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Abstract: Extending the ideas of [7], this paper aims at providing a ker-
nel based non-parametric estimation of a new class of time varying AR(1)
processes (Xt), with local stationarity and periodic features (with a known
period T ), inducing the definition Xt = at(t/nT )Xt−1 + ξt for t ∈ N and
with at+T ≡ at. Central limit theorems are established for kernel estima-
tors âs(u) reaching classical minimax rates and only requiring low order
moment conditions of the white noise (ξt)t up to the second order.
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This paper is dedicated to the memory of Jean Bretagnolle

1. Introduction

Since the seminal paper [5], the local-stationarity property provides new models
and approaches for introducing non-stationarity in times series. The recently
published handbook [7] gives a complete survey about new results obtained
since 20 years on this topics.
An interesting new kind of models is obtained from a natural extension of usual
ARMA processes, so called tvARMA(p, q)–processes defined in [8], as:

p∑
j=0

αj

( t
n

)
X

(n)
t−j =

q∑
k=0

βk

( t
n

)
ξt−k, 1 ≤ t ≤ n, (1.1)

where αj and βk are bounded functions. This is a special case of locally station-

ary linear process defined by X
(n)
t =

∑∞
j=0 γj

(
t
n

)
ξt−j . Such models have been

studied in many papers, especially concerning the parametric, semi-parametric
or non-parametric estimations of functions αj , βk or γj , or other functions de-
pending on these functions; see, for instance references [6], [8], [7], or [12], [3],
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[11], [17] or [2].

For simplicity, we restrict in this first work to time-varying AR(1)–processes

(X
(n)
t ) including a periodic component:

X
(n)
t = at

(
t

nT

)
X

(n)
t−1 + ξt, with at+T ≡ at, for any

{
1 ≤ t ≤ nT
n ∈ N∗ , (1.2)

where T ∈ N∗ is a fixed and known integer number, and (ξt) a white noise. Note
that given the functions a1, . . . , aT , one may even build a periodic sequence
(at)t∈Z through the relation at+T = at.
The choice of such extension of the tvAR(1) processes is relative to modelling
considerations: for instance, in the climatic framework, [4] considered models
of air temperatures where the function of interest writes as the product of a
periodic sequence by a locally varying function. This choice provide an interest-
ing extension of more classical periodic models of air temperature such as those
proposed in [14].
Other periodic representation for locally stationary processes can also be found
in for instance in the paper [19], but the seasonal component is treated as an
additive deterministic trend and is not included in the dynamic of the process,
which is the case for model (1.2).

We then study non-parametric estimators âs(u), for s = 1, 2, . . . , T , u ∈ (0, 1)

from an observed trajectory (X
(n)
1 , . . . , X

(n)
nT ). We consider kernel-based estima-

tors which are naturally induced from covariance relationships satisfied by the
process (see Section 2). Central limit theorems are established for these estima-
tors under some regularity conditions on the functions as(·) for s = 1, 2, . . . , T .
The results are only obtained by assuming second-order moments on the white
noise (ξt). This is a main improvement with respect to usual limit theorems on
locally-stationary processes which are obtained with the assumption that any
moment exists for (ξt). This is due to the new ideas developed in our proof
which combines a central limit theorem for martingale increment arrays as well
as an embedding in an Orlicz space (see details in Section 4).
The obtained convergence rate is optimal with respect to the minimax rate up
to a logarithmic term. Simulations based on Monte-Carlo experiments illustrate
the accuracy of the estimators. An application to real-life data, i.e. monthly
average temperature readings in London from 1659 to 1998, shows the interest
of using our new model (1.2).

This paper is also a first step concerning new results for new class of non-
stationary processes. Indeed, we can extend the definition (1.2) to processes

(X
(n)
t ) such as:

X
(n)
t = Ft

(
t

n
, ξt, Zt;X

(n)
t−1, X

(n)
t−2, . . .

)
, 1 ≤ t ≤ n, (1.3)

where (Zt) is a sequence of i.i.d. random vectors modelling for instance exoge-
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nous inputs. This more tough case is deferred to forthcoming papers.
Other time-varying models with an infinite memory may also be processed as
GARCH-type models (see for instance [9]). Remark also that [10] introduced
INGARCH-models. Those models are GLM models; non-stationary versions of
which also may be considered. They will be considered in further works.

The structure of the paper is as follows. In Section 2, we define and study
asymptotic properties of non-parametric estimators for the process (1.2). Sec-
tion 3 provides the results of some Monte-Carlo experiments and real-life data
application, while the proofs are reported in Section 4.

2. Asymptotic normality of a non-parametric estimator for periodic
tvAR(1) processes

2.1. Definition and first properties of the process

Denote classically N = {0, 1, . . .} and N∗ = {1, 2, . . .}. Here we consider T ∈ N∗
a fixed and known period. We will write s ≡ t[T ] if t− s is a multiple of T .

The paper is dedicated to the simplest caseX = (X
(n)
t )1≤t≤nT, n∈N, of a T−periodic

locally stationary AR(1)−process, defined in (1.2) whereX
(n)
0 = X0 with E(X2

0 ) <
∞. Here (ξt)t∈N is a sequence of i.i.d. r.v.s satisfying E(ξt) = 0 and Var (ξt) = σ2

for any t ∈ N∗, with (ξt)t independent of X
(n)
0 .

The functions (as(·))1≤s≤T , [0, 1] → R are supposed to satisfy some regularity.
Hence, we provide the forthcoming definition usually made in a non-parametric
framework:

Definition 2.1. For ρ > 0, we denote dρe ∈ N the largest integer such that
dρe < ρ. A function f : x ∈ R 7→ f(x) ∈ R is said to belong to the class
Cρ(Vu) where Vu is a neighbourhood of u ∈ R, if f ∈ Cdρe(Vu) and if f (dρe) is a
(ρ− dρe)-Hölderian function, i.e. there exists Cf ≥ 0 such as∣∣f (dρe)(u1)− f (dρe)(u2)

∣∣ ≤ Cf |u1 − u2|ρ−dρe, for any u1, u2 ∈ Vu.

In case ρ is an integer we simply assume that f (ρ) exists and is a continuous
and bounded function on the neighbourhood of u. As a consequence we specify
the assumptions on functions (at) using a fixed positive real number ρ > 0:

Assumption (A(ρ)): The functions {at(·); t ∈ N} are such as:

1. (Periodicity) There exists T ∈ N∗ such that at(v) = at+T (v) for any
(t, v) ∈ Z× [0, 1].

2. (Contractivity) There exists α = sup{t∈Z, v∈[0,1]} |at(v)| < 1.
3. (Regularity) For any t ∈ Z, assume that at ∈ Cρ.

Remark 2.1. Quote that T = 1 corresponds to a non-periodic case and (X
(n)
t )

is then a usual tvAR(1) process defined in (1.1).
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First it is clear that the conditions on functions (as) ensure the existence of a

causal linear process (X
(n)
t )1≤t≤nT for any n ∈ N satisfying (1.2). More precisely,

we obtain the following moment relationships:

Proposition 2.1. Let X = (X
(n)
t )1≤t≤nT, n∈N∗ satisfy (1.2) under Assumption

(A(ρ)) with ρ ≥ 1. Then for some convenient constant c > 0,

1. For any n ∈ N∗ and 1 ≤ t ≤ nT ,
∣∣E(X(n)

t

)∣∣ ≤ αt ∣∣E(X0)
∣∣.

2. Let s ∈ {1, . . . , T}. There exists functions γ
(2)
s ∈ Cρ([0, 1]) such as if

t ∈ {[c log n], . . . , nT} and t ≡ s [T ]:

E
(
(X

(n)
t )2

)
= γ(2)s (

t

nT
) +O

( 1

n

)
,

with

 γ(2)s (v) = σ2 1 +
∑T−2
i=0 βs,i(v)

1− βs,T−1(v)
,

βs,i(v) =
∏i
j=0 a

2
s−j(v) ≤ α2i < 1.

