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Joint distribution of a Lévy process and its running supremum

Laure Coutin∗Waly Ngom†Monique Pontier‡

February 28, 2017

Abstract

Let X be a jump-di�usion process and X∗ its running supremum. In this paper, we �rst

show that for any t > 0, the law of the pair (X∗
t , Xt) has a density with respect to Lebesgue

measure and compute this one. This allows us to show that for any t > 0, the pair formed by

the random variable Xt and the running supremum X∗
t of X at time t can be characterized

as a solution of a weakly valued-measure partial di�erential equation. Then we compute the

marginal density of X∗
t for all t > 0.

Keywords: Lévy process, partial di�erential equation, running supremum process, �rst hit-

ting time.

A.M.S. Classi�cation: 60G51, 60H20, 60H99.

1 Introduction

Consider a Lévy process (Xt, t ≥ 0), starting from zero, which is right continuous left limited.
If moreover X is the sum of a drifted Brownian motion and a compound Poisson process, it is
called a mixed di�usive-jump process. As any Lévy process, X has stationary and independent
increments and is characterized by its Laplace transform. The mixed di�usive-jump processes
and the notion of �rst passage time (behavior of certain processes at �rst passage time) are very
useful and widely studied.
Introducing the running supremum at time t, X∗

t and the �rst passage τb of X at level b, the
probability P(Xt ≥ a,X∗

t ≥ b) = P(Xt ≥ a, τb ≤ t) for some �xed real numbers (a, b), a ≤ b
and b > 0, is of great importance, for example, in pricing barrier options while the logarithm
of the underlying asset price is modeled by a jump-di�usion process. In this idea, Kou and
Wang [5] give the explicit expression of the Laplace transform of the joint distribution of the
double exponential mixed di�usive-jump process and its running supremum.
In [4], Jeanblanc et al. consider the �rst passage time by a di�usion at a deterministic function
h that depends on time and they de�ne a function of τh and X which satis�es the Fokker-Planck
Equation.
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In [1], it is well noted (Theorem 2.2.9 and Exercise 2.2.10) that the 1
2−stable subordinator is the

�rst passage time of a standard Brownian motion and the inverse Gaussian subordinator is the
�rst passage time of standard Brownian motion with a drift.
Mark Veillette and Murad S. Taqqu study in [9] the �rst passage time of a subordinator D.
Since D is in general non-Markovian with non-stationary and non-independent increments, they
derive a partial di�erential equation for the Laplace transform of the n− time tail distribution
P(τt1 > s1, · · · , τtn > sn) where τtk = inf{s : Ds > tk} for a subordinator (Ds, s ≥ 0). With this
result, they give a recursive formula for multiple-time moments of the local time of a Markov
process in terms of its transition density.
The authors of [2] use a partial di�erential equation (PDE) approach to show that the calibration
of an implied volatility surface and the pricing of contingent claims can be as simple in mixed
di�usive-jump framework as it is in a di�usion framework.
This work characterizes the law of the pair Ut formed by the random variable Xt and the running
supremum X∗

t of X at time t, with a valued-measure partial di�erential equation and gives an
explicit expression for the density function of this pair. Then the marginal density of X∗

t is given.
The paper is organized as follows: Section 2 provides the main result. Section 3 gives the density
function of the pair formed by the random variable Xt and its running supremum X∗

t and Section
4 is devoted to the proof of the main result of Section 2. To �nish, one concludes and gives some
auxiliary results in Appendix.

2 Valued measure di�erential equation for the joint law

We introduce some preliminary concepts for the di�usion part: for a standard Brownian motion
W and a real number m, let be

X̃t = mt+Wt, X̃∗
t = sup

s≤t
X̃s. (1)

In [4] page 147, Jeanblanc et al. show that the pair (X̃∗
t , X̃t) has a density with respect to

Lebesgue measure on R2 noted p̃(., .; t) where

p̃(b, a; t) =
2(2b− a)√

2πt3
exp

[
−(2b− a)2

2t
+ma−m2 t

2

]
1{max(0,a)<b}. (2)

In all the following, ΦG means the standard normal Gaussian distribution and one often uses the
following:

1− ΦG(x) = ΦG(−x) ≤ 1

x
√
2π

exp−x2

2
, ∀x > 0. (3)

In order to have a Lévy process with non zero jump part, let us introduce

Xt = mt+Wt +

Nt∑
i=1

Yi, X∗
t = sup

s≤t
Xt,

where N is a Poisson process with constant positive intensity λ, (Yi, i ∈ N∗) is a sequence of
independent and identically distributed random variables with the distribution function FY and
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the sequence of jump times of N is denoted by (Ti), i ≥ 1. Let θ be the shift operator and
(Ut; t ≥ 0) be the R2−value process de�ned by

Ut = (X∗
t , Xt), t ≥ 0. (4)

The aim is to prove the theorem:

Theorem 2.1. (i) For all t > 0, the law of the pair (X∗
t , Xt) has a density with respect to the

Lebesgue measure, denoted by p(b, a; t).
(ii) For all t > 0, a ∈ R the map h 7→ p(a+ h, a; t) has a limit when h goes to 0 denoted by

p(a+, a; t).
(iii) Let be φ : R2 → R a C3

b− bounded function with a support in {(b, a), b > 0, b ≥ a}
such that there exists δ > 1 satisfying

∫
R |∂1φ(a, a)|δda < ∞.

For any t > 0,

E (φ(Ut)) = φ(0, 0) +

∫ t

0
E
[
m∂2φ(Us) +

1

2
∂2
22φ(Us)

]
ds (5)

+

∫ t

0

1

2
E
[
∂1φ(Xs, Xs)

p(Xs+, Xs; s

g(Xs; s)

]
ds+ λ

∫ t

0
E
(∫

R
[φ(Us(y))− φ(Us)]FY (dy)

)
ds.

where g(.; s) is the density of the random variable Xs and

Us = (X∗
s , Xs), Us(y) = (max(X∗

s , Xs + y), Xs + y), s ≥ 0. (6)

In the next sections, details of the proof of Theorem 2.1 are given.

3 Existence of the density of the law of (X∗
t , Xt) and its properties

We note that
X∗

t = max{( sup
u∈[Ti,inf(Ti+1,t)[

Xu, i = 0, ..., Nt), Xt}

and use the joint density of (X̃∗
t , X̃t) given by (2) to show that the pair (X∗

t , Xt) law has a
density which is right continuous on the diagonal, see Proposition 3.1 below which actually is
the proof of Theorem 2.1 (i) and (ii).

Proposition 3.1. (i) For all t > 0, the law of the random vector (X∗
t , Xt) admits a density with

respect to the Lebesgue measure given by

p(b, a, t) = E

(
Nt∑
k=0

p̃
(
b−XTk

, a−XTk
− Yk+11{Tk+1≤t} − (Xt −XTk+1∧t), t ∧ Tk+1 − Tk

)
1∆k,t

(b, a)

)

where p̃ is given by (2) and

∆k,t =

{
(b, a) | b > max

(
X∗

Tk
, a+ [Xt∧Tk+1

− sup
u∈[Tk+1,t]

Xu]1{Tk+1<t}

)}
. (7)
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(ii) Moreover, for all a ∈ R, t > 0 the map h 7→ p(a+h, a; t) has a limit when h goes to 0 denoted
by p(a+, a; t) and

p(a+, a; t) =

E

(
Nt∑
k=0

p̃
(
(a−XTk

)+, a−XTk
− Yk+11{Tk+1≤t} − (Xt −XTk+1∧t), t ∧ Tk+1 − Tk

)
1a∈Dk,t

)

where Dk,t := {a : a ≥ max
(
X∗

Tk
, a+ [Xt∧Tk+1

− supu∈[Tk+1,t]
Xu]1{Tk+1<t}

)
}

The proof of (i) relies on the following lemma:

Lemma 3.2. Almost surely, for all t,

X∗
t = max

(
XTk

+ sup
u∈[Tk,Tk+1∧t]

(
X̃u − X̃Tk

)
, k = 0, ..., Nt

)
. (8)

Moreover, almost surely, for all t, there exists a unique k denoted as N∗
t such that

X∗
t = XTk

+ sup
u∈[Tk,Tk+1∧t]

(
X̃u − X̃Tk

)
. (9)

Proof. Let t be �xed.
(a) Note that

X∗
t = max

{
max

(
XTk

+ sup
u∈[Tk,Tk+1∧t[

(Xu −XTk
) , k = 0, ..., Nt

)
, Xt

}
. (10)

For k ∈ N, for all u ∈ [Tk, Tk+1[, Xu − XTk
= X̃u − X̃Tk

where X̃ is the continuous process
de�ned in (1), thus for k ≤ Nt,

sup
u∈[Tk,Tk+1∧t[

(Xu −XTk
) = sup

u∈[Tk,Tk+1∧t]

(
X̃u − X̃Tk

)
(11)

and

max

(
XTNt

+ sup
u∈[TNt ,TNt+1∧t[

(
Xu −XTNt

)
, Xt

)
= XTNt

+ sup
u∈[TNt ,TNt+1∧t]

(
X̃u − X̃TNt

)
. (12)

Plugging identities (11) and (12) in equality (10) yields (8).

