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Valued measure dierential equation for the joint law

We introduce some preliminary concepts for the diusion part: for a standard Brownian motion W and a real number m, let be Xt = mt + W t , X * t = sup s≤t Xs .

(1)

In [START_REF] Jeanblanc | Mathematical Methods for Financial Markets[END_REF] page 147, Jeanblanc et al. show that the pair ( X * t , Xt ) has a density with respect to Lebesgue measure on R 2 noted p(., .; t) where p(b, a; t) = 2(2b -a)

√ 2πt 3 exp [ - (2b -a) 2 2t + ma -m 2 t 2 ]
1 {max(0,a)<b} .

(

) 2 
In all the following, Φ G means the standard normal Gaussian distribution and one often uses the following:

1 -Φ G (x) = Φ G (-x) ≤ 1 x √ 2π exp - x 2 2 
, ∀x > 0.

(

) 3 
In order to have a Lévy process with non zero jump part, let us introduce

X t = mt + W t + Nt ∑ i=1 Y i , X * t = sup s≤t X t ,
where N is a Poisson process with constant positive intensity λ, (Y i , i ∈ N * ) is a sequence of independent and identically distributed random variables with the distribution function F Y and the sequence of jump times of N is denoted by (T i ), i ≥ 1. Let θ be the shift operator and (U t ; t ≥ 0) be the R 2 -value process dened by U t = (X * t , X t ), t ≥ 0.

(

) 4 
The aim is to prove the theorem:

Theorem 2.1. (i) For all t > 0, the law of the pair (X * t , X t ) has a density with respect to the Lebesgue measure, denoted by p(b, a; t).

(ii) For all t > 0, a ∈ R the map h → p(a + h, a; t) has a limit when h goes to 0 denoted by p(a+, a; t).

(iii) Let be φ : R 2 → R a C 3 b -bounded function with a support in {(b, a), b > 0, b ≥ a} such that there exists δ > 1 satisfying ∫ R |∂ 1 φ(a, a)| δ da < ∞. For any t > 0,

E (φ(U t )) = φ(0, 0) + ∫ t 0 E [ m∂ 2 φ(U s ) + 1 2 ∂ 2 22 φ(U s )
] ds

(5)

+ ∫ t 0 1 2 E [ ∂ 1 φ(X s , X s ) p(X s +, X s ; s g(X s ; s) ] ds + λ ∫ t 0 E (∫ R [φ(U s (y)) -φ(U s )] F Y (dy) ) ds.
where g(.; s) is the density of the random variable X s and U s = (X * s , X s ), U s (y) = (max(X * s , X s + y), X s + y), s ≥ 0.

In the next sections, details of the proof of Theorem 2.1 are given.

3 Existence of the density of the law of (X * t , X t ) and its properties

We note that

X * t = max{( sup u∈[T i ,inf(T i+1 ,t)[
X u , i = 0, ..., N t ), X t } and use the joint density of ( X * t , Xt ) given by [START_REF] Carr | A PDE approach to jump diusions[END_REF] to show that the pair (X * t , X t ) law has a density which is right continuous on the diagonal, see Proposition 3.1 below which actually is the proof of Theorem 2.1 (i) and (ii).

Proposition 3.1. (i) For all t > 0, the law of the random vector (X * t , X t ) admits a density with respect to the Lebesgue measure given by p(b, a, t) = E

( Nt ∑ k=0 p ( b -X T k , a -X T k -Y k+1 1 {T k+1 ≤t} -(X t -X T k+1 ∧t ), t ∧ T k+1 -T k ) 1 ∆ k,t (b, a)
)
where p is given by [START_REF] Carr | A PDE approach to jump diusions[END_REF] and

∆ k,t = { (b, a) | b > max ( X * T k , a + [X t∧T k+1 -sup u∈[T k+1 ,t] X u ]1 {T k+1 <t} )} . ( 7 
)
(ii) Moreover, for all a ∈ R, t > 0 the map h → p(a + h, a; t) has a limit when h goes to 0 denoted by p(a+, a; t) and

p(a+, a; t) = E ( Nt ∑ k=0 p ( (a -X T k ) + , a -X T k -Y k+1 1 {T k+1 ≤t} -(X t -X T k+1 ∧t ), t ∧ T k+1 -T k ) 1 a∈D k,t )
where D k,t := {a : a ≥ max

( X * T k , a + [X t∧T k+1 -sup u∈[T k+1 ,t] X u ]1 {T k+1 <t}
) }

The proof of (i) relies on the following lemma: Lemma 3.2. Almost surely, for all t,

X * t = max ( X T k + sup u∈[T k ,T k+1 ∧t] ( Xu -XT k ) , k = 0, ..., N t ) . ( 8 
)
Moreover, almost surely, for all t, there exists a unique k denoted as N * t such that

X * t = X T k + sup u∈[T k ,T k+1 ∧t] ( Xu -XT k ) . ( 9 
)
Proof. Let t be xed.

(a) Note that

X * t = max { max ( X T k + sup u∈[T k ,T k+1 ∧t[ (X u -X T k ) , k = 0, ..., N t ) , X t } . ( 10 
) For k ∈ N, for all u ∈ [T k , T k+1 [, X u -X T k = Xu -XT k where X is the continuous process dened in (1), thus for k ≤ N t , sup u∈[T k ,T k+1 ∧t[ (X u -X T k ) = sup u∈[T k ,T k+1 ∧t] ( Xu -XT k ) (11) 
and max (

X T N t + sup u∈[T N t ,T N t +1 ∧t[ ( X u -X T N t ) , X t ) = X T N t + sup u∈[T N t ,T N t +1 ∧t] ( Xu -XT N t ) . ( 12 
)
Plugging identities (11) and (12) in equality (10) yields [START_REF]Titchmarsh The Theory of Functions[END_REF].

(b) Let two integers i < j then,

X T j + sup u∈[T j ,T j+1 ∧t] ( Xu -XT j ) = X T i + ( XT i+1 -XT i ) + Y i+1 + ( X T j -X T i+1 ) + sup u∈[T j ,T j+1 ∧t] ( Xu -XT j ) and X T j + sup u∈[T j ,T j+1 ∧t] ( Xu -XT j ) -X T i - sup u∈[T i ,T i+1 ∧t] ( Xu -XT i ) = { Y i+1 + (X T j -X T i+1 ) + sup u∈[T j ,T j+1 ∧t] ( Xu -XT j ) } + { ( XT i+1 -XT i ) - sup u∈[T i ,T i+1 ∧t] ( Xu -XT i ) }
.