(2.1)

3. Assume E(ξ40) = µ4 < ∞ and E(ξ30) = 0 (this holds e.g. if ξ0 admits a
symmetric distribution).

For s ∈ {1, . . . , T}, there exist functions γ
(4)
s ∈ Cρ([0, 1]) such as, for

t ∈ {[c log n], . . . , nT} with t ≡ s [T ],

E
(
(X

(n)
t )4

)
= γ(4)s (

t

nT
) +O

( 1

n

)
,

with

 γ
(4)
s (v) =

(
µ4 + 6σ2γ(2)s (v)− 6σ4

)1 +
∑T−2
i=0 δs,i(v)

1− δs,T−1(v)
,

δs,i(v) =
∏i
j=0 a

4
s−j(v) ≤ α4i < 1.

(2.2)

Moreover, for any (t, t′) ∈ {[c log n], . . . , nT}2 with t > t′,

Cov
(
(X

(n)
t )2, (X

(n)
t′ )2

)
=
(
γ
(4)
s′

( t′
nT

)
+O

( 1

n

)) t−t′∏
i=1

a2t′+i(
t′ + i

n
). (2.3)

We will now assume X0 = 0.
In addition of the previous proposition, another relation can be easily estab-
lished. Indeed, for t ∈ {1, 2, . . . , nT}, with s = t [T ], by multiplying (1.2) by

X
(n)
t−1 and taking the expectation:

at

( t

nT

)
= as

( t

nT

)
=

E
(
XtXt−1

)
E
(
X2
t−1
) . (2.4)

The relation (2.4) is at the origin of the definition of the following non-parametric
estimators of the functions as(·).
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2.2. Asymptotic normality of the estimator

Assume that the sample (X1, . . . , XnT ) is observed for some n ≥ 1; this con-
dition entails a reasonable loss of at most T data and allows us for a more
comprehensive study.
For each s ∈ {1, . . . , T}, we define In,s =

{
s, s+T, . . . , s+ (n− 1)T

}
, a set with

#In,s = n. Now (2.4) writes:

as

( t

nT

)
=

E
(
XtXt−1

)
E
(
X2
t−1
) , ∀t ∈ In,s.

A convolution kernel K : R → R will be required in the sequel and it satisfies
one of both the following assumptions:

Assumption (K): Let K : R→ R be a Borel bounded function such that:

•
∫
R
K(t)dt = 1 and K(−x) = K(x) for any x ∈ R;

• there exists β > 0 such as lim|t|→+∞ eβ |t|K(t) = 0.

Assumption (K̃): Let K : R→ R be a Borel bounded function such that:

•
∫
R
K(t)dt = 1 and K(−x) = K(x) for any x ∈ R;

• there exists some B > 0 such as K(t) = 0, if |t| > B.

Typical examples of kernel functions are K(t) = (2π)−1/2e−t
2/2 and K(t) =

1
2 I1[−1,1](t) satisfying respectively Assumptions (K) and (K̃). Note also the
K ≥ 0 would exclude dealing with a regularity ρ > 2.

For r ≥ 1, we also specify another condition satisfied by such a function:

Assumption ker(r): Let K : R→ R be a Borel bounded function such that:

•
∫
R(|x|r+1) |K(x)| dx <∞ and

∫
R x

pK(x) dx = 0, if p ∈ {1, 2, . . . , dre−1};
• ‖K‖∞ = supx∈R |K(x)| <∞ and Lip (K) = supx 6=y

|K(x)−K(y)|
|x−y| <∞.

Assume that a sequence of positive bandwidths (bn)n∈N is chosen in such a way
that

lim
n→∞

bn = 0, lim
n→∞

nbn =∞.

Now, keeping in mind the expression (2.4) and following the same ideas as with
Nararaya-Watson estimator (see [18] and [22]), for s ∈ {1, . . . , T} and u ∈ (0, 1),
we set

â(n)s (u) =
N̂

(n)
s (u)

D̂
(n)
s (u)

, with

 N̂ (n)
s (u) = 1

nbn

∑
j∈In,s K

( j
nT −u
bn

)
XjXj−1,

D̂(n)
s (u) = 1

nbn

∑
j∈In,s K

( j
nT −u
bn

)
X2
j−1.

(2.5)
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Since extremities are omitted we avoid the corresponding edge effects due to the
fact that at the extremities, summations are not considered over a symmetric
interval of times containing nu. The case u = 0 does not make any contribution
while the case u = 1 corresponds with simple periodic behaviours and such re-
sults should be found in [14].

Using essentially a martingale central limit theorem (the steps of the proofs
are precisely detailed in Section 4), we obtain:

Theorem 2.1. Let 0 < ρ ≤ 2 and Assumption (A(ρ)), let K satisfy Assumption

(K) or (K̃) as well as Assumption ker(ρ ∨ 1). Then, for a sequence (bn)n∈N of

positive real numbers such as limn→∞ bn n
1

1+2(ρ∧1) = 0,√
nbn
(
âs(u)− as(u)

) L−→
n→+∞

N
(

0 ,
σ2

γ
(2)
s (u)

∫
R
K2(x) dx

)
, (2.6)

for any u ∈ (0, 1), s ∈ {1, . . . , T}, with γ(2)s (u) = σ2 1 +
∑T−2
i=0 βs,i(u)

1− βs,T−1(u)
.

Note that for ρ ≤ 1 the classical optimal semi-parametric minimax rate is
reached.
This is not the case if ρ ∈ (1, 2]. In that case, another moment condition is
needed in order to improve the convergence rate of âs(u).

Theorem 2.2. Let 1 ≤ ρ ≤ 2 and Assumption (A(ρ)), let K satisfy Assumption

(K) or (K̃) as well as Assumption ker(ρ). Moreover, suppose that E|ξ0|β < ∞
with β = 4− 2ρ

5ρ− 4
∈
[
2,

10

3

]
(Note that β = 2 if ρ = 2) and that ξ0 admits a

symmetric distribution. Then (2.6) holds for a sequence (bn)n∈N of positive real

numbers such as bn n
1

2ρ+1 −→
n→+∞

0.

Moreover in case ρ = 2 and if bn = c n−
1
5 then the central limit still holds but

the limit distribution is now non-centred:

N
(
µ(u) ,

σ2

γ
(2)
s (u)

∫
R
K2(x) dx

)

with µ(u) =
c

5
2

γ
(2)
s (u)

(1

2
a′′s (u)γ(2)s (u) + a′s(u)(γ(2)s )′(u)

)∫
R
z2K(z) dz.

Remark 2.2. Optimal window widths write as bn ∼ cn−
1

2ρ+1 thus the above re-
sult holds with a suboptimal window width. Moreover the symmetry assumption
is discussed in Remark 4.2. Now for the case ρ = 2 in case the derivatives of as
are regular around the point u, then the optimal window width actually may be
used and the central limit theorem again holds with a non-centred Gaussian limit.
Quote that the proposed normalisation yields the standard minimax rates n−

ρ
2ρ+1 ,

in the case of compactly supported symmetric kernel (a (log n)−loss is observed
for the Gaussian kernel); the obtained rates are in probability and further work
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is needed to prove that this is the minimax L2−rate.
Moreover for large T the convergence rate is degraded with a factor T

ρ
2ρ+1 since

the sample size is N = nT and thus n = N/T .

Remark 2.3. Of course, if T = 1, Theorems 2.1 and 2.2 hold, which provide
another minimax estimation of the function u 7→ a1(u) (u ∈ [0, 1]) requiring
sharper moment and regularity conditions than the ones proposed in Theorem
4.1 of [8].

Remark 2.4. If T is unknown we better consider an N -sample and set n =
[N/T ], the proof of previous central limit theorem 2.1 provides an approach for
estimating this period T . First fix Tmax ≥ 2 (typically Tmax = 12 for monthly

data). Then, for each 1 ≤ τ ≤ Tmax, we define an estimator â
(τ)
s (u) for any

1 ≤ s ≤ τ and u ∈ (0, 1). It is clear that when τ is not a multiple of T , then
the sums in (2.5) that are done on the set In,s, which depends on τ , is now a
sum involving other ak with k 6= s. As a consequence, âs(u) is not a convergent
estimator of as(u).
Then, using a classical cross-validation, for each 1 ≤ τ ≤ Tmax, we compute

ĈV (τ) =

N∑
j=2

(
X

(n)
j − â(τ)j

( j
N

)
X

(n)
j−1

)2
.