(b) Let two integers i < j then,

XTj + sup
u∈[Tj ,Tj+1∧t]

(
X̃u − X̃Tj

)
= XTi +

(
X̃Ti+1 − X̃Ti

)
+ Yi+1 +

(
XTj −XTi+1

)
+ sup
u∈[Tj ,Tj+1∧t]

(
X̃u − X̃Tj

)
and

XTj + sup
u∈[Tj ,Tj+1∧t]

(
X̃u − X̃Tj

)
−XTi − sup

u∈[Ti,Ti+1∧t]

(
X̃u − X̃Ti

)
={

Yi+1 + (XTj −XTi+1) + sup
u∈[Tj ,Tj+1∧t]

(X̃u − X̃Tj )

}
+

{
(X̃Ti+1 − X̃Ti)− sup

u∈[Ti,Ti+1∧t]

(
X̃u − X̃Ti

)}
.
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The two following random vectors are independent:(
sup

u∈[Ti,Ti+1∧t]

(
X̃u − X̃Ti

)
; X̃Ti+1 − X̃Ti

)
, Yi+1 +

(
XTj −XTi+1

)
+ sup

u∈[Tj ,Tj+1∧t]

(
X̃u − X̃Tj

)
and the law of the vector

(
supu∈[Ti,Ti+1∧t]

(
X̃u − X̃Ti

)
; X̃Ti+1 − X̃Ti

)
admits a density with

respect to the Lebesgue measure, hence the law of the random variable

sup
u∈[Ti,Ti+1∧t]

(
X̃u − X̃Ti

)
+ X̃Ti+1 − X̃Ti

has a density with respect to the Lebesgue measure and is independent of

Yi+1 +
(
XTj −XTi+1

)
+ sup

u∈[Tj ,Tj+1∧t]

(
X̃u − X̃Tj

)
.

Therefore, XTj + supu∈[Tj ,Tj+1∧t]

(
X̃u − X̃Tj

)
−XTi − supu∈[Ti,Ti+1∧t]

(
X̃u − X̃Ti

)
is the sum of

two independent random variables, one having a density, then also has a density. So for all t,
almost surely, whenever i ̸= j

XTj + sup
u∈[Tj ,Tj+1∧t]

(
X̃u − X̃Tj

)
̸= XTi + sup

u∈[Ti,Ti+1∧t]

(
X̃u − X̃Ti

)

(c) Above, we can exchange ∀t > 0 and almost surely, since the processes (Nt, t ≥ 0) and((
max

(
XTk

+ supu∈[Tk,Tk+1∧t]

(
X̃u − X̃Tk

))
, k ≤ Nt

)
, t ≥ 0

)
are right continuous.

Proof. of Proposition 3.1 (i): According to Lemma 3.2, let N∗
t denoting the index k where the

maximum below is reached,

X∗
t = max

(
XTk

+ sup
u∈[Tk,Tk+1∧t]

(
X̃u − X̃Tk

)
, k = 0, ..., Nt

)
.

The fact N∗
t = k is equivalent to: the supremum is reached on the interval [Tk, Tk+1∧ t], actually

meaning X∗
t = sup[Tk,Tk+1∧t]Xu and remark that sup[Tk,Tk+1∧t]Xu ≥ X∗

Tk
∨ sup[Tk+1∧t,t]Xu.

On the interval [Tk, Tk+1∧t], Xu = XTk
+X̃u−X̃Tk

. Thus the following inequalities are equivalent
to N∗

t = k:

(a) XTk
+ sup

[Tk,Tk+1∧t]
(X̃u − X̃Tk

) ≥ X∗
Tk
,

(b) XTk
+ sup

[Tk,Tk+1∧t]
(X̃u − X̃Tk

) ≥ sup
[Tk+1∧t,t]

Xu = [XTk+1∧t + sup
[Tk+1,t]

(Xu −XTk+1∧t)]1{Tk+1<t} +Xt1{Tk+1≥t}.

Using XTk+1
= XTk

+ X̃Tk+1
− X̃Tk

+ Yk+1, (b) is equivalent to

sup
[Tk,Tk+1∧t]

(X̃u−X̃Tk
) ≥ [X̃Tk+1

−X̃Tk
+Yk+1+ sup

[Tk+1,t]
(Xu−XTk+1

)]1{Tk+1<t})+(X̃t−X̃Tk
)1{Tk+1≥t}.

As a conclusion we get {N∗
t = k} =

{ sup
[Tk,Tk+1∧t]

(X̃u−X̃Tk
) ≥ X∗

Tk
−XTk

}∩{ sup
[Tk,Tk+1∧t]

(X̃u−X̃Tk
) ≥ X̃t∧Tk+1

−X̃Tk
+[Yk+1+ sup

[Tk+1,t]

(Xu−XTk+1
)]1{Tk+1≤t})}.
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Thus

{N∗
t = k} =

{(
sup

u∈[Tk,Tk+1∧t]
(X̃u − X̃Tk

), X̃t∧Tk+1
− X̃Tk

)
∈ ∆̄k,t

}
where

∆̄k,t =

{
(b, a) : | b > max

(
X∗

Tk
−XTk

, a+ [Yk+1 + sup
u∈[Tk+1,t]

(Xu −XTk+1
)]1{Tk+1≤t}

)}
.

(13)

Moreover on {k ≤ Nt} so on {N∗
t = k} ⊂ {k ≤ Nt}

Xt = XTk
+ (X̃t∧Tk+1

− X̃Tk
) + Yk+11{t≥Tk+1} + (Xt −Xt∧Tk+1

). (14)

Let Φ be a bounded Borel function, hence

E [Φ(X∗
t , Xt)] = E

[
Nt∑
k=0

Φ(X∗
t , Xt)1{N∗

t =k}

]
=

E

[
Nt∑
k=0

1{N∗
t =k}Φ

(
XTk + sup

u∈[Tk,Tk+1∧t]

(X̃u − X̃Tk),XTk + (X̃t∧Tk+1 − X̃Tk) + Yk+11{t≥Tk+1} + (Xt −Xt∧Tk+1)

)]
.

The four following random vectors are independent:

(XTk
, X∗

Tk
), Yk+1,

(
Xt −Xt∧Tk+1

, sup
u∈[Tk+1∧t,t[

(Xu −XTk+1∧t)

)
,

(
sup

u∈[Tk,Tk+1∧t]
X̃u − X̃Tk

, X̃t∧Tk+1
− X̃Tk

)
and conditionally to σ

(
FTk

, Yk+1, (Xu −XTk+1
, u ≥ Tk+1 ∧ t), Tk, Tk+1

)
, the law of the ran-

dom vector (
sup

u∈[Tk,Tk+1∧t]
X̃u − X̃Tk

, X̃t∧Tk+1
− X̃Tk

)
has a density with respect to the Lebesgue measure given by p̃(b, a, Tk+1 ∧ t − Tk) where p̃ is
de�ned by (2). We obtain that E (Φ(X∗

t , Xt)) =∫
E

[
Nt∑
k=0

Φ(XTk
+ b,XTk

+ a+ Yk+11{t≥Tk+1} + (Xt −XTk+1∧t
))p̃(b, a, Tk+1 ∧ t− Tk)1∆̄k,t

(b, a)

]
dadb.

The change of variable formula v = b+XTk
and u = XTk

+ a+ Yk+11{t≥Tk+1} + (Xt −XTk+1∧t
)

concludes the proof.

