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Joint distribution of a Lévy process and its running supremum

Laure Coutin*Waly Ngom'Monique Pontier?

February 28, 2017

Abstract

Let X be a jump-diffusion process and X* its running supremum. In this paper, we first
show that for any ¢ > 0, the law of the pair (X", X;) has a density with respect to Lebesgue
measure and compute this one. This allows us to show that for any ¢ > 0, the pair formed by
the random variable X; and the running supremum X; of X at time ¢ can be characterized
as a solution of a weakly valued-measure partial differential equation. Then we compute the
marginal density of X; for all ¢ > 0.

Keywords: Lévy process, partial differential equation, running supremum process, first hit-
ting time.

A.M.S. Classification: 60G51, 60H20, 60H99.

1 Introduction

Consider a Lévy process (X, t > 0), starting from zero, which is right continuous left limited.
If moreover X is the sum of a drifted Brownian motion and a compound Poisson process, it is
called a mixed diffusive-jump process. As any Lévy process, X has stationary and independent
increments and is characterized by its Laplace transform. The mixed diffusive-jump processes
and the notion of first passage time (behavior of certain processes at first passage time) are very
useful and widely studied.

Introducing the running supremum at time ¢, X; and the first passage 7, of X at level b, the
probability P(X; > a, X} > b) = P(X; > a,7, < t) for some fixed real numbers (a,b), a < b
and b > 0, is of great importance, for example, in pricing barrier options while the logarithm
of the underlying asset price is modeled by a jump-diffusion process. In this idea, Kou and
Wang [5] give the explicit expression of the Laplace transform of the joint distribution of the
double exponential mixed diffusive-jump process and its running supremuin.

In [4], Jeanblanc et al. consider the first passage time by a diffusion at a deterministic function
h that depends on time and they define a function of 7, and X which satisfies the Fokker-Planck
Equation.
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In [1], it is well noted (Theorem 2.2.9 and Exercise 2.2.10) that the 3—stable subordinator is the
first passage time of a standard Brownian motion and the inverse Gaussian subordinator is the
first passage time of standard Brownian motion with a drift.

Mark Veillette and Murad S. Taqqu study in [9] the first passage time of a subordinator D.
Since D is in general non-Markovian with non-stationary and non-independent increments, they
derive a partial differential equation for the Laplace transform of the n— time tail distribution
P(r¢, > $1,-++ ,Tt, > Sp) where 74, = inf{s: Dg > t;} for a subordinator (Ds, s > 0). With this
result, they give a recursive formula for multiple-time moments of the local time of a Markov
process in terms of its transition density.

The authors of [2] use a partial differential equation (PDE) approach to show that the calibration
of an implied volatility surface and the pricing of contingent claims can be as simple in mixed
diffusive-jump framework as it is in a diffusion framework.

This work characterizes the law of the pair U; formed by the random variable X; and the running
supremum X; of X at time ¢, with a valued-measure partial differential equation and gives an
explicit expression for the density function of this pair. Then the marginal density of X; is given.
The paper is organized as follows: Section 2 provides the main result. Section 3 gives the density
function of the pair formed by the random variable X; and its running supremum X;* and Section
4 is devoted to the proof of the main result of Section 2. To finish, one concludes and gives some
auxiliary results in Appendix.

2 Valued measure differential equation for the joint law

We introduce some preliminary concepts for the diffusion part: for a standard Brownian motion
W and a real number m, let be

Xy =mt+W;, X =supX,. (1)
s<t

In [4] page 147, Jeanblanc et al. show that the pair (X}, X;) has a density with respect to
Lebesgue measure on R? noted (., .;t) where

_ 2(2b—a 2b —a)? t
p(b7 a; t) - y exp _Q +ma — m®- 1{max(0,a)<b}' (2)

273 2t 2
In all the following, ®¢ means the standard normal Gaussian distribution and one often uses the
following:

2

exp L vz o (3)

1—Pg(x) = Pg(—2) < ,
c(r) = a( )_m% 5

In order to have a Lévy process with non zero jump part, let us introduce

N¢
Xt:mt—FWt—i-ZYi, X =sup Xy,
i=1 sst

where N is a Poisson process with constant positive intensity A, (Y;,7 € N*) is a sequence of
independent and identically distributed random variables with the distribution function Fy and



the sequence of jump times of N is denoted by (7;),i > 1. Let 6 be the shift operator and
(Uy; t>0) be the R2—value process defined by

U= (X[, Xy), t>0. (4)
The aim is to prove the theorem:

Theorem 2.1. (i) For all t > 0, the law of the pair (X/, X¢) has a density with respect to the
Lebesgue measure, denoted by p(b,a;t).

(i) For allt > 0, a € R the map h — p(a+ h,a;t) has a limit when h goes to 0 denoted by
pla+,a;t).

(iii) Let be ¢ : R? = R a C3— bounded function with a support in {(b,a), b > 0,b > a}
such that there exists 0 > 1 satisfying [ |01¢(a, a)|%da < oco.
For any t > 0,

E(o(0) = 9(0.0)+ [ B [mam )+ 20%e(U ﬂ s (5)

o

where g(.; s) is the density of the random variable Xs and

B o, X0 P s 'E ([ 1) - pwan #y(an) as.

l\.’JM—l

Us = (X, Xs), Us(y) = (max(X;, Xs+vy),Xs+y), s>0. (6)

In the next sections, details of the proof of Theorem 2.1 are given.

3 Existence of the density of the law of (X}, X;) and its properties

We note that

X;‘ :max{( sup Xu,i:O,...,Nt),Xt}
uE[Ti,inf(TiJrl,t)[

and use the joint density of (X, X;) given by (2) to show that the pair (X}, X;) law has a
density which is right continuous on the diagonal, see Proposition 3.1 below which actually is
the proof of Theorem 2.1 (i) and (ii).

