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UNSUPERVISED DEEP HASHING WITH STACKED CONVOLUTIONAL AUTOENCODERS

Sovann En, Bruno Crémilleux, Frédéric Jurie

Normandie Univ, UNICAEN, ENSICAEN, CNRS — UMR GREYC

ABSTRACT

Learning-based image hashing consists in turning high-
dimensional image features into compact binary codes, while
preserving their semantic similarity (i.e., if two images are
close in terms of content, their codes should be close as well).
In this context, many existing hashing techniques rely on su-
pervision for preserving these semantic properties. In this pa-
per, we aim at learning such binary codes by exploiting the
underlying structure of unlabeled data, using deep learning.
The proposed deep network is based on a stacked convolu-
tional autoencoder which hierarchically maps input images
into a low-dimensional space. A binary relaxation constraint
applied to the middle layer of the network — the one contain-
ing the code — makes the codes sparse and binary. To demon-
strate the competitiveness of the proposed architecture, we
evaluate the so produced hash codes on image retrieval and
image classification tasks on the MNIST dataset, and com-
pare its performance with state-of-the-art approaches.

Index Terms— learning based hashing, unsupervised
learning, convolutional autoencoder

1. INTRODUCTION

This paper addresses the problem of unsupervised feature
learning, with the motivation of producing compact binary
hash codes that can be used for indexing images. Such a
representation is essential for many computer vision prob-
lems. For instance, in image retrieval, such representations
enable efficient computations and low storage when dealing
with large datasets [1, 2, 3, 4]. For image classification, it
offers a higher level of semantic information compared to en-
gineered feature extraction techniques [5, 6, 7].

Broadly speaking, there are two main ways to design
hashing functions [8]: locality sensitive hashing (LSH)
and learning to hash. LSH consists in combining data-
independent hashing functions, while learning to hash relies
on a supervised learning stage for producing hashing func-
tions adapted to the input data, for a specific task. The former
approach generally does not scale well, making it not suit-
able for large scale nearest neighbor search [9]. In addition,
because of the locality preserving structure, LSH may not be
able to preserve the semantic similarity.

Learning to hash techniques [3, 10, 11] have been pro-
posed to overcome such drawbacks, relying on data anno-
tations to train hashing functions which can map semanti-
cally similar examples to similar binary codes. Although they
can help to address the aforementioned shortcomings, such
approaches heavily rely on the availability of training data.
This is the reason why a new trend in hashing is to con-
sider semi-supervised or even unsupervised learning strate-
gies [1, 6, 12, 13]. We build on this line of works.

Autoencoders are good candidates for unsupervised learn-
ing, due to their ability to learn data manifolds from unlabeled
data (see e.g., [14]). These networks are mostly based on reg-
ular autoencoders, made of fully connected layers, while re-
cent state-of-the-art results are now also considering the use
of convolutional autoencoders [15]. Inspired by the recent
works of [2, 16], this paper takes advantage of convolutional
deep autoencoders to design a novel and efficient way to de-
sign deep-hashing networks. While the objective of these
aforementioned works is to learn hierarchical representations,
our work is to focus on the production of compact binary
codes.

In this paper, we learn to represent images by compact and
discriminant binary codes, through the use of stacked convo-
lutional autoencoders, relying on their ability to learn mean-
ingful structure without the need of labeled data [6]. The lay-
ers are stacked to form a network which maps an input im-
age hierarchically into a latent space, through a highly non-
linear function (encoder part), and reconstruct hierarchically
the original data (decoder part). Regular stacked convolu-
tional autoencoders does not produce binary codes. We force
the central layer, the one containing the code, to contain only
binary values by introducing a regularization term in the loss
function. This is one of the key contributions of this paper.

The capability of our network to produce semantic pre-
serving codes is validated on the MNIST dataset on an im-
age retrieval and image classification tasks. Experimental re-
sults illustrate the competitiveness of our network compared
to state-of-the-art approaches.

The rest of the paper is as follows: Section 2 reviews the
related works, Section 3 presents the method and the archi-
tecture, Section 4 gives experimental validation on image re-
trieval and classification while Section 5 concludes the paper.