Proof of Proposition 3.1 (ii): Let a ∈ R, t > 0, the map

h 7→
Nt∑
k=0

p̃
(
a+ h−XTk

, a−XTk
− Yk+11{Tk+1≤t} − (Xt −XTk+1∧t), t ∧ Tk+1 − Tk

)
1∆k,t

(b, a)

has a right limit when h goes to 0 since both functions h 7→ p̃(a+h, a; t) and h → 1∆k,t(a+h, a)
admit a limit when h decreases to 0. According to Proposition 6.2 in Appendix the family(

Nt∑
k=0

p̃
(
a+ h−XTk

, a−XTk
− Yk+11{Tk+1≤t} − (Xt −XTk+1∧t), t ∧ Tk+1 − Tk

)
1∆k,t

(b, a)

)
h∈[0,1]
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is uniformly integrable.
Then, we can exchange the limit and the expectation and h 7→ p(a+ h, a; t) has a limit when h
decreases to 0 and

p(a+, a; t) =

E

(
Nt∑
k=0

p̃
(
(a−XTk

)+, a−XTk
− Yk+11{Tk+1≤t} − (Xt −XTk+1∧t), t ∧ Tk+1 − Tk

)
1a∈Dk,t

)

where Dk,t := {a : a ≥ max
(
X∗

Tk
, a+ [Xt∧Tk+1

− supu∈[Tk+1,t]
Xu]1{Tk+1<t}

)
}

As a corollary the law of X∗
t is deduced:

Corollary 3.3. For any t > 0, the law of the random variable X∗
t has a density p∗(., t) given by

p∗(b, t) = 2E

(
Nt∑
k=0

2e2(b−XTk
)mHm

[
(Ct,k)

+1Tk+1<t + (b−XTk
) +m(t ∧ Tk+1 − Tk), t ∧ Tk+1 − Tk

]
1{b>X∗

Tk
}

)
(15)

where Hm : (x, t) → 1√
2πt

exp
[
−x2

2t

]
−mΦG(− x√

t
) and

Ct,k = (Yk+1 + supu∈[Tk+1,t]
(Xu −XTk+1

))1{Tk+1≤t}.

Proof. Let q̃ be the function such that p̃(b, a, .) = q̃(b, a, .)1b>a∨0 where

p̃(b, a; t) =
2(2b− a)√

2πt3
exp

[
−(2b− a)2

2t
+ma−m2 t

2

]
1{max(0,a)<b}.

Remark that

(2b− a)2 − 2mta+m2t2 = [a− (2b+mt)]2 − 4bmt, (16)

thus we obtain

q̃(b, a, t) =
2e2bm√
2πt

(
2b+mt− a

t
exp

[
− [a− (2b+mt)]2

2t

]
−m exp

[
− [a− (2b+mt)]2

2t

])
.

Hence, for any A,

0 ≤
∫ A

−∞
p̃(b, a, t)da = 2e2bm1b>0Hm(x, t), x = b ∧A− 2b−mt. (17)

Let k be �xed and P ∗
k (b, t) be given by

P ∗
k (b, t) :=

∫
R
p̃
(
b−XTk

, a−XTk
− Yk+11Tk+1≤t − (Xt −XTk+1∧t), t ∧ Tk+1 − Tk

)
1∆k,t

(b, a)da

then the density of X∗
t is given by

p∗(b, t) = E

(
Nt∑
k=0

P ∗
k (b, t)

)
.
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With the change of variables u = a−XTk
− Yk+11Tk+1≤t − (Xt −Xt∧Tk+1

), it follows

P ∗
k (b, t) :=

∫
R
p̃ (b−XTk

, u, t ∧ Tk+1 − Tk)1∆k,t
(b, u+XTk

+ Yk+11Tk+1≤t + (Xt −Xt∧Tk+1
))du.

According to the de�nition of ∆k,t (7)

1∆k,t
(b, u+XTk

+ Yk+11{Tk+1≤t} + (Xt −Xt∧Tk+1
)) =

1{b>X∗
Tk

}1{b>u+XTk
+[Yk+1+supu∈[Tk+1,t]

(Xu−Xt)]1{Tk+1≤t}}

On the event Tk+1 ≤ t (id est k < Nt)

P ∗
k (b, t) =

∫
R
q̃(b−XTk

, u, Tk+1 − Tk)1b>X∗
Tk
1]−∞,min(b−XTk

,b−XTk
−Ct,k[(u)du

since Ct,k = (Yk+1 + supu∈[Tk+1,t]
(Xu −Xt))1{Tk+1≤t}.

And on the event Tk+1 > t

P ∗
k (b, t) =

∫
R
q̃(b−XTk

, u, t− Tk)1b>X∗
Tk
1]−∞,b−XTk

[(u)du.

(a) On the event Tk+1 ≤ t applying (17) to A = b − XTk
− Ct,k, with Tk+1 − Tk and b − XTk

instead of t and b, (b−XTk
) ∧A = b−XTk

− (Ct,k)
+ (since 0 ∧ (−x) = −x+) so on this event

P ∗
k (b, t) = 2e2m(b−XTk

)Hm

[
(Ct,k)

+ + (b−XTk
) +m(Tk+1 − Tk), Tk+1 − Tk

]
.

(b) On the event Tk+1 > t, applying (17) to A = b−XTk
and taking t− Tk and b−XTk

instead
of t and b, so on this event

P ∗
k (b, t) = 2e2(b−XTk

)mHm [−(b−XTk
)−m(t− Tk), t− Tk] .

To summarize both cases

P ∗
k (b, t) = 2e2(b−XTk

)mHm

[
(Ct,k)

+1{Tk+1≤t} + (b−XTk
) +m(t ∧ Tk+1 − Tk), t ∧ Tk+1 − Tk

]
and the proof is achieved.

4 Proof of Theorem 2.1 (iii)

To prove the end of this theorem, we proceed as follows: we will compute limh→0 h
−1A(t, h) =

a(t) where

A(t, h) := E [φ(Ut+h)− φ(Ut)] . (18)

After that, we will use [8] 11.82 p. 368: If f is a function such that f ′ is �nite everywhere and

integrable, then for all a ≤ b, f(b) − f(a) =
∫ b
a f ′(s)ds. The study of a(t) := limh→0 h

−1A(t, h)
could prove that for all t > t0 > 0,

E (φ(Ut)) =

∫ t

t0

a(s)ds+ E
(
φ(X∗

t0 , Xt0)
)
, ∀t > t0.
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A last step will be to prove the convenient properties of the function a, for all T > 0, there exist
v ∈]0, 1[, ξ ≥ 0 and a constant C such that

|a(t)| ≤ C

[
1

tv
+ 1 + tξ

]
, ∀t ∈]0, T ]. (19)

Then letting t0 going to 0 and using the fact that φ is continuous bounded, X and X∗ are right
continuous, estimation (19) and Lebesgue dominated theorem, for all t > 0

E (φ(Ut)) =

∫ t

0
a(s)ds+ φ(0, 0).

Proof of the function a : t 7→ E(φ(Ut)) admits a derivative on ]0,+∞[ denoted as a and satisfying (19).
The idea is to split A(t, h) in three parts according to the values of Nt+h −Nt :

A(t, h) =

2∑
i=0

Ai(t, h) (20)

where

Ai(t, h) := E
(
[φ(Ut+h)− φ(Ut)]1{Nt+h−Nt=i}

)
, i = 0, 1

A2(t, h) := E
(
[φ(Ut+h)− φ(Ut))]1{Nt+h−Nt≥2}

)
. (21)

Lemma 4.1. Under the hypothesis of Theorem 2.1

lim
h→0

h−1A2(t, h) = 0. (22)

Proof. By hypothesis φ is bounded and we get

|A2(t, h)| ≤ 2∥φ∥∞P(Nt+h −Nt ≥ 2) ≤ 2∥φ∥∞(1− e−λh − λhe−λh).

Thus, limh→0 h
−1A2(t, h) = 0.

This lemma added to the three next propositions proves Theorem 2.1 (iii): this lemma treats
the term A2(t, h) while Proposition 4.2 treats the term A1(t, h). Propositions 4.3 and 4.4 treat
the term A0(t, h).

Proposition 4.2. Let be φ : R2 → R a C3
b− bounded function. Then

lim
h→0

h−1A1(t, h) = λE
∫
R
[φ(Ut(y))− φ(Ut)]FY (dy).

where Ut is de�ned by (4) and Ut(y) by (6).

This proposition gets the last term on the right hand in (5).