Proposition 3.1. (i) For all t > 0, the law of the random vector (X[, X+) admits a density with
respect to the Lebesque measure given by

b a, t (Zp b — XTk, XTk — Yk+11{Tk+1§t} — (Xt — XTk+1At)7t ANTgy1 — Tk) 1Ak,t(b7 a))
where p is given by (2) and

Ayt = {(b, a)| b > max <X§Fk,a + [Xiatp, — sup X ]1{Tk+1<t}> } (7)

u€[Thy1,1]



(ii) Moreover, for all a € R, t > 0 the map h — p(a+h,a;t) has a limit when h goes to 0 denoted
by p(a+,a;t) and

pla+,a;t) =

N¢
E (Zﬁ ((a—X1)" 0 — X1, = Yo lir, < — (X — Xrpoone)s t A Tiyr — Ti) 1aeDk,t>
k=0

where Dy = {a : a > max (X}k, a+ [Xiaty, — SUPy€(Ty 1 1.4) Xu]l{Tk+1<t}>}
The proof of (i) relies on the following lemma:

Lemma 3.2. Almost surely, for all t,

X; =max | Xy, +  sup <Xu _ XTk> Ck=0,...N;|. (8)

UE[ Ty, Th 1/t
Moreover, almost surely, for all t, there exists a unique k denoted as N such that
X=X, + sup <Xu - XTk> : (9)
uG[Tk,TkJrl/\t]

Proof. Let t be fixed.
(a) Note that

X/ = max < max | X7, + sup (Xu—X1,), k=0,..,N¢ |, Xy 0. (10)
uE[Tk,Tk+1/\t[

For k € N, for all v € [Ty, Tj41], Xu — X7, = X'u — X'Tk where X is the continuous process
defined in (1), thus for & < Ny,

sup (Xy—X7,) = sup X, — X'Tk> (11)
uE[Tk,Tk+1/\t[ uE[Tk,Tk+1/\t]

and

ue[TNt,TNt+1At UE[TNz 7TNt+1/\t}

max (XTNt + sup <Xu — XTNt> 7Xt> = Xy, + sup (Xu — XTNt> . (12)
[
Plugging identities (11) and (12) in equality (10) yields (8).

(b) Let two integers ¢ < j then,

XTj + sup (Xu - XVTj) = XTi + (XT¢+1 - XTl) +Yi + (XTj - T¢+1) + sup (Xu - Xr,

uE[Tj ,T]‘+1/\t] UE[Tj,Tj+1/\t]

and

XT]. + sup Xu — XTj) - AT, — sup (Xu - Xﬂ) =
UE[T]' ,Tj+1/\t] UE[T{,T,H.l/\t]

{YH-l + (XT]' - T¢+1) + sup (Xu - XTJ)} + {(XTiJrl - XTZ) - sup (Xu - XTZ)} .
uE[Tj,Tj+1/\t] UG[Ti,TZ‘+1/\t]



The two following random vectors are independent:

( sup (X’LL - XT-L) ;XTi+1 - XT-L> 7}/ti+1 + (XTJ - Ti+1) + sup Xu - XTJ)
uE[Ti,Ti+1At] ue[Tj,TjH/\t}

and the law of the vector (supue[ThTiH/\t] (Xu — )N(TZ.) ;XTZ.+1 — XTZ.) admits a density with
respect to the Lebesgue measure, hence the law of the random variable

sw (X, - Xr) + Xr,, - X7,
UE[Ti,Ti+1/\t]

has a density with respect to the Lebesgue measure and is independent of
Y;—i—l + (XTj - Ti+1) + Sup (Xu - XTj) .
uG[Tj,T]’+1/\t]
Therefore, X7; + sup,e(r; 7,1 g (Xu — XTJ.) — X7, — SUDPye[T, 10 A1) (X'u — XTZ) is the sum of

two independent random variables, one having a density, then also has a density. So for all ¢,
almost surely, whenever ¢ # j

X1, + sup Xy — XTJ) # X1, + sup (Xu — Xﬂ)
uE[Tj,Tj+1/\t] uE[Ti,TH_l/\t]

(c) Above, we can exchange V¢t > 0 and almost surely, since the processes (N¢, t > 0) and
<<max (XTk + SUPue[T, Ty 1 1] <)E'u — Xﬂ)) , k< Nt) , t> 0) are right continuous. ]

Proof. of Proposition 3.1 (i): According to Lemma 3.2, let N denoting the index k where the
maximum below is reached,

X/ = max <XTk + sup <Xu — XTk) , k=0, ...,Nt> :
]

w€[Ty 1 At

The fact N} = k is equivalent to: the supremum is reached on the interval [T}, Ti11 At], actually
meaning X; = sup(r, 1, aq Xu and remark that supip, 7, ag Xu = X7, VSupigy, argg Xu-

On the interval [T}, Ti4+1At], Xy = X1, —i—Xu—f(Tk. Thus the following inequalities are equivalent
to NJ = k:

(a) X1, + sup (X'u — XTk) > X7,

[Tk,Tk+1/\t]
(b) XTk + sup (Xu — XTk) > sup X, = [XTk+1At + sup (Xu — XTk+1/\t)]1{Tk+1<t} + th{Tk+1Zt}‘
[Tk, Tr+1AE] [Th+1/tt] [Tht1.t]

Using X1,,, = X713, + XTkJ,-l — X7, + Yip1, (b) is equivalent to

sup (XU_XTk) > [XTk+1_XTk+Yk+1+ sup (XU_XTk+1)]1{Tk+1<t})+(Xt_XTk)1{Tk+1Zt}‘
[T, Trq1At] [Trt1,t]

As a conclusion we get { N} =k} =

{ sSup (XU_XTk) > X;’k _XTk}m{ sSup (XU—XTk) > Xt/\Tk+l_XTk+[Yk+1+ sup (XU_XTk+1)}1{Tk+1§t})}'

[T, Tit1 1] [T, Te+11t] (Tht1,t]



Thus
{Nt* = ]{7} = { ( sup (Xu — XTk)aXt/\Tk_H — XTk> € Ak,t}

uE[Tk,Tk+1 /\t}

UE[Thy1,t]

Ak,t = {(b, a) : | b > max (X%k — XTk,a + [Yk+1 + sup (Xu — XTk+1)]1{Tk+1<t}> } .

(13)

Moreover on {k < N:} so on {N; =k} C {k < N}
Xt = XTk + (Xt/\Tk;Jrl - XTk) + Yk+11{tZTk+1} + (Xt - Xt/\Tk+1)‘ (14)

Let ® be a bounded Borel function, hence

E[®(X/, X)) =E

Ny
Z (X, Xtﬂ{N;:k}] =
k=0

E

Ny
Z 1Ny =iy ® <XTk + sup (Xu = X1, )s X1y + (Xeatyy — Xmy) + Yer1lpsn, ) + (X — Xt/\Tk+1)>:| .

k=0 u€ [T, Th41/t]

The four following random vectors are independent:

uE[Tk+1/\t7t uE[Tk,Tk+1/\t]

(XTkaX;:k)a Yk+l7 (Xt - Xt/\Tk+17 sup [(Xu - XTIH_l/\t)) ; ( sup X’LL - XTkvXt/\Tk_;,_l - XTk>

and conditionally to o (.FTk, Yirr, (Xu — X130y, 6> Ty A L), Tk,TkH) , the law of the ran-
dom vector

sup Xu - XTk7Xt/\Tk+1 - XTk
uE[Tk,Tk+1/\t]

has a density with respect to the Lebesgue measure given by p(b,a,Tp11 At — T)) where p is
defined by (2). We obtain that E (®(X/, X)) =

Ny

/E [Z (I)(XTk +b, X7, +a+ Yk+11{t2Tk+1} + (X; — XTk+1At))ﬁ(b’ a, T NT— Tk)lAk,t (b,a)| dadb.
k=0

The change of variable formula v = b+ X7, and u = X7y, +a+ Yep1lgesm, ) + (Xt — X130 00)
concludes the proof.

