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Abstract

Numerical models of surface tension play an increasingly important

role in our capacity to understand and predict a wide range of mul-

tiphase flow problems. The accuracy and robustness of these models

have improved markedly in the past twenty years, so that they are now

applicable to complex, three-dimensional configurations of great theo-

retical and practical interest. In this review I attempt to summarise

the most significant recent developments in Eulerian surface tension

models, with an emphasis on well-balancing, curvature estimation, sta-

bility and implicit timestepping as well as test cases and applications.

The advantages and limitations of various models are discussed, with a

focus on common features rather than differences. Several avenues for

further progress are suggested.

1



1. INTRODUCTION

Natural philosophers have noticed the effects of surface tension since the time of Aristotle,

who recorded that flat pieces of iron or lead could float on the surface of water (Aristotle

350BC). A solid understanding of the phenomenon had to wait until 1805 when Young and

Laplace independently published a comprehensive theory of capillarity inspired from the

speculations of their predecessors (including Newton, von Segner and Monge: for a history

of surface tension see the article by Maxwell (1889) and its commentary by Pomeau (2013)).

Besides its connection to modern understanding of the molecular nature of matter, surface

tension is closely associated with major developments in differential geometry (by Clairaut,

Monge and especially Gauss (1830) who formalised the analysis of minimal surfaces).

The coupling between volumetric fields and the geometry of surfaces is indeed at the

heart of theoretical and numerical models of surface tension. From an analytical perspective,

taking into account the (nonlinear) boundary conditions imposed on a surface which is itself

part of the unknown solution presents formidable difficulties, so that analytical solutions

are usually restricted to small surface deformations and/or static configurations (many of

which were already obtained by Young, Laplace, Gauss and later Plateau).

A natural way to obtain numerical approximations for surface tension is to use boundary-

conforming discretisations, where a Lagrangian description of volumetric fields is con-

structed so that the boundaries of volume elements coincide with the moving interface

or free surface. Imposing the boundary or jump conditions given by surface tension is then

relatively straightforward (see e.g. Fyfe et al. (1988) for an early example). The price

to pay for this conceptual simplicity is the geometric complexity of Lagrangian methods,

where the mesh needs to adapt to the underlying deformation of space.

Due to the necessity to deal with very large deformations, Eulerian field descriptions are

a natural choice for fluid mechanics (in contrast with solid mechanics). This can be coupled

with either a Lagrangian or an Eulerian representation of the interface. Lagrangian interface

representation methods include the pioneering Marker-And-Cell method of Harlow & Welch

(1965), the immersed-boundary method of Peskin (1972), the front-tracking method of

Tryggvason and collaborators (Unverdi & Tryggvason 1992, Tryggvason et al. 2001) or the

marker technique of Popinet & Zaleski (1999). Eulerian interface representations include

essentially the Volume-Of-Fluid (Scardovelli & Zaleski 1999), levelset (Sussman et al. 1994,

Sethian & Smereka 2003) and phase-field methods (Anderson et al. 1998).

Surface (interface) and volume (fields) representations are then coupled through: a)

interface kinematics i.e. the transport by the Eulerian velocity field of the Lagrangian or

Eulerian interface description. b) interfacial dynamics i.e. changes in material properties

(density and viscosity) and boundary or jump conditions associated with the interface. For

Lagrangian interface representations transport is simple and accurate, however difficulties

arise for large deformations and especially breakup and coalescence. Eulerian interface

descriptions on the other hand can deal transparently with changes of topology but lead to

more complex transport schemes. The solution of this kinematic problem has seen major

progress in the past twenty-five years, with the development of higher-order geometric VOF

methods which guarantee non-diffusive, sharp interface motion (Gueyffier et al. 1999),

conservative levelset (Desjardins et al. 2008, Feng et al. 2011) or coupled VOF-levelset

methods (Sussman & Puckett 2000).

The situation for interfacial dynamics, and surface tension in particular, is more com-

plex and a wide range of methods or their combinations are available, often with limited

information on their relative merits. The aim of this review is to highlight the most sig-
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nificant developments in Eulerian surface tension models in the past twenty years, with a

specific emphasis on well-balancing, curvature estimation techniques, stability and implicit

timestepping as well as test cases and applications.

2. SURFACE TENSION FORMULATIONS

Let us consider the Navier–Stokes equations for incompressible flow with surface tension

∂tρ+ u · ∇ρ = 0

ρ (∂tu + u · ∇u) = ∇ ·
[
µ
(
∇u +∇Tu

)]
−∇p+ fσ

∇ · u = 0

with ρ and µ the variable density and viscosity, u the velocity, p the pressure and fσ the

surface tension force per unit volume. The equation of continuity requires the solution of the

kinematic problem mentioned in the introduction i.e. (non-diffusive) interfacial transport.

The assumption of incompressibility means that pressure loses its thermodynamic definition

and reduces to the constraint necessary to impose a divergence-free velocity. This can be

used to rearrange body forces and will be used later in this review.

2.1. Integral Formulation

Perhaps the most natural way to derive an expression for fσ is to consider the forces acting

on a two-dimensional curve under tension, as was done by Young in 1805. In the case

of interfaces between fluids (this is different for thin membranes), two-dimensional tension

is simply a force per unit length tangential to the curve, which can be expressed as σt,

with t the unit tangent vector and σ the surface tension coefficient. If we now consider an

elementary volume Ω, intersected by the curve in two points A and B, the total tension

force acting on Ω is ∫
Ω

fσ =

∮ B

A

σdt = σBtB − σAtA (1)

where the second integral is along the interface, and where σA and σB are the (possibly

different) surface tension coefficients at A and B. The resultant of surface tension forces on

the control volume thus reduces to the sum of tensions at the entry and exit points of the

interface.

From a numerical perspective this formulation has several advantages: a) It only involves

low-order derivatives of the geometry which should lead to accurate numerical estimates ;

b) In a manner similar to flux-based integration of the divergence operator in finite-volume

schemes, the contributions of surface tension forces on neighboring control volumes cancel

out exactly (the directions of the unit tangent vectors in (1) are simply reversed). This can

be interpreted as the divergence of a surface stress and is related to the Continuum-Surface-

Stress formulation of Gueyffier et al. (1999). This ensures exact local and global momentum

conservation for surface tension. In particular the net force exerted on the fluid by a closed

interface is exactly zero. This is not the case for the volumetric force formulations discussed

later in this review.

This formulation has been used in combination with a Lagrangian representation of

the interface by Popinet & Zaleski (1999) who obtained very accurate results (compared

to methods available at the time), in particular for Laplace balance and capillary waves.
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This required a consistent finite-volume discretisation of the pressure gradient, taking into

account the pressure jump across the interface at the intersection points.

In the context of front-tracking techniques, the generalisation of (1) to three dimen-

sions (Weatherburn 1927) has been used by Tryggvason et al. (2001) to define a globally-

conservative interfacial force. This has not been combined however with the corresponding

finite-volume integration on the Eulerian grid (rather the surface force is spread over the Eu-

lerian grid using a smoothing kernel), so that the final scheme shares some of the properties

of the volumetric force formulations of the next section.

2.2. Volumetric Formulation

Using the first Frenet formula for parametric curves dt = κnds, with κ the curvature,

n the unit normal and s the curvilinear coordinate, gives (for a constant surface tension

coefficient) ∫
Ω

fσ =

∮ B

A

σdt =

∮ B

A

σκnds =

∫
Ω

σκnδs

with δs a surface Dirac δ-function which is non-zero only on the interface (see Tryggvason

et al. 2011 appendix B for a detailed derivation). Note that in the case of variable surface

tension, tangential (Marangoni) stresses need to be added to this formulation (while they

are naturally taken into account in the integral formulation).