Proof. Introducing the term φ(Ut(YNt+h
)), let be A1(t, h) := A1,1(t, h) +A1,2(t, h) where

A1,1(t, h) = E
({

φ(Ut(YNt+h
))− φ(Ut)

}
1{Nt+h=Nt+1}

)
,

A1,2(t, h) = E
({

φ(Ut+h)− φ(Ut(YNt+h
))
}
1{Nt+h=Nt+1}

)
.

9



• Since φ is C1 class with bounded derivative, Lemma 6.1 (Appendix) implies that on the event
{Nt+h −Nt = 1} we have

|φ(Ut+h)− φ(Ut(YNt+h
))| ≤ ∥∇φ∥∞(2 sup0≤u≤h |X̃t+u − X̃t|+ h). Thus

h−1A1,2(t, h) ≤ λe−λh∥∇φ∥∞(2 sup
0≤u≤h

|X̃t+u − X̃t|+ h) → 0

when h → 0: Indeed, the process X̃ satis�es 0 ≤ X̃h ≤ |m|h+W ∗
h and Burkholder Davis Gundy's

inequality for all i ≥ 1 implies there exists a constant Ci > 0 such that E[(W ∗
h )

i] ≤ Cih
i/2, hence

for h ≤ 1,

E
(
(X̃∗

h)
i
)
≤ Cih

i/2, (23)

thus E(X̃∗
h) ≤ C

√
h.

• Let us deal with A1,1(t, h) to show

lim
h→0

h−1A1,1(t, h) = λE
∫
R
[φ(Ut(y))− φ(Ut)]FY (dy). (24)

On the event {Nt = n,Nt+h = n + 1}, the equality Ut(YNt+h
) = Ut(Yn+1) holds. The indepen-

dence properties arising from the structure of the process X, the use of the laws of Yi, Tn, the
decomposition of Tn+1, Tn+1 = Tn + Sn+1, and the conditioning to FTn , yield:

A1,1(t, h) =
+∞∑
n=0

E
[
1{Tn≤t<Tn+1≤t+h<Tn+2}(φ(Ut(Yn+1))− φ(Ut))

]
=

+∞∑
n=0

E
[
1{Tn≤t}

∫ t+h−Tn

t−Tn

ds

∫
R
(φ(Ut(y))− φ(Ut))FY (dy)λe

−λ(t+h−Tn)

]
.

By hypothesis, the function φ is bounded and when h goes to 0, Lebesgue's dominated conver-
gence theorem yields

lim
h→0

h−1A1,1(t, h) =

+∞∑
n=0

E
[
λe−λ(t−Tn)1{Tn≤t}

∫
R
(φ(Ut(y))− φ(Ut))FY (dy)

]
. (25)

Since e−λ(t−Tn)1{Tn≤t} = E[1{Tn≤t<Tn+1}/Ft], it follows

lim
h→0

h−1A1,1(t, h) =

+∞∑
n=0

E
[
λ1{Tn≤t<Tn+1}

∫
R
(φ(Ut(y))− φ(Ut))FY (dy)

]
=

E
[
λ

∫
R
(φ(Ut(y))− φ(Ut))FY (dy)

]
. (26)

We now turn to the study of h−1A0(t, h) when h goes to 0. On the event {Nt+h −Nt = 0},
TNt = TNt+h

, hence X∗
TNt+h

= X∗
TNt

and XTNt+h
= XTNt

,

Xt+h = Xt + X̃h ◦ θt, X∗
t+h = max(X∗

t , Xt + X̃∗
h ◦ θt).
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Using Markov property at t and the fact that the processes N and X̃ are independent

A0(t, h) = e−λhE
(
E
(
φ(max(x∗, x+ X̃∗

h), x+ X̃h)− φ(x∗, x)
)
|x∗=X∗

t ,x=Xt

)
.

Let us introduce

a0(h, x
∗, x) := E

(
φ(max(x∗, x+ X̃∗

h), x+ X̃h)− φ(x∗, x)
)
.

To study the term a0(h, x
∗, x), we make a Taylor expansion at a neighborhood of (x∗, x):

a0(h, x
∗, x) : = ∂2φ(x

∗, x)mh+
1

2
∂2
22φ(x

∗, x)[m2h2 + h]+

+ ∂2
1,2φ(x

∗, x)E
([

max(x∗, x+ X̃∗
h)− x∗

]
X̃h

)
+

1

2
∂2
1,1φ(x

∗, x)E
([

max(x∗, x+ X̃∗
h)− x∗

]2)
+R0(h, x

∗, x),

+ ∂1φ(x
∗, x)E

([
max(x∗, x+ X̃∗

h)− x∗
])

where, using ∇i the tensor of order i,

|R0(h, x
∗, x)| ≤ 4∥∇3φ∥∞

[
E
(∣∣∣max(x∗, x+ X̃∗

h)− x∗
∣∣∣3)+ E

(∣∣∣X̃h

∣∣∣3)] .
This allows us to write:

A0(t, h) =

3∑
i=1

A0,i(t, h), A0,i(t, h) := E
(
a0,i(h, , x

∗, x)|x∗=X∗
t ,x=Xt

)
(27)

where

a0,1(h, x
∗, x) : = ∂2φ(x

∗, x)mh+
1

2
∂2
22φ(x

∗, x)[m2h2 + h]

a0,2(h, x
∗, x) : = ∂2

1,2φ(x
∗, x)E

([
max(x∗, x+ X̃∗

h)− x∗
]
X̃h

)
+
1

2
∂2
1,1φ(x

∗, x)E
([

max(x∗, x+ X̃∗
h)− x∗

]2)
+R0(h, x

∗, x),

a0,3(h, x
∗, x) : = ∂1φ(x

∗, x)E
([

max(x∗, x+ X̃∗
h)− x∗

])
.

Proposition 4.3. Let be φ : R2 → R a C3
b− bounded function. Then for any t > 0

lim
h→0

h−1(A0,1 +A0,2)(t, h) = E
(
∂2φ(Ut)m+

1

2
∂2
22φ(Ut)

)
(28)

Proof. (a) Since X̃ and X̃∗ are continuous processes and φ a three times di�erentiable function
with bounded di�erential, it follows

lim
h→0

h−1A0,1(t, h) = E
(
∂2φ(Ut)m+

1

2
∂2
22φ(Ut)

)
. (29)
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(b) The second term satis�es: Under hypothesis of Theorem 2.1,

lim
h→0

h−1A0,2(t, h) = 0.

Indeed, we �rst note that max(x∗, x + X̃∗
h) − x∗ = (X̃∗

h − (x∗ − x))+ ≤ X̃∗
h1{X̃∗

h>x∗−x}. Using

Cauchy-Schwarz inequality and (23) there exists a constant Di such that

E
([

max(x∗, x+ X̃∗
h)− x∗

]i)
≤ Dih

i/2
√

P(X̃∗
h > x∗ − x).

The function φ is three times di�erentiable with bounded di�erential, we deduce from the ex-
pression of a0,2 that there exists a constant C > 0 such that

A0,2(t, h) ≤

[
3∑

i=2

∥∇iφ∥

]
C

3∑
i=2

hi/2E
(√

P(X̃∗
h > x∗ − x)

|x∗=X∗
t ,x=Xt

)
.

The law of the pair (X∗
t , Xt) has a density with respect to Lebesgue measure on R2, (cf. Propo-

sition 3.1) almost surely X∗
t > Xt, it follows with Lebesgue dominated convergence Theorem

lim
h→0

h−1A0,2(t, h) = 0.

We now deal with the term h−1A0,3(t, h).

Proposition 4.4. Let be φ : R2 → R a C3
b− bounded function such that there exists δ > 1

satisfying
∫
R |∂1φ(a, a)|δda < ∞. Then for any t > 0

lim
h→0

1

h
E
(
∂1φ(Ut)E

(
max(x∗, x+ X̃∗

h)− x∗
)
x∗=X∗

t ,x=Xt

)
=

1

2
E
[
∂1φ(Xt, Xt)

p(Xt+, Xt, t)

g(Xt, t)

]
.

Proof. We �rst need the following lemmas:

Lemma 4.5. For any t > 0, the law of X̃∗
t has the density with respect to Lebesgue measure on

R,

p̃∗(b, t) := 2

[
1√
2πt

exp−(b−mt)2

2t
−me2bmΦG(

−b−mt√
t

)

]
1]0,+∞[(b). (30)

Remark 4.6. This result is consistent with the fact that when m = 0, X̃∗
t and |X̃t| have the

same law (cf. Proposition 3.7, Revuz-Yor [7]).

