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ABSTRACT

This paper presents a technique for controlling the spatial resolution of an Ambisonic sound field while preserving
its overall energy. The proposed method allows to transform a stream encoded in N-order Ambisonic to a lower
order resolution. The transformation can be continuously operated, indeed simulating fractional order representation
of the Ambisonic stream and varying the "bluriness" of the spatial image.

1 Introduction

When working with surround sound scenes (either syn-
thesized or recorded), it is often desirable to modify
the spatial characteristics of the sound field. Sound
designers, composers and mixing engineers need tools
to conveniently manipulate the spatial image either dur-
ing the production, re-production or post-production
stages.

Ambisonic is a recording and reproduction technique
that can be used to create spatial audio for circular or
spherical loudspeaker arrangements. The technique
is based on the representation of the sound field as a
combination of orthogonal basis functions, namely the
spherical harmonics. One benefit of such intermediate
representation is that it can be flexibly manipulated
so as to alter the spatial properties of the sound field.
Such modifications are achieved by applying a (time
and frequency independent) transformation matrix in
the Ambisonic domain [1].
A number of transformation operators have been previ-
ously proposed. This includes – but is not limited to –
rotation matrix [2][3], mirroring [4], spatial emphasis
or directional loudness [5], dominance or angular dis-

torsion [6][4] later extended to high order warping [7],
etc.

The work presented in this paper proposes a novel trans-
formation operator that allows to control the spatial
resolution of an Ambisonic field while preserving its
overall energy. Spatial resolution relates to the notions
of localization accuracy versus diffuse impression of
sound scenes. This is commonly reported as a most
salient attribute for composers and sound designers (see
e.g. [8][9]) and it is sometimes presented as a "spread"
or "blur" parameter in audio processors.
The technique herein presented allows to transform a
stream encoded in N-order Ambisonic to a lower order
resolution. The transformation can be continuously
operated, indeed simulating fractional order representa-
tion of the sound field. The perceived "bluriness" – for
lack of a better word – of the rendered spatial image
can therefore be gradually varied.

This paper is organized as follows: Section 2 reviews
some fundamentals of Ambisonic theory, highlighting
a few important results that will later be needed. In
Section 3 we detail the Ambisonic spatial blur transfor-
mation operator. Section 4 assesses the effectiveness
of the rendered effect.
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2 Basics of Ambisonic processing

There is no universally agreed notation for Ambisonic;
this section presents the definitions and conventions
that will be needed later in the article. We expect the
reader to be familiar with this material, so the results
appear without proof (see e.g. [2][10] for further de-
tails).

2.1 Notations

ϑϑϑ ≡ (θ ,φ) angular direction in the spherical coor-
dinate system with x = cosφ sinθ , y =
sinφ sinθ , z = cosθ

∥x∥ Euclidian norm of x
K number of loudspeakers
N the Ambisonic order
χN number of Ambisonic components i.e.

χN = (2N +1) in 2-D
χN = (N +1)2 in 3-D

IN the Ambisonic indices i.e.
{(n,m) ∈ N×Z : 0 ≤ |m| ≤ n ≤ N}

2.2 Ambisonic encoding

A plane wave of incidence ϑϑϑ conveying a signal S is
encoded in the Ambisonic domain by means of the
spherical harmonic decomposition, leading to the fol-
lowing expression of the Ambisonic components:

∀(n,m) ∈ IN , Bm
n (ϑϑϑ) = SYm

n (ϑϑϑ) (1)

where Ym
n (ϑϑϑ) are a real-valued set of spherical har-

monics defined ∀(n,m) ∈ IN by

Ym
n (ϑϑϑ)=A

|m|
n P|m|

n (cosθ)

{
cos(mφ) , for m ≥ 0

sin(|m|φ) , for m < 0
(2)

In this equation, A |m|
n is a scalar normalization constant

and Pm
n (x) represent the associated Legendre functions

defined ∀x ∈ R∩ [−1,1],
{
(n,m) ∈ N2 : m ≤ n

}
by

Pm
n (x) = (−1)m (

1− x2)m
2 dm

dxm Pn (x). (3)