Volumetric formulations are based on a numerical approximation of the surface Dirac

function which allows a direct evaluation of the volumetric force σκnδs. This approach can

be traced back to the original “immersed boundary” method of Peskin (1972), although

this link is not always acknowledged in subsequent articles. Most methods belong to this

category independently of the way the interface is represented. The idea is to use the

relation

σκδsn = σκ∇H(x− xs)

where H is the Heaviside function and xs is the position of the interface. The next step

is to choose a suitable numerical approximation Hε of the Heaviside function which will

typically depend on a (small) parameter ε such that

lim
ε→0

Hε = H

The small parameter ε is a length scale related to the characteristic thickness of the interface.

Depending on this choice, which is linked to the type of interface representation, different

methods can be constructed.

For the Continuum Surface Force (CSF) method of Brackbill et al. (1992), the interface

is represented through the volume fraction field c and one simply sets Hε = c with ε = ∆,

the mesh size. In the original CSF paper c is replaced with a filtered or smoothed version c̃

which increases the characteristic interface thickness ε. This is not necessary at this stage

however, as it is mostly related to a different issue: the estimation of interfacial curvature,

which will be addressed later.

The original method of Peskin (1972) is designed for elastic membranes, rather than

interfaces, and relies on an explicit Lagrangian description of the membrane. Unverdi &

Tryggvason (1992) extended this approach to interfaces, using an indicator function recon-

structed from the Lagrangian description, as an approximation of the Heaviside function.

Sussman et al. (1994) proposed to use a representation of the interface as the zero contour
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of a levelset function φ. The Heaviside function is then approximated as a smooth function

such as

Hε(x− xs) = Hε(φ(x)) =


0 if φ(x) < −ε
1 if φ(x) > ε
1+φ/ε+sin(πφ/ε)/π

2
otherwise

(2)

In the common case where φ is chosen to be the signed distance to the interface, ε is the

characteristic interface thickness. See Engquist et al. (2005) for a detailed discussion.

Another type of surface tension discretisation usually associated with levelset interface

representations is the Ghost Fluid Method (Fedkiw et al. 1999, Kang et al. 2000). Although

this may not be obvious at first, this method can also be recast as a volumetric force

formulation. Rather than including the surface tension as a surface force, Fedkiw et al.

proposed to directly include the corresponding jump condition in the discretisation of the

pressure gradient operator. This is essentially the “immersed interface” approach of Leveque

& Li (1994), itself a formalisation of Peskin’s “immersed boundary” method.

Let us consider a simple second-order discretisation of a one-dimensional pressure gra-

dient operator, which can be written

(∇p)i−1/2 =
pi − pi−1

∆

with ∆ the grid spacing. The Ghost Fluid Method (GFM) proposes to modify this operator

locally in order to take into account the pressure jump induced by surface tension. This

leads to the following scheme

(∇?p)i−1/2 =
1

∆

{
p−i − pi−1 if the interface is in[xi−1 : xi]

pi − pi−1 otherwise

with the ghost fluid value p−i = pi ± (σκ)i−1/2, where the sign of the jump depends on the

orientation of the interface. This can be rewritten as

(∇?p)i−1/2 = (∇p)i−1/2 − (σκδ)i−1/2

with

δi−1/2 =

{
±1/∆ if the interface is in [xi−1 : xi]

0 otherwise
(3)

Note that δi−1/2 is indeed a consistent approximation of a Dirac delta function. The

corresponding approximation of the Heaviside function is

Hi =

{
1 if xi is “inside the interface”

0 otherwise
(4)

and δi−1/2 in (3) is

δi−1/2 = (∇H)i−1/2 =
Hi −Hi−1

∆

The GFM is indeed naturally suited to a levelset representation of the interface since the

“inside the interface” condition in (4) is then φi > 0. Note however that it is also applicable

to a VOF representation of the interface. The standard CSF approximation of the Dirac

delta

δi−1/2 = (∇c)i−1/2
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can simply be replaced with δi−1/2 = (∇H)i−1/2 where H is the equivalent of the GFM

approximation (4)

Hi =

{
1 if ci > 0.5

0 otherwise

To sum up, the CSF method (typically combined with a VOF interface representation), the

smoothed Heaviside method (typically combined with levelset or front-tracking) and the

GFM method (typically combined with levelset) can all be summarised as

σκδsn = σκ∇H

with the different approximations for H summarised in Table 1.

Method Heaviside function H

CSF (VOF) c

Smooth (Levelset/Front-Tracking)


0 if φ < −ε
1 if φ > ε

[1 + φ/ε+ sin(πφ/ε)/π]/2 otherwise

GFM (Levelset/VOF)

{
1 if φ > 0(levelset) or c > 0.5(VOF)

0 otherwise

Table 1 Approximations of the interface Heaviside function for different volumetric

methods.
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Figure 1

Approximations of the interface Heaviside and (normalised) Dirac functions (top and bottom
figures respectively) for different volumetric methods.

The corresponding graphs for H and δ (normalised by ε) are represented in Figure 1.

The fact that the approximation of the Heaviside function for the Ghost-Fluid method
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looks exact has led to the claim that the GFM leads to a “sharp” interface representation,

in contrast with the other methods. It is clear however that the approximation of the Dirac

function is not significantly sharper for the GFM than for the other methods. In fact all

methods lead to a characteristic interface thickness of order ε = ∆. This is obvious for the

Dirac approximations but is also true for the “sharp” Heaviside approximation of the GFM

method, because this approximation is insensitive to a shift of ±ε/2 of the actual position

of the interface.

3. WELL-BALANCED METHODS

A classic and non-trivial problem when designing numerical schemes for partial differential

equations is ensuring that specific equilibrium solutions of the (continuous) equations are

recovered by the (discrete) numerical scheme. This problem arises for a wide range of

equations and applications: hyperbolic systems of conservation laws with source terms

(LeVeque 1998), hydrostatic balance in σ-coordinate ocean or atmosphere models (Mesinger

1982), topographic source term in shallow-water equations (Audusse et al. 2004) and more.

Numerical schemes which recover these equilibrium solutions are often called well-balanced

methods.

In the case of surface tension, setting u = 0 in the Navier–Stokes equations, we get the

equilibrium condition

−∇p+ σκnδs = 0

which is verified for

[p] = σκ,

κ = constant,

where [p] is the jump of the pressure across the (spherical) interface. This is the well-known

Laplace’s relation between pressure and surface tension in a drop in equilibrium. If we

assume that each of the (non-zero) terms in the Navier–Stokes equations are approximated

with second-order accuracy, the leading-order discrete equilibrium condition can be written

∇p+ Cp∆
2 = σκnδs + Cσ∆2

where Cp and Cσ are scheme- and solution-dependent factors which control the pressure

gradient and surface tension errors respectively. If special care is not taken, these errors

have no reason to cancel and the best that one can hope is that the equilibrium condition

is verified to within the accuracy of the scheme i.e. asymptotically to within O(∆2). While

this may be acceptable for some applications, for example when surface tension is not the

dominant force and/or when the interface is far from this equilibrium solution, in practice

two-phase interfacial flows often include drops or bubbles close to Laplace’s equilibrium.

For many years numerical methods were not able to recover this simple equilibrium

solution and the resulting quasi-stationary velocity pattern became known as spurious or

parasitic currents, of varying intensity depending on the method. Interestingly the volu-

metric force formulation leads to a very simple condition for discrete equilibrium, as first

pointed out by Renardy & Renardy (2002). Indeed we have the (exact) relation

−∇p+ σκnδs = −∇p+ σκ∇H = 0
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which, in the case of constant σ and κ, can be approximated as

−∇?(p− σκH) = 0

where ∇? is a numerical approximation of the gradient (assumed to be a discrete linear

operator). The exact discrete numerical solution, which guarantees exact balance between

surface tension and pressure in the case of constant κ, is then simply

p = σκH + constant, (5)

where H is one of the approximations in Table 1.

