
HAL Id: hal-01527915
https://hal.science/hal-01527915

Submitted on 26 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Emulated IoT Test Environment for
Anomaly Detection using NEMU

Shane Brady, Adriana Hava, Philip Perry, John Murphy, Damien Magoni, A
Omar Portillo-Dominguez

To cite this version:
Shane Brady, Adriana Hava, Philip Perry, John Murphy, Damien Magoni, et al.. Towards an Emulated
IoT Test Environment for Anomaly Detection using NEMU. 1st IEEE Global IoT Summit, Jun 2017,
Geneva, Switzerland. �10.1109/GIOTS.2017.8016222�. �hal-01527915�

https://hal.science/hal-01527915
https://hal.archives-ouvertes.fr


Towards an Emulated IoT Test Environment for
Anomaly Detection using NEMU

Shane Brady∗, Adriana Hava∗, Philip Perry∗, John Murphy∗, Damien Magoni†, and A. Omar Portillo-Dominguez∗
∗Lero, School of Computer Science, University College Dublin, Ireland

Email: shane.brady.1@ucdconnect.ie, {adriana.hava,philip.perry,j.murphy,andres.portillodominguez}@ucd.ie
†LaBRI, University of Bordeaux, France

Email: damien.magoni@u-bordeaux.fr

Abstract—The advent of the Internet of Things (IoT) has led
to a major change in the way we interact with increasingly
ubiquitous connected devices such as smart objects and cyber-
physical systems. It has also led to an exponential increase in
the number of such Internet-connected devices over the last
few years. Conducting extensive functional and performance
testing is critical to assess the robustness and efficiency of IoT
systems in order to validate them before their deployment in
real life. However, creating an IoT test environment is a difficult
and expensive task, usually requiring a significant amount of
physical hardware and human effort to build it. This paper
proposes a method to emulate an IoT environment using the
Network Emulator for Mobile Universes (NEMU), itself built
on the popular QEMU system emulator, in order to construct
a testbed of inter-connected, emulated Raspberry Pi devices.
Additionally, we experimentally demonstrate how our method
can be successfully applied to IoT by showing how such an
emulated environment can be used to detect anomalies in an
IoT system.

Index Terms—Internet of Things, Emulation, Testing, NEMU.

I. INTRODUCTION

Internet of Things (IoT) has become a major technological
revolution which is leading to an explosive growth in the num-
ber of internet-connected devices globally. Experts estimate
that IoT will consist of approximately 50 billion devices by
2020 [1]. Consequently, IoT is gradually impacting every busi-
ness area and industry field. Moreover, how effectively these
devices are able to communicate (particularly over potentially
heavily congested networks) can have a major impact on the
quality of the services provided, as well as in their degree
of success (or failure). Therefore, properly testing such IoT
services is essential [2]. However, testing in IoT is a very
challenging task. This is because the intrinsic characteristics
of IoT (e.g., the normally vast number of devices and the
complex nature of the inter-connectivity among the devices)
make the creation of an appropriate test environment of
real devices particularly effort-intensive and costly. Likewise,
monitoring the health and performance of an IoT system
presents similar challenges. This is the result of producing and
transmitting huge amounts of data, which makes considerably
more complex the detection of anomalous behaviours within
the system.

To address these challenges, our research work has focused
on developing techniques to improve the processes involved
in testing IoT solutions, with a special interest on anomaly
detection. In particular, this work presents a novel method to
create an emulated IoT environment based on the Network
Emulator for Mobile Universes (NEMU), which is a powerful
state-of-the-art tool used to create highly customisable virtual
networks of virtual machines [3]. This work also shows,
through experimental evaluation, how the emulated environ-
ment can produce similar results when used at specific settings
(compared to a real one), while also significantly simplifying
the effort required to build a test environment. This was
assessed within an anomaly detection scenario, in which the
health of the IoT systems was monitored with log analytic
techniques.