The two following random vectors are independent:

( sup u∈[T i ,T i+1 ∧t] ( Xu -XT i ) ; XT i+1 -XT i ) , Y i+1 + ( X T j -X T i+1 ) + sup u∈[T j ,T j+1 ∧t] ( Xu -XT j )
and the law of the vector

( sup u∈[T i ,T i+1 ∧t] ( Xu -XT i ) ; XT i+1 -XT i )
admits a density with respect to the Lebesgue measure, hence the law of the random variable

sup u∈[T i ,T i+1 ∧t] ( Xu -XT i ) + XT i+1 -XT i
has a density with respect to the Lebesgue measure and is independent of

Y i+1 + ( X T j -X T i+1 ) + sup u∈[T j ,T j+1 ∧t] ( Xu -XT j ) . Therefore, X T j + sup u∈[T j ,T j+1 ∧t] ( Xu -XT j ) -X T i -sup u∈[T i ,T i+1 ∧t] ( Xu -XT i )
is the sum of two independent random variables, one having a density, then also has a density. So for all t, almost surely, whenever i ̸ = j

X T j + sup u∈[T j ,T j+1 ∧t] ( Xu -XT j ) ̸ = X T i + sup u∈[T i ,T i+1 ∧t] ( Xu -XT i ) (c
) Above, we can exchange ∀t > 0 and almost surely, since the processes (N t , t ≥ 0) and (( max

( X T k + sup u∈[T k ,T k+1 ∧t] ( Xu -XT k )) , k ≤ N t ) , t ≥ 0 ) are right continuous.
Proof. of Proposition 3.1 (i): According to Lemma 3.2, let N * t denoting the index k where the maximum below is reached,

X * t = max ( X T k + sup u∈[T k ,T k+1 ∧t] ( Xu -XT k ) , k = 0, ..., N t ) . The fact N * t = k is equivalent to: the supremum is reached on the interval [T k , T k+1 ∧ t], actually meaning X * t = sup [T k ,T k+1 ∧t] X u and remark that sup [T k ,T k+1 ∧t] X u ≥ X * T k ∨ sup [T k+1 ∧t,t] X u . On the interval [T k , T k+1 ∧t], X u = X T k + Xu -XT k . Thus the following inequalities are equivalent to N * t = k: (a) X T k + sup [T k ,T k+1 ∧t] ( Xu -XT k ) ≥ X * T k , (b) X T k + sup [T k ,T k+1 ∧t] ( Xu -XT k ) ≥ sup [T k+1 ∧t,t] X u = [X T k+1 ∧t + sup [T k+1 ,t] (X u -X T k+1 ∧t )]1 {T k+1 <t} + X t 1 {T k+1 ≥t} . Using X T k+1 = X T k + XT k+1 -XT k + Y k+1 , (b) is equivalent to sup [T k ,T k+1 ∧t] ( Xu -XT k ) ≥ [ XT k+1 -XT k +Y k+1 + sup [T k+1 ,t] (X u -X T k+1 )]1 {T k+1 <t} )+( Xt -XT k )1 {T k+1 ≥t} .
As a conclusion we get

{N * t = k} = { sup [T k ,T k+1 ∧t] ( Xu -XT k ) ≥ X * T k -X T k }∩{ sup [T k ,T k+1 ∧t] ( Xu -XT k ) ≥ Xt∧T k+1 -XT k +[Y k+1 + sup [T k+1 ,t] (X u -X T k+1 )]1 {T k+1 ≤t} )}. Thus {N * t = k} = {( sup u∈[T k ,T k+1 ∧t] ( Xu -XT k ), Xt∧T k+1 -XT k ) ∈ ∆k,t } where ∆k,t = { (b, a) : | b > max ( X * T k -X T k , a + [Y k+1 + sup u∈[T k+1 ,t] (X u -X T k+1 )]1 {T k+1 ≤t} )} . ( 13 
) Moreover on {k ≤ N t } so on {N * t = k} ⊂ {k ≤ N t } X t = X T k + ( Xt∧T k+1 -XT k ) + Y k+1 1 {t≥T k+1 } + (X t -X t∧T k+1 ). ( 14 
)
Let Φ be a bounded Borel function, hence

E [Φ(X * t , Xt)] = E [ N t ∑ k=0 Φ(X * t , Xt)1 {N * t =k} ] = E [ Nt ∑ k=0 1 {N * t =k} Φ ( XT k + sup u∈[T k ,T k+1 ∧t] ( Xu -XT k ), XT k + ( Xt∧T k+1 -XT k ) + Y k+1 1 {t≥T k+1 } + (Xt -Xt∧T k+1 ) )]
.

The four following random vectors are independent:

(X T k , X * T k ), Y k+1 , ( X t -X t∧T k+1 , sup u∈[T k+1 ∧t,t[ (X u -X T k+1 ∧t ) ) , ( sup u∈[T k ,T k+1 ∧t] Xu -XT k , Xt∧T k+1 -XT k )
and conditionally to σ

( F T k , Y k+1 , (X u -X T k+1 , u ≥ T k+1 ∧ t), T k , T k+1 )
, the law of the random vector

( sup u∈[T k ,T k+1 ∧t] Xu -XT k , Xt∧T k+1 -XT k )
has a density with respect to the Lebesgue measure given by p(b, a, T k+1 ∧ t -T k ) where p is dened by [START_REF] Carr | A PDE approach to jump diusions[END_REF]. We obtain that E (Φ(

X * t , X t )) = ∫ E [ Nt ∑ k=0 Φ(X T k + b, X T k + a + Y k+1 1 {t≥T k+1 } + (X t -X T k+1∧t ))p(b, a, T k+1 ∧ t -T k )1 ∆k,t (b, a) ] dadb. The change of variable formula v = b + X T k and u = X T k + a + Y k+1 1 {t≥T k+1 } + (X t -X T k+1∧t ) concludes the proof. Proof of Proposition 3.1 (ii): Let a ∈ R, t > 0, the map h → Nt ∑ k=0 p ( a + h -X T k , a -X T k -Y k+1 1 {T k+1 ≤t} -(X t -X T k+1 ∧t ), t ∧ T k+1 -T k ) 1 ∆ k,t (b, a)
has a right limit when h goes to 0 since both functions h → p(a + h, a; t) and h → 1 ∆ k ,t (a + h, a) admit a limit when h decreases to 0. According to Proposition 6.2 in Appendix the family

( Nt ∑ k=0 p ( a + h -X T k , a -X T k -Y k+1 1 {T k+1 ≤t} -(X t -X T k+1 ∧t ), t ∧ T k+1 -T k ) 1 ∆ k,t (b, a)
)

h∈[0,1]
is uniformly integrable.

