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SUMMARY

Nowadays, clustered environments are commonly used in enterprise-level applications to achieve faster
response time and higher throughput than single machine environments. However, this shift from
a monolithic architecture to a distributed one has augmented the complexity of these applications,
considerably complicating all activities related to the performance testing of such clustered systems.
Specifically, the identification of performance issues and the diagnosis of their root causes are time-
consuming and complex tasks which usually require multiple tools and heavily rely on expertise. To simplify
these tasks, many researchers have been developing tools with built-in expertise for practitioners. However,
various limitations exist in these tools that prevent their efficient usage in the performance testing of clusters
(e.g., the need of manually analysing huge volumes of distributed results). To address these limitations,
our previous work introduced a policy-based adaptive framework (PHOEBE) which automates the usage of
diagnosis tools in the performance testing of clustered systems, in order to improve a tester’s productivity
by decreasing the effort and expertise needed to effectively use such tools. The aim of this paper is to extend
our previous work by broadening the set of policies available in PHOEBE, as well as by performing a
comprehensive assessment of PHOEBE in terms of its benefits, costs and generality (with respect to the
used diagnosis tool). The performed evaluation involved a set of experiments to assess the different trade-
offs commonly experienced by a tester when using a performance diagnosis tool, as well as the time savings
that PHOEBE can bring to the performance testing and analysis processes. Our results have shown that
PHOEBE can drastically reduce the effort required by a tester to do performance testing and analysis in a
cluster. PHOEBE also experienced a consistent behaviour, when applied to a set of commonly used diagnosis
tools, demonstrating its generality. Finally, PHOEBE proved to be capable of simplifying the configuration
of a diagnosis tool. This was achieved by addressing the identified trade-offs without the need for manual
intervention from the tester. These results offer practitioners a valuable reference regarding the benefits that
an automation framework, focused on effectively addressing the common usage limitations experienced by
a diagnosis tool, can bring to the performance testing of clustered systems.

KEY WORDS: Performance Testing; Performance Analysis; Cluster Computing; System Performance

1. INTRODUCTION

Performance is a critical dimension of quality and a major concern of any software project.
However, it is not uncommon that performance issues occur and materialise into serious problems
in a significant percentage of applications (e.g., outages on production environments or even
cancellation of software projects). For example, a 2007 survey conducted with information
technology executives [/1]] reported that 50% of them had faced performance problems in at least
20% of their deployed applications. This situation is partially explained by the pervasive nature of
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performance, which makes it hard to assess because performance is practically influenced by every
aspect of the design, code, and execution environment of an application.

In recent years, cluster computing has gained popularity as a powerful and cost-effective solution
for parallel and distributed processing [2]. Thus, the usage of clusters is becoming ubiquitous:
Modern high-assurance systems and enterprise-level applications, which usually require both fast
response time and high throughput on a constant basis, are commonly deployed in clustered
instances to fulfil such stringent performance requirements. However, this shift from a monolithic
architecture to a distributed one has also augmented the complexity of these applications, further
complicating all activities related to performance [3].

Under these conditions, it is not surprising that doing performance testing is complex and
time-consuming. A special challenge, documented by multiple authors [4-7], is that current
performance diagnosis tools heavily rely on human experts to be configured properly and to interpret
their outputs. Also multiple sources are commonly required to diagnose performance problems,
especially in highly distributed environments. For instance in Java: thread dumps, garbage collection
logs, heap dumps, CPU utilisation and memory usage, are a few examples of the information that a
tester needs to understand the performance of an application. This problem increases the expertise
required to do performance analysis, which is usually held by only a small number of experts
inside an organisation [8]]. Therefore, this issue could potentially lead to bottlenecks where certain
activities can only be done by these experts, impacting the productivity of the testing teams [4]].

To simplify the performance analysis and diagnosis, many researchers have been developing tools
with built-in expertise [4}9,/10]. However, limitations exist in these diagnosis tools that prevent
their efficient usage on highly distributed environments. Firstly, these tools still need to be manually
configured, according to various sensitive parameters which need to be tweaked to avoid bad impacts
on the accuracy of the tools’ outputs. If an inappropriate configuration is used, the tools might fail to
obtain the desired outputs, resulting in significant time wasted. In addition, to use these tools, testers
need to manually carry out data collections. In a clustered environment, where multiple nodes need
to be monitored and coordinated, such a manual process can be very time-consuming and error-
prone due to the vast amount of data to collect and consolidate. In a long running performance test
scenario, such a manual usage of diagnosis tools is more difficult due to the many periodical data
collection processes. Similarly, excessive amounts of outputs produced by the tools can overwhelm
a tester due to the time required to correlate and analyse the results. This problem is caused by the
multiple reports which are commonly produced per monitored application node, information which
needs to be manually correlated and analysed.

To ensure that our research can be usefully applied to solve real-life problems in the software
industry, a research collaboration has been carried out with one industrial partner, the IBM System
Verification Team, in order to identify and understand the challenges in their day-to-day activities.
Their feedback confirms that there is a real need for techniques that facilitate the identification of
performance issues, especially in the testing of large-scale environments.

This discussion motivates the core research question here: “What techniques can be developed to
automatically conduct the performance analysis and bug diagnosis tasks in a cluster for improving
its performance testing, while avoiding errors and saving time?”. To address this challenge, our
research work has centred on addressing the common usage limitations experienced by a diagnosis
tool in order to be effectively used in the performance testing of clustered applications. The aim has
been to improve a tester’s productivity by decreasing the effort and expertise needed to use diagnosis
tools. In our previous work [11]] we presented PHOEBE, an adaptive framework that automates the
configuration and usage of a diagnosis tool in a clustered testing environment (typically located
within a data centre). PHOEBE is shown in Figure [T} There it can be noticed how PHOEBE
executes concurrently with a performance test run, shielding the tester from the complexities of
properly configuring and using the diagnosis tool, so that the tester only needs to interact with the
load testing tool. Internally, PHOEBE leverages on policies to automatically control the different
processes commonly involved in the usage of a performance diagnosis tool.

In this paper, we extend our previous work by broadening the set of policies available in PHOEBE
to cover the whole spectrum of processes (i.e. sample gathering, sample processing and results’
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Figure 1. PHOEBE: An Automation Framework for Performance Testing.

consolidation) normally involved on the usage of a diagnosis tool in the performance testing of a
clustered application (as previously we had only covered the sample gathering). Furthermore, we
performed a comprehensive assessment of PHOEBE in terms of its benefits, costs and generality
(with respect to the used diagnosis tool). For this purpose, PHOEBE was applied to five well-known
diagnosis tools (as previously we had only applied it to one tool). The performed experimental
evaluation was composed of five experiments. In the first three experiments, the different trade-offs
that are commonly experienced when using a diagnosis tool (in terms of bug finding accuracy,
testers’ effort and resource utilisations) were evaluated. Then, the other two experiments focused
on assessing the time/effort savings (in the processes of performance testing and analysis) obtained
by a tester through the usage of PHOEBE and its set of policies.

The contributions of this paper are the following:

1. An extended description of our policy-based adaptive automation framework (PHOEBE),
whose goal is to address the common usage limitations experienced by a diagnosis tool to
be effectively used in the performance testing of clustered applications.

2. Two policies to self-configure the gathering and processing of data samples in a diagnosis
tool. They are based on a set of configurable thresholds to control the performance trade-offs
of using a diagnosis tool. Additionally, one policy to automatically consolidate and analyse
the results produced by a diagnosis tool. It is based on a set of configurable assessments to
customise how the frequency and severity of the identified issues are evaluated.

3. A comprehensive practical evaluation of PHOEBE and its policies, consisting of a prototype
implementation around a set of five well-known performance diagnosis tools and a set of five
experiments. These experiments demonstrate the accuracy of the framework as well as its
productivity benefits.

4. Key findings that could serve as guidelines for practitioners to know the conditions under
which the framework can be useful as well as when each policy can be more suitable.

The remainder of the paper is structured as follows: Sections [2] and [3] present the pertinent state
of the art, in terms of background information and related work, respectively. Section [ explains
the internal workings of PHOEBE; while Section [5 discusses the performed experiments and their
results. Finally, Section [6] presents the conclusions of this research work and provides pointers to
future work in this area.

2. BACKGROUND

This section presents the main characteristics of a typical performance testing process, as well as the
set of chosen performance diagnosis tools, which are necessary to understand the rest of the paper.
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2.1. Performance Testing

When an application is tested during development, it is important not only to test its ability to
perform the desired business functions through functional testing, but also to evaluate how well
the application performs those functions when multiple concurrent users are accessing it. This is
the goal of the performance testing, which aims to evaluate the behaviour of an application under
a given workload [[12]]. In a traditional software development process (i.e. waterfall), performance
testing is usually performed towards the end of the process and repeated for each new built version
of the application (as shown in Figure [2). Meanwhile, in an agile software development process,
performance testing is normally performed at the end of each iteration (or group of iterations).

Report Bugs

TESTING
ANALYSIS DESIGN DEVELOPMENT (e.g., functional, RELEASE
New | performance, etc.)
version

Figure 2. Traditional Software Development Process.

A performance test run involves exposing an application to a workload that resembles its expected
real-life conditions. This is achieved by using a load generator (e.g., IBM Rational Performance
Tester [13]], Apache JMeter [[14] or HP LoadRunner [15]]) for an extended period of time (e.g., 24-
hours or even longer durations) to simulate the desired set of concurrent users interacting with the
application.

During the execution of a performance testing run, testers usually collect performance-related
counters. These counters are normally of two main types [16]: performance metrics (i.e. response
time and throughput) and resource metrics (e.g., CPU or memory utilisations). The objective is to
analyse the behaviour of the monitored counters through time, as well as compare the counters
against a define performance baseline (e.g., a target Service Level Agreement), in order to identify
performance anomalies. Additionally, testers usually use some type of performance diagnosis tool
to further investigate the collected performance counters in order to look for anomalous behaviours
and their potential root causes.

From an end-user perspective, using a performance diagnosis tool is normally simple: A tester
only needs to collect as much data as desired, process it on the chosen diagnosis tool and get a report
(or set of reports, depending on the tool) with the identified findings. This process can be repeated
multiple times to monitor a system through time.