Proof. This is obviously the derivative with respect to b of the law provided in [4] page 147.

Lemma 4.7. Let be h > 0 and H(x) := 1√
2π
e−

x2

2 − xΦG(−x) :

1

2
E
([

max(x∗, x+ X̃∗
h)− x∗

])
=

−mh

∫ ∞

0
e2bm

√
h(b− (x∗ − x)√

h
)+ΦG(−b−m

√
h)db+

√
hH

(
(x∗ − x−mh)√

h

)
.
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Proof. Recall that

E
([

max(x∗, x+ X̃∗
h)− x∗

])
= E

([
X̃∗

h − (x∗ − x)
]
1{X̃∗

h>x∗−x}

)
.

Lemma 4.5 gives the density of X̃∗
h and the change of variable b →

√
hb yields

1

2
E
([

max(x∗, x+ X̃∗
h)− x∗

])
=∫ ∞

x∗−x√
h

√
h

[
b− (x∗ − x)√

h
]

]
+

[
1√
2π

e−
(b−m

√
h)2

2 −m
√
he2bm

√
hΦG(−b−m

√
h)

]
db.

This can be written again as

1

2
E
([

max(x∗, x+ X̃∗
h)− x∗

])
=

∫ ∞

x∗−x√
h

√
h[b−m

√
h− (x∗ − x)−mh√

h
]

1√
2π

e−
(b−m

√
h)2

2 db

−mh

∫ ∞

x∗−x√
h

e2bm
√
h(b− x∗ − x√

h
)ΦG(−b−m

√
h)db.

The lemma is proved using the integration by parts formula and the de�nition of H.

Lemma 4.7 allows to compute h−1A0,3(t, h) including Ft−conditional expectation under the
expectation:

1

h
E
(
∂1φ(Ut)E

(
max(x∗, x+ X̃∗

h)− x∗
)
x∗=X∗

t ,x=Xt

)
=

2√
h
E
(
∂1φ(Ut)H(

(X∗
t −Xt −mh)√

h
)

)
−2mE

(
∂1φ(Ut)

∫ ∞

0
e2bm

√
hΦG(−b−m

√
h)(b− X∗

t −Xt√
h

)+db

)
.

(a) Firstly, we show that

lim
h→0

−mE
[
∂φ1(Ut)

∫ +∞

0
e2mb

√
hΦG(−b−m

√
h)(b− X∗

t −Xt√
h

)+db

]
= 0.

The term ∂φ1(Ut)
∫ +∞
0 e2mb

√
hΦG(−b −m

√
h)(b − X∗

t −Xt√
h

)+ is uniformly bounded with respect

to h : Indeed, b > 0 and let 0 < h ≤ 1,

0 ≤ e2mb
√
hΦG(−b−m

√
h)(b− X∗

t −Xt√
h

)+ ≤ e2mb
√
hΦG(−b−m

√
h)b.

The function (h, b) 7→ e2mb
√
hΦG(−b−m

√
h)b is continuous on the compact interval

[0 1]× [0 2|m|], then it is bounded on this interval.
Now, consider b > 2|m|. Therefore b +m

√
h > |m| > 0, b −m

√
h > b

2 and b
(b+m

√
h)

≤ 2. We

use the inequality (3 ): 1− ΦG(x) = ΦG(−x) ≤ 1
x
√
2π

exp−x2

2 , ∀x > 0, to obtain for b > 2|m|,
h ∈ [0, 1]

e2mb
√
hΦG(−b−m

√
h)b ≤ b

(b+m
√
h)
√
2π

e2mb
√
he−

(b+m
√
h)2

2 ≤ 2√
2π

e−
b2

8 .
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This implies that the term ∂φ1(Ut)
∫ +∞
0 e2mb

√
hΦG(−b − m

√
h)(b − X∗

t −Xt√
h

)+db is uniformly

bounded by a constant. The result follows by Lebesgue dominated convergence Theorem: In-
deed, almost surely X∗

t −Xt > 0 and on this set, the integrand goes almost surely to 0. .

(b) Secondly our goal is to compute the limit when h goes to 0 of the term

B∗
1(t, h) = E[∂1φ(Ut)

1√
h
H(

X∗
t −Xt −mh√

h
)].

The proof is divided into four steps.

1. Firstly, we prove that

lim
h→0

|B∗
1(t, h)−E[∂1φ(Ut)

1√
h
H(

X∗
t −Xt√

h
)]| = 0. (31)

2. Secondly, we prove that

lim
h→0

∣∣∣∣B∗
1(t, h)− E[∂1φ(Xt, Xt)

1√
h
H(

X∗
t −Xt√

h
)]

∣∣∣∣ = 0. (32)

3. Thirdly, we prove that

lim
h7→0

B∗
1(t, h) =

1

2

∫
R
∂1φ(a, a; t)p(a+, a; t)da.

4. Finally we observe that

lim
h7→0

B∗
1(t, h) =

1

2
E[∂1φ(Xt, Xt)

p(Xt+, Xt; t)

g(Xt, t)
].

Step 1: The function H de�ned by H(x) = e−
x2

2√
2π

− xΦG(−x) is di�erentiable with di�erential

given by x 7→ ΦG(−x), which is positive and bounded by 1. Hence for all (x, y) ∈ R, there exists
λ ∈ [0, 1] such that H(y) −H(x) = (y − x)H ′(λx + (1 − λ)y). Thus there exists λ ∈ [0, 1] such
that

1√
h

[
H(

X∗
t −Xt√

h
)−H(

X∗
t −Xt −mh√

h
)

]
= mH ′(

X∗
t −Xt√

h
+ λm

√
h)

Then for h > 0,∣∣∣∣B∗
1(t, h)− E[∂1φ(Ut)

1√
h
H(

X∗
t −Xt√

h
)]

∣∣∣∣ ≤ |m|∥∂1φ∥∞E[ sup

x≥X∗
t −Xt√

h
−|m|

√
h

H ′(x)].

The fact that almost surely X∗
t −Xt > 0 proves that the almost sure limit of

X∗
t −Xt√

h
− |m|

√
h

is +∞. Moreover, H ′ = ΦG is positive bounded and satis�es limx→∞H ′(x) = 0, so Lebesgue
theorem achieves the proof of (31).

Step 2: Using regularity assumption on φ∣∣∣∣B∗
1(t, h)− E[∂1φ(Xt, Xt)

1√
h
H(

X∗
t −Xt√

h
)]

∣∣∣∣ ≤
|m|

√
h∥∂1φ∥∞ + ∥∂2

11φ∥∞E

[
X∗

t −Xt√
h

H(
X∗

t −Xt√
h

)

]
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The function x 7→ xH(x) is bounded on R+, and limx→∞ xH(x) = 0. Then, since X∗
t −Xt law

has a density and

almost sure lim
h→0

X∗
t −Xt√

h
H(

X∗
t −Xt√

h
) = 0,

the dominated Lebesgue Theorem yields:

lim
h→0

E

(
X∗

t −Xt√
h

H(
X∗

t −Xt√
h

)

)
= 0.

The proof of (32) is achieved.

Step 3: Introducing the density of the law of (X∗
t , Xt) according to Proposition 3.1 (i):

B∗
1(t, h) =

∫
R2

∂φ1(a, a)
1√
h
H(

b− a√
h

)p(b, a; t)dadb+ o(1).

We perform the change of variable b = a+ u
√
h and

B∗
1(t, h) =

∫
R×R+

∂1φ(a, a)H(u)p(a+ u
√
h, a, t)dadu+ o(1)

Note that, for all a > 0, u > 0, according to the Proposition 3.1 (ii),

lim
h→0

∂1φ(a, a)H(u)p(a+ u
√
h, a, u) = ∂1φ(a, a)H(u)p(a+, a, t).

Jensen inequality induces

(B∗
1(t, h))

δ ≤
∫
R×R+

(∂1φ)
δ(a, a)Hδ(u)pδ(a+ u

√
h, a, t)dadu+ o(1).