For a staggered, MAC discretisation where velocity components are stored at mid-points,

and pressure at the centers of a regular Cartesian grid, a simple well-balanced scheme is

−pi+1 − pi
∆

+ (σκ)i+1/2
Hi+1 −Hi

∆
(6)

Unfortunately this was not the scheme adopted by Brackbill et al. in the original CSF article

of 1992 (for which H = c̃). They instead chose to compute the mid-point surface tension

force as the average of cell-centered values. This means that different operators are used

to compute the gradient of the pressure (at mid-points) and volume fraction (at centers)

and thus breaks the well-balanced property. The motivation for this choice was probably

related to the desire to re-use the normal components also used to compute κ = ∇ · n at

cell centres.

We thus see that an explanation for the relative confusion around the issue of spurious

currents is linked to the contradictory requirements of well-balancing and accurate curvature

estimation. Well-balancing requires that the gradient of a (usually) smooth function (the

pressure) be estimated using the same discrete operator as that used to estimate the gradient

of a discontinuous function (the Heaviside approximation/volume fraction). It is also well-

known that such a gradient estimate will lead to a poor approximation of nδs and an even

poorer estimate of the curvature κ = ∇ · n. On the other hand, when looking for a better

estimate of κ, one may be tempted to also use the better estimate of nδs associated with

it, unfortunately this will break the well-balanced property. This is what happened for the

original CSF formulation and many other early implementations.

It is thus necessary to decouple the estimate of nδs and the estimate of κ. Note that this

is what happens naturally for levelset methods. In these methods the normal is estimated

as n = ∇φ and the curvature as κ = ∇ · n, however nδs is estimated as ∇H where H is

computed using either a smooth function or the GFM (see Table 1).

The reasoning on well-balancing applied to surface tension, can (and should) be applied

to any system for which a source term can be balanced by the pressure gradient. If this

source term can be expressed as the gradient of a potential, a consistent discretisation of

the pressure and potential gradients will lead to a well-balanced scheme.

If we assume that a body force can be expressed as the gradient of a potential φ times

a material property f , we have

−∇p+ f∇φ = −∇p+∇(fφ)− φ∇f = −∇p′ − φ∇f

with p′ = p−fφ. If we now assume that the material property jumps from a constant value

f0 to a constant value f1 across the interface, we have

f(H) = (f0 − f1)H + f1 = [f ]H + f1

8 S. Popinet



where H is the Heaviside function associated with the interface. This gives

−∇p+ f∇φ = −∇p′ − [f ]φ∇H = −∇p′ − [f ]φnδs (7)

The body force can thus be replaced by an interfacial force equal to the potential times the

jump of material properties across the interface. Surface tension itself can be reformulated

using this general relation as

−∇p− σH∇κ = −∇p′ + σκnδs (8)

with p = p′ − σκH (using φ = κ and f = −σH in (7)). This has the advantage of giving a

naturally-balanced scheme for a constant curvature, without any constraint on the choice

of the discrete gradient operators (aside from ∇ constant = 0). See Ghidaglia (2016) for a

detailed derivation.

Similarly the acceleration of gravity can be reformulated as

−∇p+ ρg = −∇p′ − [ρ]g · xnδs

with p′ = p − ρg · x (using φ = g · x and f = ρ in (7)). The hydrostatic pressure is

thus substracted analytically which is advantageous for ensuring exact hydrostatic balance

across the interface and also simplifies boundary conditions for open domains (see e.g.

Wroniszewski et al. (2014) for an application to breaking waves).

More complex models can also be simplified using relation (7). For example Mahady et

al. (2016) propose to discretise the disjoining pressure induced by a potential of the form

φ = (h?/y)m where y is the distance to the substrate, as

−∇p+K∇φ = −∇p′ − φ[K]nδs

which avoids dealing with the divergence of the potential close to the substrate (this diver-

gence is balanced analytically by the corresponding divergence of the pressure p).

4. CURVATURE ESTIMATION

The accurate estimation of interface curvature is of course central to the performance of

volumetric surface tension force models (for integral formulations only the interface normal

is required). Although the details depend on the particular technique used for interface

representation, one can essentially distinguish two classes of methods: a) direct derivation

from the implicit representation of the interface, b) discrete differential geometry operators

applied to an explicit description of the location of the interface (provided directly by

the interface tracking representation or reconstructed from an implicit description of the

interface).

4.1. Levelset Methods

Method a) is the primary argument in favour of levelset interface representations. In the

ideal case where the levelset function φ is the signed distance to the interface, the curvature

is simply obtained using the relations

n = ∇φ and κ = ∇ · n (9)
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The levelset function φ is smooth and discrete schemes can be easily constructed to estimate

both n and κ to any order of accuracy. This is the approach adopted in early articles where

levelset is used to represent interfaces and surface tension (Sussman et al. 1994). Although

useful schemes can be obtained with this approach, it has an important limitation which is

evident when considering the well-balanced property of the previous section. Let us consider

the simple well-balanced discretisation

−pi+1 − pi
∆

+ (σκ)i+1/2
H(φi+1)−H(φi)

∆
, (10)

where H is a suitable approximation of the Heaviside function (e.g. (2) or the GFM ap-

proximation in the last row of Table 1). A simple estimate of the curvature is

κi+1/2 = [∇ · (∇φ)]i+1/2 (11)

where the divergence and gradient operators are suitable discrete approximations. To re-

cover Laplace’s equilibrium relation (5), the estimate of the curvature needs to be constant

for a spherical droplet. Note however that the relations (9) as well as their discretisation

(11) define a curvature everywhere in the domain, not just on the interface (φ = 0). The

curvature given by (9) is indeed the curvature of the local contour, not that on the interface.

In the case of a spherical interface, (11) will thus return an estimate of the curvature which

will not be constant and Laplace’s equilibrium will not be guaranteed. The deviation from

the equilibrium solution will be controlled by the distance between the interface and the

points where the curvature is estimated (i.e. at i+ 1/2) times the value at these locations

of the gradient of the Heaviside function. This distance obviously scales like the thickness

of the interface (i.e. essentially the grid size) and will thus tend toward zero with spatial

resolution, which makes the method consistent but not well-balanced. This limitation of

“naive” levelset methods has been recognised for example by Sussman and Ohta (2009) who

advocate the use of a height-function curvature calculation (described later in this section),

rather than relations (9), even in the case of a levelset description of the interface.

A closely related issue is the explanation of the improved performance of the GFM rel-

ative to the classical “smoothed Heaviside” levelset formulation. In the original article of

Kang et al. (2000) the decrease in spurious currents observed with the GFM is attributed

to the “sharper” surface tension representation provided by the GFM, a conclusion which

is contested in the latter article by Francois et al. (2006), in connection with their “Sharp-

Surface-Force” (SSF) model (this model is actually identical to the Dirac formulation (3)

of the GFM). The improvement is not due to the difference in Dirac approximations sum-

marised in Table 1, but to the interpolation formula proposed by Kang et al. to estimate

the pressure jump (i.e. the curvature) at the location of the interface (based on the earlier

work by Fedkiw et al. (1999)):

κi+1/2 =
κi|φi+1|+ κi+1|φi|
|φi|+ |φi+1|

i.e. a distance-weighted average of the cell-centered values of the curvature, which are

computed using (9). In the case of a spherical interface, it is clear that this formulation

will lead to values of the curvature in (10) which are much closer to a constant than e.g.

the simple average κi+1/2 = (κi + κi+1)/2 often used for the classical levelset formulation.