Pn (x) are the Legendre polynomials and they may be
expressed using Rodrigues’ formula ∀x ∈ R∩ [−1,1],
∀n ∈ N

Pn (x) =
1

2n n!
dn

dxn

(
x2 −1

)n
. (4)

Various normalization conventions have been proposed
for the scalar constant A

|m|
n (see e.g. [2]); without loss

of generality, this paper opts for the full-normalization
scheme, noted N3D and N2D in the 3-D and 2-D case
respectively, and given for

{
(n,m) ∈ N2 : m ≤ n

}
by

(A m
n )N3D =


√

2n+1, if m = 0

(−1)m
√

2(2n+1) (n−m)!
(n+m)! , if m ̸= 0

(5)
and

(A n
n )

N2D =

 1, if n = 0

(−1)n
√

22n+1 n!2

(2n)!2 , if n ̸= 0
(6)

2.3 Ambisonic decoding

Let’s note ccc the vector of real gains involved in the
encoding equation (1):

ccc(ϑϑϑ) =



Y0
0 (ϑϑϑ)

Y−1
1 (ϑϑϑ)

Y0
1 (ϑϑϑ)

Y1
1 (ϑϑϑ)

...
Ym

n (ϑϑϑ)
...


(7)

In practice, the encoding is limited to a finite order N,
involving χN components in vector ccc. Note that the
components in equation (7) are presented with the ACN
ordering, but other arrangement can be employed as
well.

At the decoding stage, the so-called "re-encoding prin-
ciple" [11] can be employed: considering K loudspeak-
ers (supposed to be far enough from the sweet area so
that the plane waves assumption holds) with directions
{ϕϕϕ1, ...,ϕϕϕK}, the re-encoding matrix has χN rows and
K columns and it writes:

CCC =
[
ccc(ϕϕϕ1) ccc(ϕϕϕ2) ... ccc(ϕϕϕK)

]
. (8)

Provided that there are enough loudspeakers (i.e. K ≥
χN), the decoding matrix DDD is given by the pseudo-
inverse of CCC:

DDD = pinv(CCC) =CCCT (CCCCCCT )−1
. (9)
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Daniel et al. [12][2] have shown that, for regular loud-
speaker layouts and under the full-normalization, the
previous expression simplifies to

DDD =
1
K

CCCT (10)

which is commonly refers to as the "sampling Am-
bisonic decoder" (SAD).
The decoder may further be altered by applying a set
of χN corrective gains {g0,g1, · · · ,gN} to the encoded
stream. The decoding matrix thus becomes:

DDD =
1
K

CCCT Diag
{

g0 g1 · · · gN

}
(11)

2.4 Equivalent panning function

Combining the encoding equation (1) and the decod-
ing matrix (11), Daniel et al. [12][2] have derived an
equivalent panning function i.e. the kth loudspeaker is
fed with a signal Sk = SGk such as ∀k ∈ [1,K]

K Gk =


g0 +2

N
∑

n=1
gn cos(nγk) in 2-D

N
∑

n=0
(2n+1)gn Pn (cosγk) in 3-D

(12)

where γk denotes the angle between the virtual source
and the kth loudspeaker direction. This equation
can be interpreted as an equivalent panning law or
alternatively as an equivalent directivity pattern (see
also [13][14]).

Assuming a regular loudspeaker layout, Daniel
et al. have further proved that the energy Σe resulting
from the decoding stage simplifies to:

Σe = K
K

∑
k=1

G2
k =


g2

0 +2
N
∑

n=1
g2

n in 2-D

N
∑

n=0
(2n+1)g2

n in 3-D
(13)

3 Energy-preserving spatial blur

The spatial resolution of the Ambisonic stream can
be adjusted by controlling the gains {g0,g1, ...,gN}.
Noting α ∈ R∩ [0,100] the spatial blur factor, one can
for instance use a weighting function such as ∀n ∈
[0,N]

α → gn (α) = 1− 1

1+ e−τ (α−100 N−n+1
N+1 )

(14)

where τ ∈ R∗
+ is an arbitrary constant factor that char-

acterizes the slope of a S-shape curve. Such weighting
gains allow to continuously transition from order N to
lower order representation (see Figure 1).
Note that any other function gn (α) might have been
used and the following results hold without loss of
generality.
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Fig. 1: Ambisonic weighting functions gn (α) as a
function of the blur factor α . Curves are plotted for
N = 5; solid lines correspond to τ = 1 and dashed lines
to τ = 0.25