Proof of Proposition 3.1 (ii): Let a € R, ¢t > 0, the map

Nt
h — Zﬁ ((1 +h — XTk, a — XTk — Yk+11{Tk+1§t} — (Xt — XTk+1/\t)7 tATg41 — Tk) 1Ak,t(b7 CL)
k=0
has a right limit when h goes to 0 since both functions h — p(a+ h,a;t) and h — 1a, ¢(a+h, a)
admit a limit when h decreases to 0. According to Proposition 6.2 in Appendix the family

Nt
(Zﬁ (a+h—Xp,a—Xp, = Yerrlir,, <o — (Xo — X1 ne)s t A Togr — Ti) 1a,., (b, a))
k=0 hel0,1]



is uniformly integrable.
Then, we can exchange the limit and the expectation and h +— p(a + h, a;t) has a limit when h
decreases to 0 and

plat,a;t) =

N
E (Zﬁ ((a—X1)4 0 — X1, = Yerrdqr, <y — (Xo — X1oone)s t A Tigr — T 1aeD,m>
k=0
where Dy s := {a : @ > max (X}k, a+ [XMTk+1 — SUPye(T, 4 ] Xu]l{Tk+1<t}>}

As a corollary the law of X;* is deduced:

Corollary 3.3. For any t > 0, the law of the random variable X] has a density p*(.,t) given by

N
p*(b,t) = 2E (Z 220X )m g [(Crp) Ty <t + (b — Xy) + m(t A Thosr — Ti)y t A Tyr — T] 1{b>X;k}>

k=0
(15)
where Hy, : (x,t) — ﬁexp [—%ﬂ - m@g(—%) and
Citi = Y1 + suPueqry, . (Xu — X1y ) 173, <1}
Proof. Let ¢ be the function such that p(b, a,.) = (b, a,.)1p>qvo where
3 2(2b — a) (2b — a)? ot
p(b,a;st) = W exp [_275 +ma—m 3 1max(0,a)<b} -
Remark that
(2b — a)? — 2mta +m*t* = [a — (2b + mt))*> — 4bmt, (16)
thus we obtain
2e2™m (2b +mt —a [a — (2b+ mt))? [a — (2b+ mt))?
G(b,a,t) = - — - )
i(0.0.0) = 2 (B e | Z L) [ L= Rl )
Hence, for any A,
A
0< / p(b, a,t)da = 2" 1y~ 0 Hyp (2,t), & =bAA—2b—mt. (17)

Let k be fixed and P} (b, t) be given by

Pi(b,t) :== / p(b—Xn,a—Xg, = Yiplr,, <t — (Xe — X1y ne), t A T — T) 1, (b, a)da
R

then the density of X/ is given by



With the change of variables u = a — X7, — Y117y, <t — (Xi — Xiary,, ), it follows

P,:(b, t) = / ﬁ (b — XTk,u, tA Tk+1 — Tk) 1Ak,t (b, u + XTk + Yk+11Tk+1St + (Xt — Xt/\Tk+1))du‘
R
According to the definition of Ay, (7)

1n,,(byu+ X7, + Vi1 yr, <oy + (Xe — Xeazyy,)) =

Livsxz, Y omus Xy + Vg1 supueny g (Xu—Xo)1in, <}

On the event Tj11 <t (id est k < Ny)
P]:(ba t) = /]R(j(b - XTk,’LL, Tk+1 - Tk)1b>X;:k 1}—oo7min(b—XTk,b—XTk—Ct,k[(u)du

since Cp = (Y1 + SuPue[TkH,t}(Xu - Xt))l{Tngt}-
And on the event Ty >t

Pr(bt) = / q(b — X7 u,t — Ti) Lo xz Yoo p—xp, [(w)du
R k k

(a) On the event Tj1; < t applying (17) to A = b — X7, — Cyy, with T4 — T}, and b — X7,
instead of t and b, (b— X7, ) NA=b— X7, — (Cx)" (since 0 A (—x) = —z™) so on this event

Py (b,t) = 2¢*™ X1 Hy [(Cop) ™ + (b= X)) + m(Thgr — Th), Thogr — Th) -

(b) On the event T}y > t, applying (17) to A = b — X7, and taking ¢t — T} and b — X7, instead
of t and b, so on this event

Pr(b,t) = 220 XT)m (b — Xp) — m(t — Ty), t — T -
To summarize both cases
Pi(b,t) = 2¢O XM H L [(Cop) T hiry, <y + (b= X1,) + m(t A Thoyr — Ti), t A Thgr — T

and the proof is achieved. O

4 Proof of Theorem 2.1 (iii)

To prove the end of this theorem, we proceed as follows: we will compute limy_,o h~LA(t, h) =
a(t) where

A(t,h) == E[o(Uirn) — o(Up)] - (18)

After that, we will use [8] 11.82 p. 368: If f is a function such that f’ is finite everywhere and
integrable, then for all a < b, f(b) — f(a) = f: f'(s)ds. The study of a(t) := limj,_,o h~tA(t, h)
could prove that for all ¢ > ¢y > 0,

B (p(U1) = [ als)ds + B (o(Xiy X)), ¥t > to

to



A last step will be to prove the convenient properties of the function a, for all 7' > 0, there exist
v €]0,1[, £ > 0 and a constant C' such that

la(t) < C Ll 1 tﬁ] vt €0, 7. (19)

Then letting tp going to 0 and using the fact that ¢ is continuous bounded, X and X* are right
continuous, estimation (19) and Lebesgue dominated theorem, for all ¢ > 0

E (o(Uy)) = /0 a(s)ds + (0,0).

Proof of the function a : t — E(p(U;)) admits a derivative on |0, +oo[ denoted as a and satisfying (19).