According to Proposition 6.2 and (39)

pδ(a+ u
√
h, a, t) ≤ C(δ, T,m)

[
1

tv
1

|a+ 2u
√
h+mt|γ

+
1

tβ
+ 1 + tξ

]
e6(m+)2δt

Integrability and boundedness assumptions on ∂1φ induces that for all h there exists Di such
that∫
R×R+

(∂1φ)
δ(a, a)Hδ(u)pδ(a+u

√
h, a, t)dadu ≤ D1+D2

∫
R×R+

|∂1φ|δ(a, a)
1

|a+ 2u
√
h+mt|γ

Hδ(u)dadu.

The integral with respect to da is shared in two parts factor, of
∫
R+ Hδ(u)du:∫

|a+2u
√
h+mt|≤1

|∂1φ|δ(a, a)
1

|a+ 2u
√
h+mt|γ

da+

∫
|a+2u

√
h+mt|>1

|∂1φ|δ(a, a)
1

|a+ 2u
√
h+mt|γ

da.

The second term is bounded by
∫
R |∂1φ|δ(a, a)da < ∞, the �rst one is bounded by

∥∂1φ∥∞
∫
|a+2u

√
h+mt|≤1

1

|a+ 2u
√
h+mt|γ

da = ∥∂1φ∥∞
∫
|x|≤1

|x|−γdx =
2

1− γ
∥∂1φ∥∞.
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Thus for all T > 0 there exist v ∈]0, 1[, ξ ≥ 0 and a constant C such that

suph∈]0,1]

∫
R×R+

|∂1φ(a, a)|δHδ(u)pδ(a+ u
√
h, a, t)dadu ≤ C

[
1

tv
+ 1 + tξ

]
, ∀t ∈]0, T ]. (33)

The family {(a, u) → ∂1φ(a, a)H(u)p(a + 2u
√
h, a, t), h ∈ [0, 1]} is uniformly integrable with

respect to Lebesgue measure dadu, so we can exchange the limit and the integral:

lim
h→0

B∗
1(t, h) =

∫
R×R+

∂φ1(a, a)H(u)p(a+, a; t)dadu.

Note that
∫
R+ H(u)du = 1

2 ends the proof of this step.

Step 4: Propositions 4.2 4.3 and 4.4, it is proved that

a(t) = λE
∫
R
[φ(Ut(y))−φ(Ut)]FY (dy)+E

(
∂2φ(Ut)m+

1

2
∂2
22φ(Ut)

)
+
1

2
E
[
∂1φ(Xt, Xt)

p(Xt+, Xt, t)

g(Xt, t)

]
.

The two �rst terms are bounded, so we have only to check (19) on the third term.
Similarly to Step 3, we get

lim
h→0

E[|∂1φ(Ut)|
1√
h
H(

X∗
t −Xt −mh√

h
)] =

∫
R×R+

|∂φ1(a, a)|H(u)p(a+, a; t)dadu.

so a 7→ ∂φ1(a, a)p(a+, a; t) belongs to L1(R, da). Then, since g(., t) denotes the density of the

law of Xt a 7→ ∂φ1(a, a)
p(a+,a;t)
g(a;t) belongs to L1(R, PXt).

Note that from estimation (33) for all T > 0 there exist v ∈]0, 1[, ξ ≥ 0 and a constant C such
that ∣∣∣∣12E

[
∂1φ(Xt, Xt)

p(Xt+, Xt, t)

g(Xt, t)

]∣∣∣∣ ≤ C

[
1

tv
+ 1 + tξ

]
, ∀t ∈]0, T ],

and the function a satis�es (19).

5 Conclusion

The aim of this paper is to have a complete study of the law of one Lévy process X and its
running supremum. Recall that X∗ is not Markovian, but the pair U := (X∗, X) is. In the
second section, we give the main result (Theorem 2.1): the density of the law of Ut, its right
continuity on the diagonal and a weakly valued-measure di�erential equation which characterizes
the law of Ut.
To complete the study of the survival probability initiated by Coutin and Dorobantu [3], as a
consequence, one gives the marginal density of the law of X∗

t (Corollary 3.3). A perspective
could be the proof of regularity of the survival probability on R+ × R, meaning
(b, t) → P(τb > t) = P(X∗

t ≤ b) =
∫ b
0 p∗(x, t)dx.

Another perspective is to study �ltering, for instance to generalize W. Ngom [6] to incomplete
observation.
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6 Appendix

Lemma 6.1. On the event {Nt+h = Nt + 1},
∣∣Ut(YNt+h

)− Ut+h

∣∣ ≤ 2 sup0≤u≤h |X̃t+u − X̃t|.

Proof. : (a) On the event {Nt+h −Nt = 1} = ∪n{Nt = n,Nt+h −Nt = 1}, we compute
Ut(YNt+h

) = (max(X∗
t , Xt + YNt+h

);Xt + YNt+h
) and Ut+h = (X∗

t+h, Xt+h).
(b) On the event {Nt = n,Nt+h = n+ 1},

Ut(YNt+h
) = (max(X∗

t , Xt + Yn+1);Xt + Yn+1) , Ut+h = (X∗
t+h, Xt+h).

(c) We bound up |Ut(YNt+h
)− Ut+h| component by component:

• Concerning the second component, on the event {Nt = n,Nt+h = n+ 1}, we have

Xt+h = Xt + Yn+1 + (Xt+h −Xt − Yn+1).

Since there is one only jump at time Tn+1 for the process X between t and t+ h, hence Xt+h −
Xt − Yn+1 = X̃t+h − X̃t and

|Xt+h −Xt − Yn+1|1{Nt=n,Nt+h=n+1} ≤ sup
0≤u≤h

|X̃t+u − X̃t|1{Nt=n,Nt+h=n+1}. (34)

• The �rst component is
X∗

t+h −max(X∗
t , Xt + Yn+1)

with

X∗
t+h = max(X∗

t , Xt + sup
t≤u<Tn+1

(X̃u − X̃t), Xt + Yn+1 + (X̃Tn+1 − X̃t) + sup
Tn+1≤u≤t+h

(X̃u − X̃Tn+1))

= max(X∗
t , Xt + sup

t≤u<Tn+1

(X̃u − X̃t), Xt + Yn+1 + sup
Tn+1≤u≤t+h

(X̃u − X̃t)).

(a) On the event {X∗
t ≥ Xt + Yn+1},

X∗
t+h −max(X∗

t , Xt + Yn+1) =

0 ∨ (Xt + sup
t≤u<Tn+1

(X̃u − X̃t)−X∗
t ) ∨ (Xt + Yn+1 + sup

Tn+1≤u≤t+h
(X̃u − X̃t)−X∗

t ).

Since Xt ≤ X∗
t :

Xt + sup
t≤u≤Tn+1

(X̃u − X̃t)−X∗
t ≤ sup

t≤u≤Tn+1

(X̃u − X̃t) ≤ sup
t≤u≤t+h

(X̃u − X̃t)

and on the event {X∗
t ≥ Xt + Yn+1}

Xt + Yn+1 + sup
Tn+1≤u≤t+h

(X̃u − X̃t)−X∗
t ≤ sup

Tn+1≤u≤t+h
(X̃u − X̃t) ≤ sup

t≤u≤t+h
(X̃u − X̃t).

On this event, globally

0 ≤ X∗
t+h −max(X∗

t , Xt + Yn+1) ≤ sup
0≤u≤h

|X̃t+u − X̃t|. (35)
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(b) On the event {X∗
t < Xt + Yn+1}, the �rst component is equal to

(X∗
t −Xt − Yn+1) ∨ ( sup

t≤u<Tn+1

(X̃u − X̃t)− Yn+1) ∨ ( sup
Tn+1≤u≤t+h

(X̃u − X̃Tn+1)). (36)

On this event, the �rst element in (36) (X∗
t −Xt−Yn+1) ≤ 0 and the third one being non negative,

thus the �rst component is (supt≤u<Tn+1
(X̃u − X̃t)− Yn+1) ∨ (supTn+1≤u≤t+h(X̃u − X̃Tn+1)).

As a conclusion, globally:

|X∗
t+h −max(X∗

t , Xt + Yn+1)|1{Nt=n,Nt+h=n+1} ≤ sup
t≤u≤t+h

|X̃u − X̃t|. (37)

Inequalities (34), (35) and (37) lead to the result.

