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THE ADIABATIC LIMIT OF THE CONNECTION LAPLACIAN

STEFAN HAAG AND JONAS LAMPART

ABSTRACT. We study the behaviour of Laplace-type operators H on a complex
vector bundle £ — M in the adiabatic limit of the base space. This space is a
fibre bundle M — B with compact fibres and the limit corresponds to blowing
up directions perpendicular to the fibres by a factor e=! > 1. Under a gap
condition on the fibre-wise eigenvalues we prove existence of effective operators
that provide asymptotics to any order in € for H (with Dirichlet boundary
conditions), on an appropriate almost-invariant subspace of L2(&).

1. INTRODUCTION

The adiabatic limit of a Riemannian fibre bundle is given by a rescaling, under
which the lengths in the fibres (“vertical directions”) are of order ¢ < 1 compared
to the lengths in the base (“horizontal directions”). Such scalings arise naturally
for some systems studied in physics and also provide a useful tool for geometry,
as many properties of the underlying manifold may be analysed more readily in
the asymptotic regime € — 0. In this paper we will consider fibre bundles whose
fibres are compact manifolds with boundary and whose base is complete, but not
necessarily compact. We analyse the asymptotic behaviour of Laplace-type opera-
tors on complex vector bundles over these spaces, with Dirichlet conditions on the
boundary, in the adiabatic limit.

A particularly interesting example of such an operator is the Hodge Laplacian
on (complex valued) differential p-forms. In the case of closed manifolds its adia-
batic limit was studied by Mazzeo and Melrose [MM90], who related the asymptotic
calculation of its kernel, the p-th de Rham cohomology, in the adiabatic limit to
Leray’s spectral sequence (see also Forman [For95], and Alvarez Lépez and Ko-
rdyukov [ALKO0] for extensions and further references). Our analysis applies to
the Hodge Laplacian (see Example 1.4 for details) on rather general non-compact
fibre bundles with compact fibres and a boundary. However, when OM # & we
treat only Dirichlet boundary conditions and not the releative/absolute conditions
related to the respective de Rham cohomolgies on manifolds with boundary. Never-
theless, we believe that the techniques we develop can be useful for understanding
the L?-cohomology of these manifolds (see Schick [Sch96]) in the adiabatic limit.

In physics, the adiabatic limit appears in the modelling of quantum waveguides,
where the manifold in question is a small tubular neighbourhood of a given sub-
manifold of Euclidean space. The scalar Schréodinger equation in such tubes has
been studied thoroughly, an overview of the vast literature can be found in the
book of Exner and Kovatik [EK15]. A more geometric view is presented in our re-
cent work with Teufel [HLT15]. Similar results were obtained for the heat equation
in thin tubes in Riemannian manifolds by Wittich [Wit07], and Kolb and Kre-
jcifik [KK14]. There are also some results for operators built from a non-trivial
connection on a line bundle over the waveguide-manifold, which models an external
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magnetic field [EJK01, BEK05, EK05, BAOV13, KR14, KRT15]. Our work here
will pave the way for the analysis of magnetic fields in the generalised waveguides
considered in [HLT15]. The details of this application are given in [HLT17]. More-
over, taking vector bundles of higher rank, our framework allows for the modelling
of particles that couple to a non-Abelian gauge field.

Let us now introduce our geometric and analytical setup and give an outline of
our approach. Let M ™ B be a connected, smooth fibre bundle of Riemannian
manifolds with compact fibre F'. We assume that the base manifold B is complete,
but not necessarily compact, and we allow the total space M to possess a boundary
(which is of course the case if and only if JF # () and denote by M, = 7y, (z) = F
the fibre of M over x € B. Let g and gp be Riemannian metrics on M and
B, respectively. The tangent bundle of M decomposes into a wvertical subbundle,
the vectors tangent to the fibres, or, equivalently, in the kernel of Ty, and the
horizontal vectors, orthogonal to the fibres,

TM = ker(Tmp)t @ ker(Tras) =: HM @ VM.

We assume that 7, is a Riemannian submersion for the metrics g, gp, that is,
Trpy:HM — TB is an isometry. The metric g is then called a Riemannian sub-
mersion metric and may be written as

9="yM9B + 9v,
where gy is the restriction of ¢ to the vertical subbundle (and vanishes on horizontal

vectors). The adiabatic limit is then implemented by a blow-up of the horizontal
directions, i.e., by the family of rescaled Riemannian submersion metrics
9e =€ miygn + 9v (1)

for e < 1. Up to a global rescaling, this corresponds to shrinking the length scale of
the fibres of M by a factor €. A simple example of such a family of metrics is given
by g = 2dz? + f(x)dy? on R x [0, 1], for some positive function f € C;°(R).

Let also & =% M be a complex vector bundle with a Hermitian bundle metric h
and a metric connection V¢. Consider the composition of projections II¢ := 7 07¢.
The fibre of this map &, = Hgl(:c) is just the restriction of £ to the fibre M, , and
as such itself a vector bundle over M,. In fact, Il¢: £ — B defines a fibre bundle
over B, whose typical fibre F =2 F is a vector bundle over F. We will examine
the construction of this vector bundle, in particular its analytical properties, in
Proposition 2.8.

Let H be the Hilbert space of square-integrable sections of (£,h) =% (M, g)
associated with the unscaled Riemannian submersion metric ¢ = g.—1. We will
consider operators of the form

H:=-A; +eH +V (2)

on H, with Dirichlet boundary conditions. Here, —Af = —Try (V¥)? = (V€)*V*
is the connection Laplacian associated with the connection V¢ and the metrics g.
and h, defined by the quadratic form

(¥, _A§e¢>7-¢ = /M Ty, h(V?zﬂ, V?zﬁ) volg .

Moreover, V' is an End(€)-valued potential and H; is a perturbation. For example,
H, could be a second-order differential operator modelling small perturbations of
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the metric g. or the connection V¢, which appear in typical applications (see Ex-
ample 1.4 and [HLT17]). Our goal will be to obtain precise asymptotics for H, its
spectrum and dynamics, as € tends to zero.
The structure of the rescaled Riemannian submersion (1) yields a splitting of
the associated connection Laplacian
£ 2AE £
_Ags = —¢ AH — AV
into a horizontal Laplacian A§ = Trrs s (V)2 — ng,
vature vector of the fibres M, — (M, g) (for e = 1), and a vertical Laplacian Af.
Consequently, the operator (2) takes the form

H=—*A§ +cH, + H”

where 7y is the mean cur-

with fibrewise vertical operator
H? = —A{+ V.

Under the assumption of bounded geometry (see Section 2), H is self-adjoint and
non-negative on the Dirichlet domain D(H) = W2(E) N W (£) (We denote by
Wk(E) = WF2(&) the L2-Sobolev space of sections of &, see Section 2). The same
is true for H” (z) acting on sections of & —= M,, with domain D(H7 (z)) =
W2(E,)NW¢E(E,). Throughout this paper, we will denote by H, H” the unbounded
self-adjoint operators defined on their respective domains, while Ai, A\g,, Aﬁ refer
to differential operators, without reference to a specific domain.

Because the fibres M, are compact, the spectrum of the elliptic operator H” ()
is a discrete set of eigenvalues of finite multiplicity accumulating at infinity. An
eigenband is a continuous function \: B — R that is an eigenvalue of H” (z) for
every fixed x € B, ie., A\(z) € o(H” (z)) for all z € B. Given an eigenband,
we denote by Py(x) the spectral projection to ker (H” (z) — A(z)). The adiabatic
operator associated to the eigenband ) is given by

H, := PyHPy = Py(—e’A§; + cHy ) Py + \D.

We will show that, under appropriate assumptions, H, provides an approximation
of HPy with errors of order £ and refine this approximation to accuracy &, for
arbitrary N € N.

Throughout this paper, we will exclusively treat eigenbands with a (local) spec-
tral gap. The generalisation of our results to a group of eigenbands that is separated
from the rest of the spectrum is straightforward, but we will not perform this for
the sake of a simpler presentation. The precise condition we require is:

Condition 1. There exist § > 0 and f1 € C,(B) with dist(f+(z),oc(H (2))) > 6
such that

[F @), f+ )] N (H () = Aw)
for all z € B.

