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ON THE HOMOGENEOUS ERGODIC BILINEAR AVERAGES

WITH MÖBIUS AND LIOUVILLE WEIGHTS

E. H. EL ABDALAOUI

Abstract. It is shown that the homogenous ergodic bilinear averages with
Möbius or Liouville weight converge almost surely to zero, that is, if T is a map
acting on a probability space (X,A, ν), and a, b ∈ Z, then for any f, g ∈ L2(X),
for almost all x ∈ X,

1

N

N∑

n=1

ν(n)f(Tanx)g(T bnx) −−−−−−→
N→+∞

0,

where ν is the Liouville function or the Möbius function. We further obtain
that the convergence almost everywhere holds for the short interval with the
help of Zhan’s estimation. Also our proof yields a simple proof of Bourgain’s
double recurrence theorem. Moreover, we establish that if T is weakly mixing
and its restriction to its Pinsker algebra has singular spectrum, then for any
integer k ≥ 1, for any fj ∈ L∞(X), j = 1, · · · , k, for almost all x ∈ X, we have

1

N

N∑

n=1

ν(n)
k∏

j=1

f(Tnjx) −−−−−−→
N→+∞

0.

1. Introduction

The purpose of this short note is to establish that the homogenous ergodic bilinear
averages with Möbius or Liouville weight converge almost surely to zero. Our result,
in some sense, extend Sarnak’s result which assert that the ergodic averages with
Möbius or Liouville weight converge almost surely to zero [21]. Moreover, our proof
allows us to obtain a simple proof of Bourgain’s double recurrence theorem [6].

The problem of the convergence almost everywhere (a.e.) of the ergodic multi-
linear averages was introduced by Furstenberg in [13]. Later, J. Bourgain proved
that the homogenous ergodic bilinear averages converges almost surely [6]. Subse-
quently, I. Assani established that the convergence a.e. of the homogenous ergodic
multilinear averages holds if the restriction of the map to its Pinsker algebra has
a singular spectrum. Assani’s proof is based essentially on Bourgain’s theorem [6]
combined with Host’s joining theorem [18]. Very recently, E. H. el Abdalaoui proved
that there is a subsequence for which the convergence a.e. of the ergodic multilinear
averages holds [1]. For a recent survey on the Furstenberg’s problem on the ergodic
multilinear averages, we refer to [16]. Let us mention also that C. Demeter in [10]
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2 E. H. EL ABDALAOUI

obtained an alternative proof of Bourgain’s theorem [6].

For the convergence almost everywhere of the homogenous ergodic bilinear aver-
ages with weight, I. Assani, D. Duncan, and R. Moore proved à la Weiner-Wintner
that the exponential sequences (e2πint)n∈Z are good weight for the homogenous er-
godic bilinear averages [4]. Subsequently, I. Assani and R. Moore showed that the
polynomials exponential sequences

(

e2πiP (n)
)

n∈Z
are also uniformly good weights

for the homogenous ergodic bilinear averages [5]. One year later, I. Assani and
P. Zorich proved independently that the nilsequences are uniformly good weights
for the homogenous ergodic bilinear averages. Their proof depend heavily on
Bourgain’s theorem. Let us further notice that Zorich’s proof yields that if the
ergodic multilinear averages converges a.e. then the nilsequences are a good weight
for the ergodic multilinear averages.

Here, our goal is to prove that the Möbius and Liouville functions are a good
weight for the homogenous ergodic bilinear averages. Our proof follows closely
Bourgain’s proof [6]. We thus apply Calderón transference principal in order to
establish some kind of maximal inequality. Furthermore, we apply Assani’s result
to prove that the Möbius and Liouville functions are a good weight for the homoge-
nous ergodic multilinear averages if the restriction of the map to its Pinsker algebra
has singular spectrum.

Let us remind that Sarnak announced in his seminal paper [21] that the Möbius
function is a good weight in L2 for the ergodic averages. In [2], the authors apply
Davenport’s estimation combined with Etamedi’s trick [12] to obtain a simple proof
of Sarnak’s result. Therein, they proved that the Möbius function is a good weight
in L1 for the ergodic averages.

