
HAL Id: hal-01527909
https://hal.science/hal-01527909v1

Submitted on 30 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Multilayer Perceptrons Learning Control
Gilles Verley, Jean-Pierre Asselin de Beauville

To cite this version:
Gilles Verley, Jean-Pierre Asselin de Beauville. Multilayer Perceptrons Learning Control. Lecture
Notes in Computer Science, 1996, Euro-Par’96 Parallel Processing Second International Euro-Par
Conference Lyon, France, August 26–29, 1996 Proceedings, 11204, pp.377-386. �10.1007/BFb0024726�.
�hal-01527909�

https://hal.science/hal-01527909v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Multilayer Perceptron Learning Control

Gilles VERLEY Jean Pierre ASSELIN de BEAUVILLE

Laboratoire d'informatique

Ecole d'Ingénieurs en Informatique pour l'Industrie

64, avenue Jean Portalis - Boîte 4

37913 - TOURS Cedex 9
verley@univ-tours.fr

Abstract. It has been shown that, when used for pattern recognition with

supervised learning, a network with one hidden layer tends to the optimal

Bayesian classifier provided that three parameters simultaneously tend to

certain limiting values: the sample size and the number of cells in the hidden

layer must both tend to infinity and some mean error function over the learning

sample must tend to its absolute minimum. When at least one of the parameters

is constant (in practice the size of the learning sample), then it is no longer

justified mathematically to have the other two parameters tend to the values

specified above in order to improve the solution. A lot of research has gone into

determining the optimal value of the number of cells in the hidden layer. In this

paper, we examine, in a more global manner, the joint determination of optimal

values of the two free parameters: the number of hidden cells and the mean

error. We exhibit an objective factor of problem complexity: the amount of

overlap between classes in the representation space. Contrary to what is

generally accepted, we show that networks usually regarded as oversized

despite a learning phase of limited duration regularly yield better results than

smaller networks designed to reach the absolute minimum of the square error

during the learning phase. This phenomenon is all the more noticeable that class

overlap is high. To control this latter factor, our experiments used an original

pattern recognition problem generator, also described in this paper.

1. Theoretical introduction

We consider pattern recognition problems defined in probabilistic terms, i.e. where

patterns are coded as vectors in Rn. Classes are defined by their prior probabilities

and their class-conditional probability densities. In such a framework, the optimal

classifier classifies any observation in the class having highest posterior probability.

Let us sum up the conditions under which a multilayer network with one hidden layer

tends to this optimal classifier.

1.1. Definitions
 Let A be a learning sample taken in a population of patterns according to some

probability distribution. Each vector Xi is a realization of one of the classes

defined by the problem's distributions.

 Let F be a set of functions mapping R
n
 to values in the interval [0, 1] in R and f

be any function in this set.

 By convention, the value 1 is associated to the vectors in the learning sample that

are a realization of class Ck and the value 0 to all other vectors.

 V(Xi) = 1 if Xi Ck and V(Xi) = 0 if Xi Ck

 DA(f) denotes the sum, for all vectors in the learning sample, of the squared

differences between the values associated to these vectors and the values given by

function f.

DA(f) = ((V(Xi) - f(Xi))
2)

1.2. Known results
If foptimal denotes the function belonging to F that minimizes in an absolute sense

DA(f), then it has been shown that foptimal can be interpreted as an estimate of the

posterior probability of the class that it codes by convention. In addition, foptimal is

the best estimate in set F of po7sterior probabilities when the size of the learning

sample tends to infinity [HAMPSHIRE and PEARLMUTTER, 1991].

We then consider the sequence of sets Gk of functions gk realized by a neural network

having k hidden cells with a sigmoid transfer function and one output cell that codes

gk . It has been shown that, under such conditions, any continuous function can be

approximated by a function gk from Gk such that the approximation error tends to

zero as k tends to infinity [WHITE 1990].

It immediately follows that the outputs of a multi-layer network tend to the posterior

probabilities of the classes they code provided that both the size of the learning set

and the number of hidden cells tend to infinity and that the error function tends to its

absolute minimum. Then the multi-layer network tends to the optimal classifier.