Given their capabilities, these diagnosis tools are normally seen as promising candidates to reduce
the dependence on the human expertise and time required for performance analysis. However, the
volume of data generated can be difficult to manage and the effort required to efficiently process
this data can be an impediment to their adoption. Moreover, the effort required to manually collect
data to feed the tools, as well as the number of reports a tester gets from the tools, are commonly
linear with respect to the number of nodes and the update frequency of the obtained results. These
excessive amounts of outputs produced by diagnosis tools can easily overwhelm a tester due to the
time required to correlate and analyse the results. Finally, the accuracy of the tools depend on their
configuration, where the preferable configuration might vary depending on the application and usage
scenario. All these usage limitations make the diagnosis tools good candidates for automation, such
as the automation framework proposed in this paper.

2.2. Performance Diagnosis Tools

For the purpose of this work, we have focused on diagnosis tools applicable to Java. This is because,
with an estimated business impact of a hundred billion dollars yearly, Java is a predominant player
at enterprise level [|17,/18]]. Therefore, this technology is commonly used to build clustered systems.
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The range of existing performance diagnosis tools in Java is broad. Nowadays, five tools
frequently used in the industry are: Eclipse Memory Analyser, IBM Garbage Collection Lite, IBM
Garbage Collection and Memory Visualiser, IBM Health Center, and IBM Whole Analysis Idle
Time. The following paragraphs briefly describe them.

Eclipse Memory Analyser (EMAT) [19]. It is a diagnosis tool that helps to detect memory-
related performance issues. EMAT is based on non-intrusive sampling mechanisms available at
the Java Virtual Machine (JVM) [20], in the form of heapdumps [21] (detailed snapshots of the
JVM memory, offering information such as used memory per object type, object references and
current locks). From a report perspective, EMAT generates one HTML report per sample. Each
report presents the identified memory leaks as well as a detailed quantitative description of the
objects, classes and classpaths currently used in memory.

IBM Garbage Collection Lite (GCLITE) [4]. It is a diagnosis tool that helps to detect garbage
collection (GC) [22] performance issues. GC is a key feature of Java which automates most of the
tasks related to memory management. However, it comes with a cost: Whenever the GC is triggered,
it has an impact on the system performance by pausing the involved programs [23]]. GCLITE is based
on the tracing mechanisms available at the JVM, in the form of the GC verbose [24]] (complete GC
logs containing information such as the total size of the heap - i.e. the memory area -, the size of
the generations -i.e. the memory sub-regions - before and after each GC, and the time taken). From
a report perspective, GCLITE generates one HTML report per processed GC verbose. Each report
presents the identified performance issues, classified in five categories.

IBM Garbage Collection and Memory Visualiser (GCMYV) [25]. It is a diagnosis tool that
helps to detect GC and memory-related performance issues. GCMV is based on the tracing
mechanisms available at the JVM, in the form of the GC verbose [24]. From a report perspective,
GCMYV generates one HTML report per processed GC verbose. Each report presents the identified
performance tuning recommendations, providing guidance on improvements in areas such as
memory leak detection, GC performance optimisation, and heap size tuning.

IBM Health Center (HC) [26]. It is a diagnosis tool that helps to detect performance issues
in Java systems by providing recommendations to improve the performance and efficiency of the
system. HC is based on its own sampling mechanism that produces HCD files (detailed snapshots
of the JVM state, offering information on a wide range of areas such as memory, GC, method
profiling and threads). From a report perspective, HC generates one per processed sample. Each
report presents the identified performance issues classified in five categories and four severity levels.

IBM Whole Analysis Idle Time (WAIT) [27]. Idle-time analysis is a methodology to identify the
root causes of under-utilised resources. It is based on the observed behaviour that performance issues
in multi-tier applications usually manifest as idle-time of waiting threads [9]]. WAIT is a diagnosis
tool that implements this methodology and has proven to simplify the detection of performance
issues in Java systems [61(9}28]. WAIT is based on non-intrusive sampling mechanisms available at
Operating System level (e.g., the “ps” command in Unix) and the JVM, in the form of Javacores [29]
(snapshots of the JVM state, offering information such as threads, locks and memory). From a report
perspective, WAIT generates one HTML report per set of processed samples. The report presents
the identified performance issues, sorted by frequency and impact, as well as classified in four
categories.

3. RELATED WORK

In this section, we first review the state-of-the art work in automation in testing. Then, we discuss
the related work in the area of performance analysis.

3.1. Automation in Testing

The idea of applying automation in the performance testing domain is not new. However, most of
the research has focused on automating the generation of load test suites [30-41]. For example,
the authors in [33]] propose an approach to automate the generation of test cases based on specified
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levels of load and combinations of resources. Similarly, [31]] presents an automation framework that
separates the application logic from the performance testing scripts to increase the re-usability of
the test scripts. Also, the work on [42] presented a test case prioritisation approach which improves
the diagnostic information of a test by minimising the loss of diagnostic quality in the prioritised
test suite. Meanwhile, [35] presents a framework designed to automate the performance testing of
web applications and which internally utilises two usage models to simulate the users’ behaviours
more realistically. Finally, the authors of [43] introduced an approach, based on a novel dynamic
stochastic model, to automatically generate well-distributed grammar-based test cases.

Other research efforts have concentrated on automating specific analysis techniques. For
example, [44]] presents a combination of coverage analysis and debugging techniques to
automatically isolate failure-inducing changes. Similarly, the authors of [45] developed a technique
to reduce the number of false memory leak warnings generated by static analysis techniques by
automatically validating and categorizing those warnings. Moreover, the work on [46] presented an
automatic technique to assess the robustness of a piece of Java code. This is done by automatically
testing all the public methods of the code (using random data) in order to try to crash the program
(i.e. to throw an undeclared runtime exception).

Finally, other researchers have proposed frameworks to support different software engineering
processes. For example, the authors of [47,48] present frameworks to monitor software services.
Both frameworks monitor the resource utilisation and the component interactions within a system.
One focuses on Java [48]] and the other focuses on Microsoft technologies [47]]. Likewise, the authors
of [49] proposed a framework for monitoring, managing, controlling and optimising a distributed
system. It relies on an agent-based architecture in which uses real-time information to perform the
supported tasks. Unlike these works, which have been designed to assist on operational support
activities, our proposed framework has been designed to address the specific needs of a tester
in the performance testing, isolating the tester from the complexities of using and configuring a
performance diagnosis tool.

3.2. Performance Analysis

Multiple research efforts have aimed to improve the performance analysis processes. A major
research trend has focused on identifying performance bugs and their root causes. For example,
the work on [50] proposes an approach to predict the workload-dependent performance bottlenecks
(WDPBs) through complexity models that infer the iteration counts of those potential WDPBs.
Similarly, the work on [51]] presents a technique to detect processes accessing a shared resource
without proper synchronisation, and which are a common cause of problems; while the authors
of [52]] analysed the memory heaps of several real-world object-oriented programs and provided
insights to improve memory allocation and program analysis techniques. Furthermore, the authors
of [53] proposed a methodology to enhance the process of selecting the appropriate analysis tools
for a particular task by defining a list of comparison criteria as well as a list of usage profiles.

A high percentage of the proposed performance analysis techniques require some type of
instrumentation [54]]. For example, the authors in [55]] instrument the source code of the monitored
applications to mine the sequences of call graphs under normal operation, information which is
later used to infer any relevant error patterns. A similar case occurs with the works presented
in [56,57]] which rely on instrumentation to dynamically infer invariants within the applications and
detect programming errors; or the approach proposed by [58] which uses instrumentation to capture
execution paths to determine the distributions of normal paths and look for any significant deviations
in order to detect errors. In all these cases, the instrumentation would obscure the performance of
an application during performance testing hence discouraging their usage. On the contrary, our
proposed framework does not require instrumenting the tested applications.

Furthermore, the authors of [59] present a non-intrusive approach which automatically analyses
the execution logs of a load test to identify performance problems. As this approach only relies
on load testing results, it cannot determine root causes. A similar approach is presented in [60]
which aims to offer information about the causes behind the issues. However, it can only provide
the subsystem responsible of the performance deviation. On the contrary, our proposed framework
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enables the effective utilisation of performance diagnosis tools in the performance testing domain
through automation, so that expediting the process of identifying performance issues and their root
causes. Moreover the techniques presented in [59,/60] require information from previous runs to
baseline their analysis, information which might not always be available.

4. PHOEBE: AN AUTOMATION FRAMEWORK FOR PERFORMANCE TESTING

In this section, we describe PHOEBE. First, we provide the context of our solution. Next, we
describe the internal workings of PHOEBE. Finally, we conclude the section with a discussion
of the proposed policies.

4.1. PHOEBE Overview

The objective of our research work was to develop a framework (PHOEBE) to automate the
processes involved in the usage of a performance diagnosis tool during the performance testing
of a clustered application. Such framework would improve the testers’ productivity, as well as the
performance testing process, by decreasing the effort and expertise needed to use the diagnosis tool.

A self-adaptive system is normally composed of a managed system and an autonomic
manager [61]]. In this context, PHOEBE plays the role of the autonomic manager. Therefore, it
controls the feedback loop which adapts the managed system according to a set of goals. Meanwhile,
the diagnosis tool and the application nodes play the role of the managed systems. This is depicted
in Figure 3| which shows the conceptual view of PHOEBE.

Autonomic Manager PHOEBE
Information Analyse Plan | ldd Diagnos'is Tools
Base N Settings
ﬁ Feedback ﬂ
Policy Base = Loop l4_| Data Analytics
Gathering Policy Monitor (=== Execute || | Helpers
Uploading Policy
System ‘ .
Indicatorsﬁ Adaptations
Managed Diagnosis Tool Ap’\[::hc;atmn
Systems odes

Figure 3. PHOEBE - Conceptual View.