2. RELATED WORK

Pioneer works in hashing [17] are based on the idea of Local-
ity Sensitive Hashing (LSH), one of the most popular choices
[9]. Variants of LSH such as the multi-probe LSH [18] or the
non-linear hashing projection of [19] have also been inves-
tigated. Such approaches usually use hand-crafted features
which does not provide an optimal solution for hashing.

Different from LSH, which relies on a random projection,
learning based hashing takes advantages of modern learning
algorithms to find an adapted hashing function on a given
dataset. The hash functions can be developed in three dif-
ferent ways: supervised, semi-supervised and unsupervised
learning. They differ from one to another in terms of the loss
function and the constraints used. In supervised learning, the
most important constraint is the preservation of semantic in-
formation. This is usually achieved by forcing the distance of
the hash codes of similar (resp. dissimilar) data to be smaller
(resp. bigger) than a margin [2, 4, 10, 11, 20, 21]. Semi-
supervised hashing uses both labeled and unlabeled date. For
instance, [3, 22] designed a loss function to minimize the dis-
tance between examples of the same class and maximize the
variance between unlabeled data. In [12], in addition to pair-
wise similarity losses, the authors model the neighborhood
structure of the labeled and unlabeled data. This structure acts
as a regularizer so that the neighborhood of the data will be
preserved in the hashing space. Unsupervised learning does
not exploit any high level semantic information. For instance,
[23] tries to minimize the quantization errors produced by
the binarization of the features. [13, 23] design their hashing
function based on the idea of preserving the neighborhood of
the data in the Euclidean space.

Recent breakthrough in deep learning gradually attracted
lots of researchers to propose new hashing techniques. [1]
employs classical autoencoder to exploit the underlying struc-
ture of the data in an unsupervised manner followed by a
RBM layer with constraints to reduce the dimension of the
hamming space. [24] designed a new hashing technique based
on variational autoencoders. Variational autoencoders assume
the input data can be generated via a random probability dis-
tribution, which will be learned by the network.

Closely related to hashing techniques, [2] proposes a
stacked what-where autoencoder based on convolutional au-
toencoders in which the necessity of switches (what-where) in
the pooling/unpooling layers is highlighted. Another closely
related work is the one of [16]. The authors utilize convo-
lutional autoencoders but with an aggressive sparsity con-
straints. On each feature map, only the nb maximal activa-
tion is kept while the rest is put into lifetime sparsity (zero
value). These closely related works, however, are designed
for automatic features learning while our objective is to pro-
duce compact binary codes for hashing purpose.

3. MODEL ARCHITECTURE

Our model is based on a stacked convolutional autoencoder
mapping input images into a compact latent space, through
an encoder network, and reconstructing the original im-
age through a decoder network. The network comprises
of 3 convolutional autoencoders and one classical autoen-
coder. Each convolutional autoencoder can be summarized
as: conv —relu—batch_normalization — pooling (encoder)
and unpooling — conv — relu. The classical autoencoder
is based on fully connected layer and can be compactly de-
scribed as: fcxx-fenb-fexx. Figure 1 illustrates the whole ar-
chitecture.

3.1. Convolutional Encoder-Decoder

More formally, let us assume that our network has L con-
volutional layers. The hierarchy of outputs given by the en-
coder is denoted as x; € RWixHixCi for the ith — level,
where W x H is the size of the image and C' the number
of channels. On the other hand, the reconstructions given
by the decoder are denoted as #; € RW:*HixCi for the
ith — level. xq is the input image and 2 is the output of
the network. The activation of the &k layer of the encoder
is defined by z;, = max _pool(c(zk_1 * W + b)), while
the activation of the k*" layer of the decoder is given by :
11 = unpool(o (W +b)), where W/ are the weights
of the convolution/deconvolution layer, and bib the biases. *
denotes the convolutional operation. ¢ is the activation func-
tions which are in our case rectified linear units except for the
hashing layer in the middle of the network, and max _pool
is the max pooling operator (with a stride of 2 pixels in our
case).