From now on, it is clear that the loudspeaker gains Gk
and the resulting decoder energy Σe are dependent on
the blur factor α:

Σe (α) = K
K

∑
k=1

G2
k (α) . (15)

Choosing α = 0 in equation (14) leads to ∀n ∈
[0,N], gn (α) ≈ 1 which means that the Ambisonic
stream is unaltered. When α is increased from 0 to
100%, the high order Ambisonic components are pro-
gressively "faded out", obviously causing a decrease
in the reproduced energy. This energy loss has to be
compensated in order to maintain a constant loudness.
The energy-preserving spatial blur is achieved by in-
troducing a compensation factor W (α) and modified
gains {g̃0, g̃1, ..., g̃N} such as ∀n ∈ [0,N]:

g̃n (α) =W (α) gn (α) . (16)

It is clear from equation (13) that the decoder energy
with modified gains Σ̃e then writes:

Σ̃e (α) = K
K

∑
k=1

G̃k
2
(α) =W (α)2

Σe (α) (17)

AES 142nd Convention, Berlin, Germany, 2017 May 20–23
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and this formula holds both for the 2-D and 3-D cases.
It is easy to see that

W (α) =

√
Σe (0)
Σe (α)

(18)

ensures energy preservation i.e. Σ̃e (α) = Σe (0) is con-
stant for any value of α . The resulting gains {g̃n (α)}
are represented in Figure 2.
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Fig. 2: Energy-preserving Ambisonic weighting func-
tions g̃n (α) for N = 5 and τ = 1 (solid lines) and
τ = 0.25 (dashed lines).

Note that the proposed approach is compatible with sub-
sequent max-rE or in-phase weightings [2] that might
be applied in the decoder.

4 Results

The spatial blur processor presented in the previous
section was assessed through numerical simulations,
for various values of the blur factor α . The simula-
tions were conducted for the case study of a single
virtual sound source encoded up to the order N = 5 and
decoded over K = 11 regularly arranged loudspeakers.

4.1 Equivalent panning and directivity pattern

The equivalent panning function and directivity
pattern are presented in Figures 3 and 4 respectively.
When α = 0, all Ambisonic components are being
used and they contribute to producing the "finest"
angular selectivity (with respect to the simulated
setup). When α increases, the contribution of the high

order components decreases and therefore the spatial
resolution diminishes: the sound field tends towards an
omnidirectional pattern.
This is in accordance with the expected behavior of the
proposed processor. Note however that α = 100 would
result in fully correlated signals over all loudspeakers,
which is usually to be avoided. Several authors have
proposed alternative approaches for controlling the
diffuseness of sound fields, typically requiring the use
of decorrelation filters (see e.g. [15][16][17][18]).

In Figure 4 it can also be noted that, if the en-
ergy compensation factor W (α) is omitted (bottom
row in Figure 4), the overall energy – which is propor-
tional to the "area" of the directivity pattern – vanishes
towards 0 when α increases.
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Fig. 3: Equivalent panning law for N = 5, K = 11 and
τ = 1 and various values of the spatial blur α .

4.2 Energy vector

The energy vector EEE describes the direction and distri-
bution of the energy of the sound field at the listening
position [19][20]. It assumes an energetic superposi-
tion of the loudspeaker signals Sk and writes:

EEE =

K
∑

k=1
G2

k uuukkk

K
∑

k=1
G2

k

= rE uuuEEE (19)

where uuukkk denotes the direction of the kth loudspeaker.