II. RELATED WORK

Several research works have focused on developing tech-
niques to simulate IoT environments. For example, the authors
of [4] presented an approach to improve the scaling capa-
bilities of the NS3 simulator, so that it is usable for large
problem sizes (such as IoT). Despite the fact that simulations
are useful to test IoT advancements to a certain degree, they
are not suitable for all scenarios. For instance, when the IoT
services need to be tested in real-time to assess if they can
fulfill their expected Service Level Agreements. Consequently,
other works have focused on emulating IoT environments
where applications can be deployed and executed exactly as
they would in real life. Despite the progress in this area,
there is still a need for approaches that allow to create more
easily, and with less effort, emulated IoT systems [5]. This is
because most of the current alternatives are typically hard to
use, and difficult (or impossible) to configure at run-time. In
2015, Bagula and Erasmus have proposed an IoT emulation
environment with COOJA [6]. However, this environment is
targeted only at Contiki systems and emulate motes such
as Tmote Sky, Z1 mote, MicaZ mote, etc. It can not be
used for Raspberry Pi emulation. More recently, Le-Trung
has proposed an IoT testbed emulated over an OpenStack
Cloud infrastructure [7]. However, his testbed is based on the
QOMET emulator which uses wireconf, a software only
available on RHEL6 systems.



For these reasons, this paper presents a method that lever-
ages on NEMU to improve that process. NEMU is a tool
to create (and manage) realistic virtual dynamic networks,
allowing practitioners to test and evaluate prototypes of com-
plex applications (such as IoT services) with a complete
control over the characteristics of the emulated environment
(e.g., network topology and link parameters). Also, NEMU
can create such environments with relatively limited hardware
resources, without any administrative rights, and/or distributed
over several physical machines [3]. As NEMU uses QEMU for
system emulation, it can run a large variety of hardware includ-
ing Raspberry Pis. For these reasons, NEMU is an attractive
candidate to be used in the IoT domain. Finally, anomaly
detection is a relevant scenario in IoT, where sensor data
and sensor faults are continuously monitored. For instance,
the authors of [8] presents a comprehensive list of potential
solutions to discover anomalies (e.g., using supervised and
unsupervised machine learning techniques). In contrast to
other works in the area, this work proposes the usage of log
analytic techniques to detect such anomalies.

III. PROPOSED METHOD

A. Testbed Architecture

The architecture of the IoT testbed (i.e., the emulated IoT
environment) contains multiple components:

1) NEMU is used for the creation and management of
a network of virtual machines (VM). An important
characteristic of NEMU is that it allows to modify the
system at run-time. For instance, by allowing to add
(or remove) devices to the network, as well as network
links between the devices. This capability allows the
introduction of anomalies into the IoT system.

2) QEMU is used to emulate the IoT devices (e.g., Rasp-
berry Pis in our case). QEMU was chosen because
it is an open source machine emulator that allows to
accurately emulate an IoT device (especially the proces-
sor, such as the ARM family of low power processors
typically used in SoC-based boards). Alternatively, the
practitioner can also use real IoT devices and hook them
to the virtual network. This is useful if some specific
hardware can not be emulated, such as specific shields.

These components are shown in Fig. 1, which depicts the
high-level architecture of the testbed.

B. Testbed Generation

The following steps are required to create a working emu-
lated IoT environment:

1) Define the network topology. For this work, we focused
on the widely-used tree topology [9], [10] typically used
to manage large scale networks. However, any topology
can be built with NEMU. At the bottom of the tree
structure, there are sensors constantly monitoring and
reporting their measured values. On the next layer up
there are a series of Raspberry Pis, each responsible
for a cluster of sensors. Raspberry Pis are used as

Fig. 1. High-Level Architecture

they are small, affordable computers, widely deployed
in IoT environments. As we proceed up the tree, each
higher level Raspberry Pi is responsible for a number
of Raspberry Pis below it in the tree. Each Raspberry
Pi will report both the sensor data it receives, as well
as metrics about the performance of the device itself up
the tree. These metrics, including the CPU and memory
usage of the device as well as network statistics (such
as throughput, packet loss and latency) provide insight
into the health of the system as a whole, enabling the
detection of anomalies in the network.

2) Create Virtual Host Configurations (VHostConf object
in NEMU). Each VHostConf acts as a template For
Virtual Hosts (VHost object in NEMU) to expedite the
generation of VMs (based on the templates).

3) Specify the architecture (e.g., ARM), the processor (e.g.,
arm1176) and to provide the kernel for the chosen
operating system.

4) Create VHosts that represent the devices (i.e., Raspberry
Pis). For each VHost, the experimenter can modify the
configuration parameters defined on the VHostConf. A
virtual drive image must be provided for the host (i.e.,
Raspbian Wheezy).

5) Specify the parameters for the virtual Network Interface
Cards (VNics). These virtual network interface cards can
be attached to a virtual node (VHost) in order to allow it
to communicate with other virtual nodes through virtual
switches. A VHost can have multiple VNics. As optional
parameters, each VNic can be set to a specific card
model and hardware address (otherwise, default values
are used).