Finally, define T̂ as the smallest value such as

T̂ = Argmin
1≤τ≤Tmax

ĈV (τ).

Remark 2.5. The central limit theorem 2.1 naturally provides a test statistics
Âs for solving the test problem: H0 : as(u) = ca versus H0 : as(u) 6= ca, where
ca ∈ (0, 1). Indeed, from (2.6) and Slutsky Lemma we deduce:√
nbn

∫
R
K2(x) dx

√√√√1 +
∑T−2
i=0

∏i
j=0 â

2
s−j(u)

1−
∏T−1
j=0 â

2
s−j(u)

(
âs(u)− as(u)

)
L−→

n→+∞
N
(
0 , 1

)
.

Then if we consider

Âs =

√
nbn

∫
R
K2(x) dx

√√√√1 +
∑T−2
i=0

∏i
j=0 â

2
s−j(u)

1−
∏T−1
j=0 â

2
s−j(u)

(
âs(u)− ca

)
,

this provides a natural statistics test with usual standard Gaussian quantile as
asymptotic threshold.

3. Monte-Carlo experiments and an application to climatic data

3.1. Monte-Carlo experiments

In this section, numerous Monte-Carlo experiments have been made for studying
the accuracy of the new non-parametric estimator âs(·).
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Fig 1. Graph of the function a
(2)
1 and an example of its estimation (for n = 1000).

0.0 0.2 0.4 0.6 0.8 1.0

−0
.5

0.
0

0.
5

u

a

Firstly, we considered 3 typical functions [0, 1] → [−1, 1], a
(ρ)
s (u) ∈ Cρ([0, 1])

and such as supu∈[0,1],s∈N |a
(ρ)
s (u)| ≤ α < 1:

• For ρ = 2, we choose a(2)s (u) = 0.9 cos
(
2π
ns

T

)
cos(3u). Figure 1 exhibits

the graph of the function a
(2)
1 and an example of its estimation (for n =

1000);

• For ρ = 1.5, we choose a(1.5)s (u) = 0.9 cos
(
2π
ns

T

) ∫ u
0
Wt(ω) dt

supx∈[0,1] |Wx(ω)|
where

(Wt)t∈[0,1] is an observed trajectory of a Wiener Brownian motion;

• For ρ = 0.8, we choose a(0.8)s (u) = 0.9 cos
(
2π
ns

T

) B0.8(ω, u)

supx∈[0,1] |B0.8(ω, x)|
where BH(ω, t))t∈[0,1] is an observed trajectory of a fractional Brownian
motion with Hurst exponent H = 0.8 (Figure 2 exhibits the graph of this

chosen function a
(0.8)
1 ). It is well known that a trajectory of a fractional

Brownian motion with Hurst exponent H ∈ (0, 1) is almost surely α-
Höderian for any α < H;

• For ρ = 0.5, we choose a(0.5)s (u) = 0.9 cos
(
2π
ns

T

) Wu(ω)

supx∈[0,1] |Wx(ω)|
where

(Wt(ω))t∈[0,1] is an observed trajectory of a Wiener Brownian motion.

We also consider two “typical” kernels:

• A bounded supported kernel, the well-known Epanechnikov kernel defined
by KE(x) = 3

4 (1−x2) I1{|x|≤1}, which is known to minimize the asymptotic
MISE in the kernel density estimation frame;

• The unbounded supported Gaussian kernel with KG(x) = 1√
2π

exp
(
− x2

2

)
.

We considered the cases n = 100, 200, 500 and 1000, and we fixed T = 2. Finally
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Fig 2. Graph of the chosen function a
(0.8)
1 .

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

t

a0
8

1000 independent replications of (X(n)) are generated with two different cases
of innovations (ξt):

• Firstly, the case where the probability distribution of ξ0 is a Gaussian
N (0, 4) distribution, then E|ξ0|4 < ∞ and therefore Theorem 2.1 holds
for ρ = 0.5 and Theorem 2.2 holds for ρ = 1.5 and ρ = 2.

• Secondly, the case where the probability distribution of ξ0 is a Student
t(3) (with 3 degrees of freedom) distribution implying E|ξ0|β <∞ for any
β < 3 but E|ξ0|3 =∞. Then if ρ = 0.5, Theorem 2.1 holds but if ρ = 1.5
and ρ = 2, Theorem 2.2 does not hold.

Finally, for each n, each functions a
(ρ)
s and kernel K, and each probability

distributions of ξ0, we present the results computed from 1000 replications and
the following methodology:

1. For each replication j, we defined bn = n−λ with λ = 0.10, 0.11, . . . , 0.80,
(ui)1≤i≤99 = 0.01, 0.02, . . . , 0.99, s = 1, 2, . . . , T , and the estimators âs(ui)
are computed.

2. For each replication j and each λ = 0.10, 0.11, . . . , 0.80, an estimator of
the MISE is computed:

M̂ISEs(λ) =
1

99

99∑
i=1

(
âs(ui)− as(ui)

)2
.

3. For each replication j, we minimised an estimator of the global square
root of MISE:

λ̂j = Argmin
0.1≤λ≤0.8

T∑
s=1

√
M̂ISEs(λ)

4. Then we computed λ = 1
1000

∑1000
j=1 λ̂j over all the replications.
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Fig 3. Histograms of â
(2)
s (u) for u = 0.25, 0.5 and 0.75 from 10000 independent replications
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5. Finally, we computed the estimator of the minimal global square root of
MISE,

MISE
1/2

=
1

1000

1000∑
j=1

T∑
s=1

√
M̂ISEs(λ̂j).

As a consequence, λ and MISE
1/2

are two interesting estimators relative to
Theorems 2.1 and 2.2. The first one specifies the link between the choice of an
optimal bandwidth bn qnd the regularity ρ of the functions as(·). The second
one measures the optimal convergence rate of the estimators âs(·) to as(·). All
the results are printed in Tables 1 and 2.
Moreover, for exhibiting the asymptotic normality of the estimators provided in

the central limit theorem (2.6), we draw in Figure the histograms of â
(2)
s (u) for

u = 0.25, 0.5 and 0.75 from 10000 independent replications for n = 5000. We
also used a Jarque-Bera test to confirm the Gaussian asymptotic distribution
since the p-values of this test are successively: p − value = 0.105, 0.927 and
0.345. Hence, the asymptotic normality of the estimator seems to be attested
by Monte-Carlo experiments.

Conclusions of the simulations: Firstly, and as it should be deduced from
Theorem 2.1 and 2.2, we observed the larger the regularity ρ, the smaller λ

and therefore the larger the optimal bandwidth bn = n−λ, and the faster the
convergence rate of âs. Secondly, even if the choice of the optimal bandwidth
is significantly different following the choice of the kernel (clearly smaller with
the Epanechnikov kernel), the optimal convergence rate is almost the same for
both the kernel. Finally, according also with Theorem 2.2, the convergence rate
is clearly slower with a heavy tail distribution (t(3)) than with a Gaussian
distribution, and this phenomenon increases when ρ increases.
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Table 1
Results of the Monte Carlo experiments providing the accuracy of âs for the three chosen

functions the three chosen functions with ξ0 following a N (0, 4) distribution, 1000
independent replications are generated.

a(ρ) a
(2)
s a

(1.5)
s a

(0.8)
s a

(0.5)
s

Kernel KE KG KE KG KE KG KE KG

n = 100 λ 0.243 0.407 0.283 0.450 0.172 0.322 0.235 0.392

MISE
1/2

0.248 0.239 0.286 0.282 0.230 0.234 0.354 0.353

n = 200 λ 0.227 0.363 0.278 0.429 0.256 0.392 0.250 0.386

MISE
1/2

0.185 0.175 0.219 0.219 0.232 0.232 0.308 0.303

n = 500 λ 0.234 0.320 0.276 0.399 0.321 0.431 0.287 0.406

MISE
1/2

0.129 0.119 0.154 0.156 0.213 0.210 0.256 0.254

n = 1000 λ 0.240 0.321 0.270 0.384 0.373 0.476 0.328 0.438

MISE
1/2

0.098 0.093 0.124 0.122 0.207 0.202 0.226 0.221

Table 2
Results of the Monte Carlo experiments providing the accuracy of âs for the three chosen

functions with ξ0 following a t(3) distribution, 1000 independent replications are generated.