1.3. The problem of overlearning
When the size of the learning set is finite, minimizing DA(f) no longer ensures the

optimality of the Bayesian classifier, as Figure 1 illustrates. Figure 1 gathers results

from a number of artificially constructed problems [VERLEY, 1994]. The various

plots represent observations made during the learning phase of a 20 hidden cell

network trained by the backpropagation algorithm. The y axis gives the mean error

due to estimating posterior probabilities on a test sample; this quantity may be seen as

a distance from the optimal classifier. The x axis represents the mean square error

over the learning sample; as this quantity monotonically decreases during the learning

phase, it may be seen as a qualitative measure of the duration of the learning phase or

of the number of iterations of the learning algorithm. Thus Figure 1 shows that,

during the learning phase, the network tends to get closer to the optimal classifier, up

to a certain threshold after which the learning phase has the opposite effect, hence the

expression overlearning. The overlearning threshold is all the more quickly reached

that the sample size is small, which is remarkably consistent with theoretical results.

Fig 1. Posterior probability estimation error with the MLP for several sample sizes.

1.4. Solutions to a problem
To avoid the overlearning phenomenon, the usual solution is to give an upper bound

to the number of hidden cells with respect to the sample size. That limits the solution

space. It is estimated that the sample size should be at least ten times the number of

weights in the network [BAUM et HAUSSLER, 1989].

It should be noted that the option of limiting the network size with a systematically

maximum learning, i.e. such that it tends to the absolute minimum of the error, bears a

symmetric option: that of limiting the duration of the learning phase for a network

whose size is systematically maximum (as far as the available computing resources

permit).

Theoretically this latter option qualifies as much as the first as a way of solving the

overlearning problem. Our hypothesis is that this other option gives at least as good

results as the first one for a relevant set of problems. It opens up interesting angles for

the use of dedicated, highly parallel neural machines with a unique network of

maximum size for which the duration of the learning phase would be adjusted to the

size of the sample and to information on the intrinsic complexity of the problem to be

solved.

2. A generator of samples

In order to investigate our hypothesis in a scientifically sound way, we propose a

model, both mathematical and computer-based, that allows us, in theory, to construct

any pattern recognition problem given in probabilistic terms with an accuracy as high

as desired. The computer implementation of this model provides a generator that can

produce all data necessary to the systematic study of the behavior of pattern

recognition systems on sets of artificially constructed problems. Such sets of

problems are approximations to the set of all mathematically specified pattern

recognition problems.

Let f be a probability density function that is continuous on a bounded representation

space. Consider also a finite sample having such density function. It has been

demonstrated that it is possible to produce an estimate of f that is convergent and

asymptotically unbiased from this sample by using Parzen's estimator [PARZEN,

1962].

Consider now the observations in the representation space. Formally they can be seen

at the center of adjacent, identical hypercubes. We call such a point a prototype. If we

associate each prototype to a Parzen kernel, we naturally obtain the same estimator of

f as above. Symmetrically, given a partition of R
n
 by adjacent hypercubes, a certain

number of distinct prototypes can be arbitrarily assigned to a class. Each prototype is

associated to a Parzen kernel. We then consider the function mapping any point in the

representation space to the weighed sum of the contributions of the various prototypes

assigned to a given class. It can be shown that this function is a probability density

function. Thereby we obtain a generator capable of constructing diverse probability

density functions by changing the combination of prototypes assigned to a class.

Samples of any size can then be generated directly from these functions.

In the case of a pattern recognition system whose outputs can be seen as the estimates

of density functions, one can compute a mean error over a testing sample, i.e. the

square difference between the estimation and the real probability density function.

This feature has been used to produce Figure 1, which exhibits the phenomenon of

overlearning with a finite sample. Elsewhere, we demonstrated that any probability

density function can be approximated as closely as desired by a function constructed

by our generator. From a practical viewpoint, we have a generator for probability

density functions that can be used to validate pattern recognition systems by

experimentation. Each generated problem is thus explicitly defined by the probability

density functions of the different classes constructed by the generator, as well as by

the classes' prior probabilities. Given these specifications, it is possible to design an

algorithm that generates samples of any size for the learning and testing phases of the

problem at hand. Given a set of parameters, the generator can produce as many

problems as desired together with the corresponding samples. Experimenting with a

large number of such problems will increase the reliability of the average

experimental results as well as their statistical soundness.

3. Problem construction and sample generation

In this section, we show how a problem can be constructed in a simple language and

how samples of any size can be generated for this problem. Since the problem is fully

defined in probabilistic terms, it is possible:

 to generate the Bayesian boundaries for any kind of system,

 to know the posterior probability of the different classes in any point.

We are therefore capable of comparing the hit rate of any classifier, in both the

learning and testing phases, with the optimal rate of the Bayesian classifier.

When the classifier under scrutiny realizes a partition in a representation space of

dimension less than 3, the boundaries generated by the classifier and the Bayesian

boundaries can be visualized together.