Then, we can exchange the limit and the expectation and h → p(a + h, a; t) has a limit when h decreases to 0 and

p(a+, a; t) = E ( Nt ∑ k=0 p ( (a -X T k ) + , a -X T k -Y k+1 1 {T k+1 ≤t} -(X t -X T k+1 ∧t ), t ∧ T k+1 -T k ) 1 a∈D k,t ) where D k,t := {a : a ≥ max ( X * T k , a + [X t∧T k+1 -sup u∈[T k+1 ,t] X u ]1 {T k+1 <t}
) }

As a corollary the law of X * t is deduced:

Corollary 3.3. For any t > 0, the law of the random variable X * t has a density p * (., t) given by

p * (b, t) = 2E ( Nt ∑ k=0 2e 2(b-X T k )m H m [ (C t,k ) + 1 T k+1 <t + (b -X T k ) + m(t ∧ T k+1 -T k ), t ∧ T k+1 -T k ] 1 {b>X * T k } ) (15) 
where

H m : (x, t) → 1 √ 2πt exp [ -x 2 2t ] -mΦ G (-x √ t ) and C t,k = (Y k+1 + sup u∈[T k+1 ,t] (X u -X T k+1 ))1 {T k+1 ≤t} .
Proof. Let q be the function such that p(b, a, .) = q(b, a, .)1 b>a∨0 where

p(b, a; t) = 2(2b -a) √ 2πt 3 exp [ - (2b -a) 2 2t + ma -m 2 t 2 ] 1 {max(0,a)<b} . Remark that (2b -a) 2 -2mta + m 2 t 2 = [a -(2b + mt)] 2 -4bmt, (16) 
thus we obtain q(b, a, t) = 2e 2bm √ 2πt

( 2b + mt -a t exp [ - [a -(2b + mt)] 2 2t ] -m exp [ - [a -(2b + mt)] 2 2t 
]) .

Hence, for any A,

0 ≤ ∫ A -∞ p(b, a, t)da = 2e 2bm 1 b>0 H m (x, t), x = b ∧ A -2b -mt. ( 17 
)
Let k be xed and P * k (b, t) be given by

P * k (b, t) := ∫ R p ( b -X T k , a -X T k -Y k+1 1 T k+1 ≤t -(X t -X T k+1 ∧t ), t ∧ T k+1 -T k ) 1 ∆ k,t (b, a)da then the density of X * t is given by p * (b, t) = E ( Nt ∑ k=0 P * k (b, t) ) . With the change of variables u = a -X T k -Y k+1 1 T k+1 ≤t -(X t -X t∧T k+1 ), it follows P * k (b, t) := ∫ R p (b -X T k , u, t ∧ T k+1 -T k ) 1 ∆ k,t (b, u + X T k + Y k+1 1 T k+1 ≤t + (X t -X t∧T k+1 ))du.
According to the denition of ∆ k,t (7)

1 ∆ k,t (b, u + X T k + Y k+1 1 {T k+1 ≤t} + (X t -X t∧T k+1 )) = 1 {b>X * T k } 1 {b>u+X T k +[Y k+1 +sup u∈[T k+1 ,t] (Xu-Xt)]1 {T k+1 ≤t} } On the event T k+1 ≤ t (id est k < N t ) P * k (b, t) = ∫ R q(b -X T k , u, T k+1 -T k )1 b>X * T k 1 ]-∞,min(b-X T k ,b-X T k -C t,k [ (u)du since C t,k = (Y k+1 + sup u∈[T k+1 ,t] (X u -X t ))1 {T k+1 ≤t} .
And on the event T k+1 > t

P * k (b, t) = ∫ R q(b -X T k , u, t -T k )1 b>X * T k 1 ]-∞,b-X T k [ (u)du. (a) On the event T k+1 ≤ t applying (17) to A = b -X T k -C t,k , with T k+1 -T k and b -X T k instead of t and b, (b -X T k ) ∧ A = b -X T k -(C t,k ) + (since 0 ∧ (-x) = -x + ) so on this event P * k (b, t) = 2e 2m(b-X T k ) H m [ (C t,k ) + + (b -X T k ) + m(T k+1 -T k ), T k+1 -T k ] . (b) On the event T k+1 > t, applying (17) to A = b -X T k and taking t -T k and b -X T k instead
of t and b, so on this event

P * k (b, t) = 2e 2(b-X T k )m H m [-(b -X T k ) -m(t -T k ), t -T k ] .
To summarize both cases

P * k (b, t) = 2e 2(b-X T k )m H m [ (C t,k ) + 1 {T k+1 ≤t} + (b -X T k ) + m(t ∧ T k+1 -T k ), t ∧ T k+1 -T k ]
and the proof is achieved.

Proof of Theorem 2.1 (iii)

To prove the end of this theorem, we proceed as follows: we will compute

lim h→0 h -1 A(t, h) = a(t) where A(t, h) := E [φ(U t+h ) -φ(U t )] . ( 18 
)
After that, we will use [START_REF]Titchmarsh The Theory of Functions[END_REF] 11.82 p. 368: If f is a function such that f ′ is nite everywhere and integrable, then for all a ≤ b, f

(b) -f (a) = ∫ b a f ′ (s)ds. The study of a(t) := lim h→0 h -1 A(t, h) could prove that for all t > t 0 > 0, E (φ(U t )) = ∫ t t 0 a(s)ds + E ( φ(X * t 0 , X t 0 ) ) , ∀t > t 0 .
A last step will be to prove the convenient properties of the function a, for all T > 0, there exist

v ∈]0, 1[, ξ ≥ 0 and a constant C such that |a(t)| ≤ C [ 1 t v + 1 + t ξ ] , ∀t ∈]0, T ]. (19) 
Then letting t 0 going to 0 and using the fact that φ is continuous bounded, X and X * are right continuous, estimation (19) and Lebesgue dominated theorem, for all t > 0

E (φ(U t )) = ∫ t 0 a(s)ds + φ(0, 0).
Proof of the function a : t → E(φ(U t )) admits a derivative on ]0, +∞[ denoted as a and satisfying (19).

The idea is to split A(t, h) in three parts according to the values of N t+h -N t :

A(t, h) = 2 ∑ i=0 A i (t, h) (20)
where

A i (t, h) := E ( [φ(U t+h ) -φ(U t )] 1 {N t+h -Nt=i} ) , i = 0, 1 A 2 (t, h) := E ( [φ(U t+h ) -φ(U t ))] 1 {N t+h -Nt≥2}
) .

(

Lemma 4.1. Under the hypothesis of Theorem 2.1

lim h→0 h -1 A 2 (t, h) = 0. (22) 
Proof. By hypothesis φ is bounded and we get 

|A 2 (t, h)| ≤ 2∥φ∥ ∞ P(N t+h -N t ≥ 2) ≤ 2∥φ∥ ∞ (1 -e -λh -λhe -λh ). Thus, lim h→0 h -1 A 2 (t, h) = 0.
→ R a C 3 b -bounded function. Then lim h→0 h -1 A 1 (t, h) = λE ∫ R [φ(U t (y)) -φ(U t )]F Y (dy).
where U t is dened by ( 4) and U t (y) by ( 6).

This proposition gets the last term on the right hand in [START_REF] Kou | First passage time of a jump diusion process[END_REF].

Proof.

Introducing the term φ(U t (Y N t+h )), let be A 1 (t, h) := A 1,1 (t, h) + A 1,2 (t, h) where A 1,1 (t, h) = E ({ φ(U t (Y N t+h )) -φ(U t ) } 1 {N t+h =Nt+1} ) , A 1,2 (t, h) = E ({ φ(U t+h ) -φ(U t (Y N t+h )) } 1 {N t+h =Nt+1}
) .

