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1GIPSA-Lab, Université Grenoble Alpes, UMR 5216 CNRS
2Free Lance Consultant

11 avril 2017

Résumé

Data driven decision making (DDDM) constitutes
the modern operation of systems and organizations.
However a prediction model of the system can be esti-
mated from data. The availability of data driven pre-
diction models allows on one hand to test in simula-
tion various decision policies and on the other hand to
move toward an automated decision making procedure.
These automated decision making procedures have a
feedback structure and the design of the decision algo-
rithms relies on the knowledge of the prediction model
of the system. This procedure can be called automa-
ted data driven model based decision making in short
(MBDM). The paper explores basic aspects to be consi-
dered in the design of the decision algorithms related
to optimal and safe operation of the full system.

Key-Words :Data mining, Prediction model, Parame-
ters estimation, Feedback control, Stability, Predictive
control

1 Introduction

Acquired data are fundamental for taking realistic
decisions. Basically one can say that decision will be
made by an agent who uses either his professional ex-
perience or an intuitive model (or even a simple theore-
tical model) in order to take a decision which will be ef-
fectively implemented through an actuator (called also
effector)[FT13]. The principle of DDDM (Data Driven
Decision Making) is illustrated in Fig. 1. However the
Data Mining methodology provides an opportunity for
estimating a prediction model of the system (organi-
zation, business, environment, etc..) from the acquired
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data ([FT13], [LP15]). These data driven prediction
models replace the intuitive or theoretical models used
for taking decisions.

Figure 1 – Principle of DDDM (Data Driven Decision
Making).

In fact the availability of these prediction models al-
lows to move toward an automated decision procedure
as it will be shown subsequently. Two basic configu-
rations can be considered once a prediction model is
available.

1. Off line simulation of the decision process and its
effects using the prediction model.

2. Automated real time decision operation designed
on the basis of the prediction model.

In the off line operation, the decision process is run
on the prediction model. This is a simulation (to be run
at high speed) which provides an image of the evolution
of the real process and will assist the agent in selecting
an adequate decision. The use of this approach is based
on the assumptions that :

— the prediction model used is relevant for the ope-
ration of the system ;

— the prediction model of the real system does not
evolve in time.
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In the second approach a decision algorithm is desi-
gned based on the knowledge of the prediction model
and will automatically provide decisions to be applied
to the system. The automated decision procedure will
have a feedback structure and is illustrated in Fig 2.
In the phase 1, estimation of the prediction model of
the system is done 1 and the decision algorithms will be
designed based on this estimated prediction model. In
the phase 2, one operates the automated model based
decision making system. In addition, the automated
decision procedure should include two other important
elements (not represented in Fig. 2)

1. monitoring (supervision) of the performance and
safe operation of the system

2. updating in real time of the prediction model
(adaptation)

Figure 2 – Principle of automated MBDM (Data Dri-
ven Model Based Decision Making).

In an automated decision procedure the role of the
agent is to supervise the operation of the system by
looking to a number of performance indicators provi-
ded (these indicators can be interpreted as agregated
data). Supervision indicators have to be provided by
the system and the agent has to be able to interact
with the system.

Since the automated decision system has a feedback
structure, the dynamic properties of the environment
(reflected also in the prediction model) should be taken
into account for assuring a stable and optimal opera-
tion fo the full system.

The fundamental issues to be investigated when de-
signing an automated decision making system are :

1. A probing excitation may be necessary in some cases for
estimation of the prediction model (supervised learning)[LZ05]

1. the dynamic features of the prediction model (i.e.
of the environment)

2. the stable operation of the automated feedback
model based decision making

3. the optimality of the feedback decision making
process

4. the adaptation in real time of the decision algo-
rithm in the presence of variation of the environ-
ment behavior.

In the case of non stationarity of the prediction mo-
del of the system (environment) one has to consider
an adaptive solution i.e. real time updating of the es-
timated prediction model an redesign in real time of
the decision algorithm. See [LLMK11]. The principle
of adaptive automated MBDM is illustrated in Fig. 3.

Figure 3 – Principle of adaptive automated MBDM
(Data Driven Model Based Decision Making).

The present paper will focus on the three first issues.
The real time adaptation issue will be the object of a
separate contribution.