The idea is to split A(t,h) in three parts according to the values of Npyp — N :

2

A(t,h) =Y Ai(t,h) (20)

1=0

where

Ai(t,h) :=E ([p(Usrn) — o(U) LN, -Ne=i}) » ©=0,1
AQ(t7 h) =E ([‘P(Uﬂrh) - (P(Ut))] 1{Nt+h7Nt22}) . (21)

Lemma 4.1. Under the hypothesis of Theorem 2.1
lim h~1 Ay (t, h) = 0. (22)
Proof. By hypothesis ¢ is bounded and we get
[As(t h)] < 20l ocP(Nih — Ny 2 2) < 2|l — e = Are™).
Thus, limy_so h~1As(t, h) = 0. O

This lemma added to the three next propositions proves Theorem 2.1 (iii): this lemma treats
the term As(t, h) while Proposition 4.2 treats the term A;(t,h). Propositions 4.3 and 4.4 treat
the term Ag(t, h).

Proposition 4.2. Let be ¢ : R> > R q C’g’— bounded function. Then

lim WA (0,1) = A [ [o(U0) = (U0 Py ().

where Uy is defined by (4) and U(y) by (6).
This proposition gets the last term on the right hand in (5).
Proof. Introducing the term p(Ui(Yn,,,)), let be A1(t,h) := A11(t, h) + A1 2(t, h) where

At h) =E ({o(U(Yn,,) = 2(U0) } LN p=Nit1}) »
Al,Q(ta h) =E ({@(Ut-i-h) - @(Ut(YNHh))} l{NH.h:Nt-H}) :



e Since ¢ is C! class with bounded derivative, Lemma 6.1 (Appendix) implies that on the event
{Niyn — Ny = 1} we have . .
o (Ut+n) — (Ue(Yn, )| < [[Veolloo (28uPg<usn [ Xipu — Xif + h). Thus

B Aus(t, 1) < A MV plloo(2 sup [Kipu — Kol + 1) 0
0<u<h
when h — 0: Indeed, the process X satisfies 0 < X}, < |m|h-+W;* and Burkholder Davis Gundy’s

inequality for all i > 1 implies there exists a constant C; > 0 such that E[(W})] < C; R/, hence
for h <1,

E ((X;;)i) < O, (23)
thus E(X;) < Cvh.
e Let us deal with A 1(¢,h) to show
lim h™' Ay 1 (t, h) = AE/ [o(Ui(y)) — ¢(Ur)] Fy (dy). (24)
h—0 R

On the event {N; = n, Nyy = n + 1}, the equality U(Yn,,,) = Ui(Yny1) holds. The indepen-
dence properties arising from the structure of the process X, the use of the laws of Y;, T),, the
decomposition of Ty41, Thy1 = Ty + Sp+1, and the conditioning to Fr,, yield:

+oo
Ara(th) =Y E (L, <tarp<trheToio} (0 (U(Yag1)) — o(Uh))] =

(
R

n=0
+o0 t+h—T,
2" [1{”5”/ 7 ds/ (Ui(y)) - @(Ut))Fy(dy)Ae—mh_Tn)] .
n=0 t—=Tn

By hypothesis, the function ¢ is bounded and when h goes to 0, Lebesgue’s dominated conver-
gence theorem yields

lim /- YAy (t,h) ZE[ AT <t}/ (Uly @(Ut))FY(dy):| : (25)

A(t=Tn)

Since e~ Y1, <ty = E[1{1,<t<7,.1}/F); it follows

lim 1Ay (8, h) ZE{M{T et | (U >>—so<Ut>>Fy<dy>] -
n=0

B3 [ (00) - e(0) Fran)]. (26)

O]

We now turn to the study of h=1Ag(¢, h) when h goes to 0. On the event { Ny, — Ny = 0},
TN, = TNt+h7 hence X;“NHh = X%Nt and XTNHh = XTNta

Xoyn = Xi + Xp o0y, X[ p, = max(X;, X; + X 0 6y).

10



Using Markov property at ¢ and the fact that the processes N and X are independent
Ag(t,h) = e ME (E ((p(max(x*,w +X5), 2z + Xp) — (P(x*’x)>|z*=xg,xzxt) :
Let us introduce
ag(h,z*,z) :=E (cp(max(a:*,a: + X5), x4 Xp) — go(z*,x)) :
To study the term ag(h,z*, x), we make a Taylor expansion at a neighborhood of (z*, ):
ag(h,z*,z) : = dyp(x*, x)mh + %822%0(3;*, z)[m2h? + h)+
+ 8%7290(37*, z)E ([max(ac*, T+ X;L") — x*] Xh)

+ %Bilgo(x*, z)E ([max(a:*, r+ X)) — x*]2> + Ro(h,x*, ),
+ O1p(a*, z)E ({max(m*, 4+ X;) — :C*D

where, using V¢ the tensor of order i,

|Ro(h,z*,z)| < 4HV3</7H<><> [E Qmax(;v*,x + )N(,’:) —x*

DRIk

This allows us to write:

3
Ao(t,h) = ZAo,i(t, h), Ap;(t,h) :=E <a0,i(h7 ,Sﬂ*afﬂ)\x*:xg,m:){t) (27)
=1
where
1
api(h,z*,z): = Owp(z™, x)mh + §6§2cp(x*,x) [m2h? + h)
apa(h,z*,z): = 8%2@@*,:@[[5 ([max(a:*,x + X7) — 1:*} Xh>

1 ~ 2
50t ) ( [max(e” o+ X0) - 0] + R o),
aps(h,z*,z): = Oip(z*,z)E ([max(w*,x + X7) — m*]) :
Proposition 4.3. Let be ¢ : R> > R q C’g’— bounded function. Then for anyt >0

. _ 1
liy 1 Ao + Ava) (1) = E (Oup(Um + 305001 (29)

Proof. (a) Since X and X* are continuous processes and ¢ a three times differentiable function
with bounded differential, it follows

1
lim hfle,l(t, h)=E <82<,0(Ut)m + 8§2¢(Ut)> . (29)
h—0 2

11



(b) The second term satisfies: Under hypothesis of Theorem 2.1,

lim h ™' A =0.
lim A 02(t,h) =0

Indeed, we first note that max(z*,z + X;) — 2* = (X; — (z* — x))t < le{i(;px*—z}' Using
Cauchy-Schwarz inequality and (23) there exists a constant D; such that

E <[max(x*,x + X7) - a:*T) < Dihi/Q\/P()N(; > ¥ — ).

The function ¢ is three times differentiable with bounded differential, we deduce from the ex-
pression of ag2 that there exists a constant C' > 0 such that

3
CZ K2R <\/IP’(X; > ¥ — g;)x*:X:’z:X) .
i=2

The law of the pair (X}, X;) has a density with respect to Lebesgue measure on R?, (cf. Propo-
sition 3.1) almost surely X; > Xy, it follows with Lebesgue dominated convergence Theorem

3
Apa(t,h) < !Z Vel
i=2

lim b~ Aga(t, h) = 0.
lim 02(t,h) =0

We now deal with the term h™1Ag3(¢, h).