a(ρ) a
(2)
s a

(1.5)
s a

(0.8)
s a

(0.5)
s

Kernel KE KG KE KG KE KG KE KG

n = 100 λ 0.226 0.394 0.267 0.430 0.161 0.295 0.220 0.360

MISE
1/2

0.341 0.320 0.350 0.340 0.311 0.309 0.418 0.405

n = 200 λ 0.207 0.343 0.259 0.402 0.231 0.355 0.225 0.362

MISE
1/2

0.261 0.258 0.281 0.287 0.296 0.293 0.353 0.346

n = 500 λ 0.194 0.304 0.252 0.373 0.286 0.383 0.239 0.360

MISE
1/2

0.214 0.201 0.213 0.217 0.269 0.261 0.302 0.296

n = 1000 λ 0.193 0.321 0.246 0.342 0.346 0.450 0.258 0.368

MISE
1/2

0.166 0.093 0.172 0.181 0.258 0.250 0.262 0.275
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Fig 4. Monthly average temperature readings in London from 1659 to 1998: correlogram of
residual data
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Fig 5. Monthly average temperature readings in London from 1659 to 1998: âs(u) estimator
for u = 0.25 (black), u = 0.50 (red) and u = 0.75 (blue) in terms of s = 1, . . . , 12
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3.2. Numerical application on climatic data

We also applied our model and its estimator to an example of real data, specif-
ically the monthly average temperature readings in London from 1659 to 1998,
or 340 years. Obviously in such a case one can expect that T = 12.
First, we removed an additive seasonal and trend component (estimated by
LOESS) from these data and considered the residual data. On these, a global
correlogram (see Figure 4) confirms a modelling by a process of type AR(1) and
also the presence of a periodic phenomenon of period 12. As a consequence we
may assume that these residual data can be modelled by the model (1.2). We
then applied the âs(u) estimator for u = 0.25, 0.50 and 0.75 and s = 1, . . . , 12.
Figure 5 summarizes these results and shows:

• The crucial interest of taking a pseudo-periodic model as we defined it in
(1.2);

• The relatively small but not negligible change in the coefficient at(t) as a
function of t.

imsart-ejs ver. 2014/10/16 file: nonstationarity28062018.tex date: July 20, 2018



Bardet and Doukhan/Local periodic time varying AR(1)–processes 13

4. Proofs

We first provide the proof of Proposition 2.1.

Proof of Proposition 2.1.

1. We have EX(n)
1 = a1

(
1
nT

)
E(X0) and EX(n)

t = at

(
t
nT

)
EX(n)

t−1) from the

relation (1.2). From Assumption (A(ρ)) and since
∣∣∣a1( 1

nT

)∣∣∣ ≤ α < 1, we

deduce the first item of Proposition 2.1.

2. Below, for ease of reading, we will omit the exponent n. Set vt = E
(
X2
t

)
,

and v = sups vs ∈ [0,+∞]; also write αt = a2t
(
t
nT

)
. We have:

vt = αt vt−1 + σ2 ≤ α2vt−1 + σ2 ≤ α2 sup
s
vs + σ2, t > 0 (4.1)

thus

sup
s
vs ≤

σ2 + v0
1− α

<∞. (4.2)

Moreover, with δt = vt − vt−T for any t > T , we have

δt = αtδt−1 + (αt − αt−T )vt−T−1,∣∣δt∣∣ ≤ α
∣∣δt−1∣∣+ C|αt − αt−T |, with C > 0, (4.3)

from (4.2) and since for some constant C > 0,∣∣αt − αt−T ∣∣ =
∣∣∣a2t ( t

nT

)
− a2t−T

( t− T
nT

)∣∣∣
≤ 2α |at

( t

nT

)
− at−T

( t− T
nT

)∣∣∣
≤ C

nρ∧1
(4.4)

from Assumption (A(ρ)). As a consequence of (4.3), we also obtain:∣∣δt∣∣ ≤ C

1− α
· 1

nρ∧1
+ δT+1α

t−T+1.

Thus for other constants C, c > 0 we derive∣∣δt∣∣ ≤ C ′ 1

nρ∧1
, ∀t ≥ c log n. (4.5)

From now on, assume that ρ ≥ 1.
Now use again the definition (1.2) of the model, and by iterating (4.1), we
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derive:

vt = σ2 + αt
(
σ2 + αt−1vt−2

)
= · · ·

= σ2
(

1 +

T−2∑
i=0

αt · · ·αt−i
)

+ αt · · ·αt−T+1 vt−T

= σ2
(

1 +

T−2∑
i=0

αt · · ·αt−i
)

+ αt · · ·αt−T+1 vt +O
( 1

n

)
from (4.5).
Hence,

vt = σ2 1 +
∑T−2
i=0 αt · · ·αt−i

1− αt · · ·αt−T+1
+O

( 1

n

)
. (4.6)

Now quoting that αt−j = a2t−j
( t− j
nT

)
we set α̃t−j = a2t−j

( t

nT

)
for 1 ≤

j < T , then since ρ ≥ 1 and from (4.6) we derive

vt = σ2 1 +
∑T−2
i=0 α̃t · · · α̃t−i

1− α̃t · · · α̃t−T+1
+O

( 1

n

)
= γ(2)s (

t

nT
) +O

( 1

n

)
. (4.7)

The conclusion follows.
3. The proof mimics the case of E(X2

t ). Denote qt = a4t
(
t
nT

)
, and µk = E(ξk0 ),

for k = 1, 2, 3, 4. Then µ1 = 0 and

wt = E(X4
t ) = E(AtXt−1+ξt)

4 = qt wt−1+4µ3At EXt−1+6σ2A2
t vt−1+µ4.

Since µ3 = 0, we have:

wt = qtwt−1 + 6σ2vt + µ4 − 6σ4 ≤ α4 wt−1 + r(t), (4.8)

with r(t) = 6σ2 vt +µ4− 6σ4 and this implies as previously supt wt <∞.
We also obtain for constants again denoted C ′, C ′′ > 0:

∣∣wt − wt−T ∣∣ ≤ C ′

n
, ∀t ≥ c log n. (4.9)

Finally by iterating (4.8), we obtain:

wt = qt · · · qt−T+1 wt−T +
(
r(t) +

T−2∑
i=0

(
qt · · · qt−i

)
r(t− i− 1)

)
= qt · · · qt−T+1 wt +O

( 1

n

)
+
(
r(t) +

T−2∑
i=0

(
qt · · · qt−i

)
r(t− i− 1)

)

imsart-ejs ver. 2014/10/16 file: nonstationarity28062018.tex date: July 20, 2018



Bardet and Doukhan/Local periodic time varying AR(1)–processes 15

from (4.9). Hence, always following the previous case

wt =
r(t) +

∑T−2
i=0

(
qt · · · qt−i

)
r(t− i− 1)

1− qt · · · qt−T+1
+O

( 1

n

)
=

r(t) +
∑T−2
i=0

(
qt · · · qt−i

)
r(t− i− 1)

1− qt · · · qt−T+1
+O

( 1

n

)
,

for t ≥ C ′′ log n, and this implies (2.2) from using again the regularity of
the functions (ai)1≤i≤T .
Finally, for any t > t′ such that t, t′ ∈ {[c log n], . . . , nT}, since (Xt) is a
causal process and by iteration,

Cov (X2
t , X

2
t′) = αt Cov (X2

t−1, X
2
t′) + 0 + Cov (ξ2t , X

2
t′)

= αt Cov (X2
t−1, X

2
t′)

=
(
γ
(4)
s′

( t′
nT

)
+O

( 1

n

)) t−t′∏
i=1

αt′+i,

where s′ ≡ t′ [T ] and
∣∣∣ t−t′∏
i=1

αt′+i

∣∣∣ ≤ α2|t−t′|.

This completes the proof.