The paper is organized as follows : In Section 2 the
basic dynamical features of the systems are considered.
These features will be used in Section 3 for presenting
the basic properties of feedback systems encountered
in automated decision making. This section will focus
on the stability of these systems. Section 4 will briefly
present the short range and long range predictive deci-
sion strategies which use explicitly the predictive model
in the decision algorithm. An example of a predictive
decision strategy is illustrated in Section 5.

2 Dynamic features of the sys-
tems (prediction models)

To simplify the presentation one can say that in a
system one encounter two main dynamic behaviors :
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1. Dead-time (time-lag)

2. Inertia

The dead-time can be defined as the time between the
application of a decision (though the actuator) and the
detection of a change in the evolution of the target
variable.

The inertia of a system may be characterized by the
time needed (after the eventual dead-time) in order
that the target variable reach a steady state value (with
a certain tolerance) when a step change in the control
(predictive) variable is applied as the result of the de-
cision process. Fig. 4 illustrates both dead-time and
inertia.

Figure 4 – Response of a system featuring a dead time
(τ) and an inertia.

3 Feedback operation

As indicated previously, the automated decision ma-
king systems have a feedback structure. A key ele-
ment is the decision algorithm (can be called also
”controller”) which will process the acquired informa-
tion (data) and the desired values of the target variable
and will generate the ”decision”. The decision will be
effectively applied to the system (as indicated in Fig
2) by an actuator” or ”effector” which will deliver the
effective value of the predictive variable applied to the
system (called also ”control”). Once the structure of
the automated decision system is finalized (what is the
target variable ? what are the acquired data ? what are
the desired values for the target variable ?), the key
issue is the design of the ”decision algorithm”.

To design the ”decision algorithm” one needs the
knowledge fo the prediction model of the system
to be controlled. This is called the ”model based
paradigm”([LZ05]).
For completeness, one should mention another ap-
proach for the design of the decision algorithm which is

based on the use of the available knowledge concerning
the various design decision done in the past for various
configurations in order to design the ”automated de-
cision algorithm”. This will be a rule based decision
algorithm which try to exploit the available expertise
(it is often called an ”expert” system)[S.G01, AK86]. A
detailed comparison of these two approaches is beyond
the scope of this paper. In a total different field (auto-
matic control of dynamical systems) the model based
approach has shown its advantages with respect to the
expert rule based design.

In the context of the ”model based decision making”
there are potentially many designs techniques for the
”decision algorithm” but all require the knowledge of
the prediction model of the system. One can say that
directly or indirectly the decision algorithm incorpo-
rate the prediction model or some of its pertinent fea-
tures.

Independently of the design method to be used in
order to reach an optimal decision, there is one issue
which all designed decision algorithm should assure and
this is the ”stability” of the system (since feedback sys-
tem can become unstable !). More than this, one has to
be sure that stability of the automated decision system
is assured even in the presence of quantified variations
of the dynamic properties of the system (and therefore
of the prediction model) to be driven.

The stability issue is crucial in order to avoid the
”Chernobyl effect”. One also has to be sure that the
”supervisor” (supervisory system) is able to restore the
stability of the system even in the case of the occur-
rence of a beginning of an instability phenomenon.

We will examine the stability problem by considering
a basic structure for the decision algorithm.

3.1 A basic decision making algorithm

The basic automated decision making algorithm
should generate a value for a given predictive variable
(control variable) in order to reduce the error between
the desired value of the target variable and its current
value. The algorithm should react to the instantaneous
value of this error at a sampling instant but has also to
take in account the previous values of the control va-
riable which have been already applied to the system
and whose effect are not fully reflected on the target
variable at the sampling instant t because of the iner-
tia of the system. Such a basic algorithm can have the
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following form :

u(t) = u1(t) + u2(t) (1)

u1(t) = KP ε(t) (2)

u2(t) = u2(t− 1) +KIε(t) (3)

where ε(t) = y∗(t) − y(t) is the error (difference) bet-
ween the desired value of the target variable y∗(t) and
the measured value of the target value y(t) at instant
t. u1(t) is called the ”proportional” action and u2(t) is
called the ”integral” action. Using the delay operator
q−1(u(t− 1) = q−1u(t)) ([LZ05], u(t) can be expressed
as :

u(t) = KP ε(t) +
KIε(t)