2. Notations and Tools

The Liouville function is defined for the positive integers n by

λ = (−1)Ω(n),

where Ω(n) is the length of the word n is the alphabet of prime, that is, Ω(n) is the
number of prime factors of n counted with multiplicities. The Möbius function is
given by

(1) µ(n) =











1 if n = 1;

λ(n) if n is the product of r distinct primes;

0 if not

These two functions are of great importance in number theory since the Prime
Number Theorem is equivalent to

(2)
∑

n≤N

λ(n) = o(N) =
∑

n≤N

µ(n).

Furthermore, there is a connection between these two functions and Riemann zeta
function, namely

1

ζ(s)
=

∞
∑

n=1

µ(n)

ns
for any s ∈ C with Re(s) > 1.

Moreover, Littlewood proved that the estimate
∣

∣

∣

∣

∣

x
∑

n=1

µ(n)

∣

∣

∣

∣

∣

= O
(

x
1
2
+ε

)

as x −→ +∞, ∀ε > 0
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is equivalent to the Riemann Hypothesis (RH) ([23, pp.315]).

Here, we will need the following Davenport-Hua’s estimation [9], [17, Theorem
10.]: for each A > 0, for any k ≥ 1, we have

(3) max
z∈T

∣

∣

∣

∣

∣

∣

∑

n≤N

zn
k

λ(n)

∣

∣

∣

∣

∣

∣

≤ CA

N

logAN
for some CA > 0.

This estimate has been generalized for the short interval by T. Zhan [25] as follows:
for each A > 0, for any ε > 0, we have

(4) max
z∈T

∣

∣

∣

∣

∣

∣

∑

N≤n≤N+M

znλ(n)

∣

∣

∣

∣

∣

∣

≤ CA,ε

M

logA(M)
for some CA,ε > 0,

provided that M ≥ N
5
8
+ε.

Davenport-Hua’s estimation was extended by Green-Tao to the nilsequences set-
ting. We refer to Theorem 1.1 in [15] for the exact estimation and for the definition
of the nilsequences.

In our setting, we consider also the ergodic multilinear averages given by

1

N

N
∑

n=1

k
∏

i=1

fi(T
n
i x),

where k ≥ 2, (X,B, µ, Ti)ki=1 are a finite family of dynamical systems where µ is
a probability measure, Ti are commuting invertible measure preserving transfor-
mations and f1, f2, · · · , fk a finite family of bounded functions. The bilinear case
corresponds to k = 2.

The ergodic multilinear averages is said to be homogenous if Ti, i = 1, · · · k, are
the powers of some given map T .

For the convergence a.e., J. Bourgain proved

Theorem 2.1 (Bourgain’s double recurrence theorem [6]). Let (X,A, µ, T ) be an
ergodic dynamical system, and T1, T2 be powers of T . Then, for any f, g ∈ L∞(X),
for almost all x ∈ X ,

1

N

N
∑

n=1

f(T n
1 x)g(T

n
2 x)

converges.

Applying Host’s joining theorem [18] combined with Bourgain’s theorem (Theo-
rem 2.1), I. Assani proved

Theorem 2.2 (Assani’s singular multilinear recurrence theorem [6]). Let (X,A, µ, T )
be a weakly mixing dynamical system such that the restriction of T to its Pinsker
algebra has singular spectrum, then, for all positive integers k, for all fi ∈ L∞(X),
i = 1, · · · , k, for almost all x ∈ X , we have

1

N

N
∑

n=1

k
∏

i=1

fi(T
inx) −−−−−→

N→+∞

k
∏

i=1

∫

fi(x)dµ.
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3. Some tools on the maximal ergodic inequalities and Claderón

transference principal

We say that the sequence of complex number (an) is good weight in Lp(X,µ),
p ≥ 1 for linear case, if, for any f ∈ Lp(X,µ), the ergodic averages

1

N

N
∑

j=1

ajf(T
jx)

converges a.e.. We further say that the maximal ergodic inequality holds in Lp(X,µ)
for the linear case with weight (an) if, for any f ∈ Lp(X,µ), the maximal function
given by

M(f)(x) = sup
N≥1

∣

∣

∣

1

N

N
∑

j=1

ajf(T
jx)

∣

∣

∣

satisfy the weak-type inequality

λµ
{

x : M(f)(x) > λ
}

≤ C
∥

∥f
∥

∥

p
,

for any λ > 0 with C is an absolutely constant.

It is well known that the classical maximal ergodic inequality is equivalent to the
Birkoff ergodic theorem [14].