This has recently been confirmed by Abadie et al. (2015) who showed that the GFM/SSF
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levelset formulation leads to exact well-balancing, in contrast with the classical levelset

formulation which gives significant spurious currents.

The benefits of ensuring a close-to-constant curvature estimate in the case of a spherical

interface are also obvious for the alternative surface tension formulation (8), which has a

built-in well-balanced property (irrespective this time of the specific choice of gradient

operators).

The main drawback of levelset formulations is the lack of discrete volume/mass con-

servation. This can be minimised by employing frequent redistancing/re-initialization of

the levelset function. Unfortunately this redistancing step tends to perturb the curvature

and prevents the system from reaching the constant curvature required to guarantee exact

balance (see Abadie et al, 2015).

4.2. Smoothed Volume Fraction

The normal and curvature relations (9) can in principle be applied to any field which

provides an approximation of the interface position as a local isocontour. This was the

observation which lead Brackbill et al. (1992) to propose the original CSF model where the

curvature is approximated using

n =
∇c̃
|∇c̃| and κ = ∇ · n

where c̃ is a “smoothed” (i.e. diffused) version of the sharp volume fraction field. The

smoothing was adopted to try to circumvent the difficulty of differentiating a discontinuous

function. While results do improve when stronger diffusion is applied, several studies have

since showed that this method is not consistent for curvature i.e. errors on curvature tend

to increase with spatial resolution (see e.g. Wiliams et al. (1998), Cummins et al. (2005)

or Tryggvason et al. (2011)). This inconsistency of the curvature estimate, often combined

with the lack of well-balancing of the gradient terms described previously, explains most

of the difficulties encountered with early CSF implementations. For many years this has

been a strong argument in favour of levelset methods which, even for their naive not well-

balanced versions, are at least consistent and give much better results for surface tension.

Although this argument is often repeated in recent publications, the smoothed volume

fraction method should be considered obsolete since much better alternatives now exist, as

described next.

4.3. Height-Functions

The height-function method relies on the simple observation that one can always define a

local coordinate system in which a surface is described as the graph of a function. The

simplest case is that of a nearly-horizontal interface which can simply be described by

y = hy(x) and for which the curvature is given by

κ =
h′′y√

1 + h′2y

Provided the values of hy (the “height-function”) are known exactly at discrete locations,

one can easily derive discrete schemes to estimate κ at any order of accuracy. This reasoning

is easily generalised to any number of spatial dimensions. Of course an issue arises when
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the slope of the interface tends to infinity and the graph becomes multivalued. One can

then simply switch to a different local representation of the interface which is well-behaved

such as x = hx(y).

This simple idea has a long history, possibly starting with Poo and Ashgriz (1989). It

was first described comprehensively in the context of two-phase flows by Sussman (2003) and

later analysed in detail by Cummins et al. (2005). The key to the success of this method is

having access to sufficiently accurate discrete values of the height function. Indeed, as double

differentiation is required to estimate curvature, the height function needs to be known with

higher than second-order accuracy in order to get a consistent (i.e. converging) estimate

of the curvature. In the case of volume-of-fluid methods, if we assume that the discrete

volume fractions ci,j are known exactly (for example using volume fractions obtained by

analytical integration based on the exact interface (Bnà et al. 2015)), we can write without

approximation ∫ xi+1/2

xi−1/2

hi(x)dx = ∆hi =

j=∞∑
j=−∞

ci,j + constant (12)

where hi is the exact average height function value for a given column. The ±∞ limits

of the sum on the right-hand-side simply indicate that vertical summation of the volume

fractions is performed on the entire column. A symmetric relation is of course derived for

integration along rows, which allows to perform the coordinate system rotation described

earlier. Once these exact average values are computed one can use simple differencing such

as

κi =
(h̄i−1 − 2h̄i + h̄i+1)/∆2√
1 + [(h̄i+1 − h̄i−1)/(2∆)]2

to obtain second-order accurate estimates of the curvature. Both second- and fourth-order

convergence (using five-points stencils) have been demonstrated in practice for circular in-

terfaces (Cummins et al. 2005, Sussman and Ohta 2006, Bornia et al. 2011). Generalisation

of the method to three-dimensions is straightforward.

Besides its conceptual simplicity and good convergence properties, the method has sev-

eral advantages which are particularly relevant in the context of the well-balanced property

discussed earlier:

� it naturally defines curvatures “on the interface”,

� it is insensitive to the exact distribution of volume fractions within a column: this

is important for robustness since volume-of-fluid schemes often lead to the formation

of small interfacial fragments. Using these small fragments as markers of interface

position can lead to erroneous curvature estimates (for example when using the in-

terpolation techniques described in section 4.4). The spatial averaging performed by

the H-F method naturally avoids these artefacts,

� more generally, the connection between interface representation (and transport) and

surface tension is very direct when combining volume-of-fluid, balanced surface force

discretisation such as (6) and height-function curvature estimation: this tight coupling

minimises the possibility of uncontrolled numerical modes and gives a robust method.

Several issues must be addressed when implementing the method in practice however. The

summation limits on j in expression (12) need to be specified. Early implementations only

used a fixed number of cells (typically seven) in each column. If one considers a nearly

horizontal interface, described using a non-diffusive VOF method, only three cells in the
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vertical direction are necessary to obtain a consistent value for the average height. On the

other hand some interface configurations may require up to nine cells in the vertical to

obtain consistent height functions (see e.g. Popinet (2009) for a discussion and examples).

More generally, while consistent height-function approximations can always be obtained

when the spatial resolution is high enough (i.e. when the product κ∆ is small enough),

things become more complicated as soon as this product is larger than around 1/5.

A first useful step is to use a variable stencil height which adjusts automatically to the

local topology of the interface, in order in particular to ensure that vertical summation is

only applied across a single interface. This also permits to use optimal stencils (e.g. 3

instead of 7 cells) in the simpler cases. See Popinet (2009) and Lopez et al. (2009) for

examples of this approach.

As spatial resolution decreases further, consistent height functions are increasingly dif-

ficult to obtain: when one reaches κ∆ ' 1, at best a single value of the height function can

be constructed in each direction and differentiation to obtain curvature is no longer pos-

sible. Although one cannot reasonably expect accurate solutions at such low resolutions,

it is important to ensure that the overall method remains robust across these transitions.

This can be achieved by switching progressively to the interpolation methods described

in the next section. A complete example of this approach is described in Popinet (2009).

An alternative approach is proposed by Owkes & Desjardins (2015) who use a rotated

height-function stencil.

4.4. Differential Geometry of Discrete Surfaces

The second class of methods for curvature estimation relies on an explicit, often local,

discretisation of the surface. It is the natural method to use for front-tracking where the

interface is defined explicitly, for example using Lagrangian vertices connected by triangular

facets.

The approximation of surfaces using discrete elements has many applications besides

interfacial flows, for example 3D laser scanning, mesh compression and denoising, minimal

surfaces and geodesics. Approximations of differential quantities such as Gaussian and mean

curvatures, principal directions, etc. has recently seen a surge of interest in the general

context of computational geometry. An interesting review of the connections between the

continuous mathematical concepts and their discrete equivalents is given by Meyer et al.

(2003). An important result from this article is the derivation of a discrete equivalent of the

mean curvature normal operator which is directly related to surface area minimization. This

discrete operator mimics several of the important properties of the continuous operator; in

particular it minimises a discrete version of the surface energy. Note that the the techniques

described in this article have not, as far as I am aware, been applied yet to front-tracking

codes.