• Since φ is C 1 class with bounded derivative, Lemma 6.1 (Appendix) implies that on the event

{N t+h -N t = 1} we have |φ(U t+h ) -φ(U t (Y N t+h ))| ≤ ∥∇φ∥ ∞ (2 sup 0≤u≤h | Xt+u -Xt | + h). Thus h -1 A 1,2 (t, h) ≤ λe -λh ∥∇φ∥ ∞ (2 sup 0≤u≤h | Xt+u -Xt | + h) → 0
when h → 0: Indeed, the process X satises 0 ≤ Xh ≤ |m|h+W * h and Burkholder Davis Gundy's inequality for all i ≥ 1 implies there exists a constant

C i > 0 such that E[(W * h ) i ] ≤ C i h i/2 , hence for h ≤ 1, E ( ( X * h ) i ) ≤ C i h i/2 , ( 23 
) thus E( X * h ) ≤ C √ h. • Let us deal with A 1,1 (t, h) to show lim h→0 h -1 A 1,1 (t, h) = λE ∫ R [φ(U t (y)) -φ(U t )]F Y (dy). (24) On the event {N t = n, N t+h = n + 1}, the equality U t (Y N t+h ) = U t (Y n+1 ) holds.
The independence properties arising from the structure of the process X, the use of the laws of Y i , T n , the decomposition of T n+1 , T n+1 = T n + S n+1 , and the conditioning to F Tn , yield:

A 1,1 (t, h) = +∞ ∑ n=0 E [ 1 {Tn≤t<T n+1 ≤t+h<T n+2 } (φ(U t (Y n+1 )) -φ(U t )) ] = +∞ ∑ n=0 E [ 1 {Tn≤t} ∫ t+h-Tn t-Tn ds ∫ R (φ(U t (y)) -φ(U t )) F Y (dy)λe -λ(t+h-Tn)
] .

By hypothesis, the function φ is bounded and when h goes to 0, Lebesgue's dominated convergence theorem yields

lim h→0 h -1 A 1,1 (t, h) = +∞ ∑ n=0 E [ λe -λ(t-Tn) 1 {Tn≤t} ∫ R (φ(U t (y)) -φ(U t )) F Y (dy)
] .

(

) 25 
Since e -λ(t-Tn)

1 {Tn≤t} = E[1 {Tn≤t<T n+1 } /F t ], it follows lim h→0 h -1 A 1,1 (t, h) = +∞ ∑ n=0 E [ λ1 {Tn≤t<T n+1 } ∫ R (φ(U t (y)) -φ(U t )) F Y (dy) ] = E [ λ ∫ R (φ(U t (y)) -φ(U t )) F Y (dy)
] .

(

) 26 
We now turn to the study of h -1 A 0 (t, h) when h goes to 0. On the event {N t+h -

N t = 0}, T Nt = T N t+h , hence X * T N t+h = X * T N t and X T N t+h = X T N t , X t+h = X t + Xh • θ t , X * t+h = max(X * t , X t + X * h • θ t ).
Using Markov property at t and the fact that the processes N and X are independent

A 0 (t, h) = e -λh E ( E ( φ(max(x * , x + X * h ), x + Xh ) -φ(x * , x) ) |x * =X * t ,x=Xt
) .

Let us introduce

a 0 (h, x * , x) := E ( φ(max(x * , x + X * h ), x + Xh ) -φ(x * , x)
) .

To study the term a 0 (h, x * , x), we make a Taylor expansion at a neighborhood of (x * , x):

a 0 (h, x * , x) : = ∂ 2 φ(x * , x)mh + 1 2 ∂ 2 22 φ(x * , x)[m 2 h 2 + h]+ + ∂ 2 1,2 φ(x * , x)E ([ max(x * , x + X * h ) -x * ] Xh ) + 1 2 ∂ 2 1,1 φ(x * , x)E ( [ max(x * , x + X * h ) -x * ] 2 ) + R 0 (h, x * , x), + ∂ 1 φ(x * , x)E ([ max(x * , x + X * h ) -x * ])
where, using ∇ i the tensor of order i,

|R 0 (h, x * , x)| ≤ 4∥∇ 3 φ∥ ∞ [ E ( max(x * , x + X * h ) -x * 3 ) + E ( Xh 3 )] .
This allows us to write:

A 0 (t, h) = 3 ∑ i=1 A 0,i (t, h), A 0,i (t, h) := E ( a 0,i (h, , x * , x) |x * =X * t ,x=Xt ) (27) 
where

a 0,1 (h, x * , x) : = ∂ 2 φ(x * , x)mh + 1 2 ∂ 2 22 φ(x * , x)[m 2 h 2 + h] a 0,2 (h, x * , x) : = ∂ 2 1,2 φ(x * , x)E ([ max(x * , x + X * h ) -x * ] Xh ) + 1 2 ∂ 2 1,1 φ(x * , x)E ( [ max(x * , x + X * h ) -x * ] 2 ) + R 0 (h, x * , x), a 0,3 (h, x * , x) : = ∂ 1 φ(x * , x)E ([ max(x * , x + X * h ) -x * ]) . Proposition 4.3. Let be φ : R 2 → R a C 3 b -bounded function. Then for any t > 0 lim h→0 h -1 (A 0,1 + A 0,2 )(t, h) = E ( ∂ 2 φ(U t )m + 1 2 ∂ 2 22 φ(U t ) ) (28) 
Proof. (a) Since X and X * are continuous processes and φ a three times dierentiable function with bounded dierential, it follows

lim h→0 h -1 A 0,1 (t, h) = E ( ∂ 2 φ(U t )m + 1 2 ∂ 2 22 φ(U t )
) .

(

) (b) 29 
The second term satises: Under hypothesis of Theorem 2.1,

lim h→0 h -1 A 0,2 (t, h) = 0.
Indeed, we rst note that max(

x * , x + X * h ) -x * = ( X * h -(x * -x)) + ≤ X * h 1 { X * h >x * -x} . Using
Cauchy-Schwarz inequality and (23) there exists a constant D i such that

E ( [ max(x * , x + X * h ) -x * ] i ) ≤ D i h i/2 √ P( X * h > x * -x).
The function φ is three times dierentiable with bounded dierential, we deduce from the expression of a 0,2 that there exists a constant C > 0 such that

A 0,2 (t, h) ≤ [ 3 ∑ i=2 ∥∇ i φ∥ ] C 3 ∑ i=2 h i/2 E ( √ P( X * h > x * -x) |x * =X * t ,x=Xt
) .

The law of the pair (X * t , X t ) has a density with respect to Lebesgue measure on R 2 , (cf. Proposition 3.1) almost surely X * t > X t , it follows with Lebesgue dominated convergence Theorem

lim h→0 h -1 A 0,2 (t, h) = 0.
We now deal with the term h -1 A 0,3 (t, h).