1 − q−1
(4)

=
r0 + r1q

−1

1 − q−1
ε(t) (5)

where r0 = KP + KI and r1 = −KP . The correspon-
ding decision algorithm is 2 :

u(t) = u(t− 1) + r0ε(t) + r1ε(t− 1) (6)

3.2 The stability issue

To illustrate the stability issue we will discuss the de-
sign of the decision algorithm given in Eq. 6 assuming
that it operates on a system whose prediction model is
described by a simple inertia plus a dead-time. Such a
model is :

y(t+ 1) = −a1y(t) + b1u(t− d) (7)

a1 reflects the inertia of the system, d reflects the dead-
time expressed in terms of sampling periods (all the
systems operates in discrete time and the decisions are
sent to the system through the actuator at a certain
sampling frequency). There is always a dead-time of
one sampling period since the effect of a decision send
at instant t can at the earliest be seen at instant t+ 1.
Fig. 5 gives the time response of the system in the ab-
sence of the dead-time for various values of a1 while
keeping the steady state gain of the system constant
(the steady state gain of the system is b1/(1+a1)). We
will consider as decision algorithm, the algorithm pre-
sented in the previous subsection, Eq. 6. For stability,
one has to analyze the behavior of the complete sys-
tem (the system together with the decision algorithm)
around a steady state value of the target variable. The
full system will be described by :

y(t+ 1) = −a1y(t) + b1u(t− d) (8)

u(t) =
r0 + r1q

−1

1 − q−1
[y∗(t) − y(t)] (9)

2. This algorithm is often termed ”proportional + integral”

Figure 5 – Step responses of the discrete-time system
given in Eq. 7 for different values of a1 and [b1/(1 +
a1)] = 1.

Combining Eqs. 8 and 9 one gets the full system re-
presentation shown in Fig 6 . Computing the transfer

Figure 6 – Block diagram of the automated decision
making system.

operator from y∗ to y one gets :

HCL =
q−d−1(r0 + r1q

−1)

P (q−1
(10)

where P (q−1) is called the characteristic polynomial of
the closed loop. The necessary and sufficient condition
for (asymptotic) stability is that the roots of this po-
lynomial lie inside the unit circle (a circle of radius 1
centered in the 0 of the complex plane)([LZ05]. P (q−1

has the expression :

P (q−1) = 1+(a1−1)q−1−a1q−2+r0b1q
d−1+r1b1q

d−2

(11)

For the purpose of this contribution, it is enough to
consider the particular case d = 0 in order to illus-
trate the stability issues in automated decision making
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systems. In this case P (q−1 has the expression :

P (q−1) = 1 + (a1 − 1 + r0b1)q−1 + (r1b1 − a1)q−2

= 1 + p1q
−1 + p2q

−2 (12)

This is a second order equation. In order that the
system be asymptotically stable, the parameters of the
decision algorithm r0 and r1 should be chosen such that
the roots of P (q−1) (real or complex) be inside the unit
circle. The stability domain as a function of p1 and p2
is illustrated in Fig 7 (given a1 and a2 one can select
r0 and r1 in order to get appropriate values for p1 and
p2).

Figure 7 – Stability domain for a second order cha-
racteristic equation.

In the case of a stable operation the response of the
system is shown in Fig 8 a for the case of real positive
roots inside the unit circle (a periodic response) or as
in Fig 9 for the case of complex roots located inside
the unit circle (damped oscillatory response).

If the roots of the characteristic polynomial are out-
side the unit circle, the system is unstable. The time
response can be an undamped oscillatory response as
in Fig 10 (complex poles outside the unit circle) or an
”explosive” type response as shown in Fig 11 (real poles
outside the unit circle). These two figures are crucial
for the operation of the supervision system and pos-
sible recovery of a stable operation. If a phenomenon
of the form shown in Fig 10 occurs it may be possible
when the target variable pass through a minimum to
implement a stabilizing procedure. However if a pheno-
menon like in Fig ; 11 occurs there is no any chance to
restore a stable operation. It is important to note that
the disaster at Chernobyl occurred because of this type
of instability in the loop controlling the power of the
reactor ([G.03]). For this reason we will call this beha-
vior the ”Chernobyl phenomenon”.