Besides this discrete formulation, two main types of techniques exist depending on

whether a globally continuous approximation is required or whether a local approximation is

sufficient. In global methods, local surface patches are constructed and continuity conditions

are imposed between patches, which leads to the inversion of a system for the entire surface.

Splines and B-splines belong to this family. In the context of interfacial flows, spline curves

have been used for example by Popinet & Zaleski (1999) to connect Lagrangian markers

in two dimensions, while B-splines have been used by Torres & Brackbill (2000) to obtain

a global interface representation, also in two dimensions. These methods are accurate
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and benefit from the robustness provided by a global reconstruction (which can be seen

as minimising a global surface energy functional i.e. the bending energy for 2D splines

(Birkhoff & De Boor 1965)), however they are also expensive and complex, particularly in

three dimensions.

In practice local surface approximations are much more common. A standard technique

is to approximate the surface by least-square minimisation of the quadratic form∑
i

wi(xi ·Axi + n · xi + b)2, (13)

with n a unit vector approximating the normal and A a symmetric matrix. Further con-

straints can be used to reduce the number of free parameters. For example, Renardy et

Renardy (2002) argue that one can get a consistent, second-order approximation by impos-

ing that the axis of the paraboloid defined by (13) be aligned with n i.e. An = 0. Popinet

(2009) uses a similar argument to reformulate the approximation problem in a local coor-

dinate system aligned with n. A sufficient number of points xi are then chosen in a local

neighborhood to make the system (13) invertible. The coefficient wi are optional ad-hoc

weights accounting for differences in accuracy of the positions. Besides the normal n, the

mean curvature is then given by κ = 2 tr(A).

With the possible exception of triangulated surfaces of known connectivity (Tryggvason

et al. 2001), it is clear that such local approximations are not nearly as simple or systematic

as levelsets or even height-functions. While the least-square minimisation is not particularly

complex or computationally expensive, the logic of point (and weight) selection can be

complicated and somewhat fragile. Besides its application to front-tracking, variants of this

method have been used in particular in:

• The PROST method of Renardy and Renardy (2002): in this article it is not the

discrete interface locations which are fitted through (13), but the volume fractions

given by the intersection of the quadratic surface with each cell of a local stencil. The

resulting minimisation problem is non-linear and very expensive to solve numerically,

but provides accurate normal and curvature estimates directly from the volume frac-

tion field. Ad-hoc weighting is used to avoid computational modes and to increase

the robustness of the method.

• The generalised Height-Function method of Popinet (2009): as described earlier, when

κ∆ < 1/5 the number of consistent discrete heights may not be enough to allow dif-

ferentiation. It is then necessary to use other types of surface approximations. Ideally

switching from one approximation (e.g. height-function) to the next (e.g. least-square

minimisation) should be done while minimising the potential “jumps” in the estimated

curvature. A first step is to obtain interface positions by combining horizontal and

vertical “heights” and applying (13). If the number of interface positions obtained

in this way is too small, one can switch as a last resort to interface positions given

directly by the VOF geometric reconstruction.

Popinet (2009) and many subsequent applications of the method to complex problems

have shown that this method is both accurate and robust. The computational cost

is limited, since the relatively expensive least-square problems need to be solved only

in marginal cases. The main cost is rather the added code complexity, which is quite

manageable however (see for example Popinet (2014) for a complete open-source

implementation).
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4.5. Mixed Methods

The relative advantages and drawbacks of various methods has led to techniques seeking to

combine several interface representations. The primary motivation was the improvement of

interface kinematics, accuracy and mass conservation properties in particular, but accuracy

of surface tension representation was also an important factor.

One of the better known mixed method is the CLSVOF method of Sussman and Puckett

(2000) , which couples a geometric VOF representation (for conservative transport) with a

levelset (for simple curavture estimation). Many variants of this approach have since been

developed and successfully applied to complex interfacial flow problems. The main weakness

of this technique is common to all mixed methods: it is difficult to switch between interface

representations without loss of accuracy on the interface position. These errors can become

dominant when computing curvature. For example, Cummins et al. (2005) have analysed

the curvature errors induced by their Reconstructed Distance Function (RDF) procedure,

which is close to that employed in CLSVOF methods. Using a second-order-accurate RDF

reconstruction, they demonstrate that, as expected, normals estimated from the RDF con-

verge at a first-order rate, while curvature errors do not converge with resolution. More

generally, one can expect that this reconstruction error will affect most types of redistanci-

ation algorithms used to ensure the consistency of levelset representations. This should be

particularly clear when considering the well-balanced cases discussed earlier: in these cases

redistanciation (or CLSVOF coupling) will lead to a continuous injection of curvature errors

which will prevent reaching an equilibrium curvature. This assumption has been confirmed

for the spurious current test cases discussed later in this review.

Another common class of mixed interface representations combines front-

tracking/Lagrangian particles with levelset/isosurfaces/VOF. From a kinematic point-of-

view the goal is to combine the high-accuracy of Lagrangian advection schemes with the

topological flexibility of levelset/VOF interface representations. The improved kinematic

properties of these schemes have been demonstrated in Enright et al. (2002) or Hieber

and Koumoutsakos (2005) for particles + levelset and Aulisa et al. (2003) for particles

+ VOF. The Level Contour Reconstruction Method (LCRM) of Shin et al. (2005), uses

(temporary) interface markers reconstructed from the isosurface of the indicator (i.e.

levelset) function. This eliminates the need to keep track of surface connectivity (i.e.

topology) of standard front-tracking techniques. The curvature is computed using the

local triangulated isosurface reconstruction and surface tension is then implemented using

balanced CSF applied to the indicator function. Although the convergence of curvature

errors is not discussed in Shin et al. (2005) (one can expect the same difficulties as for the

RDF method), good results are obtained for the spurious currents test case.

5. STABILITY AND IMPLICIT TIMESTEPPING

As first discussed briefly by Brackbill et al. (1992), a time-explicit discretisation of the

surface tension term should lead to a stability constraint of the form

∆t <

√
(ρ1 + ρ2)∆3

4πσ
≡ ∆tσ, (14)

with ∆t the timestep and ρ1 and ρ2 the densities on either side of the interface. The physical

justification is that the timestep must be small enough to resolve the fastest capillary waves

in the system which are obtained for the wavenumber k = π/∆ and verify the dispersion
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relation cσ =
√
σk/(ρ1 + ρ2) . A more formal stability analysis can be found for example

in Sussman and Ohta (2009). Note that the assumptions which lead to the 4π constant in

(14) are debatable, see Galusinski & Vigneaux (2008) or Denner & van Wachem (2015) for

a detailed discussion.

Explicit schemes for the transport of interfaces are subject to the standard CFL con-

straint ∆t < ∆/|u| ≡ ∆tadv. The ratio of these two stability constraints is thus

∆tσ
∆tadv

=

√
(ρ1 + ρ2)|u|2∆

4πσ
=
√

We∆

where We∆ is the cell Weber number which estimates the ratio of inertial to surface tension

forces. In the absence of viscosity, the minimum characteristic scale (i.e. radius of curvature)

of interfaces is due to the balance of inertial and surface tension forces. This implies that

a well-resolved numerical simulation will necessarily verify We∆ � 1, so that the minimum

characteristic scale of interfaces (e.g. minimum droplet size) is (much) larger than the mesh

size. This means that the capillary timestep restriction ∆tσ must always be more restrictive

than the CFL constraint for interface advection. For example if we consider a one millimeter

air bubble rising in water with a terminal velocity of 0.1 m/s, we get

∆tσ
∆tadv

=
√

We∆ =
√

WeDN
−1/2 ≈ 0.1N−1/2

where WeD is the bubble Weber number (based on diameter D) and N is the number of grid

points per bubble diameter. For a moderate resolution of N = 10 the capillary timestep is

thus 32 times smaller than the advection timestep.