This condition immediately implies that A is bounded, and also that A is smooth,
see Proposition 3.6.

It will be convenient to view H” (x), Py(x) and similar objects as bundle maps
on infinite-dimensional vector bundles over B whose fibre at x € B is given by the
space of L?-sections L?(&,, h|e,) (or subspaces thereof). These vector bundles are
constructed as follows: First, note that, by compactness of M, = F'| the topology of
L?(E,, hlg,) does not depend on = and the spaces at different points 2 are isomorphic
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to a the fixed space L?(F) (as topological vector spaces). A vector bundle with fibre
L?(F) is then defined by specifying transition functions Tu,,U, between open sets
Uy,Usz C B. Inour case, these are induced by the local trivialisations ®;: 771741 U;) —
U; x Fand ;111 (U;) — U; x F, j € {1,2}, of the bundles M ™5 B and
RN B, respectively:

0,0, (UL NU2) x L*(F) = (U1 NUs) x L*(F), (z,¢) — (2, 70,0, (2)9)
with

0,05 () = Wie, 0 Walg ' 0 do Byar, o Pyfy)

This defines a topological vector bundle over B with typical fibre L?(F) that we
denote by H . Similarly, we construct a vector bundle Dx C Hr over B with fibres
(Dx). = D(H” (x)). We treat these as Hermitian vector bundles with the natural
pairings induced by h, V¢ and gy. The spaces of continuous and fibre-wise maps
between vector bundles clearly have a vector bundle structure and the vertical
operator H” as well as the associated spectral projection Py(x) define bounded
sections of L(Dr, Hr) respectively L(HF).

The finite multiplicity of the eigenvalues of H” (x) immediately implies the finite
rank of the projection Py(x) for all z € B. If X additionally satisfies Condition 1,
Py is a continuous section of L(H z) (see Proposition 3.6), and rank(FPy) = Tr(P)
must be constant. Hence, the eigenspace bundle P := PyHr is a well-defined
(topological) subbundle of H r of finite rank (this bundle also has a natural smooth
structure, since H” has a smooth family of eigenfunctions, see [Lam14, Prop. B.7]).
Via the identification H = L?(Hz) (see [Lam14, Corollary B.6]), the operator P
defines a bounded operator on H, whose image PyH is isomorphic to L?(P), the
L2%-sections of the finite-rank vector bundle 7p : P — B.

The adiabatic operator H, acts on L?(P), and on this space we have

(H — Ha)Py = [H, Po]Py = [~€*A§ + eHy, Py P.

This commutator is of order € as an operator from D(H) to H. We want to caution
that for a fixed horizontal vector field X, Vf « is in itself not of order ¢, as eX
is of fixed g.-length. However, an expression such as [VfX, Py] Py, that appears in
the commutator, is of order € because it is essentially e-times the derivative of the
e-independent object F.

The commutator [H, Py] being of order ¢ implies that the space PoH = L*(P) is
invariant under H up to errors of order €, and H, gives an approximation of H on
this space with errors of this order. Starting from this point, we will improve the
approximation and find projections P. such that P.H is invariant under H up to
errors of order eV (for any given N € N). This generalises the work of the second
author with Teufel [LT17], where such an approximation was derived for the scalar
case £ = M x C, V€ = d. The generalisation of these results to vector bundles
requires an in-depth discussion of the analytical setup. We discuss the structure
of the fibre bundle & & B, whose fibre &, is the vector bundle &|y, = F,
in Section 2 and show that it inherits a specific form of bounded geometry from
£ =+ M and M — B in Proposition 2.8. We then show how V¢ gives rise to a
covariant derivative on H x, which can be used to calculate objects such as [VfX, Py

locally over U C B, even though the fibres of the bundle £ L. B may themselves
have a non-trivial bundle structure F — F (see Lemma 3.1). With this setup
in place, the construction of P. can be performed along the lines of [LT17], whose
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method is inspired by space-adiabatic perturbation theory, which was developed for
flat geometries in the context of the Born-Oppenheimer approximation, see [MS02,
Sor03, Teu03, NS04, PST07, MS09]. We also provide an improved version of an
important lemma in this construction (Lemma 3.10).

We will begin by stating our main result and discussing some of its corollaries.
We then work out the details of our geometric and analytical framework in Section 2
and prove the main theorem in Section 3.

1.1. Main Results. We will assume throughout that the underlying geometry
obeys appropriate boundedness properties (Condition 2, see Section 2), that the
potential V € Cg°(End(€)) is symmetric, smooth and bounded with all its deriva-
tives (cf. Definition 2.1) and that the operator H; satisfies Condition 3 (Section 3).
Our main result is the existence of a super-adiabatic projection P, close to Fp,
which almost commutes with H.

Theorem 1.1. Let A\ be an eigenband of H” with a spectral gap (Condition 1)
and let Py be the associated fibre-wise spectral projection. Then, for all N € N
and A > 0, there exists an orthogonal projection P, € L(H) N L(D(H)), satisfying
P. — Py =0(¢) in L(H) and L(D(H)), such that

”[Hv Ps]Q(H)”[,(H) = O(ENJrl)
for every Borel function o:R — [0,1] with support in (—oo, Al.

Once the construction of the super-adiabatic projection P: is established for some
fixed N € N and A > 0 we can construct a unitary operator U, that intertwines
P. and Py (ie., U.Py = P.U.). It is given by the Sz.-Nagy formula (with the
abbreviations Pg- := 14 — Py and P := 13 — P:)

1/2
U. = (P.Py + P2P&) (19 — (P — P.)2) "2,
‘We then define the associated effective operator
Heg :=U;P.HP.U.. (3)

This operator is self-adjoint on U*P.D(H) C L?(P), due to the fact that
[H,P.] = [H,P)) + O(e) = O(e) and the Kato-Rellich theorem. While H acts
on L%-sections of £ (a finite-rank vector bundle over M), Heg acts on L2-sections
of P (a finite-rank vector bundle over the lower dimensional manifold B). Hence,
the approximation of the initial operator by the effective operator is a dimensional
reduction procedure.

The existence of the almost invariant subspace P-H for H gives rise to various
corollaries on the approximation of spectral and dynamical properties of H using
the effective operator Heg. We will state some of these and explain the general ideas
behind them. These corollaries depend only on the general structure of Theorem 1.1
and not on the details of the problem, such as the choice of H = L?(£). We thus
refer to [LT17] for complete proofs and focus here on the construction of P..

The existence of the effective operator allows us to locate (part of) the spectrum
of H with high precision, by taking the eigenfunctions (or a Weyl sequence) of Hg
as quasi-modes for H.

Corollary 1.2. Let N € N and A > 0 be as in Theorem 1.1, and let Hog be the
associated effective operator (3). Then, for every 6 > 0 there exist constants eg > 0
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and C > 0 such that for all p € o(Heg) with p < A —§ one has
dist(p, 0 (H)) < CeNHt
for all 0 < e < gp.

Conversely, we cannot expect to always find spectrum of Heg near that of H. For
instance, if the spectrum of H” consists solely of separated bands {\;}jen, then
their projections Pg give an orthogonal decomposition 14 = @jeNPg . By Theo-
rem 1.1, H is almost diagonal with respect to this decomposition, so its spectrum
is approximated by the union of the spectra of the effective operators. For a given
u € o(H) we do not know a priori to which of these sets it is close.

If, however, ¢ € D(H) has energy (¢, Hy),, < A for some A € R and —e2A5 +
eH; > —Ce is bounded below, only finitely many spectral projections Pg , namely
those associated with eigenbands with inf,cp Aj(z) < A, contribute significantly
to 1, because

A > (W, Hp)y =Y (9, (—e?Af + eHy + X)) PIy),, > inf X; + O(e).
JEN
If we choose A small enough, only the ground state band Ag(z) := mino (H” (z))
should contribute and we do expect mutual approximation of the spectra. In fact,
for energies below A; := inf,ep(c(H”)\\o) the operators H and H.g are almost
unitarily equivalent.

Corollary 1.3. Let \o(x) := inf o(H” (z)) be the ground state band. Suppose this
satisfies Condition 1 and let Hog be the effective operator (3) for given constants
N € N and A > 0. Assume that —e?Af + eHy is bounded from below by —Ce
for some constant C > 0. Then, for every cut-off function x € C3°(R), with
x? € C§°(R) for all p € (0,00) and support in (—oo, A1), we have

||U5*HX(H)U€ - HeffX(HeH)||£(H) = O(€N+1).