Proposition 4.4. Let be ¢ : R? = R a Cj— bounded function such that there ewists § > 1
satisfying [ |01¢(a, a)|%da < co. Then for anyt >0

p(Xt+7 Xt, t)

. 1 * K\ ok _1
tim 2 (01U (max(a”. o + Xi) — ") ) =8 [t P

Z‘*:X: 7$:Xt
Proof. We first need the following lemmas:

Lemma 4.5. For any t > 0, the law of X;“ has the density with respect to Lebesgue measure on
R,

—mt)? —b—m
(b%t)—me%m(DG(b\[tt)] 1]0’+m[(b). (30)

p*(b,t) :=2 [ exp —

1
V2t
Remark 4.6. This result is consistent with the fact that when m = 0, X;“ and |)~(t| have the
same law (cf. Proposition 3.7, Revuz-Yor [7]).

Proof. This is obviously the derivative with respect to b of the law provided in [4] page 147. O

»

Lemma 4.7. Let be h > 0 and H(z) := ﬁe‘T —z®g(—x) :

%E ([max(x*,:c + X7) — m*]) =

o Ooe i (@ =) - (x* —x —mh)
h/o 2mvh(y, T )+ ®a(—b \/E)db+\/ﬁH<>.

Vh

12



Proof. Recall that
E ([max(x*,x + X7) - x*]) =K ([X;{ — (" — x)} 1{5(2”*_36}) :

Lemma 4.5 gives the density of X 5 and the change of variable b — Vhb yields

EE ({max(x*, r+ X7) - :r*D =

2 Vh [b - (“'*\/%x)]L [V%e—w — mVhe2Vhg o (—b — m\/ﬁ)} db.

o0

z*—x

NGO

This can be written again as

1 ~ o (z* —x)—mh, 1 _(@-mvi)?
7E<[maxx*,x+X* —x*D: Vhb — mvVh — e 2 db
Vh
—mh/* e2mvh(p x\;x)ég(—b—m h)db.
The lemma, is proved using the integration by parts formula and the definition of H. O

Lemma 4.7 allows to compute h~Ag 3(¢, h) including F;—conditional expectation under the
expectation:

%E <81S0(Ut)E (max(x*’at + X5 - x*)gC*X:’xXt) _ jEE <81g0(Ut)H((XZF - ;)/(% mh)))

—2mE (8190(Ut) /0 h e2mVh (b — mVR) (b — X:\}hXt)mb) .

(a) Firstly, we show that

X7 — X,
Vh

The term 0p1(Uy) f0+°° eme*/E{)G(—b —mvVh) (b — %)J’_ is uniformly bounded with respect
to h : Indeed, b > 0 and let 0 < h < 1,

+o0
}llin% —mE [awl(Ut)/ eme\/ﬁ@G(—b —mvVh)(b— )+db} =0.
- 0

X7 — X,
vh

The function (h,b) — e2mbﬁ®g(—b — ma/h)b is continuous on the compact interval
[0 1] x [0 2|m]], then it is bounded on this interval.

Now, consider b > 2|m|. Therefore b + mvh > |m| >0, b—mvh > & and (b+ni\/ﬁ) < 2. We
2

use the inequality (3 ): 1 — ®g(z) = Pg(—2z) < m\/lﬂ exp —%-, V& >0, to obtain for b > 2|m|,
h € 10,1]

0 < e2Vhpo(—b — mvh) (b — )y < 2MVRG L (—b — mV/R)b.

m 2 2
62mbﬁ@g(—b — m\/ﬁ)b < b e2mbﬂ6_w < : e_b?,

(b+mvh)\V2r V21

13



This implies that the term Odg;(Uy) f0+oo eme\/Ebg(—b — mvVh) (b — X{/_ﬁxtﬂdb is uniformly
bounded by a constant. The result follows by Lebesgue dominated convergence Theorem: In-

deed, almost surely X} — X; > 0 and on this set, the integrand goes almost surely to 0. .

(b) Secondly our goal is to compute the limit when h goes to 0 of the term

1 X — Xt —mh
Bi(t,h) = E[d1o(U)—=H(—1—————)].
1(t,h) = E[0ip( t)\/ﬁ ( Th )]
The proof is divided into four steps.
1. Firstly, we prove that
_ . X —X
lim | B (¢, h) — E[10(U1) = f H(=— == =0. (31)
2. Secondly, we prove that
_ . X/ - X
}Ll_% Bi(t,h) — E[aM(Xt,Xt)\F ( NG =t _=h) =o. (32)

3. Thirdly, we prove that
hm Bi(t,h) /81<p a,a;t)p(a+, a;t)da.

4. Finally we observe that

p( X+, Xy t)

9(Xi,t) )

1
lim By (t,h) = = E[01p(Xy, X4)
h—0 2

22

Step 1: The function H defined by H(z) = % — 2P (—x) is differentiable with differential
given by x +— ®¢(—x), which is positive and bounded by 1. Hence for all (z,y) € R, there exists
A € [0,1] such that H(y) — H(xz) = (y — «)H'(Az + (1 — A)y). Thus there exists A € [0,1] such
that

1 X;—Xe, . Xi-Xe—mh X —
N
Then for h > 0,
Bi(t, h) - Eldyp(U) — f IR s thn\ < mllogloeEl s H'())

X*¥-X
2=t —m|Vh

The fact that almost surely X; — X; > 0 proves that the almost sure limit of t Xt — |m|vh
is +0o. Moreover, H = ®¢ is positive bounded and satisfies lim, o H'(z) = 0 so Lebesgue
theorem achieves the proof of (31).

Step 2: Using regularity assumption on ¢

Xi - Xy
Th )]‘g
)

Bi(t,h) = E[0vp(X4, X)) —=H(———F——

L
2 Xt
VOl + 108l [

14



The function x — zH(z) is bounded on R, and lim, o, zH (x) = 0. Then, since X; — X; law
has a density and

X7 — X,
vh

X7 — X,
vh

H( ) =0,

almost sure lim
h—0

the dominated Lebesgue Theorem yields:

lim E <Xt _ XtH(Xt —_ Xt)) =0.
h—0 N N

The proof of (32) is achieved.

Step 3: Introducing the density of the law of (X}, X;) according to Proposition 3.1 (i):

Bi(th) = [ 2pila a)\%H(b\;;

We perform the change of variable b = a + uv/h and

)p(b, a; t)dadb + o(1).