Now we establish a technical lemma, which we were not able to find in the
past literature (even if variants of this result may be found) and that will be
extremely useful in the sequel. For a bounded continuous function c defined on
[0, 1], and a kernel function H (see details below), an approximation of integral
by appropriate Riemann sums yields (as for [20]’s estimator, see [21] for further
developments):

lim
n→∞

1

nbn

∑
j∈In,s

H

(
j
nT − u
bn

)
c
( j

nT

)
= c(u),

where u ∈ (0, 1), In,s =
{
s, s + T, . . . , s + (n − 1)T} with s ∈ {1, . . . , T} and

T ∈ N∗. More precisely we would like to provide expansions of

∆n =
1

nbn

∑
j∈In,s

H

(
j
nT − u
bn

)
c
( j

nT

)
− c(u). (4.10)

Lemma 4.1. Let u ∈ (0, 1), ρ > 0, c ∈ Cρ([0, 1]) a bounded function. Let
H satisfy ker(ρ ∨ 1). Consider also a sequence of positive real numbers (bn)n
satisfying limn→∞ bn = 0. Then, there exists C > 0 depending only on ‖H‖∞,
‖c‖∞ and Lip (H) such that for n large enough∣∣∆n

∣∣ ≤ C ( An
nbn

+ bρn

)
,with

{
An = 1 under Assumption (K̃),
An = log(n) under Assumption (K).

(4.11)
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Finally, if ρ ∈ N∗ we have:

∆n = bρn ·
c(ρ)(u)

ρ!

∫
R
zρH(z) dz

(
1 + o(1)

)
+O

( An
nbn

)
. (4.12)

Proof of Lemma 4.1. In the sequel we will denote hn(v) = 1
bn
H
(
b−1n (v− u)

)
for

v ∈ R. Then hn is a Lipschitz function with Liphn = 1
b2n

LipH.

• First assume that the function c ≡ 1 is a constant. Set vi = i(nT )−1 for
i ∈ Z. For 1 ≤ s ≤ T , we consider the sets

Kn,s =
{
j ∈ N, |vs+jT − u| ≤ Anbn, 1 ≤ j ≤ n

}
= N ∩ [1, n]

⋂[
(u−Anbn)n− s

T
, (u+Anbn)n− s

T

]
,

and Ln,s = In,s \Kn,s. Then, for n large enough,

∆n =
1

n

∑
i∈In,s

hn(vi)−
∫
R
hn(v) dv

=
1

n

∑
i∈Kn,s

hn(vi)−
∫
R
hn(v) dv +

1

n

∑
i∈Ln,s

hn(vi)

=

[(u+Anbn)n− s
T ]∑

j=[(u−Anbn)n− s
T ]+1

∫ vs+(j+1)T

vs+jT

(
hn(vs+jT )− hn(v)

)
dv

+
1

n

∑
j∈Ln,s

hn(vs+jT )−
∫ ∞
(u+Anbn)+

1
n

hn(v) dv −
∫ (u−Anbn)+1/n

−∞
hn(v) dv.

But |hn(vs+jT )| ≤ C
bn

exp
(
− β

∣∣∣ j/n−u+s/nTbn

∣∣∣) from Assumption (K) and

using the usual comparison between sums and integrals for monotonic
functions, we obtain:∣∣∣ 1

n

∑
j∈Ln,s

hn(vs+jT )
∣∣∣ ≤ C

bn

∫ ∞
|v−u|≥Anbn

exp
(
− β |v − u|

bn

)
dv

≤ 2C exp(−β An).

Thus

∣∣∆n

∣∣ ≤ Lip (hn)

[(u+Anbn)n− s
T ]∑

j=[(u−Anbn)n− s
T ]+1

∫ vs+(j+1)T

vs+jT

(v − vs+jT )dv

+2C exp(−β An) +

∫ ∞
u+Anbn

∣∣hn(v)
∣∣ dv +

∫ u−Anbn

−∞

∣∣hn(v)
∣∣ dv

≤ Lip (H)

b2n

2Anbnn

2n2
+ 4C exp(−β An)

≤ Lip (H)
An
nbn

+ 4C exp(−β An).

imsart-ejs ver. 2014/10/16 file: nonstationarity28062018.tex date: July 20, 2018



Bardet and Doukhan/Local periodic time varying AR(1)–processes 17

because since u ∈ (0, 1), the above indices remain in the index set [−n, n]
for n large enough.
Then, if An ≥ β−1 log n then exp(−β An) ≤ 1/n and we deduce (4.11).

• We now turn to the case of a non-constant function c. First, if ρ > 0, for
(u, v) ∈ (0, 1)2 the Taylor-Lagrange formula implies:

c(v)− c(u) = (v − u)c′(u) + · · ·+ (v − u)`

`!
c(`)
(
u+ λ(v − u)

)
,

with ` = dρe and λ ∈ (0, 1). Since c ∈ Cρ([0, T ]),∣∣c(`)(u+ λ(v − u)
)
− c(`)(u)

∣∣ ≤ Cρ ∣∣λ(v − u)
∣∣ρ−` ≤ Cρ ∣∣v − u∣∣ρ−`.

Therefore,

c(v)− c(u) = (v − u)c′(u) + · · ·+ (v − u)`

`!
c(`)(u) +R(u, v), (4.13)

with |R(u, v)| ≤ Cρ |u − v|ρ. Then for any u ∈ (0, 1), using Assumption
ker(ρ ∨ 1) and especially the relation

∫
zpH(z)dz = 0 for p = 1, . . . , `,∣∣∣ ∫

R
hn(v) c(v) dv − c(u)

∫
R
hn(v) dv

∣∣∣ =
∣∣∣ ∫ ∞
−∞

H(z)
(
c(u+ bnz)− c(u)

)
dz
∣∣∣

=
∣∣∣ ∫ ∞
−∞

H(z)R(u, u+ bnz)dz
∣∣∣ (4.14)

≤ Cρ b
ρ
n C

∫ ∞
−∞

e−β|z||z|ρdz

≤ C ′ bρn (4.15)

with C ′ > 0. Here we denote kn(v) = hn(v)c(v) for v ∈ [0, 1].
Now, if ρ ∈ (0, 1), we have

|kn(v1)− kn(v2)| ≤ ‖c‖∞ Lip (hn) |v1 − v2|+
‖H‖∞
bn

Cρ |v1 − v2|ρ,

and therefore using the previous results:

∣∣∆n

∣∣ ≤ [(u+Anbn)n− s
T ]∑

j=[(u−Anbn)n− s
T ]+1

∫ vs+(j+1)T

vs+jT

C
(

Lip (hn) |v − vs+jT |

+
1

bn
|v − vs+jT |ρ

)
dv + C ‖c‖∞ exp(−βAn)

+
∣∣∣ ∫

R
hn(v) c(v) dv − c(u)

∫
R
hn(v) dv

∣∣∣
≤ C

( An
nbn

+
An
nρ

+ exp(−βAn) + bρn

)
.
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from (4.15) and this implies (4.11) since nbn → ∞ and therefore n−ρ is
negligible with respect from bρn.
Now, if ρ ≥ 1 and since H and c are bounded continuous Lipschitz func-
tions, we obtain the inequality

Lip (kn) ≤ ‖c‖∞Lip (hn) +
1

bn
‖H‖∞Lip (c) <∞.

Then, using the same computations than previously (replace hn by hn×c),

|∆n| ≤
[(u+Anbn)n− s

T ]∑
j=[(u−Anbn)n− s

T ]+1

∫ vs+(j+1)T

vs+jT

∣∣kn(vs+jT )− kn(v)
∣∣ dv

+ C ‖c‖∞ exp(−βAn) +
∣∣∣ ∫

R
hn(v) c(v) dv − c(u)

∫
R
hn(v) dv

∣∣∣
≤ C

An
nbn

(
‖c‖∞Lip (H) + bn Lip (c)‖H‖∞

)
+ C‖c‖∞e−βAn + C ′bρn,

from (4.15) and this completes the first item since bn is supposed to con-
verge to 0. The proof is now easily completed.

• Finally, in the case ρ ∈ N∗, we can use the previous case an a Taylor-

Lagrange expansion of the function c, implying R(u, v) =
c(ρ)(θ)

ρ!

∣∣u− v∣∣ρ
with θ = λu+ (1− λ)v and λ ∈ [0, 1].