The parameters of the networks are learned with SGD,
following a standard autoencoder optimization procedure
where the loss function is the mean square error between in-
put and reconstruction:
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with NV the amount of training samples. For simplicity, we
drop all the subscripts of the weights W and biases b.

3.2. Fully connected central layer

Between the encoder and the decoder, we introduce a regular
autoencoder made of 3 fully connected layers to further re-
duce the dimension of the features. The hidden layer of this
autoencoder constitutes the code used to represent the images.
It should be noticed that we also experimented with fully con-
volutional encoder-decoder network, without noticing much
difference in terms of performance networks with a fully con-
nected autoencoders. In practice, the fully convolutional net-
work is faster to train and easier to optimize.
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Fig. 1. Illustration of our network architecture. The left, middle and right blocks corresponds to the encoder, the fully connected
layers and the decoder part. Each block in the encoder part consists of a convolutional, relu, batch normalization and a pooling
layer. The fully connected layers, in the middle, learn to map the output of the encoder into a low-dimensional and binary
spaces. The first and last FC layer are also equipped with relu. The decoder network is responsible to output the feature maps
and gradually transform it into its original dimensions followed by 1x1 convolutional layer with sigmoid activation.

As for the fully convolutional encoder-decoder network,
the optimization of the fully connected central autoencoder is
based on the mean square error as given in Equation (1).

3.3. Producing sparse binary codes

While our goal is to learn a mapping function transforming
input images into compact binary codes, the codes produced
by the network given above are vectors of real values. In this
section, we show how to introduce regularization terms mak-
ing these codes binary, sparse and well distributed.

The binarization of the codes cannot be simply obtained
by thresholding the real values of the codes. Such a threshold-
ing would introduce a non-differentiable operation in the net-
work, and standard back-propagation techniques would not be
usable. This is why we opted for introducing a binary relax-
ation term [20]. This binary relaxation term aims at forcing
the activation of the middle layer to values as close as possible
to binary values [—1, 1].

Let b/ = (b, b%, e, bé)T be the activation vector of the
hashing layer, for image j, d being the dimension of the code.
The binary relaxation is done using:

N d
1 .
.. . j
ml%r’rglze ly = N E 1 E 1 1167 ] — 1] @
J=1 i=

In order to minimize Eq. (2), the activation b; is pushed
toward -1 or 1. The total loss function is then obtained by
computing the weighted sum of ¢1 end /5:
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minimize /¢ =
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Interestingly, autoencoders allow to represent the data in
low-dimensional spaces. If the data can be reconstructed well
from such low dimensional spaces, it means that these latent
spaces contain enough high-level semantic information. In
addition, making the codes sparse allows to index them more
efficiently [1, 3, 16]. Assuming that we want only nb bits to
be 1 and all the rest equal to -1, Eq. (3) can be rewritten as:

ZHmn T |34+
;g( STl -1+ > bZ+1||>

i€imax’ i€imini

minimize ¢ =
W,b

where imax (resp. iminf) are the index of the first nb
(resp. last d — nb) maximum values of b7.

Theoretically, the nb bits should be distributed uniformly
in the hashing layer. However, in practice, we notice that
the network tends to focus on the same bits to encode all
images. This makes our network having similar hash codes
when adding the binarization term in the loss. Following [23],
and to produce more balanced bits, we maximize the variance
of each bit and force the bits to be pairwise uncorrelated. This
can be done by setting the correlation matrix to be as close as
possible to the identity matrix:

1
NbT.b =17 4)

It is worth mentioning that all the regularizations men-
tioned earlier are only applied to the hashing layer. However,
as noted in [6, 16], without any regularization or denoising,
autoencoder can barely learn any useful information. This is
the reason why the relu activation and the pooling layer are



Table 1. Retrieval mAP@1000 as a function of the number
of bits of the hash code, on the MNIST dataset. XXX-VGGF
denotes the hashing methods built on the top of features pro-
duced by the pre-trained VGG-F network. Our method pro-
duces its best overall performance with 32 filters in the con-
volutional layers.

