applying the finit element solution and enforcing T (x ∈
∂�rve, t) = x are depicted in Fig. 11. Both solutions agree
in minute detail.

These results prove the ability of the proposed technique
for solving non-linear homogenization problems related to
models involving internal variables implying a history de-
pendance. Obviously a deeper analysis should be carried out
for validating this approach in the case of real dependences
of thermal parameters on the thermal history as well as for
analyzing the sensibility of the results to the regularity in
that thermal dependence.

6 Conclusions

This paper enlarges the domain of applicability of proper
generalized decomposition to computational homogeniza-
tion. In particular it proves that in the linear case it could
be possible to defin the homogenized thermal conductivity
tensor for a generic microstructure composed of cells by as-
suming the conductivity of those cells as extra-coordinates.
Even if the solution of the resulting multi-dimensional
model could be expensive, it is important to recall that this
solution should be carried out only once. Using a laptop and
a handmade code in Matlab we solved models involving a
2D microstructure composed of 10 × 10 cells. This model
was define in a space involving 2+ 10× 10= 102 dimen-
sions, and its solutions were performed without major dif-
ficulties The computational resources available at present
allows expecting new developments in this direction.

In the non-linear case, we proposed a fully non-concur-
rent homogenization procedure by solving the microstruc-
ture for a generic macroscopic solicitation (macroscopic
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Fig. 11 T (x) − x computed by applying the FEM for �1 = 0, �2 = 5, �3 = 10, �4 = 5 and �5 = 0 at times t = 0.25 (top-left), t = 0.5
(top-right), t = 0.75 (down-left) and t = 1 (down-right) when the thermal model in �rve was solved by assuming T (x ∈ ∂�rve) = x

temperature or macroscopic gradient), even in the transient
case.

All these developments were possible thanks to the in-
troduction of a certain number of extra-coordinates in the
models. The redoubtable curse of dimensionality related
to multidimensional models was circumvented by employ-
ing separated representations, whose numerical complexity
scales linearly with the dimension of the space in which the
model is defined instead the exponential growing charac-
teristic of mesh based representations. All the procedures
were described by assuming a fully separated representation
involving the separation of each one of the space coordi-
nates x, y and z. However, the separated representation of
the physical space is not mandatory, and consequently all
the techniques proposed throughout this paper remain ap-
plicable if one considers space functions Xi(x) instead of
Xi(x) · Yi(y) · Zi(z). The only difference when consider-
ing the former grouped physical space representation is that
the computation of the space functions requires the solu-
tion of 3D problems instead of the solution of three one-

dimensional problems involved in fully separated space rep-
resentations.

The results presented in this work could be extended to
mechanical models. This extension constitutes a work in
progress. The numerical examples addressed here are quite
simple, but the objective was more proving the potential of
the Proper Generalized Decomposition in the fiel of com-
putational homogenization, rather than addressing models of
practical interest.
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