Then, using (4.14) and with µu(z) ∈ [0, 1], and ζn =

∫
R
hn(v) c(v) dv −

c(u)

∫
R
hn(v) dv

ζn =
bρn
ρ!

∫ ∞
−∞

H(z)zρc(ρ)
(
u+ µu(z)bnz

)
dz

=
bρn
ρ!
c(ρ)(u)

∫ ∞
−∞

H(z)zρ dz
(
1 + o(1)

)
from Lebesgue theorem on dominated convergence.

In the sequel we will denote the σ-algebra

F (s)
t = σ

(
(ξi)i≤s+(t−1)T

)
. (4.16)

Lemma 4.2. Let H satisfy Assumption ker(1) and (X
(n)
t ) be a solution of

(1.2) under Assumption (A(ρ)) with ρ > 0. Then for any u ∈ (0, 1), and s ∈
{1, . . . , T},

1

nbn

n∑
j=1

H
( s+(j−1)T

nT − u
bn

)(
X

(n)
s+(j−1)T−1

)2 P−→
n→+∞

σ2 1 +
∑T−2
i=0 βs,i(u)

1− βs,T−1(u)
.
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Proof of Lemma 4.2. We use here a limit theorem for L1-mixingales established
in [1]. Indeed, for u ∈ (0, 1), s ∈ {1, . . . , T}, let

Zn,t =
1

bn
H
( s+(t−1)T

nT − u
bn

)((
X

(n)
s+(t−1)T−1

)2 − E
(
X

(n)
s+(t−1)T−1

)2)
. (4.17)

Then, set

c0(t) = 1, and ck(t) =

k∏
i=1

at+1−i

( t+ 1− i
nT

)
, for k ≥ 1,

we have:

X
(n)
t =

∞∑
k=0

ck(t) ξt−k. (4.18)

Therefore, with (F (s)
n,t ) defined in (4.16),

E
[
Zn,t|F (s)

n,t−m
]

=
1

bn
H
( s+(j−1)T

nT − u
bn

)
×
{
E
[( ∞∑

k=0

ck(s+ (t− 1)T − 1) ξs+(t−1)T−1−k

)2
| F (s)

n,t−m

]
− σ2

∞∑
k=0

c2k(s+ (t− 1)T − 1)
}

=
1

bn
H
( s+(j−1)T

nT − u
bn

){( ∞∑
k=mT−1

ck(s+ (t− 1)T − 1) ξs+(t−1)T−1−k

)2
− σ2

∞∑
k=mT−1

c2k(s+ (t− 1)T − 1)
}
.

But for any t ∈ N, we have |ck(t)| ≤ αk from Assumption (A(ρ)). Then,

∥∥∥E[Zn,t | F (s)
n,t−m

]∥∥∥
1
≤ 1

bn

∣∣∣∣∣H(
s+(j−1)T

nT − u
bn

)∣∣∣∣∣
×
{
E
[( ∞∑

k=mT−1

ck(s+ (t− 1)T − 1) ξs+(t−1)T−1−k

)2]
+ σ2

∞∑
k=mT−1

α2k
}

≤ 2σ2

bn

∣∣∣∣∣H(
s+(j−1)T

nT − u
bn

)∣∣∣∣∣× α2mT−2

1− α2
.

Thus, using the notations of Definition 2 in [1], it is easy to derive that (Zn,t)
is a triangular array such that φm = α2mT−2‖H‖1 → 0 (as m → ∞) since
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0 ≤ α < 1 and:

1

n

n∑
t=1

|cnt| −→
n→+∞

2σ2

(1− α2)
‖H‖1 <∞, with cnt =

2σ2

(1− α2)bn
H
( s+(j−1)T

nT − u
bn

)
.

As a consequence,

1

n

n∑
t=1

Zn,t
P−→

n→+∞
0,

implies

1

nbn

n∑
j=1

H
( s+(j−1)T

nT − u
bn

)((
X

(n)
s+(j−1)T−1

)2 − E
((
X

(n)
s+(j−1)T−1

)2)) P−→
n→+∞

0.

Now, we collect the above relations. Lemma 4.1 and Proposition 2.1 with the
ρ−regularity of the function c(v), together conclude the proof.

Lemma 4.3. Under the conditions of Theorem 2.1, with (Yn,i)1≤i≤n, n∈N defined
in (4.28), for any ε > 0,

n∑
j=1

E
(
Y 2
n,j I1{|Yn,j |≥ε}| F

(s)
j−1
) P−→
n→+∞

0. (4.19)

Proof of Lemma 4.3. Since Eξ20 = σ2 < ∞ this is easy to exhibit an increasing
sequence (ck)k with

c0 = 1, c1 = 2 and ck+1 ≥ c2k, where E
(
ξ20 I1{|ξ0|≥ck}

)
≤ 1

k3
, for all k ∈ N∗.

Define g(·) as the piecewise affine function such that g(ck) = k for k ∈ N and
g(0) = 0. Then the function ψ defined by ψ(x) = x2g(x) for x ≥ 0 satisfies
ψ(0) = 0 and it is a continuous and non-decreasing function (for almost all
x > 0, ψ′(x) = x2g′(x) + 2xg(x) > 0) and convex function (indeed, for almost
all x > 0, ψ′′(x) = 4xg′(x) + 2g(x) > 0). Hence, we have:

∞∑
k=1

E
(
ξ20g(|ξ0|) I1{ck≤|ξ0|<ck+1}

)
≤
∞∑
k=0

E
(
ξ20g(|ξ0|) I1{k≤g(|ξ0|)<k+1}

)
≤
∞∑
k=1

(k + 1)E
(
ξ20 I1{ck≤|ξ0|}

)
≤
∞∑
k=1

k + 1

k3
<∞.

Therefore,

Eψ(|ξ0|) ≤ E
(
ξ20g(|ξ0|) I1{0≤|ξ0|<2}

)
+

∞∑
k=0

E
(
ξ20g(|ξ0|) I1

{ck≤|ξ0|
)
<ck+1}

<∞.(4.20)
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The construction of (ck)k and the relation ck+1 ≥ c2k together imply:

ψ(xy) ≤ ψ(x)ψ(y). (4.21)

Indeed, this relationship is equivalent to

g(xy) ≤ g(x)g(y), for any 0 ≤ x ≤ y. (4.22)

But if 0 ≤ x ≤ 1 and y ≥ x, then xy ≤ y: therefore g(xy) ≤ g(y) ≤ g(x)g(y)
since g is an increasing function and g(x) ≥ 1 for any x ≥ 0. Moreover, if
1 < x ≤ y, there exists 0 ≤ k and λ ∈ [0, 1] such as y = λck + (1− λ)ck+1. But
h : [0,∞)→ R+ defined by x 7→ h(x) = g(x2) is a convex function since h′′ ≥ 0
a.e. As a consequence,

g(y2) = h(λck + (1− λ)ck+1) ≤ λg(c2k) + (1− λ)g(c2k+1)

≤ λg(ck+1) + (1− λ)g(ck+2) ≤ λ(k + 1) + (1− λ)(k + 2) = k + 2− λ,

from the construction of (ck). Since g(y) = λg(ck) + (1− λ)g(ck+1) = k+ 1− λ
because g is a piecewise function, we finally obtain g(y2) ≤ g(y)+1. We conclude
with g(xy) ≤ g(y2) for any 1 ≤ x ≤ y and g(x) ≥ 2 (since c1 = 2).
Hence the function ψ is a Orlicz function and ‖ξ0‖ψ <∞ with

‖V ‖ψ = inf
{
z > 0; Eψ

( |V |
z

)
≤ 1
}
, for any random variable V. (4.23)

Now Theorem 1.1 in [16] implies:

‖V ‖ψ ≤ inf
z>0

1

z

(
1 + E

[
ψ(z|V |)

])
≤ 2 ‖V ‖ψ. (4.24)

Therefore ‖V ‖ψ ≤ 1 + Eψ(|V |), and 1
zEψ(z|V |) ≤ 2‖V ‖ψ for any z > 0 since

from convexity

Eψ(|V |) ≤ z − 1

z
· Eψ(0) +

1

z
· Eψ(z|V |) ≤ 2‖V ‖ψ

and ψ(0) = 0. Then, from the definition of (X
(n)
t ) and the triangular inequality

‖X(n)
t ‖ψ ≤ α‖X

(n)
t−1‖ψ + ‖ξt‖ψ ≤

t−1∑
j=0

αj‖ξt−j‖ψ for any t ∈ N∗,

with 0 ≤ α < 1. Since ‖ξs‖ψ = ‖ξ0‖ψ for any s ∈ N, we finally obtain

sup
t∈N

{
‖X(n)

t ‖ψ
}
≤ 1

1− α
‖ξ0‖ψ <∞.