To gain a better intuition for the effective operator, it is useful to study its
expansion in powers of €. Using that U. = Py 4+ O(¢), the effective operator

Heg = U*P.HP.U. = PyHPy + H, (4)

can be expanded as an adiabatic operator H, and a remainder Hg,, which incorpo-
rates the super-adiabatic corrections. It follows from the properties of U, that the
remainder is of order €2 in L(W?(P), L*(P)). A formal expansion of Hg, can be
obtained from the explicit construction of P. (see Lemma 3.11). The leading part
is given by

M = Py[Py, HIRT (\)[ Py, H] Py,
where R ()\) := (HF — \)"! P4 stands for the reduced resolvent associated with
the eigenband A. If H; is a second-order differential operator, the action of M may
involve horizontal derivatives of fourth order, and then does not define a bounded
operator from W?2(P) to L?(P). To make the expansion rigorous, we thus need to
regularise this expression. The precise statement is that

([ Herx* (Hett) = X(Hegr) (Ha + M)X(Hett)|| £ 12y, = O€%)-

for an appropriate cut-off function x € C§° with support in (—oo, A] (see [Haal6,
Prop. 4.10)).
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An important example of a Laplace-type operator on a non-trivial vector bundle
is the Hodge Laplacian on differential forms. We now explain how to treat its adi-
abatic limit in our setting. This requires writing the Laplacian using a connection,
rather than the (co-) differentials d and J.; see [ALKO0] for an exposition in that
formalism.

Example 1.4. Let £ := APT*M ® C be the bundle of complex valued p-forms
on M. This comes naturally with a bundle metric G = g®? and an (e-dependent)
connection V*©? induced by the Levi-Civita connection of g.. The Hodge Lapla-
cian (w.r.t. g.) on £ can be written as

Scd+dd. = —Tr, (VEOP)2 LW,

where the action of the potential W € C'°°(End(£)) is determined by the curvature
tensor RP of VICP via

p
(Ww) (X1, Xp) =D Trg, (RP(, X)w) (X1, X1, Xjp, ., X)), (5)
j=1

for vector fields X7,..., X, on M. Note that the potential W depends on € through
the g.-trace and the e-dependence of RP, which is associated with G.. Recall also
that (VCP)? is defined by

(VROrR(X,Y) = VROPOyOr - vign.

In order to fit this into our general setting, we want to choose an e-independent
bundle metric h. To do this, we rescale horizontal forms by appropriate factors. Let
Py and Py denote the orthogonal projections to the vertical and horizontal bundles
VM, HM, respectively. Define a map

0: TM — TM, X — Py X +e tPyX.

Obviously, 0 is an isometry from (TM,g.) to (TM,g) (with e = 1). Now choose
h = g®P = G, and let 67 be the induced isometry (£, G.) — (€, h) (note that 01 =
(0T)~1 maps 7},v to emiv for v € C°(T*B ® C)). Then VP = gryvLCOr(gr)~-1
is an e-dependent family of metric connections on (£,h). The action of these
connections is determined by the action of §V*C9~! =: V¢ on vector fields. This
can be described as follows: Let Y7, Y5 be vertical vector fields, X1, X5 vector fields
on B, and denote their horizontal lifts by X7, X5 (these are the unique horizontal
vector fields satisfying Tmys X7 = X;). Let VY be the Levi-Civita connection of the
vertical metric, Wg: C*°(HM) — C*°(End(VM)) be the Weingarten map of the
fibres (for € = 1) and let Q: C*° (VM) — C*°(End(HM)) be the integrability tensor
of the horizontal distribution defined by

9(QY1)XT, X3) = g(Y1, [XT, X3]).
Using the Koszul formula, one calculates
$.Y2 = VY, Y + 2Py VSTV,
5 X3 = (VEX2)" + e V[XT, X7]
Vi Yi = Ry[XT Vi) + Wi(XD)Y: — 2e(Yi)X]
ST = eWr(XT)Y — 32Q(Y1) X7
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Note that this connection is torsion-free only if ¢ = 1 (or if Wp = @ = 0, in
which case the connection is independent of ). From this we see that V¢ depends
smoothly on € at € = 0 and we may set V€ = V7. We then have

67 Tr,, (VVCP)2(67) 7" = Tr, (VPF)? = Tr,, (VE)? + e,
where eH collects all e-dependent terms of VP¢. Furthermore,
Try, (VE)? = Tr,, (VEVE - Ve )
= Trpy (VEVE = VEy ) + 82 Trry g (VEVE = VE,, ) — 2278,
=: Ay + £2A8,
with the mean curvature vector of the fibres ny = Try, (PyVe=!). We then set
H:=0P(6.d+dd.)(07) " = —2A8 — A + eH + 6PW(67) 1,

which is of the form we suppose in general.
One can additionally choose V' = 0PW (6P)~1|.—o, which leads to OPW (AP)~! =
V +¢eV, and

H” =-AN§+V, H =H+V.
With these choices, we have
H=—&’Af+cH, + H”.

One can check that (note that the trace over horizontal directions yields a pre-
factor €2; see also [ALKO00]) the action of the vertical operator H” on w A 74,v
withw € C*° (A1 (VM)* ® C) and v € C* (AP~9T*B ® C) is just that of the Hodge
Laplacian on ¢-forms of the fibre (multiplied by the the identity on 75, A?~9T*B).
When OM = () = JF, an example of an eigenband is given by A(xz) = 0. This
is the ground state band since H* = (dp + dj)? is non-negative. It satisfies the
gap condition under our boundedness assumptions on the geometry of M % B,
explained in Section 2. The range of the associated projection Py(z) is given by

ran(Py(z)) = @ #(M,,C) © (AP~T;B),

q=0

where 5#(M,,C) is the ¢g-th de Rham cohomology of M, with values in C. The
eigenspace bundle P is thus given by differential forms on the base with values in
the cohomology of the fibres. By Corollary 1.2, the effective operator H.g acting
on L2-sections of P can be used to find small (approximate) eigenvalues of H with
arbitrary precision. For compact M these are related to the Leray spectral sequence
for the de Rham cohomology of M, see [MM90].

We remark that while this choice of vertical operator is certainly natural it
may sometimes be convenient to add some of the terms in Hy, in particular those
containing vertical derivatives, to H”. This will lead to e-dependent spectral pro-
jections and eigenvalues but this dependence can easily be treated perturbatively,
see Remark 3.8. In the example at hand, adding all the terms in H; containing
vertical derivatives to H” leads to an operator —e?Ay + ¢H; which satisfies the
conditions of Corollary 1.3. The small eigenvalues of H are thus exactly those of
the effective operator constructed in this way.



THE ADIABATIC LIMIT OF THE CONNECTION LAPLACIAN 9

We emphasise that when OM # () we only treat Dirichlet conditions and not the,
perhaps more natural, mixed relative/absolute boundary conditions. This limita-
tion stems from the fact that, in order to view H” (x) as a section of L(Dr, Hr),
we need the boundary condition to be fibrewise. This is of course not the case for
Neumann conditions when the normal to OM, with respect to gy is different from
that for OM with respect to g.. Note, however, that these normals become equal
in the limit € — 0, so a generalisation of our methods to such boundary conditions
seems possible.

2. BOUNDED GEOMETRY

In order to set up our analysis, we will need a good notion of bounded geome-
try for the involved objects. We will assume here the basic notions for manifolds
without boundary and vector bundles over such manifolds. A detailed discussion
of these is given by Eichhorn [Eic07].

We will use the following, coordinate-independent, definition of bounded tensors.

Definition 2.1. Let (£,h,V¢) — (M, g) be a vector bundle with bundle metric h
and compatible connection V¢. Equip the bundles T*M®7/ ® £ with the metric G
induced by g and h and the connection V7 induced by the Levi-Civita connection
on TM and V¢ on €. A smooth section 0 € C®(€) is C*-bounded if there is a
constant C'(k) such that for all j € {0,...,k}

sup G;(Vio,,Vig,) < O(k).

peEM
The set of C*°-bounded sections, denoted by C°(£), is the set of sections that are
C*-bounded for all k € N.