AES 142nd Convention, Berlin, Germany, 2017 May 20–23
Page 4 of 7



Carpentier Ambisonic spatial blur

90

60

30
0

-30

-60

-90

-120

-150
180

150

120

0.5

1

α = 0 %

90

60

30
0

-30

-60

-90

-120

-150
180

150

120

0.5

1

α = 25 %

90

60

30
0

-30

-60

-90

-120

-150
180

150

120

0.5

1

α = 50 %

90

60

30
0

-30

-60

-90

-120

-150
180

150

120

0.5

1

α = 75 %

90

60

30
0

-30

-60

-90

-120

-150
180

150

120

0.5

1

α = 100 %

90

60

30
0

-30

-60

-90

-120

-150
180

150

120

0.5

1

α = 0 %

90

60

30
0

-30

-60

-90

-120

-150
180

150

120

0.5

1

α = 25 %

90

60

30
0

-30

-60

-90

-120

-150
180

150

120

0.5

1

α = 50 %

90

60

30
0

-30

-60

-90

-120

-150
180

150

120

0.5

1

α = 75 %

90

60

30
0

-30

-60

-90

-120

-150
180

150

120

0.5

1

α = 100 %

Fig. 4: Equivalent directivity pattern for N = 5 and various values of the spatial blur α . With (top) and without
(bottom) the energy compensation factor W (α). The figures are plotted for τ = 1. The radial scale is linear.

The direction of the energy vector is typically used as
a predictor of the perceived source direction (at high
frequencies) while its norm rE correlates with the per-
ceived source width: the shorter the energy vector, the
more widely the energy is distributed across the loud-
speakers and the wider the perceived source [21][22].

Daniel et al. [12][2] have shown the following results:

rE =



2
N
∑

n=1
gn gn−1

g2
0+2

N
∑

n=1
g2

n

in 2-D

2
N
∑

n=1
ngn gn−1

N
∑

n=0
(2n+1)g2

n

in 3-D

(20)

Thanks to equation (20) it is possible to plot the norm
of the energy vector as a function of the spatial blur α

(see Figure 5). As expected, rE tends towards 0 when
the spatial blur is increased.

4.3 Angular spread

Epain et al. [23] have introduced a mathematical quan-
tity, referred to as the angular spread, which corre-
sponds to the angular width of the area over which the
sound energy is distributed. The quantity is defined by

σ = 2 arccos
(
2rE −1

)
, (21)

and it varies in the range [0,2π]. Similarly to rE , it
provides a (rough) predictor of the perceived source
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Fig. 5: Norm of the energy vector as a function of the
spatial blur α for N = 5 and τ = 1 (solid lines) and
τ = 0.25 (dashed lines).

width.
The angular spread for the simulated case is plotted in
Figure 6, again revealing an increase in the perceived
source width as the blur factor α increases.
It is worth noting that the angular spread does not vary
linearly with respect to α . This is not really an issue,
and informal listening tests confirmed the effectiveness
of the proposed spatial blur processor. Nonetheless, it
would be possible to design another set of weighting
functions {gn (α)} – instead of the S-shape functions
used in equation (14) – so as to offer a linear depen-

AES 142nd Convention, Berlin, Germany, 2017 May 20–23
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dency of the angular spread with respect to the blur
factor (i.e. dσ

dα
= constant). The design of such weight-

ing functions is left for future work.
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Fig. 6: Angular spread as a function of α for N = 5
and τ = 1 (solid lines) and τ = 0.25 (dashed lines).

4.4 Implementation

The spatial blur processor has been implemented as a
Max/MSP external objet, part of the Ircam Spat soft-
ware package [24]. The processor is typically inserted
in-between the Ambisonic encoder and the decoder
(see Figure 7); the parameters exposed to the end user
are the blur factor α and the S-shape slope factor τ .
Any change in the parameters (and consequently in
the gains {g0,g1, ...,gN}) is implemented with a short
ramping time (a few milliseconds) to avoid audio clicks
during realtime rendering.
The CPU load of the blur processor is very low as it
only necessitates multiplying the Ambisonic stream
with a set of gains, resulting in χN multiplications per
audio tick.

5 Conclusion

This paper presented a novel technique for controlling
the spatial resolution of an Ambisonic sound field while
preserving its overall energy. The method allows the
user to continuously transform the encoded Ambisonic
stream from a high order representation ("finest" angu-
lar selectivity) to a low order omnidirectional pattern.
The derivation of the transformation gains is easy and
the realtime implementation of the spatial blur proces-
sor is simple and efficient.

Fig. 7: Workflow within the Max/MSP environment;
example with order N = 3 and K = 9 loudspeakers in
2-D.
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