Thus (4.21) implies with the independence of ξt and X
(n)
t−1 that:

Eψ(|ξtX(n)
t−1|) ≤ Eψ(|ξt|) · Eψ(|X(n)

t−1|).
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Now relation (4.24) with z = 1 entails

sup
t∈N∗

{
‖ξtX(n)

t−1‖ψ
}
<∞.

Thus with t = s+ (j − 1)T we have from (4.24),

‖Yn,j‖ψ ≤
1√
nbn

∣∣∣K( t
nT − u
bn

)∣∣∣‖ξt‖ψ‖X(n)
t−1‖ψ <∞.

Again using (4.21) and with Kt = K
(

t
nT −u
bn

)
,

E
(
Y 2
j I1{|Yj |≥ε}

)
=

1

nbn
E
(
(KtξtX

(n)
t−1)2 I1{

g(|KtξtX(n)
t−1|)≥g(ε

√
nbn)

})
≤ 1

nbn
E
(

(KtξtX
(n)
t−1)2 ·

g(|KtξtX
(n)
t−1|)

g(ε
√
nbn)

I1{
g(|KtξtX(n)

t−1|)≥g(ε
√
nbn)

})
≤ 1

ψ(ε
√
nbn)

E
(
ψ(KtξtX

(n)
t−1)

)
≤ 2ψ(|Kt|)

ψ(ε
√
nbn)

sup
t∈N∗
‖ξtX(n)

t−1‖ψ.

As a consequence, for any ε > 0,

E
( n∑
j=1

E
(
Y 2
n,j I1{|Yn,j |>ε}|F

(s)
j−1
))

≤
supt∈N∗ ‖ξtX

(n)
t−1‖ψ

ε2 g(ε
√
nbn)

× 1

nbn

n∑
j=1

ψ
(∣∣∣K( s+(j−1)T

nT − u
bn

)∣∣∣)

≤ 2×
supt∈N∗ ‖ξtX

(n)
t−1‖ψ

ε2 g(ε
√
nbn)

∫
R
ψ(|K(x)|) dx

if n is large enough, from Lemma 4.1. As a consequence, for any ε > 0, since

g(ε
√
nbn) −→

n→+∞
∞, then E

(∑n
j=1 E

(
Y 2
n,j I1{|Yn,j |>ε}|F

(s)
j−1
))

−→
n→+∞

0. Since Y 2
n,j I1{|Yn,j |>ε}

is a non-negative triangular array, the proof of Lemma 4.3 is complete.

Proof of Theorem 2.1. Using (1.2), write

N̂ (n)
s (u) =

1

nbn

∑
j∈In,s

K
( j
nT − u
bn

)
X

(n)
j−1

(
as

( j

nT

)
X

(n)
j−1 + ξj

)
we decompose it as: N̂

(n)
s (u) = Ñ

(n)
s (u) +M

(n)
s (u), with

M (n)
s (u) =

1

nbn

∑
j∈In,s

K
( j
nT − u
bn

)
ξjX

(n)
j−1,

Ñ (n)
s (u) =

1

nbn

∑
j∈In,s

K
( j
nT − u
bn

)
as
( j
nT

)
(X

(n)
j−1)2
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Therefore we obtain:√
nbn
(
âs(u)− as(u)

)
=

√
nbn

M
(n)
s (u)

D̂
(n)
s (u)

+
Jn

D̂
(n)
s (u)

, (4.25)

with

D̂(n)
s (u) =

1

nbn

∑
j∈In,s

K
( j
nT − u
bn

)
X2
j−1, (4.26)

Jn =
1√
nbn

∑
j∈In,s

K
( j
nT − u
bn

)
(X

(n)
j−1)2

(
as
( j
nT

)
− as(u)

)
. (4.27)

We are going to derive the consistency of the estimator âs(u) of as(u), in two
parts.

1/ We first prove that
√
nbnM

(n)
s (u)

/
D̂

(n)
s (u)

L−→
n→+∞

N
(
0, C

)
for some con-

venient constant C > 0.
Let s ∈ {1, . . . , T} and u ∈ (0, 1). For n ∈ N∗ and j ∈ {1, . . . , n}, we
denote

Yn,j =
1√
nbn

K
( s+(j−1)T

nT − u
bn

)
ξs+(j−1)TX

(n)
s+(j−1)T−1. (4.28)

This is clear that (Yn,j)≤j≤n, n∈N∗ is a triangular array of martingale in-

crements with respect to the σ-algebra F (s)
t = σ

(
(ξi)i≤s+(t−1)T

)
. Indeed

(X
(n)
t )t≥0 is a process, causal with respect to (ξt)t≥0. This implies that ξt

is independent of (X
(n)
i )i≤t−1 and that E(ξ0) = 0. We are going to use a

central limit theorem for triangular arrays of martingale increments, see
for example [13] and more recently [15].
Denote

σ2
n,j = E

(
Y 2
n,j | F

(s)
j−1
)

=
1

nbn
K2
( s+(j−1)T

nT − u
bn

)(
X

(n)
s+(j−1)T−1

)2
,

since E(ξ20) = 0. Using Lemma 4.2, we obtain:

n∑
j=1

σ2
n,j

P−→
n→+∞

σ2 ·
1 +

∑T−2
i=0 βs,i(u)

1− βs,T−1(u)
·
∫
R
K2(x)dx, (4.29)

D̂
(n)
s (u) is defined from (4.26) and satisfies

D̂(n)
s (u)

P−→
n→+∞

σ2 1 +
∑T−2
i=0 βs,i(u)

1− βs,T−1(u)
≡ γ(2)s (u). (4.30)

Moreover, from Lemma 4.3, then for any ε > 0,

n∑
j=1

E
(
Y 2
n,j I1{|Yn,j |≥ε}| F

(s)
j−1
) P−→
n→+∞

0.
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As a consequence, the conditions of the central limit theorem for triangular
arrays of martingale increments, in [15]), are satisfied and this implies that∑n

j=1 Yn,j√∑n
j=1 σ

2
n,j

L−→
n→+∞

N
(
0, 1
)
.

Therefore from Slutsky lemma entails:

√
nbn

M
(n)
s (u)

D̂
(n)
s (u)

=

∑n
j=1 Yn,j√∑n
j=1 σ

2
n,j

×

√∑n
j=1 σ

2
n,j

1
nbn

∑n
j=1K

( s+(j−1)T
nT −u
bn

)(
X

(n)
s+(j−1)T−1

)2
L−→

n→+∞
N

(
0, σ2 1− βs,T−1(u)

1 +
∑T−2
i=0 βs,i(u)

∫
R
K2(x) dx

)
. (4.31)

2/ The second term Jn/D̂
(n)
s (u) in the expansion of

√
nbn
(
âs(u)− as(u)

)
de-

pends on the non-martingale term Jn, see (4.27), and the consistent term

D̂
(n)
s (u), see (4.26) and (4.30). The asymptotic behavior of this second

term can be first obtained following two steps.

a. A first step consists in establishing an expansion of EJn. Using Propo-

sition 2.1 and with γ
(2)
s ∈ Cρ([0, 1]) defined in (2.1), we have

EJn =
√
nbn

1

nbn

∑
j∈In,s

K
( j
nT − u
bn

)
×
(
γ(2)s (

j

nT
) +O

( 1

n

))(
as
( j
nT

)
− as(u)

)
.

Using twice Lemma 4.1, with firstly c(x) = γ
(2)
s (x)(as(x) − as(u)),

and secondly c(x) = (as(x)− as(u)), we deduce:∣∣EJn∣∣ ≤ C
√
nbn

( An
nbn

+ bρn

)(
1 +O

( 1

n

))
. (4.32)

As a consequence, if bn = o
(
n−1/(1+2ρ)

)
, then EJn −→

n→+∞
0.