Any definition of bounded geometry for a certain class of objects brings with
it the existence of specific normal coordinates. For complete manifolds these are
geodesic coordinates around appropriately selected points. For a vector bundle
over such a manifold, endowed with a bundle metric and compatible connection,
the normal coordinates are given by trivialisations over geodesic coordinate charts,
obtained by parallel transport of a given frame along the geodesics. For manifolds
with boundary a concept of bounded geometry was introduced by Schick [Sch01].

Definition 2.2. A Riemannian manifold (M, g) with boundary OM is a -manifold
of bounded geometry if the following hold:

e Normal collar: Let v be the inward pointing unit normal of 9M. There
exists r. > 0 such that the map

b:OM x [0,7.) — M, (p,t) = exp,(tv)

is a diffeomorphism to its range.

o Injectivity radius of the boundary: The injectivity radius of M with the
induced metric is positive, rinj(OM, glaar) > 0.

e Injectivity radius in the interior: There is rin; > 0 such that for all r < riy
and p € M with dist(p,0M) > r./3 the exponential map restricted to
B, (0) C T,M is a diffeomorphism to its range.

e Curvature bounds: The curvature tensor of M and the second fundamental
form S of OM are C*°-bounded tensors on M and OM respectively, in the
sense of Definition 2.1.
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The normal coordinate charts associated with such a manifold are given by geo-
desic coordinate charts around points in the interior with dist(p, M) > r./3 and,
near the boundary, by the composition of a geodesic chart in M with the boundary
collar map b defined above.

The following definitions provide the notions of vector bundles of bounded ge-
ometry over manifolds with boundary and their natural trivialisations.

Definition 2.3. A vector bundle with metric connection (£, h, V&) — (M, g) over
a Riemannian manifold with boundary is of bounded geometry if (M, g) is of O-
bounded geometry and the curvature tensor R¢ associated to V€ and all its covari-
ant derivatives are bounded with respect to the metrics induced by & and g.

Definition 2.4. Let (€,h, V) — (M,g) be a C"-vector bundle of bounded ge-
ometry, U C M open and 7: €|y — U x C™ be a local trivialisation. We call 7
admissible if there is a normal coordinate chart x: U — R™ and 7 coincides with a
trivialisation obtained by parallel transport of an h-orthonormal frame along radial
geodesics, if k is an interior chart, or geodesics in M composed with geodesics
orthogonal to the boundary, if s is a boundary chart.

If £ — M is of bounded geometry and we choose normal coordinates, the metric g
and the connections V¢ are expressed by smooth and globally bounded functions.
Hence, in this case, Definition 2.1 is equivalent to requiring that the section o,
expressed in these charts, be smooth and bounded, with global bounds.

In our setting the base manifold B has no boundary and we assume that (B, gp)
is of bounded geometry in the usual sense. The typical fibre F' of M is compact,
so it is of 0-bounded geometry for any smooth metric. For the total space M we
will assume a uniformity condition on its structure, i.e., its local trivialisations.

Definition 2.5. Let (M,g) =% (B,gp) be a Riemannian fibre bundle over a
manifold of bounded geometry B with typical fibre F'. The structure (M, g, m) is
said to be uniformly locally trivial if there exists a metric gr on F' such that for all
r < Tinj(B,gp) and x € B there is a local trivialisation

®: (1) (Br(z)),9) = (Bi(x) X F,gp x gr)
such that

Td € O (T*M|W;11(BT(I)) ® &*T(B,(z) x F))
T@ ) € G (T (B(e) x F) @ (@) TM| 15 (,)))
are bounded tensors, uniformly in x.

A detailed discussion of this concept can be found in [Laml4]. In particular,
this property implies that (M, g) is of 9-bounded geometry, as defined above.

Remark 2.6. A related concept is that of a foliation of bounded geometry, in-
troduced by Sanguiao [San08] and given a coordinate-free form by Alvarez Lopez,
Kordyukov and Leichtnam [ALKL14]. When OM = () = OF, Definition 2.5 implies
that (M, g) with its foliation into fibres is a foliation of bounded geometry in the
sense of [San08, ALKL14]. The trivialisations ® of M provide suitable coordinate
systems of product form, whose size can be estimated by the uniform lower bound
on the injectivity radius of M, (with the induced metric) given by [Laml4, Lem.
A.7]. However, bounded geometry in the sense of [San08, ALKL14] does not imply
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uniform local trivialisability, because the choice of a fixed reference metric gp on F
gives global (upper) bounds on quantities such as the volume of M,, whereas the
purely local definition of [San08, ALKL14] cannot achieve this.

With all the necessary definitions at hand, we can now summarise our conditions
on the geometry:

Condition 2. We require that

(i) (B, gp) is a complete, connected manifold of bounded geometry,
(ii) F is a compact manifold with boundary,
(iii) mar:(M,g) — (B,gp) is a uniformly locally trivial fibre bundle with fi-
bre F,
(iv) me: (E,h, VE) = (M, g) is a vector bundle of bounded geometry.

Together, these hypothesis imply additional boundedness properties for (M, g.)
and the bundle IIg: £ — B that will play an important role in our analysis. In
the following, Proposition 2.7 gives e-uniform bounded geometry of the total space
(M, ge) and Proposition 2.8 shows that the induced bundle IIg: £ — B inherits a
form of bounded geometry.

Proposition 2.7. Under the hypothesis i)—iii) of Condition 2, (M,g) is a O-
manifold of bounded geometry in the sense of Definition 2.2. Furthermore, (M, g.)

is of 0-bounded geometry for every 0 < ¢ < 1 and the constants rc, rinj(OM), Tint
and C(k), k € N can be chosen as those of (M, g).

A proof of this statement can be found in [Lam14, Prop. A.4, A.9].

Proposition 2.8. Asssume Condition 2. The map llg = mpy omg: € — B is a
fibre bundle whose typical fibre F is a vector bundle over F. Moreover, there exists
re € (O,Tinj(B,gB)) such that for every x € B and r < rg there is a trivialising
bundle map
O:1; (B, (z)) — B.(z) x F

with the following boundedness property: Let ® be as in Definition 2.5, let 1, :=
<I>71|{w}xF be an embedding of the fibre and equip F with the pulled-back metric
and connection hr = 1 hg, V' = 1:V¢. For all admissible trivialisations (Defini-
tion 2.4) a of g‘ﬂ]—wl(Br( ) over UCM and B of F over V.C F, the maps

z)
BoBoato(d71 1) and (®,1)oao® top™?

are linear transformations on C™, C*-bounded on (®(U) N (B, (x) x V), uniformly
m x.

Proof. The statement that Ilg: £ — B is a fibre bundle is of course just the existence
of local trivialisations. We will prove this in detail, as the explicit construction of
trivialisations together with the bounds on M yield boundedness.

Fix for the moment z¢ € B, r < rinj(B, gp) and <I)Z7T]T/[1<BT(.’L‘0>) — B(z9) x F,
as above. The idea is to take a diffeotopy p, t € [0, 1], between ®~! and &~ (zy, -)
such as

pi(a,y) = D7 (expg, (texpy,) (), y) -
This yields an isomorphism of the pulled-back vector bundles (see Hatcher [Hat03])

Pi€ = (27 E X Elg-1(B,(m0)xF)
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and
pHE = {(x,y,e) € B,(zp) x F x 8|7rg(e) = Q*l(xo,y)} = Br(w0) X 13, Exy -

Composition of this isomorphism with the map (®,1):£ — (®71)*E gives a trivi-
alisation. The local trivialisations and connectedness of B clearly imply that the
possible choices of F = (%€, are all isomorphic (as smooth vector bundles).

To show boundedness, we will need to be more specific and make some concrete
choices in the construction, which follows that of [Hat03, Prop. 1.7]. Take zq, ®
and p; as above. We consider the bundle

pr€={(t,x,y.e) €[0,1] x By(g) x F x E|me(e) = pu(x,y)}

over [0,1] x B(zo) x F, with p*€l;=, = pf,€. The idea is that this interpolates
between pi€ and pjE, which allows us to patch together local isomorphisms given
by trivialisations.