6.1 Integrability properties

In the sequel, P is the random �eld de�ned by

P (b, a; t) :=

Nt∑
k=0

p̃
(
b−XTk

, a−XTk
− Yk+11{t>Tk+1} − (Xt −Xmin(t,Tk+1));min(t, Tk+1)− Tk

)
(38)

which satis�es
p(b, a, t) ≤ E[P (b, a; t)]. (39)

Proposition 6.2. Let δ ∈ [1, 32 [, there exists (v, γ, β) ∈ [0, 1[3 and ξ ≥ 0, such that for all T > 0
there exists a constant C(δ, T,m) satisfying for all t ∈]0, T ], b > max(a, 0)

E
(
P (b, a; t)δ

)
≤ C(δ, T,m)

[
1

tv
1

(2b− a+mt)γ
+

1

tβ
+ 1 + tξ

]
e6(m−)2δt (40)

where x+ = max(x, 0) and x− = max(−x, 0) for any x ∈ R.

The proof is based on the following three lemmas.
Recall that for all t > 0 the law of the pair (X̃∗

t , X̃t) has a density with respect to the
Lebesgue measure given by

p̃(b, a; t) =
2(2b− a)√

2πt3
e−

(2b−a)2

2t
+ma−m2t

2 1{b>max(0,a)}.

We have the following estimations on p̃.

Lemma 6.3. For all α ∈]0, 1[, there exists a constant C(α,m) such that for all t > 0

p̃(b, a; t) ≤ C(α,m)

[
1

t1−
α
2 (2b− a+mt)α

+ (m−)
1√
t

]
e−

(2b−a+mt)2

8t
+6(m+)2t1{b>max(0,a)}. (41)

Proof. We factorize

(2b− a)2 − 2mat+m2t2 = [a− (2b+mt)]2−4bmt

and write

p̃(b, a; t) =
2√
2π

[
(2b− a+mt)

t
√
t

− m√
t

]
e−

(2b−a+mt)2

2t
+2bm1{b>max(0,a)}. (42)

Let be Cβ := supx∈[0,+∞[ x
βe−

x2

4 < +∞.
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• For m≤ 0 and since b > 0 we obtain

p̃(b, a; t) ≤ 2√
2π

[
C1+α

t1−
α
2 (2b− a+mt)α

+
m−√

t

]
e−

(2b−a+mt)2

4t 1{b>max(0,a)},

and estimation (41) for m ≤ 0.

• For m > 0, using (42)

p̃(b, a; t) ≤ 2√
2π

[
C1+α

t1−
α
2 (2b− a+mt)α

]
e−

(2b−a+mt)2

4t
+2bm1{b>max(0,a)}.

Since

(2b− a+mt)2

8t
− 2bm =

1

8t

(
(2b− a)2 + 2(2b− a)mt+m2t2 − 16bmt

)
,

using 2b− a ≥ b and m > 0,

(2b− a+mt)2

8t
+2bm ≥ 1

8t

(
b2 + 2bmt+m2t2 − 16bmt

)
=

1

8t

(
(b− 7mt)2 − 48m2t2

)
≥ −6m2t2.

Thus

p̃(b, a; t) ≤ 2√
2π

[
C1+α

t1−
α
2 (2b− a+mt)α

]
e−

(2b−a+mt)2

8t
+6m2t1{b>max(0,a)}.

We obtain the estimation (41) for m > 0.

Lemma 6.4. Let 0 < α < 1 there exists a constant C(α) such that for all T > 0, σ > 0

sup
c∈R

E
(
|c+ σG|−α e−

(c+σG)2

2T

)
≤ C(α)

T
1−α
2

σ
, (43)

where G is a standard Gaussian variable.

Proof. First we prove inequality (43) for σ = 1. Let

I(c, T ) := E
(
|c+G|−α e−

(c+G)2

2T

)
= I(c, T,+) + I(c, T,−) (44)

where

I(c, T,±) := E
(
(c+G)−α

± e−
(c+G)2

2T

)
. (45)

Using the density of G

I(c, T,+) =

∫ ∞

−c
(c+ g)−α e−

(c+g)2

2T
e−

g2

2

√
2π

dg
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and an integration by part

I(c, T,+) =

∫ ∞

−c

1

1− α

[
(c+ g)2−α

T
+ g(c+ g)1−α

]
e−

(c+g)2

2T
e−

g2

2

√
2π

dg.

Note that x 7→ xβe−
x2

4 is bounded on R+ by Cβ then

I(c, T,+) ≤
∫ ∞

−c

1

1− α

C2−αT
−α

2
e−

(c+g)2

4T

√
2π

+ C1C1−αT
1−α
2

e−
g2

4

√
2π

 dg.

Integrating with respect to g yields

I(c, T,+) ≤ 2
[
C2−αT

1−α
2 + C1C1−αT

1−α
2

]
. (46)

Using the same lines we obtain

I(c, T,−) ≤ 2
[
C2−αT

1−α
2 + C1C1−αT

1−α
2

]
. (47)

Plugging inequalities (46) and (47) into (44) yields (43) for σ = 1.
Replace c by c

σ and T by T
σ2 yields (43).

Lemma 6.5. For all α < 1, β < 1, δ > 0, T > 0 there exists a constant C(α, β, δ, T ) such that
for all t ∈]0, T ],

E

(
1{Nt>0}(Nt + 1)δ

[
T−β
Nt

(t− TNt)
−α +

Nt−1∑
k=0

(t− Tk+1)
−α(Tk+1 − Tk)

−β

])
≤ C(α, β, δ, T )t1−α−β.

(48)

Proof. Let S(1, α, β, δ, t) be the random variable de�ned by

S(1, α, β, δ, t) := E
(
1{Nt>0}(Nt + 1)δ

[
T−β
Nt

(t− TNt)
−α
])

. (49)

Note that (Tk+1−Tk)k≥0 are independent variables, identically distributed and T1 follows an
exponential distribution with parameter λ.

Then, S(1, α, β, δ, t) =
∑∞

n=1 S(1, α, β, δ, t;n) where for n ≥ 1:

S(1, α, β, δ, t;n) (50)

=(n+ 1)δ
∫
[0,∞[n+1

(u1 + ...+ un)
−β(t− u1 − ...− un)

−αλn+1e−λ(u1+...+un+1)1{u1+..+un≤t≤u1+...+un+1}du1...dun+1.

We integrate with respect to un+1 between t− u1 − ...− un and in�nity

S(1, α, β, δ, t;n) = λn(n+ 1)δe−λt

∫
[0,∞[n

(u1 + ...+ un)
−β(t− u1 − ...− un)

−α1{u1+..+un≤t}du1...dun.

We perform the change of variable tvi = u1 + ...+ ui, i = 1, ..., n

S(1, α, β, δ, t;n) = λntn−α−βe−λt

∫
[0,1]n

(vn)
−β(1− vn)

−α1{v1<..<vn≤1}dv1...dvn.
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We integrate with respect to v1, ..., vn−1

S(1, α, β, δ, t;n) =
(n+ 1)δλntn−α−β

(n− 1)!
e−λt

∫ 1

0
(vn)

−β+n−1(1− vn)
−αdvn

=
(n+ 1)δλntn−α−β

(n− 1)!
e−λtB(n− β, 1− α) (51)

The radius of convergence of entire series (
∑

n≥1
(n+1)δλntn−1

(n−1)! B(n − β, 1 − α)) is in�nite, so

the series is continuous on R and then bounded on [0, T ]. There exists a constant C1(α, β, δ, T )
such that for all t ∈]0, T ] adding inequalities (51) yields

S(1, α, β, δ, t) ≤ C1(α, β, δ, T )t
1−α−β. (52)

Let S(2, α, β, δ, t) be the random variable de�ned by

S(2, α, β, δ, t) := E

(
1{Nt>0}(Nt + 1)δ

Nt−1∑
k=0

[
(t− Tk+1)

−β(Tk+1 − Tk)
−α
])

. (53)

Note that (Tk+1−Tk)k≥0 are independent variables, identically distributed and T1 follows an
exponential distribution with parameter λ.

Then,

S(2, α, β, δ, t) =
∞∑
n=1

n−1∑
k=0

S(2, α, β, δ, t;n, k)

where for n ≥ 1, 0 ≤ k ≤ n− 1

S(2, α, β, δ, t;n, k) (54)

=(n+ 1)δ
∫
[0,∞[n+1

(t− u1 − ...− uk+1)
−β(uk+1)

−αλn+1e−λ(u1+...+un+1)1{u1+..+un≤t≤u1+...+un+1}du1..dun+1.