Bi(th) = / D1p(a, ) H(uw)p(a + uv/h, a, t)dadu + o(1)
RxR+
Note that, for all @ > 0,u > 0, according to the Proposition 3.1 (ii),
lim 91p(a, a) H (u)p(a + uVh, a,u) = d1p(a, a)H(u)p(a+t a,1).
H
Jensen inequality induces

Bt < [ (00 (@) H (o + uvhea, tdadu + of1).
RxR+
According to Proposition 6.2 and (39)

1 1 1 2
_ + = 4+ 1+ tf 66(m+) at
ta + 2uvh 4+ mtpy P

P’(a+uvh,at) < C6,T,m) [

Integrability and boundedness assumptions on 01¢ induces that for all h there exists D; such
that

HY (u)dadu.

1
o)’ (a,a)H’ (u 5a+ux/ﬁ,a,tdadu<D+D/ |’ (a,a
| 0 @ am wp adu < DDy [ o)

The integral with respect to da is shared in two parts factor, of fR+ H(S(u)du:

1

1
da+/
la + 2uv/h + mt|Y la+2uv/h+mt|>1

da.
la + 2uv/h + mt|Y

‘al(p’(s(ava) ‘algp’é(a7 CL)

/|a+2u\/ﬁ+mt|<l

The second term is bounded by [ |01p|°(a,a)da < oo, the first one is bounded by

1 2
116l / da = O] / 2| de = —2— 01¢llso-
- la+2uv/h+mt|<1 ’CL—FQU\/E—FWLH’Y * lz|<1 11—~ >

15



Thus for all 7' > 0 there exist v €]0, 1[, £ > 0 and a constant C' such that
suphe}oﬂ/ . 810(a, a) | H® (w)p’ (a + uV'h, a, t)dadu < C [ +1 +t§} , Vt€]o,T]. (33)
RxR

The family {(a,u) — d1p(a,a)H(u)p(a + 2uvh,a,t),h € [0,1]} is uniformly integrable with
respect to Lebesgue measure dadu, so we can exchange the limit and the integral:

lim B (t,h) = / 01 (a,a)H (u)p(a+t, a;t)dadu.
h—0 RxR+
Note that fR+ H(u)du = % ends the proof of this step.

Step 4: Propositions 4.2 4.3 and 4.4, it is proved that

p( X+, Xy, t)

a(t) = )‘E/R[SO(Ut(y))_‘P(Ut)]FY(dy)‘HE <62¢(Ut)m + ;5§2¢(Ut)>+;ﬂi [8150(Xt>Xt) 9% D)

The two first terms are bounded, so we have only to check (19) on the third term.
Similarly to Step 3, we get

1 X*—Xt—mh
gt
N

so a +— Opi(a,a)p(a+,a;t) belongs to L'(R,da). Then, since g(.,t) denotes the density of the
law of X; a — Op1(a, a)p(;;;;?);t) belongs to L'(R, Py,).
Note that from estimation (33) for all 7" > 0 there exist v €]0,1[, £ > 0 and a constant C' such

that

lim B[|o10(U1) = [ loer(ea)lHwp(atast)dadu

p(Xi+, Xi, 1)

-E |:81S0(Xt,Xt) ( 9(X0.0)

1
‘2 ch[tvﬂﬂf], vt €]0,T),

and the function a satisfies (19).

5 Conclusion

The aim of this paper is to have a complete study of the law of one Lévy process X and its
running supremum. Recall that X* is not Markovian, but the pair U := (X*, X) is. In the
second section, we give the main result (Theorem 2.1): the density of the law of Uy, its right
continuity on the diagonal and a weakly valued-measure differential equation which characterizes
the law of U;.

To complete the study of the survival probability initiated by Coutin and Dorobantu [3], as a
consequence, one gives the marginal density of the law of X (Corollary 3.3). A perspective
could be the proof of regularity of the survival probability on }R+ x R, meaning
(b,t) = P(m, > t) =P(X; <b) = fo (z,t)dx.

Another perspective is to study ﬁlterlng, for instance to generalize W. Ngom [6] to incomplete
observation.
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6 Appendix
Lemma 6.1. On the event {Ni1j, = Ny + 1}, |Up(Yn,,,) — Upsn| < 2supgey<n | Xt 0w — X4l

Proof. : (a) On the event { Ny, — Ny = 1} = Up{N¢y = n, Niyp, — Ny = 1}, we compute
U(Yn,,) = (max(X7, Xe + Yn,,,); Xe +Yn,,,) and Uppn = (X7 Xegn)-
(b) On the event {N; = n, Npyp =n+ 1},

Ue(Yn,,,) = (max(XF, Xy + Yoy1); Xe + Y1) s U = (X, Xogn)-

(c) We bound up |Ui(Yn,,,) — Us+n| component by component:

e Concerning the second component, on the event {Ny = n, Nyip, = n+ 1}, we have
Xeyn = Xe + Y1 + (Xgn — Xt — Yoia).

Since there is one only jump at time 7541 for the process X between ¢ and ¢ + h, hence Xy4p —
Xt — Yn+1 = Xt—i—h — Xt and

| Xern — Xt = Yos1|ln=n, Ny p=nt1) < SUD [ Xeyw — Xe|Ln,—n, N, p=n+1}- (34)
0<u<h
e The first component is
Xipp — max(X{, Xy + Yop)
with

Xip, =max(X{, Xy +  sup (X'u - Xt), Xe+Y, 1+ ()N(Tn+1 — Xy + sup (Xu - XTnJrl))

t<u<Tpi1 Thy1<u<t+h
=max(X;, X;+ sup (Xu—Xi), Xi+Y1+  sup  (Xu—Xp)).
t<u<Tpi1 Tr+1<ust+h

(a) On the event {X; > Xy + Y, 11},

Xip —max(X/, Xi + Yoq1) =

OV (Xe+ sup (Xy—Xo) = X))V ( X+ Yo+ sup  (Xu—Xi) — X))
t<u<Tp41 Thy1<u<t+h

Since X; < X}
X+ sup (Xu — Xt) — X7 < sup (Xu — Xt) < sup (Xu — Xt)
t<u<Tn i1 t<u<Tn i1 t<u<t-+h

and on the event {X; > X; + Y11}

Xe+Yopi+  sup (Xu—Xy)— X[ < sup (X, —Xy) < sup (Xy — Xyp).
Tn+1<ult+h Trnr1lult+h t<u<t+h

On this event, globally
0< X7 — max(X;, X¢ + V1) < sup [ Xpgu — Xl (35)

0<u<h
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(b) On the event {X; < X; + Y, 11}, the first component is equal to