Figure 8 – Response of the automated model based
desicion making for the case of real closed loop poles
located inside the unit circle.

Figure 9 – Response of the automated model based
desicion making for the case of complex closed loop
poles located inside the unit circle.

4 Predictive decision strategies

Since the prediction model of the system which we
would like to drive is available, one may consider to use
it in order to predict the effect of our decisions over a
certain horizon and develop adequate short term and
long term decision algorithms. We will denote by ŷ(t)
the predicted target variable delivered by the predic-
tion model.

Comparing the control objectives in the time domain
associated with the various decision strategies one can
classify these strategies in two categories :
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Figure 10 – Response of the automated model based
decision making for the case of complex closed loop
poles located outside the unit circle (unstable system).

Figure 11 – The ”Chernobyl phenomenon” (automa-
ted decision making system with real poles outside the
unit circle) (unstable system).

1. One step ahead predictive decision. In these stra-
tegies one computes a prediction of the target
variable at t + d + 1 (d integer dead time of
the sysstem) namely ŷ(t + d + 1) as a function
of u(t), u(t − 1), . . . , y(t), y(t − 1), . . . and one
computes u(t) such that a control objective in
terms of ŷ(t + d + 1) be satisfied (i.e. such that
ŷ(t+ d+ 1) = y ∗ (t+ d+ 1)) This is illustrated
in Fig. 12

2. Long range predictive decision. In these strategies
the control objective is expressed in terms of the

t t+1 t+2

y(t+j / u(t+1), u(t+2)...=0)

y(t+2 / u(t)=0 )

y(t+2)=y*(t+2)

y(t+j/ u(t), u(t+1)...=0 )

u(t)u(t-1)

u

y

t-1

Figure 12 – Illustration of one step ahead predictive
decision algorithm .

future values of the target variable over a certain
horizon and of a sequence of future decisions

In order to solve the problem, one needs
to compute : ŷ(t + d + 1), ŷ(t + d + 2),
. . . , ŷ(t+ d+ j) which are expressed as :

ŷ(t+ d+ 1) = f1(y(t), y(t− 1), . . . , u(t), u(t− 1), . . .)(13)

...

ŷ(t+ d+ j) = fj(y(t), y(t− 1), . . . , u(t), u(t− 1), . . .)

+gj(u(t+ 1), . . . , u(t+ j − 1)) (14)

To satisfy the control objective the sequence of
present and future values of the decisions u(t), u(t +
1), . . . , u(t + j − 1) is computed but only the first one
(i.e., u(t)) is applied to the sysstem and the same pro-
cedure is restarted at t+ 1. This is called the receding
horizon procedure.

The principle of long range predictive control is
illustrated in Fig. 13 where the sequence of desi-
red values y?, of predicted values ŷ and the fu-
ture decision sequences are represented (predicted va-
lues are represented for two different future decision
sequences)[LLMK11, CE07].

t+1 t+2t-1

u(t)u(t-1)

u

y

y(t+j)

y(t+j)

(u =       )

(u =        )

y*(t+j)

t

Figure 13 – Illustration of long range predictive deci-
sion algorithm.

All the decision strategies concern a linear design in
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the sense that constraints on the values of the admis-
sible predictive variables (control) applied to the sys-
tem are not considered. All the decision strategies will
yield the same structure for the decision algorithm. The
use of one or another strategy corresponds finally to dif-
ferent values of the parameters characterizing the deci-
sion algorithm whose structure as well as some parame-
ters are defined by he prediction model used for design.
Another important issue is that the control should be
admissible (realizable) i.e., it should depend only on
the information available up to and including time t
when the control u(t) is computed.

Extensions of these approaches for the case
of constraints imposed on the predictive variables
(control) exist, but they require considerable more
computer resources and their analysis (in particular,
the stability issue) is much more involved [J.M02].