One might wonder whether viscosity can relax the stability condition. This could be

particularly relevant for small-scale flows, such as those occurring in microfluidics devices,

and has been studied in this context by Galusinski & Vigneaux (2008). They conclude

and demonstrate numerically that, for capillary-driven Stokes flows, the relevant stability

criterion is

∆t < max

(
µ∆

σ
,

√
ρ∆3

σ

)
where the first term corresponds to a CFL condition built with the Stokes velocity σ/µ.

The combined criterion thus becomes advantageous whenever the Stokes velocity is smaller

than the speed of the shortest capillary waves i.e. σ/µ <
√
σ/ρ∆ which gives

∆ < lµ =
µ2

ρσ
,

where lµ is the visco-capillary length, which only depends on the fluid properties. As a

reminder lµ ≈ 14 × 10−9 m and σ/µ ≈ 72 m/s for an air/water interface and lµ ≈ 2.5 cm

and σ/µ ≈ 4.5 cm/s for an air/glycerol interface. Note that microfluidics devices typically

use mineral oils which have viscosities and surface tensions comparable to that of water and

channel widths of the order of ten microns. A well-resolved simulation will have a spatial

resolution of order ∆ ≈ 0.1 microns which is still much larger than the visco-capillary length.

It is thus not obvious that the relaxed Stokes criterion is beneficial for these applications,

unless one considers significantly more viscous fluids and/or smaller channels. In practice,

explicit surface tension stability is thus a stringent constraint for microfluidics applications,

see Ling et al. (2016) for a detailed discussion.
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5.1. Semi-Implicit Schemes

Time-implicit discretisations are a standard way to relax timestep restrictions. Fast modes

are damped rather than resolved and do not constrain the overall stability. One of the

first article discussing time-implicit schemes for surface tension is by Bänsch (2001) who

proposes a variational formulation coupled with a Lagrangian finite-element discretisation

of the interface (see also the interesting review by Buscaglia & Ausas (2011)). This is

inspired by earlier work on the computation of minimal surfaces through discretisation of

the mean curvature flow equation (Dziuk 1990). The extension of these ideas to an Eulerian

interface description was presented by Hysing et al. (2006). The scheme is derived starting

from the standard differential geometry relation (Weatherburn 1927)

∆xs = κn

with xs = xδs the Lagrangian interface position and ∆ the Laplace-Beltrami operator (or

surface Laplacian). The surface tension force can then be written

fσ = σκnδs = σ∆xsδs

The idea is then to use the interface position predicted at the next timestep by

xs,n+1 = xs,n + ∆tun+1,

to obtain a semi-implicit discretisation of the surface tension force as

fn+1 = σ (∆xs)n+1 δs,n = σ (∆xs)n δs,n+∆tσ (∆u)n+1 δs,n = σ(κnδs)n+∆tσ (∆u)n+1 δs,n

The scheme is not fully implicit in particular because the timelevel is not taken into account

for δs (which is always defined at time n). The scheme is equivalent to the addition of a

surface viscosity proportional to ∆tσ which will dampen fast capillary waves and lead to

stabilisation. Hysing demonstrates gains of one order of magnitude in timestep compared

to standard explicit schemes. The method is also applied in a Finite-Volume/VOF context

by Raessi et al. (2009) who find similar stability properties.

More recently Sussman & Ohta (2009) proposed to estimate the curvature at n+1 using

the mean curvature flow equation

∂txs = σκn = σ∆xs (15)

rather than the full coupled Navier–Stokes system. The stationary solutions of this equation

minimise the surface energy, which is clearly a desirable property when considering the

stability of integrations with large timesteps, for which they obtain the stability condition

∆t 6
∆(ρ1 + ρ2)

2π
(16)

They then numerically demonstrate improved stability compared to the standard discreti-

sation, with increases in timestep of the same order as for the method of Hysing et al.

These two equations are problematic however, since neither are dimensionally consistent.

The analysis can be fixed by noting that (15) is not an equation describing the evolution of

an interface under the effect of surface tension, despite its connection with minimal surfaces.

Indeed dimensional consistency implies that the coefficient σ in (15) has dimensions L2T−1
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i.e. that of a diffusion coefficient. The mean curvature flow equation (15) is simply a surface

diffusion equation which will filter high-frequency surface modes and therefore stabilise the

solution. This is well known in the computer graphics community where (15) is used to

“denoise” surface meshes (Desbrun et al. 1999).

The scheme can be reformulated consistently as the levelset evolution equation (Chopp

1993)

∂τφ = κ (17)

where the pseudo-time τ has the dimension of a length squared. A filtered curvature can

then be defined as

κ̃ =
1

Λ2

∫ Λ2

0

κdτ =
φ(Λ2)− φ(0)

Λ2

where φ(Λ2) is obtained by advancing (17) from zero to Λ2, with Λ a characteristic smooth-

ing length. The amount of smoothing required is found by considering the linear stability

of the resulting scheme, which gives the stability condition

Λ > ∆t

√
σ

∆(ρ1 + ρ2)
= ∆tc∆,

with c∆ the capillary wave speed for the (smallest) wavelength ∆. The correct interpretation

of the scheme of Sussman & Ohta is thus stabilisation by diffusive surface smoothing over

the characteristic travel distance of the fastest capillary waves: Λ = ∆tc∆.

The schemes of Sussman & Ohta and Hysing et al. thus work in a similar manner:

added surface damping filters high-frequency modes and thus stabilises the solution. An

important difference between the two schemes however, is that the method of Sussman &

Ohta directly filters the interface position/curvature while the scheme of Hysing filters the

(surface) velocity field. In particular, the scheme of Hysing will not affect equilibrium shapes

for which u = 0, but the scheme of Sussman & Ohta will. More generally, these schemes

are not very scale-selective filters (because they are both based on low-order differential

operators) i.e. they will also significantly dampen lower-frequency modes which do not

restrict stability.

Pushing this approach further, one can devise, at least formally, near optimal filtering

schemes. If we consider the simpler case of a one-dimensional interface defined through its

graph η(x, t), the Fourier transform of the corresponding curvature is given by

κ̂(k, t) = −k2η̂(k, t)

with η̂(k, t) the Fourier transform of the interface position and where we have assumed a

vanishing interface slope. An optimal filtered curvature can then be defined in Fourier space

as

κ̃(k, t) = min
(

1,
ρ1 + ρ2

σk3∆t2

)
κ̂(k, t)

Computing the inverse Fourier transform and using the resulting filtered curvature will then

ensure stability of the explicit scheme. The filtering is optimal since only the necessary

(mode-dependent) amount of damping is added. This scheme works well in practice, for

example using FFTs for periodic graphs in one or two dimensions, however generalising

it to more complex topologies seems difficult. For front-tracking interface representations

spectral mesh processing could be a solution. See the course by Levy et al. (2010) for an

interesting introduction.
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6. TEST CASES

Test cases are important for the development and assessment of new numerical schemes.

Publicly-accessible automated test suites (see Basilisk (2013) and Gerris (2003) for exam-

ples), cross-referenced with journal articles are also an excellent way of ensuring repro-

ductibility and independent peer-review of the numerical results. In this section I will try

to point out a minimal set of test cases for surface tension models as well as their short-

comings and common pitfalls.

6.1. Laplace’s Equilibrium and Spurious Currents

Laplace balance between surface tension and pressure gradient provides a trivial equilibrium

solution which is nevertheless difficult to reproduce numerically, leading to the production

of numerical artefacts, the so-called spurious or parasitic currents. This was first observed

and discussed in detail in the context of lattice Boltzmann methods for two-phase flows

(Gustensen 1992) and many variants of this test case have since appeared in the litterature.