Proposition 4.4. Let be φ :

R 2 → R a C 3 b -bounded function such that there exists δ > 1 satisfying ∫ R |∂ 1 φ(a, a)| δ da < ∞. Then for any t > 0 lim h→0 1 h E ( ∂ 1 φ(U t )E ( max(x * , x + X * h ) -x * ) x * =X * t ,x=Xt ) = 1 2 E [ ∂ 1 φ(X t , X t ) p(X t +, X t , t) g(X t , t)
] .

Proof. We rst need the following lemmas: Lemma 4.5. For any t > 0, the law of X * t has the density with respect to Lebesgue measure on R, p * (b, t) := 2

[ 1 √ 2πt exp - (b -mt) 2 2t -me 2bm Φ G ( -b -mt √ t ) ] 1 ]0,+∞[ (b). (30) 
Remark 4.6. This result is consistent with the fact that when m = 0, X * t and | Xt | have the same law (cf. Proposition 3.7, Revuz-Yor [START_REF] Revuz | Yor Continuous Martingales and Brownian Motion[END_REF]).

Proof. This is obviously the derivative with respect to b of the law provided in [START_REF] Jeanblanc | Mathematical Methods for Financial Markets[END_REF] page 147. Lemma 4.7. Let be h > 0 and H(x

) := 1 √ 2π e -x 2 2 -xΦ G (-x) : 1 2 E ([ max(x * , x + X * h ) -x * ]) = -mh ∫ ∞ 0 e 2bm √ h (b - (x * -x) √ h ) + Φ G (-b -m √ h)db + √ hH ( (x * -x -mh) √ h ) . Proof. Recall that E ([ max(x * , x + X * h ) -x * ]) = E ([ X * h -(x * -x) ] 1 { X * h >x * -x}
) .

Lemma 4.5 gives the density of X * h and the change of variable b → √ hb yields

1 2 E ([ max(x * , x + X * h ) -x * ]) = ∫ ∞ x * -x √ h √ h [ b - (x * -x) √ h ] ] + [ 1 √ 2π e -(b-m √ h) 2 2 -m √ he 2bm √ h Φ G (-b -m √ h) ] db.
This can be written again as

1 2 E ([ max(x * , x + X * h ) -x * ]) = ∫ ∞ x * -x √ h √ h[b -m √ h - (x * -x) -mh √ h ] 1 √ 2π e -(b-m √ h) 2 2 db -mh ∫ ∞ x * -x √ h e 2bm √ h (b - x * -x √ h )Φ G (-b -m √ h)db.
The lemma is proved using the integration by parts formula and the denition of H.

Lemma 4.7 allows to compute h -1 A 0,3 (t, h) including F t -conditional expectation under the expectation:

1 h E ( ∂ 1 φ(U t )E ( max(x * , x + X * h ) -x * ) x * =X * t ,x=Xt ) = 2 √ h E ( ∂ 1 φ(U t )H( (X * t -X t -mh) √ h ) ) -2mE ( ∂ 1 φ(U t ) ∫ ∞ 0 e 2bm √ h Φ G (-b -m √ h)(b - X * t -X t √ h ) + db
) .

(a) Firstly, we show that lim h→0 -mE

[ ∂φ 1 (U t ) ∫ +∞ 0 e 2mb √ h Φ G (-b -m √ h)(b - X * t -X t √ h ) + db ] = 0. The term ∂φ 1 (U t ) ∫ +∞ 0 e 2mb √ h Φ G (-b -m √ h)(b - X * t -Xt √ h ) + is uniformly bounded with respect to h : Indeed, b > 0 and let 0 < h ≤ 1, 0 ≤ e 2mb √ h Φ G (-b -m √ h)(b - X * t -X t √ h ) + ≤ e 2mb √ h Φ G (-b -m √ h)b. The function (h, b) → e 2mb √ h Φ G (-b -m √ h)b is continuous on the compact interval [0 1] × [0 2|m|], then it is bounded on this interval. Now, consider b > 2|m|. Therefore b + m √ h > |m| > 0, b -m √ h > b 2 and b (b+m √ h) ≤ 2. We use the inequality (3 ): 1 -Φ G (x) = Φ G (-x) ≤ 1 x √ 2π exp -x 2 2 , ∀x > 0, to obtain for b > 2|m|, h ∈ [0, 1] e 2mb √ h Φ G (-b -m √ h)b ≤ b (b + m √ h) √ 2π e 2mb √ h e -(b+m √ h) 2 2 ≤ 2 √ 2π e -b 2 8 .
This implies that the term ∂φ 1 (U t )

∫ +∞ 0 e 2mb √ h Φ G (-b -m √ h)(b - X * t -Xt √ h ) + db is uniformly
bounded by a constant. The result follows by Lebesgue dominated convergence Theorem: Indeed, almost surely X * t -X t > 0 and on this set, the integrand goes almost surely to 0. . (b) Secondly our goal is to compute the limit when h goes to 0 of the term

B * 1 (t, h) = E[∂ 1 φ(U t ) 1 √ h H( X * t -X t -mh √ h )].
The proof is divided into four steps.

1. Firstly, we prove that

lim h→0 |B * 1 (t, h) -E[∂ 1 φ(U t ) 1 √ h H( X * t -X t √ h )]| = 0. ( 31 
)
2. Secondly, we prove that

lim h→0 B * 1 (t, h) -E[∂ 1 φ(X t , X t ) 1 √ h H( X * t -X t √ h )] = 0. ( 32 
)
3. Thirdly, we prove that

lim h →0 B * 1 (t, h) = 1 2 ∫ R ∂ 1 φ(
a, a; t)p(a+, a; t)da.

Finally we observe that

lim h →0 B * 1 (t, h) = 1 2 E[∂ 1 φ(X t , X t ) p(X t +, X t ; t) g(X t , t) ].
Step 1: The function H dened by x) is dierentiable with dierential given by x → Φ G (-x), which is positive and bounded by 1. Hence for all (x, y) ∈ R, there exists λ ∈ [0, 1] such that H(y) -H(x) = (y -x)H ′ (λx + (1 -λ)y). Thus there exists λ ∈

H(x) = e -x 2 2 √ 2π -xΦ G (-
[0, 1] such that 1 √ h [ H( X * t -X t √ h ) -H( X * t -X t -mh √ h ) ] = mH ′ ( X * t -X t √ h + λm √ h)
Then for h > 0,

B * 1 (t, h) -E[∂ 1 φ(U t ) 1 √ h H( X * t -X t √ h )] ≤ |m|∥∂ 1 φ∥ ∞ E[ sup x≥ X * t -X t √ h -|m| √ h H ′ (x)].
The fact that almost surely X * t -X t > 0 proves that the almost sure limit of

X * t -Xt √ h -|m| √ h is +∞. Moreover, H ′ = Φ G is positive bounded and satises lim x→∞ H ′ (x) = 0, so Lebesgue
theorem achieves the proof of (31).