The uniform trivialisations of M give us equivalence of the distance functions of
®*(gp X gr) and g as well as ®*(gr|or) and glgys with uniform constants. This
allows us to choose r¢ > 0 such that there is a finite system of normal coordinate
charts {(Vy,ku)|p € {1,... K}} of (F,gr) in a way that for every zy € B the set
®~1(B,(xg) x V) is contained in a normal chart of M if r < rg.

Choose from now on r < r¢ and let {x,|u} be a smooth partition of unity on F
subordinate to the cover {V,|u}. Consider the functions &,(y) := >0'_, xu(y),
& = 0, and their graphs 2, := {(t,z,y)|t = .(y)}. Define a vector bundle over
Br(z0) x F' by E, := p*€|z,. Note that the fibre of £, at (z,y) is the fibre of
& at pe,(y)(z,y). Since { = 0, {x = 1, this interpolates between Ey = p5€ and

Now let
TM:‘C’,‘I”I(BT(JO)XVM) — (b_l(Br(,’Eo) X VIJ«) x C"
be an admissible trivialisation. For any A € {0,..., K} this gives a trivialisation of

E) over V, by
ﬁk,u:E)\|VM — B?"(x()) X V,u x C" (gA(y)7z7y7e) — (I’y7pr27-u(e))' (6)
As¢, =¢&,_1on F\V,,wehave E,, = E,,_1 on B, (20) x (F\V,) for p € {1,..., K}.

Hence, we can define an isomorphism from £, to E,_; by

o ﬁ;ﬁl’u oV over B, (zo) x V,
" 1 over B,(zg) x (F\V,).

Note that ﬁ;il, u © Uy, is the identity wherever x,, = 0, in particular near the

boundary of V),, so there is no discontinuity there. Now the finite composition
©:=00-00k

provides a concrete isomorphism from pi€ = Ex to pj€ = Ey. We then take

©:=00(®,1): Elr (8, (s0)) — Brl@o) X F.

Now take trivialisations «, 8 as in the statement of this proposition and let & be
the induced trivialisation of (®~1)*& over ®(U). Suppose that ®(U) N (B, (zg) x
V) # () (otherwise the statement is trivial) and take a point (z,y) in this set. Let
L={pe{l,...,K}ly € V,} and denote the elements of L by X\g < --- < ||
Then, on an open neighbourhood of (z,y), we have x, = 0 for ¢ ¢ L and hence
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0 = 9)\1 o:--0 9)\‘“. Since also 19)\j_1,)\j = 19,\
Ao = 0), we find

B o é o &_1 = (B o 1907;1) © (19>\1,>\1 © 19;1{)\2) ©---0 (19>‘\L|’>‘\L\ o &_1)' (7)

x; for j € {0,...,[L]} (with

j—1

The intermediate terms 9 x, © 19;1,1’ Ajiq ATE transition functions of the bundle E,
over Vi, NV, ;-
function T/\_]_l o Ty,,, With the map (z,y) — Pes, ) (®,y). They are thus smooth,

In view of (6), they are given by the composition of the transition

with bounds determined by those of 7, x and (B, gpg).

Since Ey,, = Ex = (®7')*& near (x,y), the term on the right of (7) is just
(@, 1)o7y, 0a o (®~1,1), so it is essentially a transition function between ad-
missible trivialisations of €.

As for the first term, gy, is obtained from the restriction of 75, to &, but this
does not necessarily give an admissible trivialisation of 7 — F', as it is obtained
using normal coordinates on M, which do not, in general, restrict to normal coor-
dinates on M, (for example if M, is not totally geodesic). However, at the cost of
introducing an additional transition function in both F and £, we may assume that
B and (®,1) o7y, are associated with normal coordinates centred at the same point
(x0,y). Since both trivialisations are obtained by parallel transport, the transition
function is then just the holonomy of V¢ along a closed, piecewise smooth, curve
in M (e.g. for an interior chart the composition of a geodesic in (M,, gy) with a
geodesic in (M, g) that starts and ends on M,). This can be bounded in terms
of the curvature of V€ by writing it as the solution to a differential equation (see
GroBle and Schneider [GS13, Lem. 5.13]). Since these bounds are independent of x
and y this proves the claim. O

We remark that choosing a different metric and connection on F still gives
bounded trivialisations, by compactness of F. However, the bounds may then
depend on z, as can be seen by simply scaling a given metric hg by an x-dependent
factor y(x) > 0, hlg, = vy(z)ho.

We will use Sobolev spaces of sections of £ — M that are adapted to the scaling
of g.. To define these, fix r < r¢ (cf. Proposition 2.8) and choose points {z,|v €
N} such that the geodesic balls U, := B,(z,) cover B, with finite and globally
bounded local multiplicity. Let {x,|v € N} be a subordinate partition of unity and
XY,..., X}, d=dim(B), an orthonormal frame of vector fields over U,, all of which
are C°°-bounded uniformly in v (for the existence of these objects see [Eic07]).
Let ®,,0, be trivialisations of 7, (U, ), Iz (U,) with the properties given in
Proposition 2.8. Finally, let ¢,: F' — M, be the inclusion of the fibre and set
F, := ¢;,€ with the induced Riemannian metric on F', bundle metric and connection.
Denote furthermore by pr, the projection to F,, the second factor of U, x F,, and
define Wg, := pry 00, o (&, 1)*, that is (We,p)(z,y) = pry©,¢(®,  (z,y)), for
any section ¢ of g‘rr;,l(Uu) and (z,y) € U, x F.

Then the norm of WF(£) is defined by

[ ®)
aq ag 2
= EI:\T Zd/ H€\O‘|W@y (Vé*)@) (Vg*xg) (WMXU)wHka\a\(]:V) volg, .
veEN aeN v

|| <k
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The norm of W*(F,) is defined in the canonical way, see [Sch96] for a detailed
discussion of these issues.

The space WF (&) is the closure of C§°(€) under this norm, and W§_(€) is the
closure of those sections ¢ € C§°(€) with supp(y) € M \ OM. This norm is
equivalent to that defined using the metric g., h and V¢ in [Sch96], up to a global
factor % due to the scaling of the volume form on B. More precisely,

C M W llwrey < € 1¥llwee gy < Cltllwr e -

with an e-independent constant.
The ellipticity of fAi with Dirichlet conditions (see [Sch96] and [Haal6, Prop. 2.15])
then gives the estimate

C (1188 6l yyage) + 1l ) < Mlyrsagey < C (AL Bl yaie) + 16l)  (9)

for all ¢ € Wy (E)NWEFT2(E), all k € N and some constant C' = C(k) independent
of .

3. CONSTRUCTION OF THE ALMOST-INVARIANT SUBSPACE

In this section we will construct the super-adiabatic projection P. whose range
P.H is almost-invariant under H. Throughout, we will assume that Condition 2 is
satisfied and that the potential V' € C°(End(£)) is symmetric.

The projection is constructed recursively, starting from the spectral projection
Py, associated to a gapped eigenband )\, annihilating the commutators with H order
by order. To make these calculations rigorous, we work with an adapted calculus
that will be introduced in the next subsection. We will focus on those aspects
that are new compared to the previous work [LT17], i.e., where the vector bundle
structure of £ plays a role. In parts of the proofs that are essentially independent
of this structure we will focus on the main ideas and refer to the existing literature
for technical details. A more detailed exposition of these aspects can be found
in [LT17] and the first author’s thesis [Haal6).

3.1. The framework. To make sense of commutators with the unbounded oper-
ator (H,D(H)) we need to make sure that certain operators map into the domain
of H. This involves keeping track of Sobolev-regularity and boundary conditions.
In order to achieve this over several steps in the recursive construction of P., we
will now introduce a calculus adapted to our problem.