6) Create VLinks, which are virtual networking elements to
inter-connect the other virtual entities. A commonly used
type of VLink is the VSwitch. A VSwitch is a virtual
Ethernet switch device with a configurable number of
interfaces. Using NEMU’s link command, one can link
virtual hosts and virtual Ethernet elements to create
various network topologies. For instance, VSwitches,
can be used at appropriate position in our scenario,
to create a tree topology to connect a set of emulated
Raspberry Pis.

7) NEMU provides pre-configured virtual routers



(VRouters) to simplify the management of the
network. A VRouter provides services such as DHCP
and IP forwarding. A VRouter can also be linked to
a VSlirp. A Slirp is a particular virtual point-to-point
link which enables a VHost to communicate with the
Internet through NAT emulation inside QEMU. Slirp
links also contain internal DHCP and DNS servers.
This capability is needed to send information from the
emulated IoT system to a machine outside of the virtual
network (e.g., on the Internet).

8) An optional step is to connect real hardware devices
to the emulated network (as shown in Fig. 1). This is
done by creating a Linux bridge and a TAP interface on
the machine hosting the testbed (i.e., where the QEMU
devices are being created). The TAP interface allows
software in the Linux user space to be able to use a
virtual Ethernet interface on the host machine. A real
device can be connected to the host either straight into
the host physical NIC or through a physical switch
as shown on the figure. Both the host’s NIC and the
TAP are then connected to the Linux virtual bridge thus
creating an hybrid virtual/real network.

Finally, to complement the previous discussion, Fig. 2 presents
an exemplary tree topology created using the above discussed
method.

Fig. 2. NEMU Scripting Components

C. Anomaly Detection Use Case

Among the range of available use cases, our work has
initially focused on anomaly detection due to its relevance to
IoT. In this scenario, an IoT system, composed of multiple de-
vices interconnected through a network topology, periodically
transmits their data to a consumer layer such as a NodeRED
application. This layer is then responsible for consolidating the
received data (potentially from several IoT systems) before
sharing it to an analytics service, such as Logentries’s log
analytics platform, with the aim of identifying abnormal
behaviours that might occur in the system.

D. Log Analytics Platform

To interface with the anomaly detection logic, the device
at the top of the topology (i.e., the root of the tree) is
set responsible for forwarding the sensor data and usage

metrics of all devices in the topology from the IoT system
to a NodeRED application. It runs independently on its own
machine and is used to share the data to a real-time log
analytics platform (e.g., Logentries), where the data is anal-
ysed to detect anomalies in the IoT system. The NodeRED
application can also generate logs (i.e., reflecting its own
performance), information which can be correlated with the
other logs to deepen the detection of anomalies. Fig. 3 shows
the temperature values and anomalies reported in the log
analytics system (i.e., Logentries). Temperatures below 19.6C
and above 20.4C are flagged as warnings (see section IV).

Fig. 3. Temperature data reported at the log analytics platform

IV. EXPERIMENTAL EVALUATION

The performed experiments aimed to assess how well an
emulated IoT system created with our proposed method and
software was able to act as a real one. For this purpose,
experiments addressed three scenarios:

1) Measurements of an IoT application using the MQTT
protocol.

2) Processor and memory usage of a benchmark applica-
tion.

3) Network throughput of iperf and FTP applications.

A. Setup

Three types of experiments were done:
1) The first type used a real IoT system built with Rasp-

berry Pi hardware. This real environment was composed
of Raspberry Pi 3, model B, and connected by a 100
Mbps Ethernet switch.

2) The second type used an emulated IoT system built
with ARM emulation software performed by the QEMU
system emulator. The emulated environment was com-
posed of the same number of equivalent emulated Rasp-
berry Pis, using a QEMU specific kernel1 and Raspbian
Wheezy as the Operating System (OS).

3) The third one used a virtualized IoT system built with
x86-64 virtualization performed by the QEMU-KVM
virtualization software.The virtualized environment was

1https://github.com/dhruvvyas90/qemu-rpi-kernel



composed of x86-64 virtual machines leveraging VT-
x hardware acceleration through the KVM module and
running Debian Wheezy as OS. As the Raspbian distri-
bution used on Raspberry Pis is based on the Debian
distribution, these VMs may run code compiled for the
same major release without problems.