As defined by multiple authors [62,|63]], self-adaptation endows a system to adapt itself
autonomously to internal and external changes to achieve particular quality goals in the face of
uncertainty. In the context of PHOEBE, it means balancing the different trade-offs that exist when
using a diagnosis tool (e.g., the amount of overhead introduced in the application nodes with respect
to the bug accuracy achieved by the tool, as both factors depend on the frequency of the sampling
and the amount of sampled data). To incorporate self-adaptation to PHOEBE, We have followed
the well-known MAPE-K adaptive model [64]]. This model is composed of 5 elements (depicted
in Figure 3): A Monitoring element to obtain information from the managed systems; an Analysis
element to evaluate if any adaptation is required; an element to Plan the adaptation; an element to
Execute it; and a Knowledge element to support the others in their respective tasks.

The key aspect of PHOEBE is its policy base, which fulfils the role of the Knowledge element
(within the MAPE-K model), and defines the pool of available policies. The encapsulation of
the knowledge into policies allows PHOEBE to be easily extensible and capable of incorporating
multiple policies, which might be suitable to different scenarios and diagnosis tools. In this context,
a policy defines the set of interrelated tasks needed to perform one of the processes involved on the
usage of a diagnosis tool within a performance test run. Each diagnosis tool requires three policies:
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A data gathering policy (to control the collection of samples in the application nodes), an upload
policy (to control when the samples are sent to the diagnosis tool for processing), and a consolidation
policy (to integrate all the results obtained from the diagnosis tool for the different application
nodes). Additionally, a diagnosis tool might have other policies available (e.g., to back up the
obtained samples, or to trigger actions based on the tool’s outputs). These policies can also make
use of the available set of data analytics helpers (supporting logic which provides miscellaneous
services to further customise the behaviour of a policy). For instance, a policy might focus on
assessing the severity of the bugs identified by the tool. In this example, several helpers can be
defined in order to offer different sets of severity levels for categorising the bugs (as the appropriate
severity levels might vary depending on the usage scenario). In case a tool requires any particular
settings to work properly (e.g., its range of applicable sample intervals), this information can also
be captured by the framework (as a diagnosis tool setting).

From a configuration perspective, the tester needs to provide the information base (as shown
in Figure [3), which is composed of all the input parameters required by the chosen policies. For
example, an upload policy might require a time interval to know when to send the samples for
processing, or a data gathering policy could use a sampling interval to know the frequency for the
collection of samples. Likewise, a consolidation policy might require as input the topology of the
clustered system, so that it can differentiate the application nodes which compose the cluster.

4.2. Core Process

From a process perspective, PHOEBE has a core process which coordinates the MAPE-K elements.
The process is depicted in Figure[d] It is triggered when the performance test run starts. As an initial
step, it gets a new control test id, a value that will uniquely identify the test run and its collected
data. This value is propagated to all the nodes. Next all application nodes start (in parallel) the loop
specified in the monitor and analyse phases, until the test run finishes: A new set of data samples
is collected following a data gathering policy. After the collection finishes, the analyser process
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checks the upload policies. If any upload policy has been fulfilled, the data is sent to the diagnosis
tool (labelling the data with the control test id so that information from different nodes can be
identified as part of the same test run). Similarly, updated results are retrieved from the diagnosis
tool to be consolidated. Additional policies might also be executed depending on the user’s input
configuration. For example, as certain data collections can be costly (e.g., the generation of a single
memory dump in Java can take minutes and require hundreds of megabytes of hard disk), a back-
up policy could be used to enable further off-line analysis of the collected data. This core process
continues iteratively until the performance test run finishes (or an alternative exit condition defined
by a policy is fulfilled). When that occurs, all applicable policies are evaluated one final time before
the process ends. Furthermore, any exceptions are internally handled and reported.

4.3. Architecture

PHOEBE is implemented with the multi-agent architecture depicted in Figure[I] There it can be seen
how PHOEBE is composed of three types of agents: The control agent is responsible of interacting
with the load testing tool to know when the test starts and ends. It is also responsible of evaluating
the policies and propagating the decisions to the other nodes. Meanwhile, the application node agent
is responsible of performing the required tasks in each application node (e.g., sampling collection or
sending the collected samples to the diagnosis tool). Finally, the diagnosis tool agent is responsible
of interfacing with the diagnosis tool (e.g., feeding it or post-processing its generated reports).

start <<component>>
O_ Control Agent _<
1 1
status Generic Diagnosis
Logic Tool Logic _<
1
sto Load Testing
Tool Logic —<

Figure 5. Control Agent - Component Diagram.

Internally, each agent is comprised of different components. This is exemplified in Figure[5] which
presents the component diagram [65]] of the control agent. There, it can be noticed how the agent
has three main components: The generic component contains the control logic and all supporting
functionality which is independent of the target diagnosis and load testing tools (e.g., the analysis
and planning tasks of the policies). Regarding the logic that interfaces with the target tools, it needs
to be customised per tool. Therefore, this logic is encapsulated in their respective components
to minimise the required code changes. To complement this design strategy, the components are
only accessed through interfaces. This is exemplified in Figure [6] which presents the high-level
structure of the diagnosis tool component. It contains a main interface IDiagnosisTool to expose
all required actions and an abstract class for all the common functionality. This hierarchy can
then be extended to support specific diagnosis tools (e.g., WAIT) on different operating systems.
Internally, the required class (supporting a particular tool, and possible a specific operating system)
is automatically selected. This is achieved by following a Factory design pattern [66].

Finally, the agents communicate through commands, following the Command design pattern [[67]:
The control agent invokes the commands, while the other agents implement the logic in charge of
executing each concrete command. An example of these interactions is depicted in Figure [/} Once
a tester has started a performance test run (step 1), the control agent propagates this action to all
the application node agents (steps 2 to 4). Then each application node agent performs its periodic
tasks (steps 5 to 9) until any of the configured upload policies is fulfilled and the data is sent to the
diagnosis tool for processing (steps 10 and 11). These steps continue iteratively until the test ends.
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Diagnosis Tool Component
<<interface>>
IDiagnosisTool
+start() +send() +backup()
+status() +collect() +cleanup()
+stop()
|
AbstractDiagnosisTool
I
WAIT
LinuxWAIT WindowsWAIT

Figure 6. Diagnosis Tool Component - Class Diagram.

A

- Application Application Diagnosis Tool
Load Testing Tool | | Control Agent Node Agent 1 Node Agent 2 Node
| 1: Start performance test | | | i :
I "1 2 Receive startaction _ ! ! | |
| | > | | |
| | [3: Propagate start action | | |
: : ! 4: Propagate start action ‘! |
L + | |
| | | | | |
| | |
| | | :> 5: Collect ! 6: Collect :
| | | | | |
| | |
| | | :> 7: Collect D 8: Collect :
| | | | | 10: Send
: : : :> 9: Collect : :
| | | | 11: Send |
! 12: Check intermediate resultij3: Check intermediate resuE! 14- Check intermediate results :|
} Pt i t t Ll
| | Intermediate results | | |
[ [ [ [ | |
| | | |
' [ [ | 15: Collect :> 16: Collect |
| | | | |
| | | |
! | | | 17: Collect :> 18: Collect |
! ! ! X 19: Send [
: : ! , ; —>
|
: ! 21: Receive stop action ‘! : | 20: Collect |
| i Vj22: Propagate end action) 23: Send I
: : ! 24: Propagate end action ‘| |
| 25:Checkfinalresults _ | 26 Getfinal results | | 27: Get final results | !
-
| gl s | >
: i i |
| | | |

Final results !
t t
| |

Figure 7. PHOEBE - Sequence diagram.

At that moment, the control agent propagates the stop action (steps 21,22 and 24). At any time, the
tester might choose to review the intermediate results of the diagnosis tool (steps 12 to 14) until
getting the final results (steps 25 to 27).
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4.4. Adaptive and Data Analytics Policies

The following sections describe the set of policies that have been developed to work with PHOEBE.
They are mainly based on the outcomes of the performed assessments of trade-offs (discussed in

Sections [5.1] [5.2]and [5.3).

4.4.1. Accuracy-Target Data Gathering Policy. This adaptive policy was designed to balance the
trade-off between the accuracy in the results of a diagnosis tool and the performance overhead
introduced into the tested application. This is because both factors are influenced by the selection of
the sample interval (SI).

The policy process is depicted in Figure [§] where each step is mapped to the corresponding
MAPE-K element. This policy requires two user inputs: The response time threshold, which is
the maximum acceptable impact to the response time (expressed as a percentage); and the warm-up
period. Resembling its usage in performance testing [|68]], the warm-up period is the time after which
all transactions have been executed at least once (hence contributing to the average response time of
the test run). Two additional parameters are retrieved from the knowledge base, as their values are
specific for each diagnosis tool: The minimum SI that should be used for collection; and the ASI,
which indicates how much the SI should change in case of adjustment.

The process starts by waiting the configured warm-up period. Then it retrieves the average
response time (R7 4y ) from the load testing tool. This value becomes the response time baseline
(RTpp). After that, the process initialises the application nodes with the minimum SI. This
strategy allows collecting as many samples as possible, unless the performance degrades below the
desired threshold, thus violating the acceptable service level agreement (SLA). Next, an iteratively
monitoring process starts (which lasts until the performance testing finishes): First, the process waits
the current SI (as no performance impact caused by the diagnosis tool might occur until the data
gathering occurs). Then, the new RT 4y is retrieved and compared against the R7T'sy, to check if
the threshold has been exceeded. If so, it means that the current SI is too small to keep the overhead
below the configured threshold. In this case, the SI is increased by the value configured as ASI.
Finally, the new SI is propagated to all the application nodes, which start using it since their next
data gathering iteration.

Report Success P e Execute Plan: Update |
to the System *Yes_<® App Nodes with New Sl

r-r—-—— —H——~—=————"7FF"7—F—7———— A
I Initialisation ' Inputs
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Figure 8. Accuracy-Target Data Gathering Policy.
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Finally, it is worth mentioning that this policy was inspired by the scenario (commonly
experienced in the industry) where a test team aims to minimise the number of required performance
test runs due to budget or schedule constraints. This might be achieved by allowing certain level of
known overhead in the tested application in order to identify as many performance bugs as possible,
in addition to the normal results obtained from a performance test run.

4.4.2. Efficiency-Target Upload Policy. This adaptive policy was designed to balance the trade-off
between the resource utilisation levels required by a diagnosis tool and the amount of sampled data
which is concurrently processed by the tool. This is because both factors are influenced by the
selection of the upload interval (UI).