We now show how the specification of the problem in a simple language can be used

first to derive the analytical form of the problem in probabilistic terms and then to

generate labelled samples.

 parameters of the representation space:

number of dimensions: d

bounds of the representation space for each dimension: {[mini, maxi]} i d1,..,

 parameters of the generator:

number of hypercubes for each dimension di i d1,..,

variance of the Gaussian distribution associated with each prototype of the

different classes: (we consider here the case of a diagonal matrix of variances-

covariances).

The latter two parameters determine classes of problems, both from a mathematical

and a computing viewpoints, and in fact characterize their complexity. For a given

class of problems, the larger the number of hypercubes is, the more problems in this

class have non-linear, thus complex, Bayesian boundaries. As the variance increases,

so does the overlap between classes, i.e. the imperfection of the discrimination. This

is why we vary this latter parameter in order to test the hypothesis stated above.

 problem structure:

number of classes: C

definition of the prototypes assigned to each class: lists Sc c C1,.., in

increasing order of the classes assigned to the different hypercubes.

The ratio of the number of hypercubes assigned to some class to the total number of

hypercubes can be interpreted as a kind of measure of the homogeneity of the mixing

distribution of the different classes.

The lists Sc may be either user-defined when the user wants to test a specific problem,

or defined by a random sampling according to an experimentation plan when a more

general hypothesis is tested on a set of random problems. We relied on this latter

feature to produce some of our experimental results.

 parameters of the samples to be generated:

sample cardinality: n

number of samples to be generated: e

All these parameters are given in a text file in any order. A parser reads the file and

extracts the parameters. Furthermore it is possible to give several values for any

parameter to facilitate the generation of samples in an experimentation plan. When the

problem constructed is two-dimensional, it is also possible to assign the hypercubes to

the different classes via a graphical interface.

3.1. Analytical formulation of the problem
A problem specified along the lines described above can easily be reworded in

probabilistic terms:

Let E d dmin ,max ... min ,max1 1 be a representation space.

Np points x(j) are defined as follows:

x p
j

d

p i d j ni

j

i i

k

k

i i p

() min () ,.., ,..,

1

2

1
1 1

1

1
 et

with p
d

i di
i i

i

max min

,.., 1

n dp i

i

d

i

1

 where d is the number of hypercubes in dimension i

These points x(j) are the centers of the hypercubes. A number of them are assigned to

classes in lists Sc.

Let mk denote these centers drawn from the x(j). So k belongs to a subset of the

values taken by j. The points mk are the class prototypes.

A prototype is then characterized by its center mk and a distribution L of center mk :

L x I ek

d x m I x mk

t

k

2 2
2

1

2

1

2

2
1

 N m Ik ;2

where I is the identity matrix of order d.

Therefore the density function for a class wc is:

 f x
card k

N m I
c

c

i

i kc

1 2;

where kc is the set of prototype numbers assigned to class c classes by list Sc

In order to define the problem in probabilistic terms, we also need to know the prior

probabilities of the classes. Let Pc be the prior probability of class wc:

P

card k

card k

c

c

i

i

Because we have a complete, probabilistic analytical form for problems that can be as

general as desired, we can determine the theoretical Bayesian boundaries as well as

the posterior probabilities of the different classes for any point of the representation

space. The last step involves generating the samples for these problems.

3.2. Generation sample
Let T be the union of the lists Sc containing all the prototypes assigned to the various

classes. Each element in T is a pair (C, M) where C is the class assigned to the

prototype and M is the coordinates of the prototype. For each element X in the

sample, an element of T is drawn at random (uniform distribution) Call this element

(c, m) . The coordinates x of X are drawn according to a Gaussian distribution N(m,

I) .Consequently x determines an element conforming to the analytical model

described in the previous section.

We illustrate the features of our generator by giving below two examples of two-

dimensional problems (Figures 2 and 3). In the first example (Figure 2), we have a

three class problem, a small variance for the Gaussian distributions and prototypes

that define sharply separated, connected sets. We visualize the corresponding 1000

point sample and the optimal boundaries as computed in theory. These boundaries are

piecewise linear and the sample is almost piecewise linearly separable given the small

overlap. Therefore this is an objectively simple problem. In the second example

(Figure 3), on the contrary, we have a two-class difficult problem such that the

optimal boundaries are highly non-linear and such that the overlap is rather large.