The previous notions can be extended in the usual manner to the multilinear case.
Let k ≥ 2, we thus say that (an) is good weight in Lpi(X,µ), pi ≥ 1, i = 1, · · · , k,
with

∑k
i=1

1
pi

= 1, if, for any fi ∈ Lpi(X,µ), i = 1, · · · , k, the ergodic k-mutilinear
averages

1

N

N
∑

j=1

aj

k
∏

i=1

fi(T
j
i x),

converges a.e.. The maximal multilinear ergodic inequality is said to hold in Lpi(X,µ),

pi ≥ 1, i = 1, · · · , k, with
∑k

i=1
1
pi

= 1, if, for any fi ∈ Lpi(X,µ), i = 1, · · · , k, the
maximal function given by

M(f1, · · · , fk)(x) = sup
N≥1

∣

∣

∣

1

N

N
∑

j=1

aj

k
∏

i=1

fi(T
j
i x)

∣

∣

∣

satisfy the weak-type inequality

λµ
{

x : M(f)(x) > λ
}

≤ C

k
∏

i=1

∥

∥fi
∥

∥

pi
,

for any λ > 0 with C is an absolutely constant.

It is not known whether the classical maximal multilinear ergodic inequality
(an = 1, for each n) holds for the general case n ≥ 3. Nevertheless, we have the
following Claderón transference principal in the homogenous case,

Proposition 3.1. Let (an) be a sequence of complex number and assume that for
any φ, ψ ∈ ℓ2(Z), we have

∥

∥

∥
sup
N≥1

∣

∣

∣

1

N

N
∑

n=1

anφ(j + n)ψ(j − n)
∣

∣

∣

∥

∥

∥

ℓ1(Z)
< C.

∥

∥φ
∥

∥

ℓ2(Z)

∥

∥ψ
∥

∥

ℓ2(Z)
,
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where C is an absolutely constant. Then, for any dynamical system (X,A, T, µ),
for any f, g ∈ L2(X,µ), we have

∥

∥

∥
sup
N≥1

∣

∣

∣

1

N

N
∑

n=1

anf(T
nx)g(T−nx)

∣

∣

∣

∥

∥

∥

1
< C

∥

∥f
∥

∥

2

∥

∥g
∥

∥

2
,

We further have

Proposition 3.2. Let (an) be a sequence of complex number and assume that for
any φ, ψ ∈ ℓ2(Z), for any λ > 0, for any integer J ≥ 2, we have

∣

∣

∣

{

1 ≤ j ≤ J : sup
N≥1

∣

∣

∣

1

N

N
∑

n=1

anφ(j + n)ψ(j − n)
∣

∣

∣
> λ

}
∣

∣

∣
< C

∥

∥φ
∥

∥

ℓ2(Z)

∥

∥ψ
∥

∥

ℓ2(Z)

λ
,

where C is an absolutely constant. Then, for any dynamical system (X,A, T, µ),
for any f, g ∈ L2(X,µ), we have

µ
{

x ∈ X : sup
N≥1

∣

∣

∣

1

N

N
∑

n=1

anf(T
nx)g(T−nx)

∣

∣

∣
> λ

}

< C

∥

∥f
∥

∥

2
.
∥

∥g
∥

∥

2

λ
.

It is easy to check that Proposition 3.1 and 3.2 hold for the homogenous k-
multilinear ergodic averages, for any k ≥ 3. Moreover, one may state and prove
the finitary version where Z is replaced by Z/J̄Z and the functions φ and ψ with
J̄-periodic functions. We refer to Proposition 14.1 in [11] for more details.

4. Main results and its proof

We start by stating our first main result.

Theorem 4.1. Let (X,A, µ, T ) be an ergodic dynamical system, and T1, T2 be
powers of T . Then, for any f, g ∈ L2(X), for almost all x ∈ X ,

1

N

N
∑

n=1

ν(n)f(T n
1 x)g(T

n
2 x) −−−−−→

N→+∞
0,

where ν is the Liouville function or the Möbius function.

Our second main result can be stated as follows:

Theorem 4.2. Let (X,A, µ, T ) be weakly mixing ergodic dynamical system, and
T1, T2, · · · , Tk be powers of T , k ≥ 2. Assume that the spectrum of the restriction
of T to its Pinsker algebra is singular. Then, for any fj ∈ L∞(X), j = 1, · · · , k, for
almost all x ∈ X , we have

1

N

N
∑

n=1

ν(n)
k
∏

j=1

f(T jnx) −−−−−→
N→+∞

0,

where ν is the Liouville function or the Möbius function.