The policy process is depicted in Figure 0] where each step is mapped to the corresponding
MAPE-K element. It requires two user inputs: The initial UI to be used; and the AUI, which
indicates how much the Ul should change when an adjustment is required. An additional parameter
would be retrieved from the knowledge base (as its value is specific to each type of resource): The
target of maximum utilisation (Ups4x). As documented in [[69]], the objective of this target is to
retain certain unused capacity to provide a soft assurance for quality of service. For instance, in the
case of the CPU, this target is 90%.

The process starts by initialising the application nodes with the initial UI. Then the process waits
until all the application nodes have uploaded their samples once. This step is done to make sure
that the Ul is only modified if required. After all the nodes have uploaded their results, the process
retrieves the average resource utilisation (RES 4y ) of the shared service (e.g., a WAIT server)
during the processing of those samples, as well as the average duration of the resource usage
(DRESsve). Then the RES sy is compared with the Upy4x. If the Ups 4 x has been exceeded,
new Uls are calculated. As a first strategy, a different Ul is calculated for each node to prevent that
all the nodes upload their results at the same time. To respect as much as possible the current Ul,
the calculation of the new Uls is based on the current Ul (by iteratively subtracting or adding the
DRES gy from the current Ul until all nodes have a different UI). For example, if we have 5
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| |
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Figure 9. Efficiency-Target Upload Policy.
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nodes, a current Ul of 30 minutes and a DRFES 4y ¢ of 1 minute, the new Uls of the nodes would be
distributed as 28,29,30,31 and 32. Finally, the new Uls are propagated to their respective application
nodes, which start using them since the next upload iteration. In case a subsequent adjustment
is required (meaning that only splitting the UI was not enough to bring the RES 4y ¢ below the
Unsax), the current Ul is decreased (by the value configured as AUI), before the calculation of the
new Uls is done. This is done to reduce the number of samples sent (per node) in each upload.

Finally, it is worth mentioning that this policy was inspired by the scenario (commonly
experienced in the industry) where the number of available licenses for a particular tool is limited
(e.g., due to budget constraints). In this scenario, the capability of efficiently sharing the available
tool’s instances across different teams and projects is highly desirable in order to maximise the
return of investment [[70] of the tool.

4.5. Multi-View Consolidation Policy

This policy was designed to minimise the effort and expertise required by a tester to analyse the
results of using a diagnosis tool in a clustered application. This is done by providing four different
views of the results: The main view is the consolidated system-level view. It allows a tester to easily
track the progress of the performed diagnosis in the overall cluster and see if any relevant systemic-
level issue has occurred. Three other complementary views are also available: The individual
system-level allows to see the results obtained by an individual processing cycle (as controlled by
the UI). Furthermore, the consolidated node-level and individual node-level views behave similar to
their system-level counterparts, but focusing on a particular node. Together, this set of views offer a
tester different levels of granularity, within the diagnosis results, so that system-level (or node-level)
performance issues can be easily identified.

The policy process is depicted in Figure [T0] It requires two user inputs: The severity type, which
defines the set of applicable severity categories under which the identified performance issues
can be classified; and the severity thresholds, which delimit the severity ranges of each category.
An additional optional user input is the Go No-Go Assessment, which defines an alternative exit
condition (other than the completion of the test run).
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Figure 10. Multi-View Consolidation Policy.
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The process starts by generating a set of empty reports. Next, the process waits until a new set
of outputs is generated by the diagnosis tool. Once this occurs, the corresponding node-level report
is updated. This step involves parsing all the received outputs (as a single upload process might
generate multiple output reports) in order to extract the relevant qualitative information (i.e. the
identified issues’ information, including their categories and subcategories). Internally, the parsing
relies on a set of rules defined in the knowledge base (as they vary among diagnosis tools). Once
extracted, the new issues are incorporated into the node-level reports: A new individual-level report
is generated by consolidating all the tools’ outputs. Likewise, the consolidated-level report of the
node is updated with the new issues. The newly added information is also tagged, so that the
subsequent tasks (i.e. the similarity and severity assessments) can easily identify it. Furthermore, the
updates per node are tracked. This is done so that, once results from all the nodes are obtained, the
system-level reports are also updated (following a logic similar to the node-level reports previously
discussed).

Once the reports have been updated, the similarity of the new results is evaluated. This is done to
further consolidate the results (as the outputs of a diagnosis tool tend to overlap when monitoring
multiple nodes during extended periods of time). The rules to evaluate the similarity are retrieved
from the knowledge database (as they will depend on the diagnosis tool). A set of standard statistic
metrics (i.e. average, standard deviation and coefficient of variation [71]) is also calculated to
gradually build an historical trend per report type. Next, a severity assessment is performed. This is
done with the aim of helping a tester to concentrate on the set of performance issues worth exploring
(as a diagnosis tool might produce a considerable amount of outputs and normally only a subset is
truly relevant). As an initial step, the severity of the new results is calculated, following the rules
applicable for the diagnosis tool (e.g., based on the frequency of the identified issues). Next, the
results are classified following the severity style and thresholds configured by the tester. Finally,
standard statistics (similar to the ones previously discussed) are calculated per severity type. Once
this is done, a new version of the consolidated reports is ready and accessible to testers.

An additional (and optional) step in the process is the evaluation of a Go No-Go Assessment. The
objective of this step is to offer a performance test run an alternative exit criterion (other than the
duration of the test run). In case this option is enabled by the tester, the corresponding Go No-Go
assessment would be performed. In case its exit criteria is fulfilled, a stop action will be triggered.
This action behaves similarly to the stop command described in Section 4.3

Finally, it is worth mentioning that this policy was inspired by the scenario (commonly
experienced in the industry) where a tester needs to monitor a clustered application (normally
composed of multiple application nodes), during long periods of time (probably one or more days).
Under these conditions, the amount of output data generated by a diagnosis tool can be vast, easily
overloading a tester due to the considerable amount of effort and expertise required to consolidate
and analyse the obtained results.

4.6. Data Analytics Helpers

The following sections describe the set of data analytics helpers developed to support the capabilities
of PHOEBE. Similarly to the previously discussed policies, they are mainly based on the outcomes
of the performed assessments of trade-offs (discussed in Sections[5.1] [5.2] and[5.3).

4.6.1. Similarity Assessments. As discussed in Section[4.3] a similarity assessment defines the logic
that is used to identify those performance issues, reported by the diagnosis tool, which should be
merged because their symptomatology suggests that they are instances of the same performance
issue. This type of supporting logic is captured as a data analytics helper within PHOEBE.

Based on the results obtained from the assessment of trade-offs, as well as after analysing the
outputs of the studied diagnosis tools, we have initially concentrated on implementing the following
two similarity assessments:

e An equality assessment, applicable for those tools which exclusively generates qualitative
issues’ descriptions (e.g., IBM WAIT). In this case, the issues’ descriptions can be directly
compared.
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o A semantic similarity assessment, applicable for those tools which generate qualitative issues’
descriptions with some quantitative data embedded (e.g., IBM Health Center). In this case, it
is preferable to compare the issues’ descriptions in terms of their semantic similarity. For
this work, the JaroWinkler distance [72] (originally developed in the field of record linkage to
detect duplicate strings) was chosen. This is because this metric is widely-used in the literature
and it also offers a normalised score (where 0 means no similarity and 1 means an exact
match). As usually only the quantitative information of an issue’s description changes (among
instances of the same issue), a dissimilarity threshold of 0.1 was enough to identify similar
issues.

4.6.2. Severity Styles. As discussed in Section [£.5] a severity style defines the set of severity
categories in which a performance issue can be classified. This type of supporting logic is captured
as a data analytics helper within PHOEBE. Furthermore, a severity style can be used within an
assessment to customise its behaviour (e.g., the Go No-Go assessment discussed in Section [4.6.3).

Among the alternative strategies to develop severity styles for PHOEBE, we have initially
concentrated on implementing the following two:

e A five-level severity style based on the well-known (and commonly used in the industry)
severity categories suggested by the International Software Testing Qualifications Board
(ISTQB) [73]: Critical, major, moderate, minor, and cosmetic [74].

o A two-level severity style which classifies the issues in two categories: Critical and non-
critical. This simplified style, which can be easily mapped to the ISTQB one, allows testers to
concentrate only on the most relevant issues (i.e. those within the critical category).

Finally, the classification of a performance issue within a severity category is based on the
frequency of the issue (as defined per diagnosis tool) with respect to the thresholds configured for
the applicable severity categories. This classification is done irrespectively of the chosen severity
style.

4.6.3. Go No-Go Assessments. As discussed in Section 4.5] a Go No-Go assessment offers an
alternative exit condition to a performance test run (other than waiting for the completion of its
planned execution time). This type of supporting logic, captured as a data analytics helper within
PHOEBE, involves the definition of the evaluation criteria responsible of assessing if the exit
condition has been fulfilled.

Based on the results obtained from the assessment of trade-offs (where it was observed that
the number of issues identified by a diagnosis tool tend to stabilise through time), a Go No-Go
assessment based on the Coefficient of Variation (CV) [[71]] was developed. The CV was selected
because this statistic metric allows to dimensionlessly measure the variability in the number of
identified issues. For instance, if a CV of 0.1 is obtained across a set of different report versions,
this value indicates a practically stable number of identified issues among the reports (regardless of
the actual number of bugs or the number of compared reports). Therefore, this metric can capture
when the process of identifying bugs has exhausted producing new results. Once that point has been
reached, a test run can be stopped to prevent wasting valuable human and computational resources.

This Go No-Go assessment requires three user inputs:

e The severity categories to assess, which defines the subset of severity categories (within in
the chosen severity style) that will be evaluated (as not all the severity categories might be of
interest - e.g., the non-critical or cosmetic issues -).

o The number of consolidated system-level reports to assess, which will delimit the number of
versions of this report (starting from the most recent one) that will be evaluated. Indirectly,
this parameter also influences the minimum duration of the test (as there must be enough
historical data available before the first assessment can be performed).
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e The set of CV thresholds (one for each severity category to assess) that will be used in the
evaluation to determine if the calculated CV falls within an acceptable range for a particular
severity category.