Note that, in order to obtain a complex problem of this kind, the generator must be set

up with a higher number of hypercubes than in the previous problem. Furthermore, all

hypercubes have been assigned to the two classes, which implies that the overall

distribution of points is more homogenous than it previously was. Lastly it must be

pointed out that the generator is not confined to two-dimensional problems. We are

presently working toward visualization of three-dimensional problems. For higher

dimensions, the results are necessarily in numerical forms.1

Commentaire [U1]: Il s’agit donc de
définir une procédure qui, à chaque

exécution, renvoie la valeur d’une classe et

les coordonnées d’un point tel que l’on
puisse affirmer que ce point classé a été tiré

selon les lois de probabilité définies

préalablement.
Soit T la liste qui est l’union des listes Sc de

tous les prototypes affectés aux différentes

classes. Chaque élément de cette liste est un
doublet (classe affectée au prototype,

coordonnées du prototype). On tire un

élément de T selon une loi uniforme. Soit
(c,m) cet élément. On tire alors les

coordonnées d’un point selon une loi

normale multivariée L(m, I). Soit x le

point ainsi déterminé. x et c déterminent
complétement un élément conforme au

modéle analytique décrit au paragraphe
précédent.

Class 1 - 313 s.

Class 2 - 337 s.

Class 3 - 290 s. Theoretical Bayesian

classifier

 Fig.2 A three class, easy problem

Class 1 - 378 s.

Class 2 - 622 s.

Theoretical Bayesian

classifier

 Fig.3 A two class, complex problem.

4. Experimental results

With the generator described above, it is possible to create classes of problems that

have a variable complexity (in the sense of overlap between the classes) together with

the corresponding learning and testing samples. 40 learning samples were thus

generated from 4 problems, each problem having a distinct overlap value. These

samples were systematically tested on networks with one hidden layer and a varying

number of hidden cells (4 possible values). The maximum size we tested was 50

hidden cells. This value was deliberately very large with respect to the maximum size

of the learning samples, which is 500, and to the values usually found in the literature.

The ratio of the size of the sample to the number of weighs in the network is here no

higher than 2.5 whereas 10 is usually recommended. At regular intervals (5) during

the learning phase of each network, the performance of the trained network was tested

on the corresponding test sample. The systematic combination of the various factors

yielded an experimentation plan with 3200 performance measures.

For each sample the network was trained with, a size was selected that had best

generalization performance for a learning phase of maximum duration and, for

each overlap value, the average was computed over all the samples of optimal size

and of corresponding performance. In a similar way, for each problem, a learning

duration was selected that provided the best generalization performance for a

network of maximum size. For each overlap value, the average was computed on all

problems having optimal duration and corresponding performance.

Our experimental results are summarized in three figures, each point in these figures

merging several hundred experiments. The first figure (Figure 4) illustrates the effect

of class overlap on the optimal number of hidden cells in a network with maximum

learning duration. The average performance of these optimal networks is also

represented. It is to be noted that the overlap value is inversely proportional to the

optimal size. This is quite consistent with theory since overlearning is especially

probable when both class overlap and the space of solutions learnable by a large-size

network are large. In such a case, the network will comprise many weights that enable

it to learn by rote the ambiguous examples ; the generalization performance will

degrade above a certain threshold. If the classes are not ambiguous at all, the over-

sizing of the network does not matter since there will exist no example to "trick" the

network.

The second figure (Figure 5) illustrates the dual phenomenon for a deliberately too

large network whose learning duration is constant. We see that the larger the overlap,

the shorter the optimal duration of the learning phase. Again this is consistent with

theory in the sense that overlearning is all the more probable when both class overlap

and the space of effectively considered solutions during learning are large. In this

case, the network will have enough time to learn by rote the ambiguous examples and

the generalization performance will degrade.

The third figure (Figure 6) illustrates an unexpected phenomenon : the usual

approach relying on network size regularly gives slightly worse performance than our

new approach that relies on learning duration. And this is all the more noticeable that

overlap is large, i.e. the risk of overlearning is high. We propose the following

tentative theoretical explanation : it is easier to construct a network of very large size

than it is to minimize the absolute mean square error by controlling the network size.

As is well known in the community, it cannot be guaranteed that, even after a lengthy

learning phase, the minimum of the mean square error has been correctly

approximated.