For the proof of Theorem 4.2, we need the following criterion due to Katai-
Bourgain-Sarnak-Ziegler [7], [20].

Theorem 4.3 (Katai-Bourgain-Sarnak-Ziegler’s (KBSZ) criterion [7], [20]). Let f
be an arithmetic bounded function and let ν be a bounded multiplicative function.
Assume that for all sufficiently large distinct primes p, q we have

1

N

N
∑

n=1

f(np)f(nq) −−−−−→
N→+∞

0.

Then

1

N

N
∑

n=1

ν(n)f(n) −−−−−→
N→+∞

0.
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Proof of Theorem 4.2. The proof goes by induction on k. We further assume

that for some i ∈
{

1, · · · , k
}

,

∫

fidµ(x) = 0. The case k = 1 follows from Sarnak’s

result. For k = 2, put

F (n) = f1(T
n
1 x)f2(T

n
2 x),

where T1, T2 are the powers of T . Then, by Theorem 2.2, for almost all x ∈ X , for
all p 6= q,

1

N

N
∑

n=1

F (np)F (nq) −−−−−→
N→+∞

0,

Therefore, by KBSZ criterion (Theorem 4.3), we get, for almost all x ∈ X ,

1

N

N
∑

n=1

ν(n)F (n) −−−−−→
N→+∞

0,

that is, for almost all x ∈ X ,

1

N

N
∑

n=1

ν(n)f1(T
n
1 x)f2(T

n
2 x) −−−−−→

N→+∞
0.

But, for any f1, f2 ∈ L∞(X),

1

N

N
∑

n=1

ν(n)f1(T
n
1 x)f2(T

n
2 x)

=
1

N

N
∑

n=1

ν(n)
(

f1 −
∫

f1dµ
)

(T n
1 x)f2(T

n
2 x) +

(

∫

f1dµ(x)
) 1

N

N
∑

n=1

ν(n)f2(T
n
2 x).

Consequently, for any f1, f2 ∈ L∞(X), for almost all x ∈ X ,

1

N

N
∑

n=1

ν(n)f1(T
n
1 x)f2(T

n
2 x) −−−−−→

N→+∞
0.

Now, assume that for almost all x ∈ X , and for any ℓ ≤ k, we have

1

N

N
∑

n=1

ν(n)

ℓ
∏

i=1

fi(T
n
i x) −−−−−→

N→+∞
0,

where Ti, i = 1, · · · ℓ are the powers of T . Then, by applying again Theorem 2.2, we
see that for almost all x,

1

N

N
∑

n=1

F (np)F (nq) −−−−−→
N→+∞

0,

where

F (n) =

k+1
∏

i=1

fi(T
n
i x).

Hence, once again by KBSZ criterion (Theorem 4.3), it follows that for almost all
x ∈ X ,

1

N

N
∑

n=1

ν(n)F (n) −−−−−→
N→+∞

0,

whence, for almost all x ∈ X ,

1

N

N
∑

n=1

ν(n)
k+1
∏

i=1

fi(T
n
i x) −−−−−→

N→+∞
0.

The proof of the theorem is complete. �
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Remark 4.4. Of course, our proof yields that the convergence a.e. holds for any
bounded multiplicative function ν. We deduce also that Theorem 4.2 is valid for
the class of weakly mixing PID or the distal flows with the help of the recent result
of Gutman-Huang-Shao-Ye [16] and Huang-Shao-Ye [19]. Obviously, if the answer
to Furstenberg’s question [13] is positive then Theorem 4.2 holds for the general
case.

We move now to prove Theorem 4.1. For any ρ > 1, we will denote by Iρ the set
{

(⌊ρn⌋), n ∈ N

}

. The maximal functions are defined by

MN0,N̄
(f, g)(x) = sup

N0≤N≤N̄

N∈Iρ

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(T nx)g(T−nx)− 1

N0

N0
∑

n=1

ν(n)f(T nx)g(T−nx)
∣

∣

∣
,

MN0
(f, g)(x) = sup

N≥N0

N∈Iρ

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(T nx)g(T−nx)− 1

N0

N0
∑

n=1

ν(n)f(T nx)g(T−nx)
∣

∣

∣
.