From a process perspective, the assessment starts by checking if there is enough historical
information (in the form of consolidated system-level reports) to calculate the required CV values.
If it is not the case, the assessment fails. Otherwise, the CV is calculated for each severity category.
Then, the obtained values are compared against their corresponding thresholds. Only if the CV value
is lower (or equal to) the corresponding threshold for all the severity categories, the assessment is
considered fulfilled.

5. EXPERIMENTAL EVALUATION

This section presents the experiments performed to evaluate PHOEBE. To understand which policies
would work best, we started by performing an assessment of the identified trade-offs. It involved
three experiments: Firstly, we evaluated the accuracy of each diagnosis tool with respect to the
overhead introduced by the data sampling processes that feed the tool. Secondly, we evaluated the
effort required by a tester to analyse the outputs of each diagnosis tool with respect to the amount
of outputs generated by the tool. Thirdly, we evaluated the resources required by each diagnosis
tool with respect to the amount of samples processed by the tool. After developing the proposed
policies (described in Section [4.4)), two additional experiments were done to evaluate the benefits
and costs of using PHOEBE: First, we assessed the accuracy of the implemented policies (i.e., how
well they addressed the previously identified trade-offs). Then, we assessed the productivity gains
that PHOEBE brings to the performance testing process. The section concludes with a discussion
for practitioners where we summarise the key findings and observations.

5.1. Experiment #1: Accuracy Trade-off Assessment

Here, the objective was to evaluate the potential trade-off between the accuracy of the results
generated by a diagnosis tool and the overhead introduced in the application nodes by the data
sampling processes that feed the tool. The following sections describe this experiment and its results.

5.1.1. Experimental Set-up In the following paragraphs we present the developed prototype, the
test environment and the parameters that defined the evaluated experimental configurations: The
selected diagnosis tools, Java benchmarks, sample intervals (SI) and upload intervals (UI). We also
describe the evaluation criteria used in this experiment.

Prototype. A prototype has been developed in conjunction with our industrial partner. The
Control Agent was implemented on top of the Apache JMeter 2.9 [[14]], which is a leading open
source tool used for application performance testing. Meanwhile, the Application Node Agent and
the Diagnosis Tool Agent were implemented as stand-alone Java applications. Internally, each agent
has an embedded Jetty Web Servlet Container [[75]] (a popular open source solution used for enabling
machine to machine communications). This allows the different agents to communicate through
HTTP requests.

Furthermore, two initial policies were implemented: A data gathering policy which uses a
constant SI during the complete test execution; and an upload policy which uses a constant UI.
As the SI controls the frequency of samples collection from the monitored application (which is the
main potential cause of overhead introduced by a diagnosis tool), a broad range of values was tested
(0.125, 0.25, 0.5, 1, 2, 4, 8 and 16 minutes). The smallest value in the range (0.125 minutes) was
intentionally chosen to be smaller than the minimum recommended value for the chosen diagnosis
tools (0.5 minutes). Similarly, the largest value in the range (16 minutes) was chosen to be larger
than 8 minutes (a SI commonly used in the industry). Finally, as the Ul is not involved in the data
gathering process, a constant value of 30 minutes was used.

Environment. All the experiments were performed in an isolated test environment, so that
the entire load was controlled. This environment was composed of eight VMs: A cluster of five
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application nodes with one load balancer, one diagnosis tool server, and one load tester node (as
shown in Figure [TT). All the VMs had the following characteristics: 4 virtual CPUs at 2.20GHz,
3GB of RAM, and 50GB of HD; running Linux Ubuntu 12.04L 64-bit, and OpenJDK JVM 7u25-
2.3.10 with a 1.6GB heap. The load tester node also used an Apache JMeter 2.9 [14] (a leading
open source tool used for application performance testing), and the application nodes ran an Apache
Tomcat 6.0.35 [[76] (a popular open source Web Application Server for Java).

1 diagnosis

1 load tester tool node

Figure 11. PHOEBE - Test Environment.

The VMs were located on a Dell PowerEdge T420 server [77] equipped with 2 Intel Xeon CPUs
at 2.20Ghz (12 cores/24 threads), running Linux Ubuntu 12.04L 64-bit, 96 GB of RAM, 2TB of
HD, and using KVM [78]] for virtualisation.

Diagnosis Tools. The five performance diagnosis tools discussed in Section were used:
Eclipse Memory Analyser (EMAT), IBM Garbage Collection Lite (GCLITE), IBM Garbage
Collection and Memory Visualiser (GCMV), IBM Health Center (HC), and IBM Whole Analysis
Idle Time (WAIT). This decision was taken to diversify more the evaluated behaviours.

Benchmarks. One of the Java benchmarks most widely-used in the literature (DaCapo 9.12 [[79]))
was chosen because it offers a wide range of different program behaviours to test. Unlike other
benchmarks (which are synthetically generated), these are real-life programs from different business
domains and which are widely-used in the industry. Appendix A presents a summary of this
benchmark and its respective set of programs.

In order to invoke the Dacapo programs from within a test script, a wrapper JSP was developed
and installed in the Tomcat instance of each application node. It allowed the execution of any
DaCapo program via an input parameter. Next, a JMeter test script was created to iteratively
execute all DaCapo programs. For each program, its biggest workload size (among the available
pre-defined workload sizes of DaCapo [80]) was used. Each individual program call was considered
a transaction. Finally, a 24-hour test duration was chosen to reflect more realistic test conditions.

Participant Testers. All held bachelor degrees in computer science and had a professional
experience (in software development and testing) above 10 years. Following the experience
threshold used by other works [81]], the participants were considered experienced testers.
Furthermore, they had previous hands-on experience using the involved diagnosis tools (hence,
there was no learning curve that could have impacted the results). Likewise, the usage of PHOEBE
was explained before starting the experiment.

Evaluation Criteria. In terms of performance, the main metrics were throughput per second (tps)
and response time (ms). Concerning response time, lower values are better; while for throughput,
higher values are better. These metrics were collected with JMeter. In terms of testing productivity,
the main metrics were the number of bugs found and the number of critical bugs found. In both
cases, higher values are better. These metrics were obtained from the reports generated by the used
diagnosis tools.

5.1.2. Experimental Results. In this section, we discuss the main results obtained from this
experiment in terms of the relevant performance and testing metrics.
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For all the sample-based tools (i.e. WAIT, HC, EMAT), the obtained results showed that there
is a clear relationship between the selection of the SI and the performance cost of using the tools.
This behaviour is depicted in Figures and which summarise the results of the tested
configurations per tool. There, it can be noticed how the throughput decreases when the SI decreases.
These performance impacts are mainly caused by the involved sample generation processes. For
instance, in the case of WAIT (depicted in Figure [T2)), the generation of a javacore (which is the
main input used by WAIT, as explained in Section involves temporarily pausing the execution
of the application processes running within the JVM [_82]. Even though the cost was minimum when
using higher Sls, it gradually became visible (especially when using SIs below 0.5 minutes). On the
contrary, the number of identified bugs increases when the SI decreases. This positive impact is a
direct consequence of feeding more samples to the diagnosis tool, which is pushed to do a more
detailed analysis of the monitored application. It is worth noticing that the biggest performance
impacts were experienced by EMAT. This is because it requires the generation of heapdumps,
process which is known to be time-consuming and which can have a severe performance impact
on the monitored application [83].

For the trace-based tools (i.e. GCLITE and GCMYV), the obtained results showed that there is
no relationship between the selection of the SI and the performance cost of using these tools. This
behaviour is depicted in Figure which presents the results of GCLITE. There, it can be noticed
how the differences in performance were minimal, and relatively constant and independent of the
used SI. This is because the amount of generated GC verbose (which is the main input used by
GCLITE, as explained in Section[2.2) only depends on the executed application functionality.

A second round of analysis was performed concentrating on the most critical issues identified by
the sample-based tools. The objective was to assess if the previously described behaviours (with
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respect to the existing trade-off between the selection of SI and the accuracy of the tools’ results)
were also observed there. As shown in Figures and similar behaviours were observed,
confirming the relevance of the trade-off.

An additional observation of this experiment was that the number of identified non-critical bugs
was considerable higher than the number of critical bugs. This was because the diagnosis tools
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tended to report potential performance issues even when their frequency was very low. This scenario
is more likely to occur when using a small SI (e.g., 0.5 minutes or less) or a diagnosis tool that
analyses the samples individually (e.g., HC and EMAT). For instance, most of the non-critical bugs
reported by WAIT had a frequency below 1%, meaning that it is very likely that the suspected errors
were only normal logic being processed. This behaviour is visually depicted in Figures [T9] 20]
and [21] which show the bug distributions for WAIT, HC and EMAT (respectively). Likewise, the
number of new identified bugs decreased during the execution of a test run. This was because most
of the bugs identified in late phases of a test run were merely instances of previously identified
critical bugs. This behaviour suggested that the test run had already exhausted its benefits (in terms
of found bugs) at some moment during its execution.

Summary. The results showed how the selection of the SI influences the performance overhead
that sample-based tools introduce on the monitored application. This made that the automatic
selection of the SI parameter was identified as an appropriate policy within PHOEBE. For trace-
based diagnosis tools (which are insensitive to the selection of the SI), a constant SI can be more
suitable. It was also observed that the number of non-critical bugs tends to be considerable larger
than the critical ones, and the number of new identified bugs tends to decrease during the execution
of a test run.

5.2. Experiment #2: Effort Trade-off Assessment

Here the objective was to evaluate the effort required to analyse the outputs of the chosen diagnosis
tools, as well as understand the reasons behind it. The aim was to estimate the potential effort gains
that PHOEBE can achieve. The following sections describe this experiment and its results.
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5.2.1. Experimental Set-up. This assessment re-used some of the outputs produced by experiment
#1 (discussed in Section [5.1)). Primarily, the reports generated by the diagnosis tools and the effort
invested by the testers in analysing the reports. Due to the huge number of reports (above 24000
per tool/SI combination) generated by using the diagnosis tools with a small SI (i.e., 0.125 or 0.25
minutes), it was not feasible to do the manual analysis for those experimental configurations (due
to the limited availability of the testers). In those cases, the efforts were estimated. The average
efforts (per report) obtained from the other experimental configurations (i.e. those using a SI above
0.5 minutes) were used to extrapolate those efforts. The exception was WAIT, as this tool did not
produce a huge number of reports with any SI.