Both emulated and virtualized environments were running
on a Dell Precision T5500 workstation equipped with an
Intel Xeon at 2.40Ghz (4 cores/8 threads), 24 GB of RAM,
under Linux Ubuntu 15.10 64-bit. All experiments were done
in isolation, so that all load was controlled. Also, we used
LogEntries as real-time log analytics platform due to its strong
analytic capabilities [11].

Two representative anomaly detection scenarios were evalu-
ated: sensor temperature warnings and processor and memory
load warnings as already discussed in section III-C. The
sensor temperature data was simulated by using a script which
randomly generated temperature values by following a normal
distribution centered at 20 C and a 2σ of 0.2 C. It ran on the
devices found on the leaf nodes of the network, transmitting
this information along with the other metrics. To generate
processor and memory loads, we introduced some controlled
noise to the system by running on the devices a subset of the
widely-used Java Dacapo benchmarks [12].

As evaluation criteria, the main metrics were temperature
measurements and anomaly detection, processor and memory
usage (in %), and network throughput (in Mbps). These
metrics were collected with the following tools: wireshark
(for MQTT packets) and Logentries (for anomalies), htop
and psutils (for processor and memory usage), iperf and
the GNU/Linux ftp client (for network throughput). Moni-
tored events (i.e., detected anomalies) were retrieved from
LogEntries’ reports, which was fed by the NodeRED node.
Temperature readings below or above 2σ of the mean were
considered as anomalies and flagged as warnings.

B. Results

1) Experiment 1 – MQTT-based IoT application: The
MQTT protocol was used to send messages from fake temper-
ature sensors running on the Raspberry Pis to an MQTT broker
(server). MQTT runs on the TCP protocol thus it is reliable
at the transport layer. We have used the QoS setting of 0 for
MQTT which means that messages are send in best effort
mode at the application layer. Fig. 4 shows the temperature
measured and sent in the real IoT system over time. Fig. 5
shows the temperature measured and sent in the emulated IoT
system. For this experiment, each run fired 1800 messages
(lasting around 30 mn when firing 1 message per second),
and 10 runs were performed per testbed type. Min, max and
average values are shown on the figures. We can observe
that the received values are similar and not affected by the
type of testbed used. We have observed that for each type no
messages were lost and no messages were delivered out of
order. This means that the server has not lost any received
message. Only the fact that random values produced by a
normal distribution were used as inputs (temperature values)

explains the variations on the figures. We haven’t shown the
results produced by the virtualized testbed as they are similar
to both figures already shown.

Fig. 4. Temperatures reported by the Physical Raspberry Pi Network

Fig. 5. Temperatures reported by the Emulated Raspberry Pi Network

We have also observed the total duration for firing the
1800 messages. We have tested with various message rates
from 0.1 to 100 per second. We have collected those values
in Table I. We notice that the total time for sending those
messages are matching the frequency parameter for the real
and virtualized testbeds. The virtualized testbed is a bit faster
because hardware accelerated x86 virtual machines are faster
than real RPis. The emulated testbed performs similarly at
low message frequencies but shows an increased lag when
the frequency increases. At 100 messages per second, the
emulated testbed is 86% slower than the real one. This issue
must be taken into account when using the emulated testbed
and depends on the IoT application used. In most cases, 1
message per second would be considered high, but in some
cases, monitoring may require up to 100 messages per second,
maybe more.

To understand the behaviour of the systems across the
evaluated experimental configurations, our analysis focused on
comparing the number of anomalies detected per environment
as shown in Table II. It can be noticed how the number
of detected anomalies over half-an-hour (at 1 message/s)
exhibited a comparable behaviour regardless of the type of



TABLE I
AVERAGE DURATION FOR SENDING 1800 MQTT MESSAGES

Testbed Real Emulated Virtualized
1 message/10s 5:00:09.742 5:00:13.297 5:00:08.840
∆ vs Real +0.02% -0.005%
1 message/5s 2:30:05.894 2:30:08.066 2:30:04.777
∆ vs Real +0.024% -0.012%
1 message/s 30:02.772 30:17.073 30:01.663
∆ vs Real +0.8% -0.1%
5 messages/s 06:01.706 06:17.801 06:00.822
∆ vs Real +4.4% -0.3%
10 messages/s 03:01.972 03:17.902 03:00.733
∆ vs Real +8.7% -0.7%
50 messages/s 00:37.279 00:53.978 00:36.700
∆ vs Real +44% -1.5%
100 messages/s 00:19.278 00:35.982 00:18.701
∆ vs Real +86% -3%

test environment. Results for the real network are more spread
out as shown by the higher standard deviation values, due
to the use of real network hardware. An example of the
observed anomalies (i.e., temperature thresholds) at Logentries
is depicted in Fig. 3.