Obviously,

lim
N̄−→+∞

MN0,N̄
(f, g)(x) =MN0

(f, g)(x).

For the shift Z-action, the maximal functions are denoted by mN0,N̄
(φ, ψ) and

mN0
(φ, ψ).

We start by proving the following:

Theorem 4.5. For any ρ > 1, for any f, g ∈ ℓ2(Z), for any K ≥ 1, we have

K
∑

k=1

∥

∥

∥
mNk,Nk+1

(f, g)
∥

∥

∥

ℓ1(Z)
< C.

√
K
∥

∥f
∥

∥

ℓ2(Z)

∥

∥g
∥

∥

ℓ2(Z)
,(5)

where ν is the Liouville function or the Möbius function and C is an absolutely
constant which depend only on ρ.

The classical Calderón transference principal (see Proposition 3.1 and 3.2) allows
us to obtain from Theorem 4.5 the following:

Theorem 4.6. Let (X,A, T, µ) be an ergodic dynamical system, and let f, g ∈
L2(X,µ) . Then, for any ρ > 1, for any K ≥ 1,

K
∑

k=1

∥

∥

∥
MNk,Nk+1

(f, g)
∣

∣

∣

∥

∥

∥

1
< 4C

√
K.

∥

∥f
∥

∥

2

∥

∥g
∥

∥

2
,(6)

where ν is the Liouville function or the Möbius function.

Let us give the proof of Theorem 4.6.

Proof of Theorem 4.6. The proof goes, as in the proof of Proposition 3.1 and
3.2. Let N̄ = NK+1 and put

φx(n) =

{

f(T nx), if n ∈ [−2N̄, 2N̄ ];
0, if not,

and

ψx(n) =

{

g(T nx), if n ∈ [−2N̄, 2N̄ ];
0, if not,

Then, by Theorem 4.5, we have

K
∑

k=1

∥

∥

∥
mNk,Nk+1

(φx, ψx)
∥

∥

∥

ℓ1(Z)
< C

√
K
∥

∥φx
∥

∥

ℓ2(Z)

∥

∥ψx

∥

∥

ℓ2(Z)
.
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We thus get

K
∑

k=1

(

∑

|j|≤N̄

mNk,Nk+1
(φx, ψx)(j)

)

< C
√
K
∥

∥φx
∥

∥

ℓ2(Z)

∥

∥ψx

∥

∥

ℓ2(Z)
,

which can be rewritten as follows
K
∑

k=1

∑

|j|≤N̄

(

MNk,Nk+1
(f, g)(T jx)

)

< C
√
K
(

∑

|n|≤2N̄

|f |2(T nx)
)

1
2
(

∑

|n|≤2N̄

|g|2(T nx)
)

1
2

.

Integrating and applying Hölder inequality we obtain

K
∑

k=1

∥

∥

∥
MNk,Nk+1

(f, g)
∥

∥

∥

1
< 4C

√
K
∥

∥f
∥

∥

2

∥

∥g
∥

∥

2
,

since T is measure preserving, and this finish the proof of the theorem. �

We proceed now to the proof of Theorem 4.5. Our proof follows Bourgain’s
arguments combined with Davenport-Hua estimation.

Proof of Theorem 4.5. Let f, g ∈ ℓ2(Z) and δ > 0. Denote by F the Fourier
transform form ℓ2(Z) to L2(T), T is the circle. We recall that F(f)(z) =

∑

n∈Z
f(n)z−n,

for z ∈ T. For any j ∈ Z, put

νj(n) = ν(j − n), n ∈ Z.

Of course ν is extended to the negative integers Z− in the usual fashion.

Obviously, we have

1

N

N
∑

n=1

ν(n)f(j + n)g(j − n) =
(

f ∗
( 1

N
.νj .g. 11[j−N,j[

))

(2j),(7)

where ∗ is the operation of convolution given by

(a ∗ b)(j) =
∑

n∈Z

a(j − n)b(n), ∀a, b ∈ ℓ2(Z) and ∀j ∈ Z.