5.2.2. Experimental Results. In this experiment, the analysis focused on evaluating the effort
invested in analysing the outputs of the diagnosis tools. The aim was to define a baseline to which
PHOEBE can be compared against.

Analysis effort. From a qualitative perspective, this experiment allowed us to take a closer look
to the process normally followed by a tester in order to analyse the outputs of a diagnosis tool:
After collecting and processing the samples (tasks done by PHOEBE through the constant SI/UI
policies discussed in Section [5.1.1)), the testers iteratively reviewed the results of the new reports,
then identified/merged any bugs which were instances of previously identified bugs, assessed their
severity, and looked for any relevant bug trends. These learned lessons were reflected in the
consolidation policy described in Section4.5]

From a quantitative perspective, the overall results showed how the analysis of the reports
generated by a diagnosis tool is normally a time-consuming process and there are significant
potential gains (in terms of effort-savings) to address. This is shown in Figure[22] which depicts the
obtained results for the evaluated diagnosis tools per SI. There is can be noticed how the analysis
effort tends to considerably increase when using smaller Sls (e.g., 0.125). This is a reflection of
the behaviour of the tools: All diagnosis tools (except WAIT) generates one report per processed
sample. Therefore, the number of reports is directly related to the chosen SI. On the contrary,
WAIT generates one report per processing cycle (i.e. UI), regardless of the sampled data. It is worth
noticing that, even in this relatively controlled/steady scenario (where WAIT created 2 reports per
node/hour), the effort required was not negligible (around 20 hours).

As discussed in the results obtained in experiment #1, trace-based diagnosis tools (e.g., GCLITE
and GCMA) do not benefit (from a bug finding efficiency) from using a small SI (e.g., 0.125
minute). Similarity, from an effort perspective, it is better to use a big SI (e.g., 8 minutes) because
that decreases the number of reports to analyse without losing any precision (in terms of identified
bugs). This behaviour can be noticed in Figure [22]
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To further contextualise the previously discussed results, it is worth remarking two aspects:

e The reported efforts did not consider the gathering and processing of the sampled data. This is
because these tasks were automatically performed by PHOEBE. Therefore, bigger potential
gains can be expected when comparing PHOEBE against a completely manual usage of a
diagnosis tool. This scenario is explored in experiment #5 (described in Section[5.5).

o All the test runs lasted their planned duration (i.e. 24 hours). Therefore, bigger time-savings
can be expected if the duration of the test can be decreased. As suggested by the results
of experiment #1 (described in Section [5.1.2)), a test run might have exhausted its benefits
(in terms of found bugs) before completing its duration. However, a tester cannot know for
sure until finishing the analysis of the obtained results. On the contrary, if an alternative
stop condition can be triggered whenever this situation occurs (such as the one discussed
in Section[4.6.3), the test might be able to finish before its planned duration, saving additional
time and resources (e.g. shared test environments).

Effort-driven factors. The next round of analysis focused on understanding the main factors that
driven the amount of effort required in the analysis of the outputs generated by the diagnosis tools.
As an initial step, we analysed the differences in complexity among the reports generated by the
tools. This qualitative analysis showed that the reports generated by EMAT, HC and WAIT were
of similar complexity (due to their structure and the amount of presented information), taking a
similar amount of time to review. On the contrary, the reports generated by GCLITE and GCMA
took considerably less time due to the relatively narrow scope of the tools (i.e. GC issues).

Even though the observed differences in effort might be subjective to a tester’ expertise, the main
observation from this analysis was that the complexity of the tool was a minor factor with respect
to the overall effort required by the analysis. This is because the main factor influencing the amount
of effort required to do the analysis was the number of generated reports. Similarly, it was driven
by multiple factors: Firstly, the behaviour of the tool (whether it creates a report per sample -i.e.
SI- or per processing cycle -i.e. UI-). Additionally, the number of reports is directly related to the
number of application nodes and the duration of the performance test. That is, the larger the number
of application nodes (or the longer the test), the larger the number of reports that are generated.
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This scenario is exemplified in Figures 23|and 24] There, the tool which required the least effort
(WAIT) is compared against one of the tools (HC) which required the most effort (as shown in
Figure 22)). Figure 23] shows the number of reports that are generated by each tool per node/hour
(based on the used SI). It can be noticed how the number of reports generated by HC drastically
increased when using smaller SIs (e.g., 0.125). On the contrary, WAIT only appears once in the
figure because it is insensitive to the SI selection (hence it always generated 2 reports, per node/hour,
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when using a 30-minute UI). Meanwhile, Figure 24]shows how the number of reports monotonically
increased with respect to the number of monitored nodes. Similar trends were observed in terms
of execution time, as the number of reports increased practically linear to the duration of the
performance test run (i.e., the 24-hour duration used on this experiment).

Summary. In conclusion, the results of this experiment showed how the potential effort-savings
that PHOEBE can address are significant (especially considering the experience of the involved
testers and the relative modest size of the cluster - 5 nodes -). This is because the analysis of the
reports generated by a diagnosis tool is a time-consuming process. Even though the complexities of
the reports generated by each tool might differ, the effort involved in the analysis is mainly driven by
the number of reports. As the number of reports is directly related to the duration of the test and the
number of application nodes in the monitored environment, the potential gains will be considerable
high in long-term runs, which are common in performance testing and typically last several days.
The same situation occurs with the performance testing of highly distributed environments, as the
potential time savings will be higher under those conditions.

5.3. Experiment #3: Resource Trade-off Assessment

Here the objective was to evaluate the potential trade-off between the number of samples
concurrently processed by a diagnosis tool and the amount of resources it requires to process the
samples. The following sections describe this experiment and its results.

5.3.1. Experimental Set-up. The set-up was similar to that used in the experiment #1 (presented in
Section [5.1.1)), with two differences: First, as both SI and UI influence the number of samples that
are sent to the diagnosis tool for processing, a range was chosen for each parameter. For the SI, the
following 3 values were used: 0.5, 4 and 8 minutes. For the UI, the following 3 values were used: 5,
30 and 60 minutes. Second, the main metrics were the CPU (%) and memory (%) utilisations in the
diagnosis tool node, during the processing of the samples. These metrics were collected using the
“top” command.

5.3.2. Experimental Results. Overall, the results showed how the resource utilisation in the
diagnosis tool node is related to the number of samples processed in parallel; which is a function of
both the ST and UI. For example, the experimental configurations (per diagnosis tool) which used a
SI of 4 minutes and an UI of 30 minutes, reported similar resource utilisations than the configuration
which used a SI of 8 minutes and an UI of 60 minutes. This is because both combinations fed the
same number of samples (per upload iteration) to the diagnosis tool.

Even though the CPU and memory utilisations showed similar trends (in the sense that they
tended to grow with respect to the processed samples), each diagnosis tool experienced different
CPU/memory behaviours: For instance, WAIT proved to be considerably more CPU-intensive (with
its CPU 4y ¢ exceeding the 90% utilisation in most of the tested configurations). On the contrary,
WAIT was considerable less memory-intensive (with its highest M EM 4 ¢ below 5% utilisation
in all the tested configurations). The obtained results are presented in Figures [25] (CPU) and [26]
(memory). There, it can be noticed how WAIT was the most CPU-intensive tool, followed by
GCLITE and EMAT. Meanwhile, HC was (by far) the most memory-intensive. For instance, it
was the only tool for which the M EM 4y of one experimental configuration exceeded the 90%
utilisation. Finally, it is worth remarking how several experimental configurations exceeded the 90%
of CPU and/or memory utilisations (utilisation target frequently suggested in order to retain some
unused capacity and provide a soft assurance for quality of service [69]), despite the relative modest
size of the cluster (5 nodes).

Summary. The performed tests demonstrated how the selection of UI influences the resource
utilisation in the diagnosis tool. Even though each diagnosis tool experienced different levels of
CPU/memory-intensivities, the obtained results made that the automatic selection the UI parameter
was identified as another appropriate policy within PHOEBE.
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5.4. Experiment #4.: Proposed Policies Assessment

The objective of this experiment was to evaluate the behaviour of PHOEBE, as well as the set
of proposed policies, in order to assess how well they have fulfilled their purpose of addressing the
identified trade-offs without the need for manual intervention from the tester. The following sections
describe this experiment and its results.

5.4.1. Experimental Set-up. The set-up was similar to that used in the experiment #1 (presented
in Section [5.1.1), with the following differences: First, the adaptive policies took the place of the
manual configurations of the SI and UI parameters. Furthermore, the policies used the following
configurations: For the accuracy policy, a 20% response time threshold was defined. This value was
suggested by IBM to reflect real-world conditions. Additionally, a warm-up period of 5 minutes was
found to be enough for all the test transactions to be executed at least one. Finally, the minimum
SI and the ASI were set to 30 seconds. Regarding the efficiency policy, the initial UI was set to
60 minutes (time range commonly used in the industry to monitor performance test runs); and
the AUI was set to 15 minutes. Finally, the CPU and memory maximum utilisation thresholds
were set to 90% to avoid saturation of these resources (scenario which should be avoided for
optimal performance, as demonstrated by [69]). Regarding the consolidation policy, the two-level
severity style (described in[4.6.2) was used. This parameter was suggested by IBM to simplify the
classification of performance bugs (between critical and non-critical) as usually only the critical ones
are of interest in performance testing. The severity threshold was set to a 50% frequency (so that
the critical category would conceptually overlap the ISTQB critical and major categories). Finally,
the CV-based Go No-Go assessment (described in Section 4.6.3)) was enabled. It was configured to
assess the results of the latest two hours for all the severity categories. The CV threshold was set to
0.1 for the critical category, while 0.3 for the non-critical one.

5.4.2. Experimental Results. In this experiment, the analysis focused on two main aspects:
Evaluating the accuracy of the implemented policies, and assessing the productivity gains that
PHOEBE brought to the performance testing process. Therefore, the obtained results were
compared against the results from the previously performed assessments of trade-offs (discussed
in Sections 5.1} [5.2] and [5.3).