(X =X; = Yo)V( sup (Xy—X)=Yor)V( sup  (Xy—Xp,.,)).  (36)
t<u<Tpi1 Thi1<u<t+h

On this event, the first element in (36) (X; —X;—Yj41) < 0 and the third one being non negative,
thus the first component is (sup;<,<, , (Xy — Xi) = Yni1) V (SUPTHHSuStJrh(X — X71,,,))-
As a conclusion, globally:

| Xt — max( X[, Xi + Yoy 1)L N=n Ny p=nt1} < S | X0 — X4l (37)
_u_

Inequalities (34), (35) and (37) lead to the result. O

6.1 Integrability properties
In the sequel, P is the random field defined by

P(b,a;t) ZP (b—Xn,a— X1, — Yerilpsny,,y — (Xo — Xuine1y,0)); min(t, Tegr) — Ti)
(38)
which satisfies
p(b,a,t) <E[P(b,a;t)]. (39)

Proposition 6.2. Let § € [1, %[, there exists (v,7,3) € [0,1[> and &€ > 0, such that for all T > 0
there exists a constant C(6,T,m) satisfying for all t €]0,T], b > max(a,0)

1 1

1 .
. S-S S PGSR 40
W b—atmy BT (40)

E (P(b,a;t)5> < C(5,T,m) [

where x4+ = max(x,0) and x— = max(—z,0) for any = € R.

The proof is based on the following three lemmas.
Recall that for all ¢ > 0 the law of the pair (X}, X;) has a density with respect to the
Lebesgue measure given by

2(2b—a)
2mt3

We have the following estimations on p.

~ (217 a,) _ mZt
p(bv a; t) = e ma 1{b>max(0 a)}+

Lemma 6.3. For all a €0, 1], there exists a constant C(a, m) such that for all t >0

. 1 1| _@-atmt)? g 42
p(b,a;t) < C(a,m) [t1;(2b_a+mt)a+(m_)\/¥]e st PO a0y (41)

Proof. We factorize
(2b — a)? — 2mat + m?t? = [a — (2b+ mt)])* —4bmt

and write

2 2b— t —a mt2
p(b,ast) = [( atmt) m]e(% T

2bm
o t\/i — W 2t + 1{b>max(0,a)}' (42)

22
Let be Cg := supxe[oﬁoo[xﬁeff < +00.
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e For m< 0 and since b > 0 we obtain

B C m_ _ (2b—atmt)?
pbast) < ~to ] e

+— a 1{b>max(0,a)}7

2
V21 [tlg(% —a+mt)e Vi
and estimation (41) for m < 0.

e For m > 0, using (42)

- 2 Ciia ] _@b—atmt)? oy
b,a;t) < & € 4t hmy max(0,a)}-
Since
2b — t)? 1
(2:””—zmp:&(@b—@?+m%—amn+nfﬁ—1%mﬂ,

using 2b —a > b and m > 0,

(2b — a + mt)*
8t

Thus

1 1
+2bm > 5 (b2 + 2bmt + m?t® — 16bmt) =% ((b — 7mt)2 — 48m2t2) > —6mt2.

2 Cl—i—a 7(2b7a+mt)2+6 24
o T @ —armnal© 0 teemeoa)

p(b,a;t) <

We obtain the estimation (41) for m > 0.

O
Lemma 6.4. Let 0 < o < 1 there exists a constant C(«) such that for all T > 0,0 >0
11—«
(ct+oG)? Tz
supE <|c+oG|_a e F ) < C(a) : , (43)
ceR o
where G is a standard Gaussian variable.
Proof. First we prove inequality (43) for o = 1. Let
o (FE)?
I(¢,T):=E|(|lc+G| e =2 | =1(c,T,4)+ I(c,T,—) (44)
where
—a _(ctO)?
uaﬂiyzE(@+GM%r§?>. (45)
Using the density of G
N s
_ (t9) e 2
I(c,T,+ :/ c+g) Ye ar d
( ) 9 (c+9) VT
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and an integration by part

_ g
I(c,T,+) = /o: 1 i - [(CJF;)Q - +glc+g)t e*% e\/%dg.
Note that x — xﬂe*% is bounded on R by Cj then
ctg)2 2
I(c,T,+) < /oo N Oy uT~% e_( +9) . CICI_QTFTQ e~ T do.
e 1—a V2r Vor
Integrating with respect to g yields
I(c,T,+) <2 [CHT“T“ n ololfale“} . (46)
Using the same lines we obtain
I(e,T,~) <2 [CQ,QT“TQ + Clcl,aTl_Ta} . (47)
Plugging inequalities (46) and (47) into (44) yields (43) for o = 1.
Replace ¢ by = and T by 0—7; yields (43). O

Lemma 6.5. For alla < 1,5 < 1,6 >0, T > 0 there exists a constant C(«, 3,9,T) such that
for all t €]0,T1,

Nyg—1

E (1{Nt>0} (Nt + 1)5 T];tﬁ(t — TNt)_a + Z (t — Tk+1)_a(Tk+1 — Tk)_ﬁ
k=0

) < C(a, 8,8, T)t1 277,
(48)
Proof. Let S(1,«, 3,0,t) be the random variable defined by
S(1,a,B,0,t) :=E <1{Nt>o}(z\rt +1)° [T];f(t — TNt)*O‘D _ (49)

Note that (Tg41 — T} )k>0 are independent variables, identically distributed and 7 follows an
exponential distribution with parameter \.
Then, S(1,,8,0,t) =Y o2, S(1,a, B,0,t;n) where for n > 1:

S(1,«,B,0,t;n) (50)
=(n+ 1)6 /[0 o (up + ... + un)fﬂ(t —Up — ... — un)*O‘)\"He*)‘(“ﬁ"*u"*l)l{ul+_.+un§t§ul+m+un+l}dul...dun_
We integrate with respect to u,41 between t — uy — ... — u,, and infinity
S(1,e,8,0,t;m) = A" (n+ 1)%”/[0 [ (uy + oo+ un) Pt —ug — . — Un) "Ly 4 <ty dun...duny,.
o[

We perform the change of variable tv; = w1 + ... +u;, i =1,...,n

5(17047/8’ 5,t; n) — )\ntn—a—ﬁe—kt /[O > (Un)_ﬁ(l — Un)_a1{v1<..<vn§1}dvl"'dvn'
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We integrate with respect to v1,...,vp—1

n_+]_§Antn—a—B B 1 fn u
5(170475757755”):( (7)1 1)! € At/ (vn) ot 1(1_7}71) dop,
1) 0
n+1 5/\ntn—a—6 3
= ( (i —) e MB(n—5,1-a) (51)

dy\nin—1
The radius of convergence of entire series (3, %B(n — B,1 — «)) is infinite, so

the series is continuous on R and then bounded on [0, T]. There exists a constant Ci(«, 3,9, T)
such that for all ¢ €]0,T] adding inequalities (51) yields