5 An example of predictive de-
cision

In using predictive decision, a key point is the com-
putation of the d+1 step ahead prediction of the target
variable based on the information available up to the
instant t. One looks for an expression of the form gi-
ven in Eq. 13. This will allow to compute u(t) in order
that the target variable will reach the desired value at
t+ d+ 1. We will illustrate this procedure for the case
of a system described by the prediction model given in
Eq. 8 with d=1.

y(t+ 1) = −a1y(t) + b1u(t− 1) (15)

We are interested in predicting the value of the target
variable y(t+2) at instant t on the basis of information
available at instant t. In order to compute this predic-
ted value, one expresses first the target variable y(t+2)
as a function of the available information up to (and
including) instant t. From Eq. 15 one gets

y(t+ 2) = −a1y(t+ 1) + b1u(t) (16)

which can also be written

A(q−1)y(t+ 2) = B∗(q−1)u(t) (17)

A(q−1) = 1 + a1q
−1;B∗(q−1) = b1 (18)

Note that y(t+2), given by Eq. 16, depends upon
y(t+ 1) which is unknown at instant t. Therefore this
expression does not allow a two steps ahead prediction.
But y(t+1) can be replaced in Eq. 16 by its expression

given by Eq. 15. One then gets

y(t+ 2) = −a1[−a1y(t) + b1u(t− 1)] + b1u(t)

= F (q−1)y(t) + E(q−1)B∗(q−1)u(t) (19)

with :

F (q−1) = f0 = a1
2;E(q−1) = 1 + e1q

−1 = 1 − a1q
−1

(20)
One observes that the right hand member of Eq. 19
depends only on the information available at instant
t and therefore the expression of the two steps ahead
predictor will be given by :

ŷ(t+ 2) = F (q−1)y(t) + E(q−1)B∗(q−1)u(t) (21)

where E(q−1) and F (q−1) are given by Eq. 20. This
technique of successive substitution of the one step
ahead prediction can be generalized for any d,A and
B∗. However, it is possible to directly find the polyno-
mials E(q−1) and F (q−1). Using Eq. 16 in Eq. 19 for
replacing the term B∗(q−1)u(t), one gets :

y(t+ 2) = F (q−1)y(t) + E(q−1)A(q−1)y(t+ 2)

= [E(q−1)A(q−1) + q−2F (q−1)]y(t+ 2) (22)

In order that the two sides of Eq. 22 be equal, one
should verify the polynomial equation :

1 = E(q−1)A(q−1) + q−2F (q−1) (23)

In other terms, this means that the coefficients of the
polynomials E(q−1 and F (q−1) required for the com-
putation of the predicted value ŷ(t+2) at instant t, are
the solutions of the polynomial Eq. 23. This approach
can be generalized for any A ,B∗ and d (see [LZ05] for
more details). Since one has a prediction of the target
variable at instant t + 2 which depends on u(t), it is
now possible to compute u(t) given the desired value
of the target variable at t+ 2, denoted y∗(t+ 2) using
Eq. 19

y∗(t+2) = ŷ(t+2) = −a1[−a1y(t)+b1u(t−1)]+b1u(t)
(24)

from which one obtains :

u(t) =
y∗(t+ 2) − a1

2y(t) + a1b1u(t− 1)

b1
(25)

In the general case one would like to have

ŷ(t+ d+ 1) = y∗(t+ d+ 1) = F (q−1)y(t)

+E(q−1)B∗(q−1)u(t) (26)
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from which one gets :

u(t) =
1

E(q−1)B∗(q−1)
y∗(t+ d+ 1)

− F (q−1)

E(q−1)B ∗ (q−1)
y(t) (27)

Denoting :

S(q−1)E(q−1)B ∗ (q−1) = b1 + q−1S∗(q−1)

= b1 + s1q
−1 + s2q

−2 + ... (28)

one gets :

u(t) =
1

b1
[y∗(t+ d+ 1) − S∗(q−1)u(t− 1)

−F (q−1)y(t)] (29)

As it can be observed, the decision at instant t depends
upon the desired value of the target variable at a fu-
ture instant and upon the current value of the target
variable as well as on the previous values of u(t) 3.

6 Conclusion

The present contribution has tried to present some
basic features of automated data driven model based
decision making systems. Two issues have been addres-
sed : the stability issue which has to be considered since
the full system has a feedabck structure (which can
become unstable) and the predictive decision strate-
gies which explicitly use the prediction model of the
system.
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