Furthermore, by a standard arguments, we can rewrite (7) as follows

1

N

N
∑

n=1

ν(n)f(j + n)g(j − n) = F−1
(

F(f).F(Gj)
)

(2j),(8)

where G = 1
N
.νj .g. 11[j−N,j]. Therefore

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(j + n)g(j − n)
∣

∣

∣
=

∣

∣

∣

∫

T

F(f)(z)F(Gj)(z)z
2jdz

∣

∣

∣

≤
∫

T

∣

∣F(f)(z)
∣

∣

∣

∣F(Gj)(z)
∣

∣dz(9)

But, a straightforward computations gives
∫

T

∣

∣F(f)(z)
∣

∣

∣

∣F(Gj)(z)
∣

∣dz =

∫

T

∣

∣

∣

∑

n∈Z

f(n)z−n
∣

∣

∣

∣

∣

∣

1

N

N
∑

n=1

ν(n)g(j − n)zn
∣

∣

∣
dz.(10)

Now, applying Cauchy-Schwarz inequality, we get

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(j + n)g(j − n)
∣

∣

∣

2

≤
(

∫

T

∣

∣

∣

∑

n∈Z

f(n)z−n
∣

∣

∣

2

dz
)(

∫

∣

∣

∣

1

N

N
∑

n=1

ν(n)g(j − n)zn
∣

∣

∣

2

dz
)

.



ERGODIC BILINEAR AVERAGES 9

Integrating, we see that

∑

j∈Z

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(j + n)g(j − n)
∣

∣

∣

2

≤ ‖f‖22
∑

j∈Z

∫

∣

∣

∣

1

N

N
∑

n=1

ν(n)g(j − n)zn
∣

∣

∣

2

dz

≤ ‖f‖22
∫

∑

j∈Z

∣

∣

∣

1

N

N
∑

n=1

ν(n)g(j − n)zn
∣

∣

∣

2

dz(11)

We thus need to estimate the RHS of the inequality (11). For that, write

∑

j∈Z

∣

∣

∣

1

N

N
∑

n=1

ν(n)g(j − n)zn
∣

∣

∣

2

=
∑

j∈Z

∣

∣

∣

1

N

N
∑

n=1

ν(n)(U−ng)(j)zn
∣

∣

∣

2

,

where U is the Koopman operator of the shift map S. Consequently, by the spectral
theorem, we have

∥

∥

∥

1

N

N
∑

n=1

ν(n)g(S−nj)zn
∥

∥

∥

2
=

∥

∥

∥

1

N

∑

1≤n≤N

ν(n)λnzn
∥

∥

∥

L2(σg)
,

where σg is the spectral measure of g.1 Hence, by Davenport’s estimation (3), for
each A > 0, we get

(12)
∥

∥

∥

1

N

N
∑

n=1

ν(n)g(S−nj)zn
∥

∥

∥

2
≤ CA

(

log(N)
)A
.‖g‖2,

where CA is a constant that depends only on A.

Combining (11) and (12), we can rewrite (11) as follows

∑

j∈Z

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(j + n)g(j − n)
∣

∣

∣

2

≤ C2
A

(

log(N)
)2A

.‖f‖22.‖g‖22.,(13)

Form this, it follows that for any k = 1, · · · ,K, we have

∑

Nk≤N≤Nk+1

N∈Iρ

∑

j∈Z

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(j + n)g(j − n)
∣

∣

∣

2

≤
∑

Nk≤N≤Nk+1

N∈Iρ

C2
A

(

log(N)
)2A

‖f‖22‖g‖22.

Whence

∥

∥

∥
sup

Nk≤N≤Nk+1

N∈Iρ

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(j + n)g(j − n)
∣

∣

∣

∥

∥

∥

2
<

√

√

√

√

√

∑

Nk≤N≤Nk+1

N∈Iρ

C2
A

(

log(N)
)2A

‖f‖2‖g‖2,

Thus by the elementary inequality
√
a+ b ≤ √

a+
√
b, a, b ≥ 0, it follows that

K
∑

k=1

∥

∥

∥
sup

Nk≤N≤Nk+1

N∈Iρ

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(j+n)g(j−n)
∣

∣

∣

∥

∥

∥

2
<

K
∑

k=1

∑

Nk≤N≤Nk+1

N∈Iρ

CA
(

log(N)
)A

‖f‖2‖g‖2,

Applying again Cauchy-Schwarz inequality, we conclude that

K
∑

k=1

∥

∥

∥
sup

Nk≤N≤Nk+1

N∈Iρ

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(j + n)g(j − n)
∣

∣

∣

∥

∥

∥

1
< C.

√
K‖f‖2‖g‖2.