TABLE II
AVERAGE NUMBER OF ANOMALIES REPORTED

Testbed Low Temp High Temp
Anomalies Anomalies

Average (Std-Dev) Average (Std-Dev)
Real 85.4 (12.8) 86.9 (12.5)
Emulated 85.1 (6.3) 82.7 (8.6)
Virtualized 82.2 (7.8) 83.7 (7.5)

2) Experiment 2 – processor and memory intensive ap-
plication: A second set of experiments was performed to
assess the behaviour of our solution in more resource-intensive
scenarios, where one or more resources, such as CPU or
memory, would frequently reach 100% usage. Even though
such scenarios might not be the most commonly found in
IoT (as the data gathering and processing usually tend to be
light-weight in terms of CPU and memory), the aim was to
strengthen the validation of our solution by identifying either
other potentially applicable usage scenarios or limitations on
its usage. The experimental set-up was similar to that used
in the previous experiment, with the following difference:
instead of using MQTT, the tested devices ran a subset of
the widely-used Java Dacapo Benchmarks [12]. This strategy
allowed us to diversify the assessed behaviours (i.e., CPU
and memory usage) by introducing some variability on the
workloads processed by the system. The chosen benchmark
programs were luindex, sunflow and eclipse, which used three
considerably different levels of resource utilization. Each test
run lasted 10 minutes and was repeated 10 times. All the plots
show for each timed data point (one per second), its average,
min and max values over the 10 runs.

Obtained results are illustrated in Figures 6, 7, and 8.
They show how an experimental configuration behaved on
each of the three tested types of environments. Intuitively,

Fig. 6. Test Load of the Physical Raspberry Pi Network

Fig. 7. Test Load of the Emulated Raspberry Pi Network

Fig. 8. Test Load of the Virtualized x86-64 Network

if the figures depicted similar shapes among them (like in
the previous experiment), the environments would exhibit a
comparable behaviour. However, it can be easily seen, by
visually inspecting the figures, that it is not the case. Figure 6
depicts the real Raspberry Pi, hence, this exemplifies a baseline
behaviour. Meanwhile, Figure 7 and 8 depict the emulated
and virtualized Raspberry Pi networks, respectively. It can
be noticed how the trends in Figure 8 (i.e. the three peaks
caused by the execution of the chosen benchmarks) resemble
the ones of the real Raspberry Pi, although they are less sharp.



Furthermore, it can be noticed how the trends depicted on 7
considerably differentiate against the other two figures. In the
case of the CPU, its usage practically reaches 100% during the
three peaks, situation which indirectly influenced the memory
usage (which showed a relatively flat behaviour). This is due
to the software-only emulation of the ARM processor which
is very demanding for the host environment.

3) Experiment 3 – network intensive application: The last
experiment focused on measuring network throughput between
the devices in each testbed type and also between different
types (e.g., between a physical Raspberry Pi (RPi) and an emu-
lated RPi). These results are summarized in Table III, depicting
the throughput obtained for each combination of the three
tested environment types. Considering that the first line in the
table (i.e., RPi → RPi) is the performance baseline, it can be
noticed how, whenever an emulated RPi is involved, there is a
drastic reduction in throughput (e.g., of approximately 75% in
the case of the FTP traffic). This is because in these scenarios,
the relatively slowness of the emulated RPi makes it to become
a bottleneck in the system (hence provoking the observed
impact on throughput). In contrast, it is worth noticing that,
even in such saturated scenario, a virtualized x86-64 works
fine as a replacement of a real Raspberry Pi. This is reflected in
the fact that all combinations using a virtualized x86 achieved
levels of throughput comparable to the corresponding baseline
value. The only exception was the experimental configuration
which only used virtualized environments. This was the result
of using hardware acceleration and not capping the NEMU
links (i.e., letting them reach maximum throughput), which
made the system achieve a throughput higher than what would
be actually possible with the real hardware.