Accuracy-Target Data Gathering Policy. The first part of the analysis focused on evaluating
the accuracy policy. In terms of performance overhead, the results demonstrated that the accuracy
policy worked well, as it was possible to finish the test with the overhead caused by the diagnosis
tools within the desired threshold. This was the result of increasing the SI when the threshold was
exceeded to reduce its performance impact. For instance, this adjustment for WAIT involved that
the SI was increased twice, moving from its initial value of 30 seconds to 60 seconds, then to a final
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value of 90 seconds. Regarding bug coverage, the number of bugs found with the adaptive policy
was always higher than the number of bugs found with the corresponding static SI (e.g., 90 seconds
in the case of WAIT). This was the result of using other (smaller) SIs during the test, situation which
provoked that the bug coverage was higher (compared to the corresponding static SI) during certain
periods of the test. The results obtained for WAIT, EMAT and HC are presented in Figures [27] [29]
and [28] respectively. In the figures, the response time threshold is shown as a grey horizontal line.
Furthermore, the same analysis was done considering only the critical bugs, and similar behaviours
were observed. An example is shown in Figure 30} which presents the results obtained with WAIT,
comparing them against the results obtained when using a static SI. Finally, the results for GCMA
and GCLITE are not presented because these tools are insensitive to the SI selection. Therefore, the
SI did not change for them (remaining in their original value of 0.5 minutes).

Efficiency-Target Upload Policy. The second part of the analysis concentrated on evaluating
the efficiency policy. The obtained results showed that the efficiency policy achieved its goal of
decreasing the utilisation in the shared services (i.e. the used diagnosis tools in this scenario).
This was the result of decreasing the UI when the threshold was exceeded in order to reduce the
resource utilisation. For instance, in the case of WAIT, the C'PU 4y ¢ of the first round of uploads
(which occurred before any adjustment) was 90.7%. As this value exceeded the target of maximum
utilisation (Ups4x), the efficiency policy adjusted the Uls of the nodes after the first round of
uploads. After the UI adjustment, the C'PU 4y ¢ decreased to 65.7%, remaining below the Upsax
during the rest of the test. Similarly, the Uls used by was GCLITE and HC during the performance
test runs were adjusted. For GCLITE, the adjustment was triggered by CPU utilisation, while for
HC it was triggered by memory utilisation. Meanwhile, GCMA and EMAT did not require an UI
adjustment. This was because these tools never exceeded the Uy;4x of any monitored resource
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during their execution. These behaviours are shown in Figure [31] which presents the average CPU
and memory utilisations achieved by each diagnosis tool. In the figure, the Uj; 4 x is shown as a
grey horizontal line.

Multi-View Consolidation Policy. The third part of the analysis concentrated on evaluating the
amount of effort-savings gained by using PHOEBE. This analysis identified two main types of
savings: Those in the performance analysis tasks, and those in the performance testing tasks.

Regarding the performance analysis tasks, as PHOEBE is able to self-configure to keep a test run
within the desired constraints (e.g., the overhead threshold), a tester does not longer risk to select
an inappropriate configuration (among a set of candidate configurations). Therefore, the tester only
needs to run one performance test run. For instance, assuming there are eight candidate configuration
sets (such as the ones evaluated in experiment #1), a tester would be saving 87.5% of the time
required to test the complete configuration spectre (as only one test run is needed, instead of eight).

To complement the analysis, by offering a more conservative perspective of the obtained gains,
the adaptive runs were also compared against the best and worst performers (among the static
experimental configurations tested in experiment #1). This comparison also showed that PHOEBE
worked well, as the achieved improvements were also very significant. The considerable decrements
in effort were the result of the automation of most of the analysis tasks previously done manually.

A summary of the results is presented in Figure which shows the efforts required by the
testers (per diagnosis tool) for four different experimental configurations: The adaptive run, the



PHOEBE 27

10000
1000
~
v
= 100
N—r
=
@]
= 10
L
1
01 < < . > i < &
X
o GGV\« SO
Tools
All static m— 16m static mm—
0.125m static mmm— Adaptive s

Figure 32. Performance Analysis Effort-savings.

best performer among the static runs (i.e. SI of 16 minutes), the worst performer among the static
runs (i.e. SI of 0.125 minutes), and all the static runs together. There, it can be noticed how the
adaptive runs drastically outperformed their static counterparts: Compared against all the static
configurations, the decrements in effort ranged between 99.4% and 99.9% (with an average of
99.8% and a standard deviation of 0.3%). Compared against the worst performer (i.e. the static
SI of 0.125 minutes), the decrements ranged between 95% and 99.9% (with an average of 98.9%
and a standard deviation of 2.2%). Finally, compared against the best performer (i.e. the static SI
of 16 minutes), the decrements ranged between 95% and 97.2% (with an average of 96.3% and a
standard deviation of 1.2%).

Furthermore, PHOEBE was able to save additional time to the performance testing process. This
was due to two main reasons:

e As previously discussed, a tester no longer needs to try different configuration sets. This
behaviour directly translates into time-savings (in terms of test runs’ execution time). For
instance, in this experiment these reductions ranged between 95% and 98% (with an average
of 97% and a standard deviation of 0.8%).

e The usage of the proposed CV-based Go No-Go assessment (discussed in Section [4.6.3)
allowed PHOEBE to identify the moment (during the test run execution) in which the test
run has exhausted its benefits (in terms of identified bugs). Whenever it occurred, the test run
was stopped, bringing additional time-savings to the process. The exact time varied among
the diagnosis tools (as it was influenced by the pace and amount of bugs identified by each
tool) but in all cases considerable time was saved: Compared against any of their static
counterparts, the time-savings ranged between 66% and 81% (with an average of 75% and
a standard deviation of 6.6%). The results are summarised in Figure [33] which compares the
results obtained by the adaptive test runs (per diagnosis tool) against their static counterparts.

Summary. The results of this experiment demonstrated how PHOEBE, through the set of
proposed policies, achieved the intended goals: The accuracy policy kept the performance overhead
introduced into the monitored application nodes within the desired threshold, while maximising the
number of bugs found within the constrained conditions. Likewise, the efficiency policy decreased
the resource utilisation of the shared service (i.e. the diagnosis tools), minimising the possibility of
its saturation. Finally, the usage of PHOEBE proved how it can drastically decrease the amount of
effort/time spent by testers during the processes of performance testing and analysis.
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5.5. Experiment #5: Testing Productivity Assessment

Here the objective was to further assess the benefits that PHOEBE brings to a performance tester
(in terms of reduced effort and time) by comparing the automated usage of a diagnosis tool through
PHOEBE against a purely manual usage of a diagnosis tool. The following sections describe this
experiment and its results.

5.5.1. Experimental Set-up. The experimental set-up was similar to that used in the experiment
#4 (presented in Section [5.4.1)), with the following differences: First, the iBatis JPetStore 4.0 [84]
application was used (with a workload of 2,000 concurrent users). JPetStore was selected because
it is a well-documented open source application which is also easy to use. Second, the source code
of JPetStore was modified to inject five performance issues (two lock contentions, two deadlocks
and one I/O latency bug). As experiment #4 proved that PHOEBE works well irrespective of the
diagnosis tool, we focused on WAIT. This tool was chosen following a suggestion made by our
industrial partner (whom considered WAIT the most interesting tool, among the evaluated ones,
due to its strong analytic capabilities). As WAIT had also shown to achieve the “lowest” (still
highly significant) potential gains, its usage allowed us to define an improvement baseline (as the
improvement in the other diagnosis tools would be higher). Finally, no Go No-Go assessment was
configured in order to test PHOEBE in a reliability-type performance test run.

5.5.2. Experimental Results. Two types of runs were performed: The first type involved a tester
trying to identify the injected bugs using WAIT manually (M-WAIT). A second type of run involved
using WAIT through the automation framework (A-WAIT). In both cases, the tester did not know
the number or characteristics of the injected bugs. The results of this experiment are summarised in
Table[ll

After comparing the results of both runs, two time savings were documented when using the
automated WAIT: First, the effort required to identify bugs was considerably decreased (68% less
than the manual WAIT). This time saving was the result of simplifying the analysis of the WAIT
reports: Instead of having multiple reports (one per node/hour) that needed to be analysed and
manually correlated, the tester using the automated WAIT only needed to keep monitoring a single
report which incrementally evolved. The second saving involved the time required by the tester to
identify all the injected bugs. By using PHOEBE, it was possible to feed WAIT incrementally during
the test run execution (in contrast to manual WAIT, where the tester needed to wait until the end
of the performance test run). This behaviour allowed the tester using the automated WAIT to easily
get intermediate results during the test run. In this experiment, all the bugs were identified by the
tester using the automated WAIT after the first hour of test execution. Therefore, the tester was able
to start the analysis of those bugs in parallel to the rest of the test run execution (which the tester
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Table I. M-WAIT and A-WAIT Comparison.

Metric M-WAIT A-WAIT M-WAIT vs.
(hr) (hr) A-WAIT (%)

a. Duration of performance testing 32.8 24.1 -27%

activity

b. Duration of performance testing 24.0 24.0 0%

c. Effort of performance analysis 8.8 4.2 -52%

(d+e)

d. Effort of bug identification 6.8 2.2 -68%

e. Effort of root cause analysis 2.0 2.0 0%

kept monitoring). A direct consequence of this second time saving was that the overall duration
of the performance testing activity decreased 27%. For the tester using the automated WAIT, the
activity practically lasted only the planned 24-hour duration of the performance test run, plus some
additional time required to review the final consolidated WAIT report. It is also worth mentioning
that both testers were able to identify all the injected bugs with the help of the WAIT reports.

An additional observation from this experiment is that the time savings gained by PHOEBE are
directly related to the duration of the test and the number of application nodes in the environment.
This behaviour (which reinforced the results obtained in experiment #2, discussed in Section
is especially valuable in long-term runs, which are common in performance testing and typically
last several days. The same situation occurs with the performance testing of highly distributed
environments, as the obtained time savings will be higher under those conditions.

Summary. To summarise the experimental results, they allowed to further measure the
productivity benefits that a tester can gain by using a diagnosis tool through PHOEBE. In particular,
two time savings were documented: The effort required to identified bugs was significantly reduced
(68% in this case), as well as the total duration of the testing activities (27% in this case). A direct
consequence of these time savings is the reduction in the dependence on human expert knowledge
and a reduced effort required by a tester to identify performance issues, hence improving the
productivity.