Methods 12 bits 24 bits 32 bits 48 bits
ITQ-VGGF | 0407 0.478 0.487 0.506
SH-VGGF 0.301 0.304 0296 0.287
LSH-VGGF | 0.176  0.191 0.220  0.305
ITQ [23] 0.404 0442 0447 0460
SH [21] 0.270 0.278 0.260 0.254
LSH [17] 0.162 0236 0222 0.276
Our method | 0.552  0.540  0.521 0.518

used in the network. To some extent, these two layers can act
as a good regularization to perturb the network not to learn to
memorize all the information. In addition, the relu activation
also serves as a powerful non-linear model for the network to
uncover the underlying structure in the data manifold.

4. EXPERIMENTATIONS

Hereafter, we describe the dataset used in our experimenta-
tions, give some implementation details and finally present
our results and comparisons with state-of-the-art.

Datasets: The MNIST dataset consists of 70K 28x28
greyscale images of handwritten digits from O to 9. It consists
of 60k training images and 10k testing images. Following
[1, 11, 22], we randomly select 1k images (100 per class from
the testing set) as our queries and keep the rest to learn the
autoencoder. For image classification, we randomly selected
a number of labeled data to train our classifier and test on the
whole testing set. All the images are scaled so that their raw
pixel intensities are in the range [0, 1].

Implementation: Each convolution layer is set to have
{16, 32, 64} filters with kernel size of 5x5. Each pooling and
unpooling are set to reduce the dimension of the feature maps
by 2 and vice versa (i.e. their stride is of [2,2]). Our model can
be summarized as conv64-conv64-convo4-fcl28-fcX-fcl128-
conv64-conv64-conved (X € {12,24, 36, 48}). The network
is first trained in a layer-wise fashion before being fined tuned
as a whole. Next, we apply the binary relaxation constraints
by gradually increasing the o value from le~* until the hash
layer contains binary values (with a precision of 1e~3). Then,
we fine tune again the network by gently increasing the
term (balancing bits regularizer) to make the hash codes well
distributed.

Table 2. Classification error rate on the MNIST dataset us-
ing our network as a feature extractor, as a function of the
numbers of labeled examples used to train the classifier. The

dimension of the features in our case is of 12.
Number of training examples
100 300 600 1000
SWWA [2] | 0.118 0.058 0.042 0.025
CONYV [5] - - - 0.076
Our method | 0.12 0.06 0.05 0.05

4.1. Image Retrieval Task

Table 1 shows the retrieval mAP@1000 obtained with our
method, on the MNIST dataset, and compares it with state
of the art methods. The mAP@1000 refers to the calcula-
tion of mAP on the 1000 first returned results for each query
[1, 11]. The results are taken from the most recent works
available on the MNIST dataset [12]. The proposed approach
outperforms all the state-of-the-art of unsupervised method
for hashing. The significant gain in performance fully jus-
tifies the competitiveness of our method compared to other
recent unsupervised learning methods.

4.2. Image Classification Task

This section evaluates how our compact representation per-
forms on classification tasks. Our model acts as a feature ex-
tractor, and we employ a simple k-NN classifier to show the
robustness and discriminative power of our features.

Table 2 shows the classification errors obtained with our
method, on the MNIST dataset, and compares it with state-
of-the-art approaches. It should be noticed that the compared
methods are trained end-to-end using labeled data, while our
method act as an unsupervised feature learning method fol-
lowed by a k-NN. Despite the fact that we do not use any
annotations when learning the encoders, the performance is
better or comparable to the state-of-the-art supervised tech-
niques. This shows that our model successfully extract mean-
ingful information from unlabeled data.

5. CONCLUSIONS

We proposed a novel architecture based on deep convolutional
autoencoders to learn compact binary hash codes. The con-
volutional layers help us to hierarchically learn an embedding
containing high-level semantic information. To turn the cen-
tral layer into binary codes, a constraint based on binary re-
laxation is integrated together with a bit balancing regularizer.
Experimental results demonstrate the competitiveness of our
approach over state-of-the-art methods in image retrieval. Im-
age classification experiments show that our model can also
act as a good unsupervised feature learning, comparable to
end-to-end networks without requiring any supervision.
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