Effet de l'empiétement sur le nombre optimum de cellules

cachées

0

10

20

30

40

50

0 2 4 6 8 10

Empiétement

N
o

m
b

re
 d

e
 c

e
ll
u
le

s

0

10

20

30

40

50

60

70

80

90

100

cellules cachées

taux de généralisation

T
a
u

x
 d

e
 g

é
n
é

ra
lis

a
ti

o
n

hidden cells

optimal number

generalization rate

generalization rate

overlap index

hidden

cells

Fig. 4 Consequence of class overlap on the optimal number of hidden cells

Effet de l'empiétement sur le nombre optimum de cycles

d'apprentissage

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10

Empiétement

N
o

m
b

re
 d

e
 c

y
c
le

s
 d

'a
p

p
re

n
ti
s

s
a

g
e

0

10

20

30

40

50

60

70

80

90

100

cellules cachées

taux de généralisation

T
a
u

x
 d

e
 g

é
n

é
ra

lis
a

ti
o

n

cycles

overlap index

generalization rate

generalization

ratecycles

optimal learning cycles

Fig.5 Consequence of class overlap on the optimal number of learning cycles

Performances comparées des deux approches de l'apprentissage

selon l'empiétement

68

72

76

80

84

88

92

96

100

0 2 4 6 8 10
Empiétement

T
a
u

x
 d

e
 g

é
n
é

ra
lis

a
ti
o

n

taux de généralisation

Série1

optimisation par la durée

optimisation par la taille

overlap index

generalization

rate

optimised duration

optimised size

fig. 6 Compared performances in function of overlap

5. Conclusion

It is generally acknowledged that the optimal architecture of a multi-layer network is

"context dependent". The experiments described in this paper reveal an objective

factor of the context that determines the optimal size: the amount of overlap between

classes. Even more interestingly, we note that, for a given network, the optimal

duration of the learning phase depends, in the same way, on class overlap. In other

words, optimizing the learning duration yields results that are at least as good as those

due to optimizing the network architecture. We therefore reach the somewhat

paradoxical conclusion that the most ambiguous problems are better solved by large,

poorly trained networks.

6. Bibliographic references

BAUM, E. On the capabilities of multilayer perceptrons. Journal of complexity, vol. 4, p. 193-

215. 1988.

BAUM, E., HAUSSLER, D. What size net gives valid generalization?. Neural Computation,

vol. 1, n° 1, p. 151-160. 1989.

BLUM, A., LI, L. K. Approximation theory and feedforward networks. Neural networks, vol. 4,

n° 4, p. 511-516. sept. 1991.

FAHLMAN, S. E. An empirical study of learning speed in back-propagation netwworks.

Technical report n° CMU-CS-88-162, Carnegie Mellon university, computer science

department. juin 1988.

FUNAHASHI, K. I. On the approximate realization of continuous mappings by neural

networks. Neural networks, Vol. 2, p. 183-192. 1989.

HAMPSHIRE, J.B., PEARLMUTTER, B.A. Equivalence proofs for multilayer perceptron

classifiers and the Bayesian discriminant function. Proc. 1990 Connectionnist Models Summer

School, Morgan Kaufmann, 1991.

HAUSSLER, D. Quantifying inductive bias: AI Learning algorithms and valiant's learning

framework. Artificial Intelligence 36, p. 177-221. 1988.

HECHT-NIELSEN, R. Neurocomputing, Addison-Wesley. 1990

HORNIK, M., STINCHCOMBE, M., WHITE, H. Multilayer feedforward networks are

universal approximators, Neural networks, vol. 2, p. 359-366. 1989.

KANAYA, F., SHIGEKI, M. Bayes statistical behavior and generalization of pattern

classifying neural networks. Cognitiva 90, North-Holland: eds T. Kohonen and F. Fogelman-

Soulié, p. 35-44. 1991.

MOODY, J.E. The effective number of parameters : an analysis of generalization in non linear

learning systems. NIPS 4, p. 847-855. 1992.

PARZEN, E. An estimation of a probability density function and mode. Ann. Math. Statist.,

Vol. 33, p. 1065-1076. 1962.

PAUGAM-MOISY, H. A Selecting and parallelizing neural networks for improving

performances. Artificial Neural Networks, Kohonen & al. editors, Elsevier Sc. Pub., North-

Holland, vol. I, p. 659-664. Juin 1991.

VALIANT, L. G. A theory of the learnable. Communications of the ACM 27, 1134-1142, 1984.

VAPNIK, V. N. Estimation of dependences based on empirical data. Springer series in

statistics, Springer Verlag. 1982.

VERLEY, G., ASSELIN DE BEAUVILLE, J.P., RAMAT E., LECLERC N. Différences

théoriques et expérimentales entre les réseaux de neurones multicouches et le classifieur

bayésien optimal. Actes du colloque sur le Neuromimétisme, Lyon, p. 217-220. Juin 1994.

WHITE, H. Learning in artificial neural networks: a statistical perspective. Neural comp. 1, p.

425-464, 1989.