Step 2: Using regularity assumption on φ

B * 1 (t, h) -E[∂ 1 φ(X t , X t ) 1 √ h H( X * t -X t √ h )] ≤ |m| √ h∥∂ 1 φ∥ ∞ + ∥∂ 2 11 φ∥ ∞ E [ X * t -X t √ h H( X * t -X t √ h ) ]
The function x → xH(x) is bounded on R + , and lim x→∞ xH(x) = 0. Then, since X * t -X t law has a density and almost sure lim h→0

X * t -X t √ h H( X * t -X t √ h ) = 0,
the dominated Lebesgue Theorem yields:

lim h→0 E ( X * t -X t √ h H( X * t -X t √ h ) ) = 0.
The proof of (32) is achieved.

Step 3: Introducing the density of the law of (X * t , X t ) according to Proposition 3.1 (i):

B * 1 (t, h) = ∫ R 2 ∂φ 1 (a, a) 1 √ h H( b -a √ h )p(b, a; t)dadb + o(1).
We perform the change of variable b = a + u

√ h and B * 1 (t, h) = ∫ R×R + ∂ 1 φ(a, a)H(u)p(a + u √ h, a, t)dadu + o(1)
Note that, for all a > 0, u > 0, according to the Proposition 3.1 (ii),

lim h→0 ∂ 1 φ(a, a)H(u)p(a + u √ h, a, u) = ∂ 1 φ(a,

a)H(u)p(a+, a, t).

Jensen inequality induces

(B * 1 (t, h)) δ ≤ ∫ R×R + (∂ 1 φ) δ (a, a)H δ (u)p δ (a + u √ h,

a, t)dadu + o(1).

According to Proposition 6.2 and (39)

p δ (a + u √ h, a, t) ≤ C(δ, T, m) [ 1 t v 1 |a + 2u √ h + mt| γ + 1 t β + 1 + t ξ ] e 6(m + ) 2 δt
Integrability and boundedness assumptions on ∂ 1 φ induces that for all h there exists D i such that

∫ R×R + (∂ 1 φ) δ (a, a)H δ (u)p δ (a+u √ h, a, t)dadu ≤ D 1 +D 2 ∫ R×R + |∂ 1 φ| δ (a, a) 1 |a + 2u √ h + mt| γ H δ (u)dadu.
The integral with respect to da is shared in two parts factor, of

∫ R + H δ (u)du: ∫ |a+2u √ h+mt|≤1 |∂ 1 φ| δ (a, a) 1 |a + 2u √ h + mt| γ da+ ∫ |a+2u √ h+mt|>1 |∂ 1 φ| δ (a, a) 1 |a + 2u √ h + mt| γ da.
The second term is bounded by

∫ R |∂ 1 φ| δ (a, a)da < ∞, the rst one is bounded by ∥∂ 1 φ∥ ∞ ∫ |a+2u √ h+mt|≤1 1 |a + 2u √ h + mt| γ da = ∥∂ 1 φ∥ ∞ ∫ |x|≤1 |x| -γ dx = 2 1 -γ ∥∂ 1 φ∥ ∞ .
Thus for all T > 0 there exist v ∈]0, 1[, ξ ≥ 0 and a constant C such that

sup h∈]0,1] ∫ R×R + |∂ 1 φ(a, a)| δ H δ (u)p δ (a + u √ h, a, t)dadu ≤ C [ 1 t v + 1 + t ξ ] , ∀t ∈]0, T ]. (33) 
The family {(a, u) → ∂ 1 φ(a, a)H(u)p(a + 2u √ h, a, t), h ∈ [0, 1]} is uniformly integrable with respect to Lebesgue measure dadu, so we can exchange the limit and the integral:

lim h→0 B * 1 (t, h) = ∫ R×R + ∂φ 1 (a, a)H(u)p(a+, a; t)dadu. Note that ∫ R + H(u)du = 1
2 ends the proof of this step.

Step 4: Propositions 4.2 4.3 and 4.4, it is proved that

a(t) = λE ∫ R [φ(U t (y))-φ(U t )]F Y (dy)+E ( ∂ 2 φ(U t )m + 1 2 ∂ 2 22 φ(U t ) ) + 1 2 E [ ∂ 1 φ(X t , X t ) p(X t +, X t , t) g(X t , t)
] .

The two rst terms are bounded, so we have only to check (19) on the third term.

Similarly to

Step 3, we get

lim h→0 E[|∂ 1 φ(U t )| 1 √ h H( X * t -X t -mh √ h )] = ∫ R×R + |∂φ 1 (a, a)|H(u)p(a+, a; t)dadu.
so a → ∂φ 1 (a, a)p(a+, a; t) belongs to L 1 (R, da). Then, since g(., t) denotes the density of the law of X t a → ∂φ 1 (a, a) p(a+,a;t) g(a;t) belongs to L 1 (R, P Xt ). Note that from estimation (33) for all T > 0 there exist

v ∈]0, 1[, ξ ≥ 0 and a constant C such that 1 2 E [ ∂ 1 φ(X t , X t ) p(X t +, X t , t) g(X t , t) ] ≤ C [ 1 t v + 1 + t ξ ] , ∀t ∈]0, T ],
and the function a satises (19).

Conclusion

The aim of this paper is to have a complete study of the law of one Lévy process X and its running supremum. Recall that X * is not Markovian, but the pair U := (X * , X) is. In the second section, we give the main result (Theorem 2.1): the density of the law of U t , its right continuity on the diagonal and a weakly valued-measure dierential equation which characterizes the law of U t .

To complete the study of the survival probability initiated by Coutin and Dorobantu [START_REF] Coutin | Dorobantu First passage time law for some Lévy processes with compound Poisson: existence of a density[END_REF], as a consequence, one gives the marginal density of the law of X * t (Corollary 3.3). A perspective could be the proof of regularity of the survival probability on

R + × R, meaning (b, t) → P(τ b > t) = P(X * t ≤ b) = ∫ b 0 p * (x, t)dx.
Another perspective is to study ltering, for instance to generalize W. Ngom [START_REF] Ngom | Conditional Law of the Hitting Time for a Lévy Process in Incomplete Observation[END_REF] to incomplete observation.