We integrate with respect to un+1 between t− u1 − ..un and in�nity

S(2, α, β, δ, t;n, k) = (n+ 1)δe−λtλn

∫
[0,∞[n

(t− u1 − ...− uk+1)
−β(uk+1)

−α1{u1+..+un≤t}du1...dun.

We perform the change of variable tvi = u1 + ...+ ui, i = 1, ..., n

S(2, α, β, δ, t;n, k) = (n+ 1)δtn−α−βe−λtλn

∫
[0,1]n

(1− vk+1)
−β(vk+1 − vk)

−α1{v1<..<vn≤1}dv1...dvn.

We integrate with respect to v1, ..., vk and vk+2, ..., vn

S(2, α, β, δ, t;n, k) =
(n+ 1)δtn−α−βe−λtλn

k!(n− k)!

∫
[0,1]2

(1− vk+1)
−β+n−k(vk+1 − vk)

−α+kdvkdvk+1

≤ (n+ 1)δtn−α−βe−λtλn

n!

k!(n− k)!

n!
max (1, B(1− β, 1− α)) (55)

since

0 ≤
∫
[0,1]2

(1−vk+1)
−β+n−k(vk+1−vk)

−α+kdvkdvk+1 ≤ max(1,

∫
[0,1]2

(1−vk+1)
−β(vk+1−vk)

−αdvkdvk+1).
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Then, adding inequalities ( 55) from k = 0 to n− 1

n∑
k=0

S(2, α, β, δ, t;n, k) ≤ max

(
1,

Γ(−α+ 1)Γ(−β + 1)

Γ(−α− β + 1)
,

)
(n+ 1)δ2ntn−α−βe−λtλn

n!
. (56)

The radius of convergence of entire series (
∑

n≥1
(n+1)δλn2ntn−1

(n)! ) is in�nite, so the series is con-

tinuous on R and then bounded on [0, T ]: there exists a constant C2(α, β, δ, T ) such that for all
t ∈]0, T ] and adding inequalities (56) yields

S(2, α, β, δ, t) ≤ C2(α, β, δ, T )t
1−α−β. (57)

Inequality (48) is a consequence of inequalities (52) and (57).

Proof. of the proposition: recall

P (b, a; t) :=

Nt∑
k=0

p̃
(
b−XTk

, a−XTk
− Yk+11{t>Tk+1} − (Xt −Xmin(t,Tk+1));min(t, Tk+1)− Tk

)
.

• Note that from Lemma 6.3, there exists a constant C(α,m) such that

P (b, a; t)1{Nt=0} ≤ C(α,m)

[
1

t1−
α
2 (2b− a+mt)α

+ (m)+
1√
t

]
e6(m+)2t1{b>max(0,a)}

Taking ξ = 0, β = δ
2 . Since δ ∈ [1, 32 [ then 2(1 − 1

δ ) < 1
δ . If α = 1 − 1

2δ then γ := αδ =
δ − 1

2 < 1 and v := δ(1 − α
2 ) < 1. Then, using (x + y)δ ≤ 2δ−1[xδ + yδ] there exists a

constant C0(δ) such that for all t > 0, b > max(a, 0)

E
(
P (b, a; t)δ1{Nt=0}

)
≤ C0(δ)

[
1

tv
1

(2b− a+mt)γ
+

1

tβ

]
e6(m+)2tδ. (58)

• Using estimation (41) and development (38)

P (b, a; t) :=

Nt∑
k=0

p̃
(
b−XTk

, a−XTk
− Yk+11{t>Tk+1} − (Xt −Xmin(t,Tk+1));min(t, Tk+1)− Tk

)
,

P (b, a; t)1{Nt>0} ≤ C(α,m)1{Nt>0}
∑Nt

k=0 Pk(b, a, t) where

Pk(b, a; t) ≤
[ 1

(t ∧ Tk+1 − Tk)1−α/2Zk(t)
+

m−√
t ∧ Tk+1 − Tk

]
e−

Zk(t)2

8t e6(m−)2(min(t,Tk+1)−Tk)

and Zk(t) := (2b− a−XTk
+ Yk+11{t>Tk+1} +Xt −Xt∧Tk+1

+m(Tk+1 ∧ t− Tk).

We de�ne a family (Ck(t), σk(t), Sk(t), Gk(t))k∈N∪{0} by
• (Ck(t), σk(t), Sk(t), Gk(t)) = (0, 0, 0, 0) for k > Nt,
• for k < Nt:

Ck(t) = 2b− a−XTk
+

Nt∑
i=k+1

Yi +m(t− Tk+1) +m(Tk+1 − Tk);
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σk(t) =
√

t− Tk+1; Sk(t) = Tk+1 − Tk; Gk(t) =
Bt −BTk+1√

t− Tk+1

• for k = Nt

Ck(t) = 2b− a−
Nt∑
i=0

Yi −mTNt +m(t− TNt); σk(t) =
√

TNt ; Sk(t) = t− TNt , ; Gk(t) =
BTNt√
TNt

.

Then, from estimation (41) and the de�nition of (Ck(t), σk(t), Sk(t), Gk(t))

P (b, a; t)1{Nt ̸=0} ≤ 1{Nt ̸=0}

Nt∑
k=0

[
1

S
1−α

2
k (Ck + σkGk)α

+ (m)−
1√
Sk

]
e6(m+)2t1{b>max(0,a)}

Note that Sk ≤ t and using Jensen inequality

P (b, a; t)δ1{Nt ̸=0} ≤ 1{Nt ̸=0}(Nt + 1)δ
Nt∑
k=0

[
1

S
δ(1−α

2
)

k (Ck + σkGk)αδ
+ (m)δ−

1
√
Sk

δ

]
e6δ(m+)2t1{b>max(0,a)}

Conditionally to {Nt ̸= 0}, the random variable Gk are independent of Ck, σk and Sk and their
law is the standard Gaussian distribution. Using Lemma 6.5 for σ = σk and T = Sk yields there
exists a constant C(α, δ) such that

E
(
P (b, a; t)δ1{Nt ̸=0}

)
≤

C(α, δ)E

(
1{Nt ̸=0}(Nt + 1)δ

Nt−1∑
k=0

[
1

(Tk+1 − Tk)
δ− 1

2

√
t− Tk+1

+ (m)δ−
1√

t− Tk+1
δ

])
e6δ(m+)2t1{b>max(0,a)}

+ C(α, δ)E

1{Nt ̸=0}(Nt + 1)δ

 1

T
δ− 1

2
Nt

√
t− TNt

+ (m)δ−
1√
TNt

δ

 e6δ(m+)2t1{b>max(0,a)}.

According to Lemma 6.5, there exists a constant C(α, δ, T ) such that for all t ∈]0, T ]

E
(
P (b, a; t)δ1{Nt ̸=0}

)
≤ C(α, δ, T )

[
t1−δ + t

1−δ
2

]
e6δ(m+)2t1{b>max(0,a)}. (59)

Adding inequalities (58) and (59) yields inequality (40).

References

[1] D. Applebaum (2009), Lévy Processes and Stochastic Calculus, second edition, Cambridge
university press.

[2] P. Carr and L. Cousot A PDE approach to jump di�usions, Quantitative Finance, Vol. 11,
N0 1, pages 33�52, Taylor & Francis, 2011.

[3] L. Coutin, D. Dorobantu First passage time law for some Lévy processes with compound
Poisson: existence of a density, Vol. 17, N0 4, pp 1127�1135, Bernoulli Society for Mathe-
matical Statistics and Probability, 2011.

23



[4] M. Jeanblanc, M.Yor, M. Chesney (2009) Mathematical Methods for Financial Markets,
Springer.

[5] S. G. Kou and H. Wang First passage time of a jump di�usion process Adv. Appl. Prob. 35,
pp. 504-531, 2013.

[6] W. Ngom Conditional Law of the Hitting Time for a Lévy Process in Incomplete Observation
Journal of Mathematical Finance, vol. 5, number 5, pages 505-524, 2015.

[7] D. Revuz and M. Yor Continuous Martingales and Brownian Motion, Vol. 293, Springer
Science & Business Media, 2013.

[8] Titchmarsh �The Theory of Functions, 2d Edition, Oxford 1939.

[9] M. Veillette, and M. S. Taqqu Using di�erential equations to obtain joint moments of �rst-
passage times of increasing Lévy processes, Statistics & Probability Letters, Vol. 80, N0 7,
pp. 697-705, Elsevier, 2010.

24