Commutators such as [H, Py] can be expressed using commutators with V.,
with X € C°(TB) (recall that X* denotes the unique horizontal vector field on
M with Trpy X* = X). Viewing Py as a section of L(Hz) and L(Dx), it would
be nice to think of V§<* as a connection on these bundles, induced by V¢ via
the formula (Vi74)(y) = V4%.4%(y). There are, however, technical reasons why
this approach has to be modiﬁyed. First, these infinite-rank bundles do not have
a natural differentiable structure, so it is not immediately clear to which sections
1 such a formula should apply. Further, the horizontal lift X* of X might not be
tangent to M. In that case, this formula does not give rise to a connection on
L(Dx), since V5§ ;1/’(9) will not, in general, satisfy the Dirichlet condition when
does. ’

For these reasons we will define the induced connection on L(Hx) and L(Dx)
only locally, which is sufficient since the operators we deal with, e.g. [Vi* , Po], are
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local with respect to B (in the sense that 7y (supp([V&., Pol¥)) C mas (supp(v))
for ¢ € C§°(€)).

Using the notation of Section 2, let zyp € B be an arbitrary point, U = B,.(z0)
be a normal coordinate neighbourhood with radius r < rg < rinj(B7gB), ® an
admissible trivialisation of 7,/ (U), and © an admissible trivialisation of I (U).
Let again Wg := pry 0 © o (d71)* and note that

We'v) (@™ (x,y)) = 07 (2, ¥(x,y)),

for a section 1 of U x F — U x F. Moreover, Wg and Wél extend to bounded
operators between L2 (€|7r;/11(U)) and L?(U x F), which we interpret as L?(F)-valued

L2-functions on U, i.e., L*(U, L*(F)).

Lemma 3.1. Assume the notation defined above and let ¢ € C*(U, L?(F)), then
VXY = Wo Ve x W5y

defines a covariant derivative in the sense that
VY =Xy + A%(X)y

with A®(X) € C(U,L(L2(F))) N C>®(U, LW?2(F) N W¢(F))).

The connection form A® is given by a smooth section of the bundle T*B|y x
End(F) over U x F. When F is equipped with the bundle metric hx and connection
V7 as in Proposition 2.8 this section and all its derivatives are bounded by constants
independent of U.

Proof. We will explicitly derive the form of A®, all of the claims then follow directly
from this. Let V' C F be a normal coordinate neighbourhood. An admissible
trivialisation 7: Fly — V x C" gives rise to a trivialisation 700 of £|¢-1(yxv). Let
7 be another such trivialisation over V. If VNV # @, the transition function between
the trivialisations 700 and 70@ equals S := For !, which is the transition function
between the trivialisations of 7. Let A®7™ € C®(T*(U x V)) ® C"*" denote the
connection form representing the connection V¢ in the trivialisation 7 o0 ©. Then,
by the specific form of S and the transformation formula for connection coefficients,
we have
A@,T _ S—lA@,?S =+ d?’],

where n € C°(V N V,C”X") depends only on the fibre coordinates. Thus, dn
vanishes on vectors tangent to U C B and the restrictions of these (matrix-valued)
one-forms on U x V NV to TB yields

A@,T'_I_B — S—1A®,?|TBS.

These local (on F') expressions can thus be patched together, yielding a unique
End(F)-valued one form A® € C°(T*B|y x End(F)) such that

A@|Vﬂ\7 = T71 (A@’T|TB) T = ’7~'71 (A@"F|TB) T.

As the connection coefficients in admissible trivialisations are uniformly bounded
(see Eichhorn [Eic91], for the boundary charts see also [GS13, Thm. 5.13]), this
shows that A® is uniformly bounded with all its derivatives by Proposition 2.8.
Hence, A®(v), v € T,U, viewed as an operator on £(L?(F)), restricts to an operator
in L(WF(F)) for every k € N. Furthermore, since it acts pointwise, A® (v)W§(F) C
W (F), and the Dirichlet condition is preserved by A®. a
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Observe that the definition of V© above, together with ®*[X,Y] = [®* X, ®*Y],
immediately gives the curvature operator as

RO(X,Y) = WoR®(®*X,*Y)Wg ',

where the right hand side has to be understood as a potential in C°°(End(F))
acting on L%(F).

Now let us sketch how we will use the connection V® for the computation of
commutators. Take X € Cp°(TB) with gp-length of order one (so that X is
bounded with respect to e 2gp) and consider the commutator [VfX*,P0]|W;41(U).
Write X* = ®*X +Y with a smooth and bounded vertical field Y € C2° (VM) and
introduce Wg to obtain

[Vixe, Pollot oy = Wo ' [VEx, Wo PoWg ' IWel -1 1y + [EVY, Poll—1 1

The last term is clearly of order e in L(Hx), because Py is bounded from Hz to
D, independently of . For the first term, we apply Lemma 3.1 and obtain

WoltleX +eA°(X), W@H)W(_;l]we\mlw).

The term involving e A® (X) is of order ¢ in L(Hz), by boundedness of A®. The re-
maining term is essentially e-times the derivative of W PoWg* € L®(U, L(L?(F))).
The differentiability of this operator-valued function follows from the gap condition
and the differentiability of Wg H” Wg ! which we prove below, by rather standard
arguments. The choice of ®*X over X* as the direction of derivation is impor-
tant: The operator H” can only be differentiated in directions which respect the
Dirichlet conditions and ®*X is always tangent to OM.

Lemma 3.2. Assume the notation above. Then
WoHFWg" € Ci2 (U, £ (W2(F) N W3 (F), A(F)) ).

Proof. For this proof, abbreviate D := W?2(F) N Wy (F) and fix the norm on this
space to be the one induced by the Riemannian metric, bundle metric and connec-
tion at zg € U.

Recall that H” = —A§ + V. Since the statement for V is trivial, we need to
discuss only the vertical Laplacian. Let {V,|un € {1,..., K}} be a covering of F' by
normal coordinate neighbourhoods and x, a subordinate partition of unity. Then
observe that, for a local operator A € L(D, L?(F)), we have

K K
1460y = 4 x| o S DA o0y It
p=1 n=1
< Ol 0P | A1 | g2 (10)

The operator Aly, denotes the restriction of A to sections with support in V,,, so its
norm is given by the operator norm from DN Wg (Fly, ) to L*(F). This shows that
it is sufficient to prove the claim for the restriction of Wo H” Wg ! to an arbitrary
V,.. Denote this set by V.

Let Y1,...Y,,, m = dim(F), be smooth, vertical vector fields over U x V that
form an orthonormal frame of TF|y with respect to (®1)*gy (see [LT17, Lem. 3.8]
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for a construction) and let V denote the Levi-Civita connection of this metric. Using
these, we can write

m
£ —1 —1 0,7—0,T o,r
roWeAiWal o™l =3 (V9TVRT VYT, ).
j=1
where 7 : F|y — V x C" is an admissible trivialisation of F over V and V®7™ =
d+A®"7 in the notation used in the proof of Lemma 3.1. This is clearly a differential

operator with smooth coefficients. Its (Lie-) derivative £x in the direction X €
C(TB|y) is

> [(#ever) VR VT (V) - Ve .
j=1
and for any vertical vector field Y
VYT =Ly (Y + A9T(Y)) = [X, Y] + (£x4°7) (V) + 497 (X, Y])
= V&TY] + (fXA@’T) (Y).

Since [ X, Y] is a vertical vector field, the derivative of Wo ASWg! is again a second-
order differential operator and its norm in £(D, L?(F)) is bounded since the triv-
ialisation 7, the connection form A®:7, and the vector fields Y; are C"*°-bounded.
Higher-order derivatives can easily be calculated in the same way. The derivative is
in the sense of the operator norm because V' is precompact and the vector fields Y;
extend smoothly to V, so the difference quotients of coefficients converge uniformly
to the derivative. This yields the derivative of the operator (Wg A\S,W(g 1. D), since
the domain D is fixed. O

In order keep track of differential operators and boundary conditions in iterated
commutators, we will introduce suitable algebras of operators. These are essentially
differential operators in the “directions” ®*X with coeflicients in the fibrewise op-
erators L>°(H x), respectively L (H z, Dx), that depend smoothly on the direction
d*X.

Definition 3.3. Let the objects U, ®, ©, Wg be as above. The coefficient alge-

bras Cy C L*(L(HF)| 1)) and ctl c Lo(L(HF, DF)| 1)) consist of those
M M

operators A, for which WeAWg' is a smooth function from U to £(L?(F)) and

L(L2(F),W2(F) N Wa(F)), respectively.

In terms of commutators and in view of Lemma 3.1, for A € Cyy this means that
(V5 [ Voo A1) € 2% (LA v ) (11)
for any k € N and vector fields X, ..., Xy € C°(TB|y), and similarly for A € Cg.