1Recall that σg is a finite measure on the circle determined by its Fourier transform given by

σ̂g(n) =< Ung, g >.
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In the same manner we can see from (13) that we have

K
∑

k=1

∥

∥

∥

1

Nk

Nk
∑

n=1

ν(n)f(j + n)g(j − n)
∥

∥

∥

2
<

K
∑

k=1

CA

log(Nk)A
‖f‖2‖g‖2 < C‖f‖2‖g‖2.

Therefore, by the triangle inequality, we get

K
∑

k=1

∥

∥

∥
mNk,Nk+1

(f, g)
∥

∥

∥

ℓ1(Z)
< C.

√
K
∥

∥f
∥

∥

ℓ2(Z)

∥

∥g
∥

∥

ℓ2(Z)
,

and the proof of the theorem is complete. �

Remark 4.7. An alternative proof to the previous proof can be obtained by using
the discrete Fourier transform instead of Fourier transform to obtain the same
inequalities. We remind that the discrete Fourier transform is defined on finite
abelien group GJ = Z/JZ by

dF(f)(n) =

J−1
∑

j=0

f(j)χn
J ,

where χJ = e2πi
1
J . For a nice account on the discrete Fourier transform and related

topics we refer to [22].

Now, we are able to give the proof of our main result Theorem 4.1.

Proof of Theorem 4.1. By a standard argument, we may assume that the map
T is ergodic. Let us assume also that f, g are in L∞(X,µ). Therefore, by Theorem
4.6, it is easily seen that

1

K

K
∑

k=1

∥

∥

∥
MNk,Nk+1

(f, g)
∥

∥

∥

1
−−−−−→
K→+∞

0.

Hence, by the same arguments as in [24] and [10], we see that for almost every
point x ∈ X , we have

1

[ρm]

[ρm]
∑

n=1

ν(n)f(T nx)g(T−nx) −−−−−→
m→+∞

0,

since the L2-limit is zero by Green-Tao theorem [15, Theorem 1.1] combined with
Chu’s result [8]. It follows that if [ρm] ≤ N < [ρm+1] + 1, then

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(T nx)g(T−nx)
∣

∣

∣

=
∣

∣

∣

1

N

[ρm]
∑

n=1

ν(n)f(T nx)g(T−nx) +
1

N

N
∑

n=[ρm]+1

ν(n)f(T nx)g(T−nx)
∣

∣

∣

≤
∣

∣

∣

1

[ρm]

[ρm]
∑

n=1

ν(n)f(T nx)g(T−nx)
∣

∣

∣
+

∥

∥f
∥

∥

∞

∥

∥g
∥

∥

∞

[ρm]
(N − [ρm]− 1)

≤
∣

∣

∣

1

[ρm]

[ρm]
∑

n=1

ν(n)f(T nx)g(T−nx)
∣

∣

∣
+

∥

∥f
∥

∥

∞

∥

∥g
∥

∥

∞

[ρm]
([ρm+1]− [ρm]).

Letting m goes to infinity, we get

∣

∣

∣

1

[ρm

[ρm]
∑

n=1

ν(n)f(T nx)g(T−nx)
∣

∣

∣
−−−−−→
m→+∞

0,
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and

||f ||∞
[ρm]

([ρm+1]− [ρm]) −−−−−→
m→+∞

∥

∥f
∥

∥

∞

∥

∥g
∥

∥

∞
.(ρ− 1),

For any ρ > 1. Letting ρ −→ 1 we conclude that

1

N

N
∑

n=1

ν(n)f(T nx)g(T−nx) −−−−−→
N→+∞

0, a.e.,

To finish the proof, notice that for any f, g ∈ L2(X,µ), and any ε > 0, there

exist f1, g1 ∈ L∞(X,µ) such that
∥

∥

∥
f − f1

∥

∥

∥

2
<

√
ε, and

∥

∥

∥
g− g1

∥

∥

∥

2
<

√
ε. Moreovere,

by Cauchy-Schwarz inequality, we have

∣

∣

∣

1

N

N
∑

n=1

ν(n)(f − f1)(T
nx)(g − g1)(T

−nx)
∣

∣

∣

≤ 1

N

N
∑

n=1

∣

∣(f − f1)(T
nx)

∣

∣

∣

∣(g − g1)(T
−nx)

∣

∣

≤
( 1

N

N
∑

n=1

∣

∣(f − f1)(T
nx)

∣

∣

2
)

1
2
( 1

N

N
∑

n=1

∣

∣(g − g1)(T
nx)

∣

∣

2
)

1
2

Applying the ergodic theorem, it follows that for almost all x ∈ X , we have

lim sup
N−→+∞

∣

∣

∣

1

N

N
∑

n=1

ν(n)(f − f1)(T
nx)(g − g1)(T

−nx)
∣

∣

∣
< ε.