6 Appendix Lemma 6.1. On the event

{N t+h = N t + 1}, U t (Y N t+h ) -U t+h ≤ 2 sup 0≤u≤h | Xt+u -Xt |.
Proof. : (a) On the event {N t+h -

N t = 1} = ∪ n {N t = n, N t+h -N t = 1}, we compute U t (Y N t+h ) = (max(X * t , X t + Y N t+h ); X t + Y N t+h ) and U t+h = (X * t+h , X t+h ). (b) On the event {N t = n, N t+h = n + 1}, U t (Y N t+h ) = (max(X * t , X t + Y n+1 ); X t + Y n+1 ) , U t+h = (X * t+h , X t+h ). (c) We bound up |U t (Y N t+h ) -U t+h | component by component:
• Concerning the second component, on the event {N t = n, N t+h = n + 1}, we have

X t+h = X t + Y n+1 + (X t+h -X t -Y n+1 ).
Since there is one only jump at time T n+1 for the process X between t and t + h, hence X t+h -

X t -Y n+1 = Xt+h -Xt and |X t+h -X t -Y n+1 |1 {Nt=n,N t+h =n+1} ≤ sup 0≤u≤h | Xt+u -Xt |1 {Nt=n,N t+h =n+1} . ( 34 
)
• The rst component is

X * t+h -max(X * t , X t + Y n+1 ) with X * t+h = max(X * t , X t + sup t≤u<T n+1 ( Xu -Xt ), X t + Y n+1 + ( XT n+1 -Xt ) + sup T n+1 ≤u≤t+h ( Xu -XT n+1 )) = max(X * t , X t + sup t≤u<T n+1 ( Xu -Xt ), X t + Y n+1 + sup T n+1 ≤u≤t+h ( Xu -Xt )).
(a) On the event {X * t ≥ X t + Y n+1 },

X * t+h -max(X * t , X t + Y n+1 ) = 0 ∨ (X t + sup t≤u<T n+1 ( Xu -Xt ) -X * t ) ∨ (X t + Y n+1 + sup T n+1 ≤u≤t+h ( Xu -Xt ) -X * t ). Since X t ≤ X * t : X t + sup t≤u≤T n+1 ( Xu -Xt ) -X * t ≤ sup t≤u≤T n+1 ( Xu -Xt ) ≤ sup t≤u≤t+h ( Xu -Xt )
and on the event

{X * t ≥ X t + Y n+1 } X t + Y n+1 + sup T n+1 ≤u≤t+h ( Xu -Xt ) -X * t ≤ sup T n+1 ≤u≤t+h ( Xu -Xt ) ≤ sup t≤u≤t+h ( Xu -Xt ).
On this event, globally

0 ≤ X * t+h -max(X * t , X t + Y n+1 ) ≤ sup 0≤u≤h | Xt+u -Xt |. ( 35 
) (b) On the event {X * t < X t + Y n+1 }, the rst component is equal to (X * t -X t -Y n+1 ) ∨ ( sup t≤u<T n+1 ( Xu -Xt ) -Y n+1 ) ∨ ( sup T n+1 ≤u≤t+h ( Xu -XT n+1 )). (36) 
On this event, the rst element in (36) (X * t -X t -Y n+1 ) ≤ 0 and the third one being non negative, thus the rst component is (sup

t≤u<T n+1 ( Xu -Xt ) -Y n+1 ) ∨ (sup T n+1 ≤u≤t+h ( Xu -XT n+1 )).
As a conclusion, globally:

|X * t+h -max(X * t , X t + Y n+1 )|1 {Nt=n,N t+h =n+1} ≤ sup t≤u≤t+h | Xu -Xt |. ( 37 
)
Inequalities (34), ( 35) and (37) lead to the result.

Integrability properties

In the sequel, P is the random eld dened by

P (b, a; t) := Nt ∑ k=0 p ( b -X T k , a -X T k -Y k+1 1 {t>T k+1 } -(X t -X min(t,T k+1 ) ); min(t, T k+1 ) -T k ) (38) 
which satises p(b, a, t) ≤ E[P (b, a; t)].

(

) Proposition 6.2. Let δ ∈ [1, 3 2 [, there exists (v, γ, β) ∈ [0, 1[ 3 and ξ ≥ 0, such that for all T > 0 there exists a constant C(δ, T, m) satisfying for all t ∈]0, T ], b > max(a, 0) E ( P (b, a; t) δ ) ≤ C(δ, T, m) [ 1 t v 1 (2b -a + mt) γ + 1 t β + 1 + t ξ ] e 6(m -) 2 δt 39 
where x + = max(x, 0) and x -= max(-x, 0) for any x ∈ R.

The proof is based on the following three lemmas.

Recall that for all t > 0 the law of the pair ( X * t , Xt ) has a density with respect to the Lebesgue measure given by p(b, a

; t) = 2(2b -a) √ 2πt 3 e -(2b-a) 2 2t +ma-m 2 t 2 1 {b>max(0,a)} .
We have the following estimations on p.

Lemma 6.3. For all α ∈]0, 1[, there exists a constant C(α, m) such that for all t > 0 p(b, a; t) ≤ C(α, m)

[ 1 t 1-α 2 (2b -a + mt) α + (m -) 1 √ t ] e -(2b-a+mt) 2 8t +6(m + ) 2 t 1 {b>max(0,a)} . (41)
Proof. We factorize

(2b -a) 2 -2mat + m 2 t 2 = [a -(2b + mt)] 2 -4bmt and write p(b, a; t) = 2 √ 2π [ (2b -a + mt) t √ t - m √ t ] e -(2b-a+mt) 2 2t +2bm 1 {b>max(0,a)} . ( 42 
) Let be C β := sup x∈[0,+∞[ x β e -x 2 4 < +∞.
• For m≤ 0 and since b > 0 we obtain p(b, a

; t) ≤ 2 √ 2π [ C 1+α t 1-α 2 (2b -a + mt) α + m - √ t ] e -(2b-a+mt) 2 4t 1 {b>max(0,a)} ,
and estimation (41) for m ≤ 0.

• For m > 0, using (42)

p(b, a; t) ≤ 2 √ 2π [ C 1+α t 1-α 2 (2b -a + mt) α ] e -(2b-a+mt) 2 4t +2bm 1 {b>max(0,a)} . Since (2b -a + mt) 2 8t -2bm = 1 8t ( (2b -a) 2 + 2(2b -a)mt + m 2 t 2 -16bmt ) , using 2b -a ≥ b and m > 0, (2b -a + mt) 2 8t +2bm ≥ 1 8t ( b 2 + 2bmt + m 2 t 2 -16bmt ) = 1 8t 
( (b -7mt) 2 -48m 2 t 2 ) ≥ -6m 2 t 2 . Thus p(b, a; t) ≤ 2 √ 2π [ C 1+α t 1-α 2 (2b -a + mt) α ] e -(2b-a+mt) 2 8t +6m 2 t 1 {b>max(0,a)} .
We obtain the estimation (41) for m > 0.

Lemma 6.4. Let 0 < α < 1 there exists a constant C(α) such that for all T > 0, σ > 0

sup c∈R E ( |c + σG| -α e -(c+σG) 2 2T ) ≤ C(α) T 1-α 2 σ , ( 43 
)
where G is a standard Gaussian variable.

Proof. First we prove inequality (43) for σ = 1. Let

I(c, T

) := E ( |c + G| -α e -(c+G) 2 2T ) = I(c, T, +) + I(c, T, -) (44) 
where

I(c, T, ±) := E ( (c + G) -α ± e -(c+G) 2 2T
) .