Definition 3.4. Assume the notation above and let additionally Xy,..., X4 be a
gp-orthonormal frame of uniformly C*°-bounded vector fields over U.
The algebra A consists of those continuous linear operators A € LW > (&), L*(£))
satisfying
mar (supp Af) C mar(supp f)
for all sections f € W°(&), such that

A|7TJT{1(U) = Z Aa(&—)gla‘ (vg*xl)al T (vg*Xd)ad ) (12)

aeNd
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where the sum is finite, A, € Cy and there exist constants C'(«, m, ), independent
of U, for which

||W@Aa(5) ) < C(a,m,s). (13)

Wo' HCm(U,L(m(f)

The algebra Ay C A is the right ideal such that A,(c) € CH and the inequal-
ity (13) holds in the norm of C™ (U, L(L?(F), W2(F) N Wg (F))).

To see that these are indeed algebras, note that (11) allows us to commute
derivatives past the coefficients (see also Equation (15) below). We may also reorder
derivatives, since

[V‘é*Xl 5 Vé*xj] == Rg(é*X“ (b*XJ) + va*Xi7¢*X.j], (14)

and [@*X;, &*X;] = O*[X;, X;] = >, FZ@*Xk, with smooth and bounded coeffi-
cients. Note that the factor /! in (12) is natural, because the vector fields e®* X;
have g.-length one.

In order to control the number of derivatives, as well as the dependence on ¢, we
introduce a double filtration of A, Ay (from now on, we write A, in statements
that hold with and without the subscript H). Let A¥ be those A € A, for which
Ay =0 for |a| > k (and any U). These are differential operators of order at most
k in the directions ®*X;. Then, let A%* be the elements of order & , in the sense
that (13) holds (in the appropriate norm) with C(a, m,e) = O(e*), for all a and
m. Using Equations (11) and (14), one easily checks that A%‘ A" ¢ AFT™6n,

In view of (8) it is clear that the elements of A% are bounded operators from
WE(E) to L2(E) = W2(E). We will denote this operator norm on A* by |-,. We
then have [|A||, = O(c’) for A € A%'. An important property is that, due to the
locality of A € A, w.r.t. B, we can estimate these norms using local bounds, that
is

[All), < Csup || Aly, |,
rveN

where U, is the covering of B used in (8) and Aly, is the restriction of A to sections

with support in 7T]T/[1(U,/) and the constant C' depends on k, but not on . The proof

of this estimate is similar to the one for a finite cover (10) and relies on the fact

that the U,’s have bounded local multiplicity; See [Haal6, Rem. 3.6] for details.
Concerning the algebra Ay we have the following lemma.

Lemma 3.5. An element A € A% defines an operator from WF2(€) to D(H) C
W2(E), whose norm is of order £°.

Proof. The fact that AW +2(&) ¢ W2(€) follows immediately from the formula (8),
defining the Sobolev norm, the local expression (12) and the fact that the local
coefficients map L?(€|ys,) to D(H” (x)) € W2(€|a,). The image is contained in
the domain of H, because the Dirichlet boundary condition is fibrewise and thus
W2(E) N L2(Dy) = D(H). O

We now show that natural objects associated with H” are elements of A.

Proposition 3.6. Let z € C°(B,C) with dist (2(z),0(H” (z))) = 6 > 0, then
R7(2):=(HF —2)71 e A%’,O. If X is an eigenband with a gap (Condition 1) then
Py is a continuous section of L(Hr), Py € A% and X € C°(B,R).
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Proof. For the resolvent, we need to show that We R (2)Wg' € CH. This follows
immediately from Lemma 3.2 and the identity
LxWeoR” ()Wt = Lx(WeH Wt +2)7!

= —(WeHT W' +2)7' (LxWeHT W) WeHT W' +2)71,
for X € C°(TB|y). The statement for the spectral projection is deduced from

this using functional calculus. The smoothness of A follows from smoothness of
WeH” W' and We PyWg . 0

Corollary 3.7. Let R”, X\, Py as in Proposition 3.6 and denote POJ- =1y, — P,
then

RF(\P = PERT (V) i= (PFHT P = 0) e A
Proof. Proposition 3.6 shows that the operator H” P(f- is smooth in the sense of
Lemma 3.2 and z(z) := A(x) is separated from the spectrum of this operator. Thus,
by the arguments of Proposition 3.6, its resolvent (H}-POJ- — )\)71 = RT(\)P is
an element of A%’O. O

Remark 3.8. If H” = H7(¢) depends on ¢, it follows easily from the proofs
above that Py, R” € A%’,O, as long as Lemma 3.2 holds with e-uniform bounds on
the derivatives. This is the case, for example, if V' depends on € but is e-uniformly
bounded with all its derivatives.

In this scenario, we can perform the construction of P. without any changes,
because it relies only on the calculus for A,.

In order to obtain a useful calculus, we still need to consider the horizontal
Laplacian Af = Trrs g5 (VE)?2 — Vf]\/.

Lemma 3.9. Let A € A];I’e and B € AI;I/’[/. Then
[E2AG, A] = O(e"H)
in L(WEH2(E), 1), and
[€2Af| A}B c Ak+k'+1,€+f/+1.

Proof. Let U, ® and X; be as in Definition 3.4. With this notation, we have

d
Amw;;(U) =y V&V - V‘(gvxixi)* — (mhr98) (XF,mv) V-

i=1
Define vertical fields Y; by X; = ®*X; +Y; and expand the expression for Af using
this decomposition. We then have first-order terms, and second-order terms with
any combination of Vé* x, and V% To prove the claim, we will commute all the
derivatives in the local expressions for [52Aﬁ, A] to the right.
To compute the commutators, let D € A, and consider the form of D over U
given by Definition 3.4. We have

[V‘:I’;*X“DHW;; = Z Ela‘ ([Vg*XiaDa] (Vg*Xl)m (Vg*Xd)ad
aeN

+ Da [vé*xiv (Vé*Xl)al (Vfb*xd) d})' (15)
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The coefficient [V§.y , Dy] is in C; by Lemma 3.1, and the second line again
contains derivatives of order |a| by (14). Such a commutator thus preserves the
order of D, both in the number of derivatives and €. This shows the claim for terms
like [Vé*xivg*xj , A] and those containing only one derivative in a direction ®* X,
1 <d.
In order to handle terms containing vertical derivatives, observe that
[Viex,, V¥,] = RE(®* X, Y)) + Vigx, v,
where [®*X;,Y]] is vertical, because Tmp[®*X;,Y;] = [Tay®*X;, TrarY;] = 0.
We thus have, for example,
——
Akt

Iterating this calculation and using that V¥ A is bounded on W (&), by ellipticity
of Hr, we find that V§, 4, V§, V§ A € A®*, and the same for B. Since eV§, = O(e)
in L(WPHL(E), WP(E)), for any p € N, this proves the claim. O

Lemma 3.9 implies that
[ Af, Po) = [°Af, P5] = [*Af, PoPo + Pole*Afy, Po] = O(e)

in L(W2(E),H). Inorder to treat the full operator H we need to require appropriate
conditions on the perturbation H;. We will express these in terms of the algebras
Ae. It is easy to check that they are satisfied if H; is a second-order differential
operator, symmetric on D(H), with (e-uniformly) bounded coefficients.

Condition 3. The operator H; is bounded uniformly in € from WP+2(€) to WP(E),
for all p € N, symmetric on D(H) = Wy .(£) N W2(€) and satisfies H1 A € AFT2E,
for all A € AIEE.

With this assumption, we have
[H, Py] = [-€%A§, Po] + eH Py — e PyHy = O(e) (16)

in L(D(H),H), because Hy Py € A*? and PyH; = O(1), by Condition 3. Note that
we should not consider this expression on W2(€), as H is not defined there.

3.2. Proof of Theorem 1.1. We will now prove our main theorem. As a prelimi-
nary step, we construct in Lemma 3.10 below a sequence PV of almost-projections
in Ay which are e-close to Py and commute with H up to errors of order eVt1. This
lemma is an improved version of a similar statement in [Lam14, LT17] with respect
to the order of PV € Ay. The super-adiabatic projection P. is then obtained from
the PV using a construction due to Nenciu [Nen93].