S(1,a,83,0,t) < Ci(a, 8,6, T)tH 5. (52)

Let S(2,a,3,0,t) be the random variable defined by

Ne—1
S(2,,8,6,t) == E (1{Nt>0}(Nt L7y [(t o) P (T — Tk)—aD . (53)
k=0

Note that (Tg41 — T} )k>0 are independent variables, identically distributed and 7 follows an
exponential distribution with parameter .
Then,

[y

n—

S(2,0,8,6,t)=>_ Y S(2,0,8,6,t;n,k)

n=1 k=0
where forn >1,0<k<n-1
S(2,a, 8,6, t;n, k) (54)
- 1)5/[0 (41 (= = oo = upgr) P ugg) TN T AT e ) L iyttt
700 n

We integrate with respect to u,41 between t — u; — ..uy, and infinity
S(2,a, 8,08, t;n, k) = (n+1)%e M\" /[0 [ (t—up —...— ukﬂ)*B(uk+1)*a1{ul+_,+un§t}du1...dun.
oo
We perform the change of variable tv; = w1 + ... +u;, i =1,...,n
S(2,a,B,0,t;n, k) = (n+ 1)0t" > Pe A )\n /[0 . (1= ve1) P (g1 — Uk) "Ly <. <vp <131V
We integrate with respect to vy, ...,v; and vgya, ..., vy

n 4 1)0tn—a=Be= At \n fn .
( I)c!(n — k)! /[0 1]2(1 = k1) T (ks — o) T v

< (n + 1)0tn—a=Pe= N\ kl(n — k)!

5(27a7/87 67t; n’ k) =

max (1, B(1 — 3,1 — «)) (55)

n! n!

since

0< /[ }2(1711]9—&—1)_5+n—k(vk+1*Uk)_a+kdvkdvk+1 < max(l,/[ P(1*”k+1)_B(Umﬁvk)_advkdvkﬂ).
0,1 o
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Then, adding inequalities ( 55) from k =0ton —1

n

(56)

F - ]. F — 1 1 52ntn—a—ﬁ —At)\n
5(2,04,5,6,t;n,k)gmax<17 (—a+1)I(-B+ )’>(n—|— ) ‘ e |
.

o N(—a-p+1)
Sy\nonin—1
The radius of convergence of entire series (D, +4 %) is infinite, so the series is con-

tinuous on R and then bounded on [0,7]: there exists a constant Ca(«, 3,9, T) such that for all
t €]0,T] and adding inequalities (56) yields

S(2, e, 8,0,t) < Cola, B,5, Tt 7. (57)
Inequality (48) is a consequence of inequalities (52) and (57). O

Proof. of the proposition: recall
N

P(b, a; t) = Zﬁ (b - XTk,a - XTk - Yk+11{t>Tk+1} - (Xt - Xmin(t,Tk+1)); min(t, Tk:—i—l) - Tk) .
k=0

e Note that from Lemma 6.3, there exists a constant C'(a, m) such that

1
172 (20 — a + mt)>

1
P(b.a; )1 x0y < Clavsm) [ N <m>+ﬁ] SRy

Taking £ =0, 8 = g Since § € [1,3] then 2(1 — §) < 3. If @ = 1 — 55 then v 1= aé =
§—3 < landv:=6(1-%) <1 Then, using (z +y)° < 2°71[z° + ¢%] there exists a
constant Cy(d) such that for all £ > 0, b > max(a,0)

10 1 1 L1 6m)2es
E (P(b,a,t) 1{Nt=0}) < 00(5) [t“(Qb—a—f—mt)'Y + tfﬁ e (my)*t . (58)

e Using estimation (41) and development (38)

Ny

P(b7 a; t) = Zﬁ (b - XTku a — XTk - Yk+11{t>Tk+1} - (Xt - Xmin(t,Tk+1)); min(t7 Tk+1) - Tk) 9
k=0

P(b, a;t)1{n,50p < Co, m) 1,50y Yoo Pr(b, a,t) where

2
Py(b.ast) < . Moo (S i T i)

+
[(t ANToy1 —Ti) 02 Z(t)  \/t ATjy1 — T
and Zk(t) = (2[) —a — XTk. + Yk+11{t>Tk+1} + X — X't/\TkJrl + m(Tk+1 ANt — Tk).

We define a family (Ck(t), Uk(t), Sk(t), Gk(t))keNU{O} by
. (Ck(t),(fk(t), Sk(t),Gk(t)) = (0,0,0,0) for k > Ny,

e for k < Ny:
Ny
Cr(t) =2b—a— Xp, + Z Yi +m(t — Tpr1) + m(Tiyr — T);
i=k+1
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By — BTk+1

or(t) =/t — Tr1; Sk(t) = T1 — Ti; G(t) = ﬁ
— Tk

e for k= IV
Ny BT
Ck(t) :2b_a_ZY;_mTNt +m(t_TNt); Uk(t) = \/TNt; Sk(t) :t_TNt’; Gk(t) = ,I],Vt .
i=0 Ny

Then, from estimation (41) and the definition of (Ck(t), ox(t), Sk(t), Gx(t))

Ny
1 1 2
P(b,a;t)1{n,201 < 1,20} [ —= + (m) - —=—| S 0,00}
' ' kz_o S; 2(Ck_|_0—ka)a Sk

Note that S; <t and using Jensen inequality

Nt
1 1 ) 2
P(ba a;t)é]-{N #0} < ]-{N ;ﬁO}(Nt + 1)6 [ —a + (m)é— ] 666(m+) tl{b>max(0,a)}
t t kZ:O S]i(l 2)(Ck+0ka)a5 \/Sk(S

Conditionally to {Ny # 0}, the random variable Gy, are independent of Cy, o and Sk and their
law is the standard Gaussian distribution. Using Lemma 6.5 for ¢ = o} and T' = Sy, yields there
exists a constant C'(«,d) such that

E <P(b>a?t)51{Nt;ﬁ0}) <
Ne-1

1 1 2
C(a,0)E <1{N 2oy (N +1)° +(m)? ——— ) ML (0,0}
t k:ZO (Tor1 — Ti)° 2/t — Tipa N = Tirt
1 1 .
+ C(a, 6)E 1{Nz750} (Nt + 1)5 + (Tn)[i 665( +)2t1{b>max(0,a)}‘

5—1 6
Ty, 2/t — Ty, TN,
According to Lemma 6.5, there exists a constant C'(«,d,T") such that for all ¢t €]0, T

E (P(ba a; t)(sl{NﬁéO}) < C(a’ 0, T) |:t1_5 + tl%é] 666(m+)2t1{b>max(0,a)}' (59)

Adding inequalities (58) and (59) yields inequality (40).
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