Whence, we can write

lim sup
N−→+∞

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(T nx)g(T−nx)
∣

∣

∣

≤ lim sup
N−→+∞

∣

∣

∣

1

N

N
∑

n=1

ν(n)f1(T
nx)g(T−nx)

∣

∣

∣
+ lim sup

N−→+∞

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(T nx)g1(T
−nx)

∣

∣

∣

+ lim sup
N−→+∞

∣

∣

∣

1

N

N
∑

n=1

ν(n)f1(T
nx)g1(T

−nx)
∣

∣

∣

≤ ε+ lim sup
N−→+∞

∣

∣

∣

1

N

N
∑

n=1

ν(n)f1(T
nx)g(T−nx)

∣

∣

∣
+ lim sup

N−→+∞

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(T nx)g1(T
−nx)

∣

∣

∣
.

We thus need to estimate

lim sup
N−→+∞

∣

∣

∣

1

N

N
∑

n=1

ν(n)f1(T
nx)g(T−nx)

∣

∣

∣
,

and

lim sup
N−→+∞

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(T nx)g1(T
−nx)

∣

∣

∣
.
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In the same manner we can see that

lim sup
N−→+∞

∣

∣

∣

1

N

N
∑

n=1

ν(n)f1(T
nx)(g − g1)(T

−nx)
∣

∣

∣

≤ lim sup
N−→+∞

( 1

N

N
∑

n=1

|f1(T nx)|2
)

1
2

lim sup
N−→+∞

( 1

N

N
∑

n=1

|(g − g1)(T
nx)|2

)
1
2

≤
∥

∥f1
∥

∥

2

∥

∥g − g1
∥

∥

2

≤
(

∥

∥f
∥

∥

2
+
√
ε
)

.
√
ε

This gives

lim sup
N−→+∞

∣

∣

∣

1

N

N
∑

n=1

ν(n)f1(T
nx)g(T−nx)

∣

∣

∣

≤
(
∥

∥

∥
f
∥

∥

∥

2
+
√
ε
)

.
√
ε+ lim sup

N−→+∞

∣

∣

∣

1

N

N
∑

n=1

ν(n)f1(T
nx)g1(T

−nx)
∣

∣

∣

≤
(

∥

∥f
∥

∥

2
+
√
ε
)

.
√
ε+ 0

Summarizing, we obtain the following estimates

lim sup
N−→+∞

∣

∣

∣

1

N

N
∑

n=1

ν(n)f(T nx)g(T−nx)
∣

∣

∣

≤ ε+
(

∥

∥f
∥

∥

2
+
√
ε
)

.
√
ε+

(

∥

∥g
∥

∥

2
+
√
ε
)

.
√
ε

Since ε > 0 is arbitrary, we conclude that for almost every x ∈ X ,

1

N

N
∑

n=1

ν(n)f(T nx)g(T−nx) −−−−−→
N→+∞

0.

This complete the proof of the theorem. �

As a consequence, we have proved Theorem 2.1.

Remark 4.8. Notice that our proof yields that the convergence almost sure holds
for the short interval. Thanks to Zhan’s estimation (equation (4)).

We end this section by stating the following conjecture.

Conjecture. Let ν be a aperiodic bounded multiplicative function and l ≥ 2 a
positive integer. If T1, · · · , Tl are commuting measure preserving transformations
acting on the same probability space (X,A, µ), then for all f1, · · · , fl ∈ L∞(X,µ),
for almost all x ∈ X , we have

1

N

N
∑

n=1

ν(n)

k
∏

j=1

f(Tj
nx) −−−−−→

N→+∞
0.

We remind that ν is a aperiodic multiplicative function if










ν(mn) = ν(m)ν(n), for all m,n ∈ N such that m ∧ n = 1; and

1

N

N
∑

n=1

ν(an+ b) −−−−−→
N→+∞

0, for all a, b ∈ N..
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