Lemma 3.10. For every k € N there exists Py, € A%C’O such that
N
PN =%"¢kp,
k=0

satisfies
AN,N+1
1) (PN)2 — PN e A7+
2) [H, PN}A € APN+2HRN+IHE for qll A € AI;I’Z, and

3) H [H,PN} H2N+2 = O(eN*t) on D(H).
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Proof. Take Py = P° as a starting point. This is an element of A%’,O by Propo-
sition 3.6, satisfies 1) because it is a projection, and 2), &) by Lemma 3.9 and
Condition 3, cf. Equation (16).

The object Pyny1 is defined recursively by splitting it into diagonal and off-
diagonal parts w.r.t Py. Assume 1) and 2) hold for PV and define

_ pb O
Pny1 =Py + Py,

with

eNTIPR . = —P-RT(\)[H, PN Py + Py[H, PNIRT (\) Py,
and

eNTPRL =Py (Qny1 — PY) Po+ Ps- (Qns1 — PV) Py,
N4l N

Qny1 = Z Z eI PPy

j=0 k(=0
k+L0=j

The role of the diagonal part PY 11 is to make Py41 an almost-projection in the
sense of 1), while the off-diagonal part will ensure that 2) and 3) hold.

With this definition, PQ_, € AZNH’O, because 2) holds for PV and Corollary 3.7
(note also that Pyt AN ¢ AR 4+ pyAR* C AM*). For the diagonal part, first
observe that P,P, € A% C A%NH, SO PII\?H € .A?{NJFQ. Since Qn41 is equal
to (PNV)? = ZkN,e:o e** PPy up to terms in AZN’NH, the coefficients in (12) of
Qn+1 — PN equal those of ((PY)? — PY) (and vanish for |a| > 2N + 2), up to
terms of order eV 2, which shows that PR, € .A?{NH’O by 1).

In order prove Properties 1), 2) and 3) for PN*1 one writes all the operators as
matrices on PyH @ P;-H and treats the four entries separately. Since the arguments
for the other entries of this matrix are rather similar, we will only treat half of the
cases. The calculations for the remaining ones are given in [LT17, Lem. 3.17].

For 1), we first consider the Pg--P;- entry. We expand PN*! = PN 4 eN+1py
and then use Pi-PN € Pi-(Py 4+ A3"") € A2V leading to the following calcula-
tion:

POJ_((PN+1)2 o PN-‘rl)POJ_
_ P&‘((PN + EN+1PN+1)2 _ PN _ EN+1PN+1)POJ_
€ P-((PN)? = PN + eVt (PN Pyiy + Py PN — Pyya)) Py

2(2N+2),2N+2
+ Ay

C Pi-((PN)? = PY) P — eV P PR P + AN HDV 2

CAAN.N+2
4(N+1),N+2
c AJNTLNF2

Next, consider the Py-Pg- entry:
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PO((PN+1)2 _ PN+1)Pol

AN41,1
€Ay

€ Poy((PN)? = PN)Ps- + Nt Py (PN Pyy1 — Pyy1) Py
+ €N+1 POPNJ,-lPNPOJ_ +A§—I(2N+2),2N+2
—
c AN+
H
C PQ((PN)2 _ PN)POJ_ +A%N+1),N+2.

Now we use that Qny1—Py € ,A?{NH’NH, by the induction hypothesis for (PV)2—
Py, to obtain

Py((PN)? = Pn) Py € Po(Quy1 — Pv) Py + Ay

C PN(Qn1 — Py)Pi- + A T2
N
C Z 5k+€+mPkP[PmPOL _ (PN)2POL + Az}{N+2,N+2

k,,m=0
m4+k+L<N+2

C (Qny1 — Py)PN P + AN 2N +2

AN+42,N+2
C Ay TN

which proves the claim.
For 2), we let, for simplicity, A € A%’,O and start with the Py—P;- entry. By
Lemma 3.9 and Condition 3, we have

[—e* AL + A+ eHy, Py ] Py A e ANTHL
We then obtain
[H, Pyi1]P-A € [HF — A, Pyy1 P A+ A2NF41,
This gives us, using that Py and R” commute and (H* — \)Py = 0,
Py[H, PN + 5J\erlpj\ul]J_jOLA
€ Po([H, PN] + N1 [HT — )\aPNH])PolA 4 A2N+4N+2
C Py([H, PN +€N+1[Hf N, Prat BE) PA 4 APN+LN+2
C Po( — PyPy 1 Py (HF — \)Pj A + APN+4N+2
C Py([H, pN [H, PN}R]-‘(/\)POL(H]-‘ B )\))P()LA+A2N+4,N+2’
=0

which gives 2) for the Py-Pj--block.
For the Pg--P3- part, write PNt = PN4eN+t1PD  +eNFLPR | Then, observe

that
Py [H, Nt Py Py 1 Py | Py = eN T P HP Py 1 Py~ = €N H, P| Py Py 11 Py
is an element of A2N+4N+2 and thus

i N+1 pO 1 2N +4,N+2
P [H,eN TP, | Py € APNFTANT2

by the analogous calculation for Pg- P41 F.
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For the remaining terms, we calculate
Py-[H,PN +NTIpR || P A
= F5 [H, P + By (Qn+1 — PY)Fy | By A
= Py [H, Py 1(Qnys — PPy A+ Py (Quya — PY)[H, Py | Py A
+ Py [H,Qn 1] Py A

The terms of the first line are in A2V 4 because [H, P;-]A = —[H, Py]A € A%! and
(Qny1 — PN) e AZNT2NFL For the last line, we have

N
Py [H,Qn)PA =P Y " ([H PP+ Py [H, P]) P-A

k=0
k+f<N+1

N N

=P (Z [H, PN '+ P [H, PN+1—k]> PyA
{=1 k=1

c A2N+4,N+2’

by using the induction hypothesis on Py, P,. This completes the proof of 2), and
the reasoning for 3) is essentially the same. O

Proof of Theorem 1.1. To complete the proof, we need to construct, for any given
N and A, a projection P, € L(H) N L(D(H)) such that

I[H, Ple(H)ll 2y = O,

for every measurable function o: [—00, A] — [0, 1]. P. will be obtained from PV by
a construction that goes back to Nenciu [Nen93| and has been used in many later
works. We will thus only sketch this procedure, a complete presentation adapted
to our notation can be found in [LT17].

The first point is to note that, by Condition 3, the domain of (H)* is contained
in W2F(€), for & small enough, and, due to the ellipticity of —A  with Dirichlet
conditions (Equation (9)) its graph norm is equivalent to the one of W2¥(&). Thus,
by choosing an appropriate cut-off function x, we can define a regularised version
of PN by

PX = Py + (PN — Py)x(H) + x(H)(P" = Py)(1— x(H)).

One then checks that PX € L£(H) is self-adjoint and PX = Py + O(e), in both L(H)
and L(D(H)). Since PX is close to Py, we immediately have [H, PX] = O(g). If x
is chosen to equal one on supp o we also have

[H, PX|o(H) = [H, PN|o(H) = O(e¥),

by Lemma 3.10, as o(H) : H — W2N+2(€) N D(H) is bounded.

The operator PX is not a projection, but, since it is close to Py, its spectrum is
contained in e-balls around zero and one. We then define the projection P. as the
spectral projection of PX to the spectrum contained in a ball of radius 1/2 around
one,

i

P.=— /(PX — 2) "z,
v

2
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where v is the boundary of this ball. One easily checks that P. — Py = O(e). The
proof is then completed by an analysis of the functional calculus of H and PX,
which we do not replicate here. O

This completes the proof of our results. Let us remark that the expansion P =

ZkN:o e* Py, of Lemma 3.10 leads to an asymomptotic expansion of P., following
[Nen93| or [Lam14, Lem. 2.25].

Lemma 3.11. Let P, k < N, be as in Lemma 3.10 and P- be the associated
super-adiabatic projection. Then,

PE_ ¢ kP H H = £+1 s
| (P = ot P, = O

for all ¢ < N and every cut-off x € C§°((—o0, Al, [0, 1]) with x? € C§° for allp € N.

From this, one obtains the expansion of the effective operator (4), see [Haal6,
Prop. 4.10].
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