(

) 45 
Using the density of G

I(c, T, +) = ∫ ∞ -c (c + g) -α e -(c+g) 2 2T e -g 2 2 √
2π dg and an integration by part

I(c, T, +) = ∫ ∞ -c 1 1 -α [ (c + g) 2-α T + g(c + g) 1-α ] e -(c+g) 2 2T e -g 2 2 √ 2π dg. Note that x → x β e -x 2 4 is bounded on R + by C β then I(c, T, +) ≤ ∫ ∞ -c 1 1 -α   C 2-α T -α 2 e -(c+g) 2 4T √ 2π + C 1 C 1-α T 1-α 2 e -g 2 4 √ 2π   dg.
Integrating with respect to g yields

I(c, T, +) ≤ 2 [ C 2-α T 1-α 2 + C 1 C 1-α T 1-α 2
] .

(

) 46 
Using the same lines we obtain

I(c, T, -) ≤ 2 [ C 2-α T 1-α 2 + C 1 C 1-α T 1-α 2
] .

(47)

Plugging inequalities ( 46) and ( 47) into (44) yields (43) for σ = 1.

Replace c by c σ and T by T σ 2 yields (43). Lemma 6.5. For all α < 1, β < 1, δ > 0, T > 0 there exists a constant C(α, β, δ, T ) such that for all t ∈]0, T ],

E

(

1 {Nt>0} (N t + 1) δ [ T -β Nt (t -T Nt ) -α + Nt-1 ∑ k=0 (t -T k+1 ) -α (T k+1 -T k ) -β ])
≤ C(α, β, δ, T )t ]) .

(49)

Note that (T k+1 -T k ) k≥0 are independent variables, identically distributed and T 1 follows an exponential distribution with parameter λ. Then, from estimation (41) and the denition of (C k (t), σ k (t), S k (t), G k (t))

P (b, a; t)

1 {Nt̸ =0} ≤ 1 {Nt̸ =0} Nt ∑ k=0 [ 1 S 1-α 2 k (C k + σ k G k ) α + (m) - 1 √ S k
] e 6(m + ) 2 t 1 {b>max(0,a)} Note that S k ≤ t and using Jensen inequality ) ≤

P (b, a; t) δ 1 {Nt̸ =0} ≤ 1 {Nt̸ =0} (N t + 1) δ Nt ∑ k=0 [ 1 S δ(1-α 2 ) k (C k + σ k G k ) α δ + (m) δ

C(α, δ)E

(

1 {Nt̸ =0} (N t + 1) δ Nt-1 ∑ k=0 [ 1 (T k+1 -T k ) δ-1 2 √ t -T k+1 + (m) δ - 1 √ t -T k+1 δ ])
e 6δ(m + ) According to Lemma 6.5, there exists a constant C(α, δ, T ) such that for all t ∈]0, T ] E ( P (b, a; t) δ 1 {Nt̸ =0}

) ≤ C(α, δ, T )

[ t 1-δ + t 1-δ 2
] e 6δ(m + ) 2 t 1 {b>max(0,a)} .

(59)

Adding inequalities (58) and (59) yields inequality (40).

  m + ) 2 t 1 {b>max(0,a)} Conditionally to {N t ̸ = 0}, the random variable G k are independent of C k , σ k and S k and their law is the standard Gaussian distribution. Using Lemma 6.5 for σ = σ k and T = S k yields there exists a constant C(α, δ) such that E ( P (b, a; t) δ 1 {Nt̸ =0}

2 t 1  1

 11 {b>max(0,a)} + C ( α, δ)E {Nt̸ =0} (N t + 1) (m + ) 2 t 1 {b>max(0,a)} .

  1-α-β .

	(48)
	Proof.

Let S

(1, α, β, δ, t) 

be the random variable dened by

S(1, α, β, δ, t) := E ( 1 {Nt>0} (N t + 1) δ [ T -β Nt (t -T Nt ) -α

  + ... + u n ) -β (t -u 1 -... -u n ) -α λ n+1 e -λ(u 1 +...+u n+1 ) 1 {u 1 +..+un≤t≤u 1 +...+u n+1 } du 1 ...du n+We integrate with respect to u n+1 between t -u 1 -... -u n and innityS(1, α, β, δ, t; n) = λ n (n + 1) δ e -λt (u 1 + ... + u n ) -β (t -u 1 -... -u n ) -α 1 {u 1 +..+un≤t} du 1 ...du n . perform the change of variable tv i = u 1 + ... + u i , i = 1, ..., n S(1, α, β, δ, t; n) = λ n t n-α-β e -λt (v n ) -β (1 -v n ) -α 1 {v 1 <..<vn≤1} dv 1 ...dv n . σ k (t) = √ t -T k+1 ; S k (t) = T k+1 -T k ; G k (t) = B t -B T k+1 √ t -T k+1 • for k = N t C k (t) = 2b -a --mT Nt + m(t -T Nt ); σ k (t) = √ T Nt ; S k (t) = t -T Nt , ; G k (t) = B T N t √ T Nt .

		∫	(50)
	=(n + 1) δ	[0,∞[ n+1	(u 1 ∫
			[0,∞[ n
	We ∫
			[0,1] n

Then, S(1, α, β, δ, t) = ∑ ∞ n=1 S(1, α, β, δ, t; n) where for n ≥ 1: S(1, α, β, δ, t; n) Nt ∑ i=0 Y i

We integrate with respect to v 1 , ..., v n-1 S(1, α, β, δ, t; n) = (n + 1) δ λ n t n-α-β (n -1)! e -λt

The radius of convergence of entire series ( ∑ n≥1 (n+1) δ λ n t n-1 (n-1)! B(n -β, 1 -α)) is innite, so the series is continuous on R and then bounded on [0, T ]. There exists a constant C 1 (α, β, δ, T ) such that for all t ∈]0, T ] adding inequalities (51) yields

Let S(2, α, β, δ, t) be the random variable dened by

Note that (T k+1 -T k ) k≥0 are independent variables, identically distributed and T 1 follows an exponential distribution with parameter λ.

We integrate with respect to u n+1 between t -u 1 -..u n and innity

We perform the change of variable

21 Then, adding inequalities ( 55) from k = 0 to n -

The radius of convergence of entire series (

) is innite, so the series is continuous on R and then bounded on [0, T ]: there exists a constant C 2 (α, β, δ, T ) such that for all t ∈]0, T ] and adding inequalities (56) yields

Inequality ( 48) is a consequence of inequalities ( 52) and (57).

Proof. of the proposition: recall

• Note that from Lemma 6.3, there exists a constant C(α, m) such that

e 6(m + ) 2 tδ .

(58)

• Using estimation (41) and development ( 38)

and Z k (t) := (2b -a -X T k + Y k+1 1 {t>T k+1 } + X t -X t∧T k+1 + m(T k+1 ∧ t -T k ).

We dene a family (C k (t), σ k (t), S k (t), G k (t)) k∈N∪{0} by • (C k (t), σ k (t), S k (t), G k (t)) = (0, 0, 0, 0) for k > N t ,

• for k < N t :