TABLE III
NETWORK THROUGHPUTS IN MBPS BETWEEN DEVICES

Link iPerf FTP
RPi → RPi 95.1 80.04
RPi → Emulated RPi 24.1 19.76
Emulated RPi → RPi 20.4 16.32
Emulated RPi → Emulated RPi 20.2 20.16
RPi → Virtualized x86 94.0 89.6
Virtualized x86 → RPi 95.6 88.32
Virtualized x86 → Virtualized x86 280 277.6

V. CONCLUSION

Performing proper testing in IoT is very challenging. In
particular, creating a real testing environment is difficult and
expensive. This is because a large amount of human effort and
investment in hardware are typically required to create such
environments. To address this problem, this paper proposed
a novel method to create a realistic emulated IoT testing
environment, based on NEMU (a state-of-the-art network em-
ulator). The aim is to increase IoT practitioners’ productivity
by facilitating the creation of suitable IoT testing environments
in which IoT advancements can be easily tested during their
research and development cycles. That is, before their level

of maturity justify the costs involved on testing in a real IoT
environment.

Our experimental results have shown how such emulated
environment closely resembles a real IoT environment, as both
types of environments produced similar results when used for
IoT applications. However, results also showed that processing
and memory intensive applications shall not be evaluated by
emulation as the performances are still widely different from a
real system. Practitioners should therefore check that the IoT
application under test is not stressing the devices in terms of
processing, memory or network bandwidth, otherwise results
obtained on the emulated testbed will be incorrect.

These experiments were done within a log analysis context,
where the aim was to monitor and detect anomalies in the
IoT environments in real-time. The overall results showed
that the emulated IoT system worked well, as the behaviours
of the detected anomalies (across all the tested experimental
configurations) were similar between the two environments, as
they achieved comparable numbers of anomalies.

Future work will focus on strengthening the experimental
validation of our approach. For instance, by diversifying the
characteristics of the emulated environment (e.g., topologies,
number of nodes, link characteristics). Additionally, we plan
to investigate ways to improve the detection (and potentially
the alleviation and/or elimination) of the anomalies discovered
in the IoT system.

ACKNOWLEDGMENT

Supported, in part, by Science Foundation Ireland grant
13/RC/2094. Supported, in part, by Agence Nationale de la
Recherche grant ANR-10-IDEX-03-02.

REFERENCES

[1] D. Evans, “The internet of things: How the next evolution of the internet
is changing everything,” Cisco, Tech. Rep.

[2] R. H. Weber, “Internet of things new security and privacy challenges,”
Computer Law & Security Review, vol. 26, no. 1, pp. 23–30, 2010.

[3] V. Autefage and D. Magoni, “Nemu: A distributed testbed for the
virtualization of dynamic, fixed and mobile networks,” Computer Com-
munications, vol. 80, pp. 33–44, 2016.

[4] P. M. d. Silva, J. Dias, and M. Ricardo, “Cidrarchy: Cidr-based ns-3
routing protocol for large scale network simulation,” ICSTT, pp. 267–
272, 2015.

[5] Y. D. A. Y.-J. Vilen Looga, Zhonghong Ou, “Mammoth: A massive-scale
emulation platform for internet of things,” ICCCIS, 2012.

[6] B. Bagula and Z. Erasmus, “Iot emulation with cooja,” in Workshop on
Scientific Applications for the Internet of Things, ICTP, Ed.

[7] Q. Le-Trung, “Towards an iot network testbed emulated over openstack
cloud infrastructure,” in 2017 International Conference on Recent Ad-
vances in Signal Processing, Telecommunications Computing (SigTel-
Com), Jan 2017, pp. 246–251.

[8] S. M. M. P. Jayavardhana Gubbi, Rajkumar Buyya, “Internet of things
(iot): A vision, architectural elements, and future directions,” FGCS,
vol. 29, pp. 1645–1660, 2013.

[9] U. W. Bishnu Kumar Maharjan and R. Zandian, “Tree network based on
bluetooth 4.0 for wireless sensor network applications,” EEDER, 2014.

[10] S.-k. K. Joonkyo Kim and J. Park, “Bluetooth-based tree topology
network for wireless industrial applications,” ICCAS, 2015.

[11] B. Siniarski, P. A. Perry, C. Olariu, J. Murphy, and T. Parsons, “Real-
time monitoring of sdn networks using non-invasive cloud-based logging
platforms,” PIMRC, 2016.

[12] A. O. Portillo-Dominguez, P. Perry, D. Magoni, M. Wang, and J. Mur-
phy, “Trini: an adaptive load balancing strategy based on garbage
collection for clustered java systems,” Software: Pract. and Exp., 2016.