5.6. Discussion for Practitioners

The presented experimental results have demonstrated how automating the configuration and usage
of a diagnosis tool can significantly improve the performance testing process. In the following
paragraphs, we provide guidelines for practitioners to indicate the conditions under which PHOEBE
can yield improvements and discuss the wider applicability of the technique.

e As discussed in Section 2.1} performance testing is usually performed multiple times during a
software project (i.e., it is normally executed after a new version of the software is built). As
there are usually budget or schedule constraints in such projects, using PHOEBE with a Go
No-Go assessment (like the one discussed in Section[4.6.3)) can be useful in the early phases
of a project to make the most out of the performance testing, without the need of (necessarily)
executing the test for its whole planned duration (e.g., 24-hours). On the contrary, in final
phases of the project (or whenever the goal of the performance testing is to assess the
reliability), PHOEBE should better be used without a Go No-Go assessment so that the test
last the planned duration.

e An adaptive SI (like the policy described in Section [4.4.T) is useful when a sample-based
diagnosis tool is used (e.g., WAIT, HC or EMAT). This is because the overhead introduced by
a diagnosis tool into the application nodes is normally caused by the sampling process (e.g.,
it is widely-known that the generation of a heapdump is a very time-consuming process).
Furthermore, the selection of an appropriate SI (i.e. one that will introduce a tolerable level of
overhead) might vary depending on the particular usage scenario (e.g., the application-under-
test or the workload used for testing). Under these conditions, an adaptive SI is preferable
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as it frees the tester from the burden of manually configuring it. As the experimental results
have shown, the costs of incorrectly selecting an appropriate SI can be high and considerable
effort/time can be wasted. On the contrary, a static SI can be a better fit for those diagnosis
tools that leverage on traces (e.g. GCMV or GCLITE, which relies on GC verbose). This is
because that type of tools generate a constant overhead (regardless of the chosen SI).

An adaptive UI (like the policy described in Section #.4.2) is better suitable for resource-
intensive tools and large-scale clustered applications. This is because, under those conditions,
the possibility of saturating the diagnosis tool (due to the concurrent processing of multiple
samples) is more likely. Likewise, an adaptive Ul is suitable for enabling shared services (i.e.
diagnosis tool servers which are shared across different testing teams or projects). This is
because, as there are usually budget or schedule constraints in software projects, the amount
of available licenses for a diagnosis tool is normally limited. Under these conditions, the
capability of PHOEBE to efficiently enable a diagnosis tool as a shared service is highly
desirable.

In the experimental evaluation, we selected five of the most widely-used Java diagnosis tools
in the industry. As the results have shown, the achieved time/effort savings are evident for
all the tested diagnosis tools, and so it is expected that PHOEBE can yield similar results
when using other Java diagnosis tools (especially those using the same type of inputs - i.e.
heapdumps, javacores or GC verbose -). Likewise, it is expected that PHOEBE should be
applicable to diagnosis tools used in other object-oriented languages (e.g., Python or C#) as
long as the appropriate data analytics helpers are developed to interface with those tools.

In the experimental evaluation, the participant testers were experienced ones. As the results
have shown, the achieved time/effort savings are evident, and so it is expected that PHOEBE
can yield better results when used by more inexperienced testers (i.e. undergraduates or
postgraduates with little or no working experience in software development or testing).
Likewise, a simplified two-level severity classification was used in the experimental
evaluation. It is expected that PHOEBE can save more analysis effort whenever a more
granular severity classification is used (e.g., the ISTQB-based one discussed in Section|4.6.2)).

In terms of the potential time savings that PHOEBE can achieve, they are directly related to
the duration of the test and the number of application nodes in the environment. Therefore,
the biggest time savings are obtained when the performance testing uses long-term runs (e.g.,
one or more days) and the testing environment is highly distributed (i.e. it is composed
of multiple application nodes). Under these conditions, PHOEBE is able to mitigate most
of the effort required to use a diagnosis tool in performance testing. As the effort is also
considerable (hence offering a lot of potential savings), PHOEBE can convert them into actual
time savings. It is also worth mentioning that time savings can usually be expected. This is
because PHOEBE significantly reduces the effort and expertise required to use a diagnosis
tool, independently of the duration of the test or the number of nodes (e.g., a tester only needs
to monitor a single report which is automatically updated during the test run execution).

As of now, PHOEBE has centred on interfacing with a human user (i.e. testers). However,
PHOEBE might interact with other non-human actors. For instance, a policy might be in
charge of reporting issues to a bug tracking system (e.g., bugzilla [85]) or interface with
an e-mail server to communicate relevant events (e.g., the occurrence of a critical issue) to
any interested parties (e.g., testers or developers). Likewise, PHOEBE has been tested within
the performance testing domain. However, PHOEBE might also be suitable to monitor non-
testing environments (e.g., production servers). In that scenario, PHOEBE might interface
with a capacity management system to report relevant events (e.g., whenever a critical issue
arises, serious performance degradations are observed or a resource utilisation exceeds a
defined threshold).



PHOEBE 31

e Based on the previously discussed points, it is concluded that a framework that automates
the usage of a diagnosis tool in a clustered testing environment can offer significant benefits
to the performance testing process. Given the broad spectrum of functional behaviours and
workloads that an application might experience, such framework should not rely on a static
configuration. On the contrary, it should be able to adapt to the non-functional characteristics
of the underlying application (as PHOEBE does). As there are similarities in the tasks usually
performed by a tester on the performance testing and analysis of an application (using a
diagnosis tool), such tasks can be abstracted into policies (such as the ones proposed in
Section[4.4). This strategy can then be leveraged to make a more robust framework.

6. CONCLUSIONS AND FUTURE WORK

The identification of performance problems in clustered environments is complex and time-
consuming. Even though researchers have been developing diagnosis tools to simplify this task,
various limitations exist in those tools that prevent their effective usage in performance testing. To
address this challenge, in our previous work we presented PHOEBE, a novel adaptive framework
that automates the usage of a performance diagnosis tool in a clustered environment. The aim was to
improve a tester’s productivity by decreasing the effort and expertise needed to use diagnosis tools.
Internally, PHOEBE utilises a set of policies to control the different set of processes commonly
involved in the configuration and usage of a diagnosis tool. The aim of this paper was to extend
our previous work by broadening the set of policies available in PHOEBE in order to cover the
whole spectrum of processes (i.e. sample gathering, sample processing and results’ consolidation)
normally involved on the usage of a diagnosis tool in the performance testing of a clustered
application, as well as by performing a comprehensive assessment of PHOEBE in terms of its
benefits, costs and generality (with respect to the used diagnosis tool). For this purpose, a prototype
was developed around a set of well-known diagnosis tools to experimentally evaluate the framework.
First, the different trade-offs that are commonly experienced when using a diagnosis tool (i.e. bug
finding accuracy, testers’ effort and resource utilisations) were evaluated. Then, the time/effort
savings obtained by a tester through the usage of PHOEBE (and its set of policies) were assessed.

The obtained experimental results have demonstrated that relevant time savings can be gained by
applying the proposed framework: Not only the effort and expertise required to uses the different
diagnosis tools were significantly reduced (between 95% and 99.9%), but also the total duration
of the performance testing was considerably reduced (between 66% and 98%). These time savings
were achieved independent of the used diagnosis tool, proving the generality of PHOEBE. The
results have also demonstrated that such an adaptive policy-enabled framework is capable of
simplifying the configuration of a diagnosis tool. This was achieved by automatically addressing
the trade-offs identified in each tool without the need for manual intervention from the tester. Thus,
the framework has demonstrated to simplify the usage of a diagnosis tool and to reduce the time
required to analyse performance issues, thereby reducing the costs associated with performance
testing. From the above results, we conclude that an automation framework, focused on effectively
addressing the common usage limitations experienced by a diagnosis tool, can bring significant
benefits to the performance testing of clustered applications.

In our future work, we will continue investigating how best to extend the capabilities of
the framework. For instance, PHOEBE has exclusively leveraged on the qualitative data (i.e.
performance bugs or tuning recommendations) that each diagnosis tool provides. However, those
tools also provide a considerable amount of quantitative data that can be exploited. Hence, PHOEBE
can be extended to use that data to identify additional types of issues, in the form of performance
anti-patterns. Likewise, PHOEBE has also mainly focused on controlling the behaviour of the
performance diagnosis tools. However, it can be extended to control other actors in the performance
testing process. For example, policies can be developed to dynamically enable (or disable) diagnosis
actions once it is suspected that a performance issue is occurring (e.g., varying the level of logging).
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APPENDIX A: DACAPO BENCHMARK

Nowadays, DaCapo is one of the Java benchmarks most widely-used in the literature. The following
paragraphs briefly describe the version 9.12 of this benchmark, which is the latest release of the benchmark
as well as the version used in this paper.

This benchmark has been developed by the DaCapo research project, which has been sponsored by
companies such as IBM, Intel, and Microsoft; and institutions such as the Australian Research Council.
The benchmark is composed of 14 different programs. They are all open source, real-world applications,
and with non-trivial memory loads [[79]]. Table[M]lists these programs and briefly describes their functionality.

Table II. DaCapo Programs

Name Description
avrora A program that simulates a set of programs running on a grid
of microcontrollers.
batik A program that processes a set of vector-based images.
eclipse A program that executes a set of performance tests in an eclipse
development environment.
fop A program that generates PDF files based on a set of XSL-FO
files that are parsed and formatted.
h2 A program that executes a set of banking transactions against
a database-centric application.
jython A program that executes a set of python scripts in Java.
luindex A program that indexes a set of documents.
lusearch A program that performs a set of keyword searchs over a
corpus of data.
pmd A program that reviews a set of Java classes, looking for bugs
in their source code.
sunflow A program that renders a set of images.
tomcat A program that executes a set of queries against a Tomcat
Server.
tradebeans A program that executes a set of stock transactions, via Java
Beans calls, using an Apache Geronimo/h2 backend.
tradesoap A program that executes a set of stock transactions, via SOAP
calls, using an Apache Geronimo/h2 backend.
xalan A program that transforms a set of XML files into HTML files.
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