An important issue is that of the timescale required to reach equilibrium. There are two

natural timescales in this simple system: the period of oscillation scaling like Tσ =
√
ρD3/σ

with D the droplet diameter and the viscous dissipation timescale Tµ = ρD2/µ. The

ratio of these two timescales is Tσ/Tµ = µ/
√
ρσD, the Ohnesorge number. To reach the

asymptotic regime corresponding to the equilibrium solution, one then needs to make sure

that the simulations are run on a timescale (much) larger than either of these two timescales.

Detailed parameters for such a setup are provided for example in Lafaurie et al. (1994) or

Popinet & Zaleski (1999).

Note that many studies have been published which do not verify this condition of

asymptotic convergence. For example, Francois et al. (2006) used a version of this test

where a few or even a single timestep are performed before measuring the amplitude of

“spurious currents”. In the case of well-balanced schemes, the cause of spurious currents

after a few timesteps is only the deviation from constant of the initial curvature computed by

the scheme. This deviation is better characterised by, for example, a convergence test on the

curvature estimate for a spherical interface (see e.g. Cummins et al. 2005 or Popinet 2009),

without running the risk of confusing several properties of the scheme (i.e. well-balancing

versus curvature estimation).

On the other hand, if the test respects the asymptotic conditions t > Tµ and t > Tσ, one

expects a consistent, well-balanced method to converge toward an interfacial shape which

will ensure exact equilibrium (i.e. u = 0 to within machine accuracy). This interfacial

shape may not itself be exact (i.e. an exact circle/sphere) and the evolution of the velocity

around the interface is expected to reflect the physical evolution (through damped capillary

waves) from the initial “perturbed” condition toward the numerical equilibrium solution.

One of course expects this numerical equilibrium interface shape to converge toward the

exact equilibrium (circular) shape as spatial resolution is increased. See Popinet (2009) for

a demonstration of this convergence in the case of the VOF and HF-CSF surface tension

method. Note that such a convergence is not trivial however, since it requires that the

scheme guarantees evolution towards a constant curvature.

An important extension of this test was proposed in Popinet (2009) where a constant

background velocity field ensures uniform translation of the droplet across the grid in a

spatially periodic domain. Laplace’s equilibrium solution is of course still valid in the

frame of reference of the droplet. This test is more relevant to practical applications, par-
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ticularly when considering low-velocity/high-surface tension cases such as microfluidics or

multiphase flow through porous media. This test was used extensively in the interesting

comparative study of Abadie et al. (2015) who underlined the detrimental effect of in-

terface (and curvature) perturbations induced by either interfacial transport (for VOF) or

redistancing/interface reconstruction (for Levelset and coupled Levelset/VOF). See also in

this article the demonstration of consistent well-balancing for levelset methods (without

redistancing).

6.2. Capillary Oscillations

Capillary oscillations around equilibrium solutions are the next logical step. Analytical

solutions can be obtained through classical linear stability analysis in the limit of vanishing

amplitude and viscosity both for planar and circular/spherical interfaces (Lamb 1932). Fyfe

et al. (1988) considered the oscillation of a two-dimensional elliptical droplet in an inviscid

fluid, for which the oscillation frequency is given by

ωn = (n3 − n)
σ

(ρ1 + ρ2)a3
(18)

where the droplet shape is given in polar coordinates by r = a + ε cos(nθ). This is an

extension to two phases of a result by Rayleigh (1879) who considered the stability of the

cross-section of a jet. Although many variants of this test case exist, one of the most chal-

lenging is for large density ratios (1/1000) without viscosity. Details can be found in e.g.

(Torres & Brackbill 2000, Herrmann 2008, Fuster et al. 2009). The total energy (surface

plus kinetic) should remain constant and any decay is the sign of numerical dissipation

which should be minimised. Conversely, increasing total energy is a clear signature of sur-

face tension imbalance. This setup is a stringent test of the accuracy of surface tension

representation since physical or numerical viscosity cannot intervene to limit spurious cur-

rents. In addition to minimising dissipation, good numerical schemes can give second-order

spatial convergence in the estimated oscillation frequency compared to (18) (see Fuster et

al. 2009 for results with different schemes).

Analytical solutions can also be obtained when viscosity is taken into account. The

simplest analysis leads to exponential damping of oscillating modes, however, as studied in

detail by Prosperetti (1981), this gives significant deviations (several percents) compared

to initial-value solutions taking into account the time-dependence of vorticity diffusion into

the medium. Prosperetti derived closed-form solutions for the Laplace transform of shape

evolution both for planar and spherical interfaces (Prosperetti 1980, 1981). These solutions

are the basis for a now classical test case, first proposed in Popinet & Zaleski (1999), which

considers the oscillations of a linearly perturbed, planar interface. Although less stringent

than the inviscid case, due to a simpler geometry which is less affected by imbalance and

spurious currents, this test evaluates the quality of the full coupling between interfacial

motion, surface tension, viscosity and inertia. Again, good schemes can demonstrate second-

order convergence toward the analytical solution with a small prefactor. See Popinet (2009)

for a comparison of different schemes.
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6.3. More Complex Test Cases

Simple-looking test cases, for which analytical solutions exist, are often the most challeng-

ing, as illustrated by the history of spurious currents. More complex test cases are also useful

however, in particular for assessing practical applicability of numerical schemes, including

speed, robustness etc. An important issue for these tests is the availability of reference

solutions: analytical solutions are usually not available, or have restrictions (e.g. on ampli-

tudes, Reynolds numbers etc.) which can be difficult to enforce in numerical simulations ;

experimental reference data can be available but error bars can be large and the experiments

often include physical effects (e.g. surfactants, temperature gradients, compressibility etc.)

which complicate their comparison with simpler numerical models. A popular example of

this class is the case of rising bubbles, often used for validation of surface tension models.

Due to a lack of accurate reference solutions, the validation is often qualitative, with a

“visual” comparison of the shapes obtained experimentally or numerically. While this was

useful when methods were inaccurate enough to cause obvious departure from the expected

solutions (for example the extreme case of bubbles bursting due to spurious currents), this

is insufficient to assess the relative accuracies of modern numerical methods. A useful

approach, which requires substantial effort, is to provide accurate, converged, numerical

reference solutions for non-trivial problems. For example (Hysing et al. 2009, Featflow

2008) give reference solutions, using different numerical methods, for rising bubbles which

can be reproduced accurately by other methods (Basilisk 2013, rising.c). A similar effort

is made for Taylor bubble solutions by Marschall et al. (2014) and Abadie et al. (2015).

7. SELECTED APPLICATIONS

Numerical simulations are particularly useful in combination with laboratory experiments.

Their advantages and drawbacks are often complementary so that simultaneous design of

laboratory and numerical experiments can lead to deeper insight into complex physical phe-

nomena. Figure 2 illustrates an example of this approach. A millimetre-size water droplet

impacts on a pool and creates a complex splash structure. The top view is a zoom on the

impact zone, seen as a vertical cut through the center of the drop. The axis of revolution

is aligned with the left border of the image. The pool is coloured in blue and the droplet

in red for visualization but there are only two fluids: water and air (light green). This

configuration was studied in detail both numerically and experimentally by Thoraval et al.

(2012). The experiment and the numerical simulation are both very challenging due to

the wide range of spatial scales and short duration of the phenomenon. Care was taken

to ensure converged axisymmetric simulations. This required spatial resolutions of order

104 grid points per drop diameter i.e. resolved structures of order one micrometre. Besides

an accurate surface tension model (well-balanced, height-function VOF-CSF), several nu-

merical ingredients were necessary: adaptive mesh refinement, efficient multigrid pressure

solver and parallelism (Popinet 2009, Agbaglah et al. 2011). The numerical results were

very consistent with experimental observations for the whole range of impact regimes (see

also Agbaglah et al. (2015) for an impressive comparison with high-speed X-ray imaging),

but predicted a regime characterised by the unexpected von Kármán vortex street of Figure

2. This is associated with complex dynamics of the ejecta sheet which periodically entraps

toroidal air bubbles. This regime was not observable using the side-view camera of the

original experimental setup. This numerical result lead to the re-design of the experiment

to use bottom-view cameras with the goal of observing the bubble rings predicted by the
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numerics (Thoraval et al. 2013). A sample of the images obtained is given in Figure 2 bot-

tom, for different pool depths. Although the subsequent three-dimensional breakup of the

toroidal bubbles (some of them are still intact on the bottom-right frame) cannot be pre-

dicted by the axisymmetric simulations, the experimental results spectacularly confirmed

the numerical discovery.

Figure 2

Top: Side view of an axisymmetric numerical simulation of the von Kármán vortex street created

by the impact of a millimetric water droplet impacting on a pool. Bottom: high-speed

experimental imaging of the bubble rings created by the vortex street for different pool depths.
Adapted from Figures 10 and 11 of Thoraval et al. (2013).

The motion of gas bubbles in a liquid is a canonical example of the subtle balance

between surface tension, viscous and buoyancy forces. The transitions between various

regimes (straight, zig-zag or spiralling ascent) are particularly difficult to capture, either

experimentally or numerically. They have been investigated numerically in a recent series

of articles by Cano-Lozano et al. (2015, 2016). In contrast with the previous example, full

three-dimensional simulations are necessary. The boundaries between regimes are controlled

by the coupled interaction of the shape of the deformable bubble and the associated vorticity

generation and wake formation. An example of the resulting trajectory, wake structure and

bubble shapes is given in Figure 3. Accurate modelling of surface tension is vital to minimise

spurious vorticity generation at the interface. As in the previous study, Cano-Lozano et al.

were careful to check the numerical convergence of their results. This required a resolution

of 128 grid points per bubble diameter. A very large tank of 8 × 8 × 128 diameters is

necessary to be able to follow the bubble for a long time. This leads to formidable resolution

requirements: 234 ' 17 billion grid points on a regular grid! Adaptive mesh refinement

brings this down to around 10 million grid points and make the simulations possible but

still expensive (see http://basilisk.fr/src/examples/bubble.c for a full example). A

large number of timesteps is necessary to capture the transition to established regime, in

particular because of the explicit timestep restriction discussed previously. Note also that

the parameters chosen correspond to those for a millimetric air bubble rising in a liquid

roughly ten times more viscous than water. Further refinement would be necessary to

properly capture the boundary layers for an air/water bubble.
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Figure 3

Numerical simulation of (a) trajectory, (b) vorticity distribution and (c) shapes of a gas bubble

rising in a liquid in the “spiralling regime”. The density ratio is close to air and water. The
Galileo and Bond numbers are 100.25 and 10 respectively. Adapted from Figures 10 and 11 of

Cano-Lozano et al. (2016).

These two examples illustrate the capabilities, as well as limitations, of state-of-the-art

models of surface tension. Obtaining numerically-converged results clearly requires consid-

erable computing power. This is feasible, but challenging, for complex two-dimensional (or

axisymmetric) configurations. Provided care is taken, very valuable insight can be gained

from such simulations (see e.g. Samanta et al. 2011, Fuster et al. 2013, Hoepffner et al.

2013, Deike et al. 2015 for a small representative sample).

In three dimensions, only relatively simple configurations can be studied with confidence

that results are fully independent from the numerics. That said, the situation was similar

for two-dimensional simulations fifteen years ago, with the added limitation of less accurate

surface tension models. Under-resolved three-dimensional simulations can still give very

useful qualitative results for flows which are challenging to study experimentally, provided

one controls the effect of resolution and checks consistency with the available experimental

data and theoretical models. Representative examples of this approach include studies of

atomisation (Herrmann 2010, Desjardin et al. 2013, Chen et al. 2013, Jain et al. 2015, Ling

et al. 2017), industrial processes (Mencinger et al. 2015) and waves (Deike et al. 2016).

A balanced trio of experimental, theoretical and numerical approaches can be extremely

effective and I expect numerical models of surface tension to play an important role in

future advances in our understanding of complex multiphase flows.

FUTURE ISSUES

1. None of the methods presented in this review satisfy both well-balancing and mo-

mentum conservation: properties which are required for consistency and robustness.

Integral formulations, which have been relatively neglected, could be a promising

research direction.

2. Although high-order height-function schemes have been demonstrated for curva-

ture estimation, current volumetric formulations are formally first-order accurate.
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This follows from detailed analysis of Peskin’s scheme by Leveque & Li (1994). Al-

though immersed interface schemes have been extended to second-order (Leveque

& Li 1994, 1997, Peskin 2002, Xu & Wang 2006), they have only been applied so

far to Lagrangian interface discretisations and fluid-structure interactions. Their

generalisation to generic two-phase flows, with an implicit interface representation,

remains an open question.

3. Robust time-implicit schemes have already been formulated for Lagrangian im-

mersed interface methods (Mayo & Peskin 1992, Newren et al. 2007) and there

is no reason to believe that these results cannot be generalised to surface tension,

however recent efforts in this direction have yielded somewhat confusing results

(Denner & van Wachem 2015).

4. Extensions to more than two phases, including the consistent treatment of triple

points or lines has only been considered recently (see e.g. Li et al. (2015)).

5. The schemes described in this review, and especially the height-function method,

are most easily implemented on regular Cartesian grids (or their adaptive versions).

Their generalisation to unstructured grids, usually favoured for industrial applica-

tions, has so far concentrated on kinematics rather than dynamics. Surface tension

schemes on these grids, often based on diffuse algebraic VOF formulations, are

currently quite limited compared to the state-of-the-art on regular grids.

6. Finally, efforts should be pursued to provide standardised, benchmark cases showing

numerical convergence (even if only first-order) for relevant, non-trivial physical

configurations.
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an impacting drop. Physical Review Letters 108:264506

Thoraval MJ, Takehara K, Etoh TG, Thoroddsen ST. 2013. Drop impact entrapment of bubble

rings. Journal of Fluid Mechanics 724:234–258

Torres D, Brackbill J. 2000. The point-set method: front-tracking without connectivity. Journal of

Computational Physics 165:620–644

Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, et al. 2001. A front-tracking method

for the computations of multiphase flow. Journal of Computational Physics 169:708–759

Tryggvason G, Scardovelli R, Zaleski S. 2011. Direct numerical simulations of gas–liquid multiphase

flows. Cambridge University Press

Unverdi SO, Tryggvason G. 1992. A front-tracking method for viscous, incompressible, multi-fluid

flows. Journal of Computational Physics 100:25–37

Weatherburn CE. 1927. Differential geometry of three dimensions, vol. 1. Cambridge University

Press

Williams M, Kothe D, Puckett E. 1998. Accuracy and convergence of continuum surface tension

models. Fluid Dynamics at Interfaces, Cambridge University Press, Cambridge :294–305

Wroniszewski PA, Verschaeve JC, Pedersen GK. 2014. Benchmarking of Navier–Stokes codes for

free surface simulations by means of a solitary wave. Coastal Engineering 91:1–17

Xiao F, Ii S, Chen C. 2011. Revisit to the THINC scheme: a simple algebraic VOF algorithm.

Journal of Computational Physics 230:7086–7092

Xu S, Wang ZJ. 2006. An immersed interface method for simulating the interaction of a fluid with

moving boundaries. Journal of Computational Physics 216:454–493

28 S. Popinet