In the case ρ ∈ {1, 2}, we also obtain from (4.12) and with ds(v) =

(as(v)− as(u))γ
(2)
s (v) ∈ Cρ([0, 1]),

EJn =
√
nbn

(
O
( An
nbn

)
+ bρn

d
(ρ)
s (u)

ρ!

∫
R
zρK(z) dz

(
1 + o(1)

))
=

d
(ρ)
s (u)

ρ!

∫
R
zρK(z) dz

√
nb2ρ+1
n + o(

√
nb2ρ+1
n ) +O

( An√
nbn

)
=

{
o(
√
nb3n) +O

(
An√
nbn

)
, if ρ = 1,

Bs(u)
√
nb5n + o(

√
nb5n) +O

(
An√
nbn

)
, if ρ = 2.

(4.33)
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with Bs(u) =
d′′s (u)

2

∫
R
z2K(z) dz.

b. Now we are going to prove a first consistency result for Jn/D̂
(n)
s (u)

using the Markov Inequality. Indeed,

E|Jn| ≤
1√
nbn

∑
j∈In,s

∣∣∣K( j
nT − u
bn

)∣∣∣∣∣as( j
nT

)
− as(u)

∣∣Var (X
(n)
j−1)

≤ C√
nbn

∑
j∈In,s

∣∣∣K( j
nT − u
bn

)∣∣∣∣∣as( j
nT

)
− as(u)

∣∣.
Now using Lemma 4.1 with c(v) = |as(v)−as(u)| which also belongs
in Cρ([0, 1]) (this is clear if ρ < 1 and, for ρ = 1 the Lipschitz property
of z 7→ |z| allows to conclude), and c(u) = 0, we derive:

E|Jn| ≤
√
nbn

( An
nbn

+ bρ∧1n

)
. (4.34)

Therefore, if bn = o
(
n−

1
1+2(ρ∧1

)
, then EJn −→

n→+∞
0 and E|Jn| −→

n→+∞
0,

implying from Markov Inequality, Jn
P−→

n→+∞
0. Finally, since (4.30) estab-

lishes the consistency of D̂
(n)
s (u), from Slutsky lemma, we deduce

Jn

D̂
(n)
s (u)

P−→
n→+∞

0. (4.35)

As a consequence, the proof of the Theorem results by using the decom-
position (4.25), the consistency results (4.31) and (4.35).

Proof of Theorem 2.2. We restrict to the case ρ ∈ (1, 2].

a. Case E
(
ξ40
)
<∞.

Denote again Kt = K
( t
nT − u
bn

)
, for t ∈ Z. First remark that the symme-
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try assumption on ξ0’s distribution implies E
(
ξ0
)

= E
(
ξ30
)

= 0.

Var (Jn) =
1

nbn

∑
t∈In,s

∑
t′∈In,s

KtKt′ Cov (X2
t , X

2
t′)×

×
(
as
( t

nT

)
− as(u)

)(
as
( t

nT

)
− as(u)

)
=

1

nbn

∑
(t,t′)∈Ln,s,α

KtKt′ Cov (X2
t , X

2
t′)×

×
(
as
( t

nT

)
− as(u)

)(
as
( t′
nT

)
− as(u)

)
+

1

nbn

∑
(t,t′)∈I2n,s\Ln,s,α

KtKt′Cov (X2
t , X

2
t′)×

×
(
as
( t

nT

)
− as(u)

)(
as
( t′
nT

)
− as(u)

)
with Ln,s,α =

{
(t, t′) ∈ I2n,s, |t− t′| ≤

logn
logα

}
.

Firstly, consider the first left side term of the last inequality. If t ∈ In,s then

Proposition 2.1 entails Var (X2
t ) = γ

(2)
s (t/(nT )) +O(1/n) for an adequate

function γ
(2)
s ∈ Cρ([0, 1]).

Hence we also have Var (X2
t ) = γ

(2)
s (t/(nT )) +O(log(n)/n).

Here the fact that (z 7→ z2) is a function in Cρ, implies that the function

defined from b(v) =
(
as(v)−as(u)

)2
is in Cρ([0, 1]) too, and again b(u) = 0

and
∫
xH2(x)dx = 0.

Therefore, we use Lemma 4.1 to derive:
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∑
t,t′∈Ln,s,α

KtKt′Cov (X2
t , X

2
t′)
(
as
( t

nT

)
− as(u)

)(
as
( t′
nT

)
− as(u)

)

=
∑

t,t′∈Ln,s,α

KtKt′

|t−t′|∏
i=1

a2s+i
( t

nT

)(
γ(4)s

( t+ i

nT

)
+O

( 1

n

))
×
(
as
( t

nT

)
− as(u)

)(
as
( t′
nT

)
− as(u)

)
=

logn
logα∑
j=0

∑
t∈In,s

Kt

(
Kt +O

( log n

nb2n

)) j∏
i=1

a2s+i
( t

nT

)(
γ(4)s

( t

nT

)
+O

( log n

n

))
×
(
as
( t

nT

)
− as(u)

)(
as
( t′
nT

)
− as(u)

)
≤

logn
logα∑
j=0

α2j
( ∑
t∈In,s

K2
t

j∏
i=1

γ(4)s

( t

nT

)
×
(
as
( t

nT

)
− as(u)

)2
+O

( log n

nb2n

)))

≤ 2

∞∑
j=0

α2j
∑
t∈In,s

K2
t

j∏
i=1

γ(4)s

( t

nT

)
×
(
as
( t

nT

)
− as(u)

)2
≤ 2nbn

∞∑
j=0

α2j 1

nbn

∑
t∈In,s

K2
( t
nT − u
bn

)
gj
( t

nT

)
,

with gj(x) =
(
as(x) − as(u)

)2 j∏
i=1

(
γ(4)s (x), since for n large enough the

above expression satisfies
∣∣O( lognnb2n

)∣∣ ≤ 1. Using Lemma 4.1, with functions

H = K2 and c = gj with gj ∈ Cρ([0, 1]) (quote that maxi≤j
(
‖gi‖ ∨

Lip (gi)
)

= O(j)), we finally obtain:

∣∣∣ 1

nbn

∑
t,t′∈Ln,s,α

KtKt′Cov (X2
t , X

2
t′)
(
as
( t

nT

)
− as(u)

)
(as
( t′
nT

)
− as(u)

)∣∣∣
≤ C

( An
nbn

+ bρn

)
. (4.36)

Secondly, from Proposition 2.1, for t, t′ ∈ I2n,s \ Ln,s,α, we have

|Cov (X2
t , X

2
t′)| ≤ C α2 |t−t′| ≤ C

n2
.
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Thus,∣∣∣ 1

nbn

∑
t,t′∈I2n,s\Ln,s,α

KtKt′Cov (X2
t , X

2
t′)
(
as
( t

nT

)
−as(u)

)(
as
( t′
nT

)
−as(u)

)∣∣∣
≤ nbn

n2

( 1

nbn

∑
t∈In,s

Kt

(
as
( t

nT

)
− as(u)

))2
≤ C bn

n

( An
nbn

+ bρn

)
, (4.37)

from Lemma 4.1. Then, (4.36) and (4.37) provide

Var
(
Jn
)
≤ C

( An
nbn

+ bρn

)
(4.38)

implying Var
(
Jn
)
−→

n→+∞
0 for any (bn) such as

max(bn, An(n bn)−1) −→
n→+∞

0.

b. Case E
(
|ξ0|β

)
<∞, for some β ∈ [2, 4].

From its expression given in (4.27), Jn is a quadratic form of (Xt) and
therefore, as Xt is a linear process with innovations (ξt), Jn is also a
quadratic form of (ξt). As a consequence, the fourth order moment can be
injected such as there exists a sequence zn ↓ 0 (as n ↑ ∞) satisfying:

Var (Jn) ≤ zn
(
E(ξ40) ∨ 1

)
= zn

(
µ4 ∨ 1

)
, and zn = O

( An
nbn

+ bρn
)
. (4.39)

Now, assume only that E(ξ20) <∞. The innovations (ξt) can be truncated
at level M , and write

ξt,M = ξt I1|ξt|≤M for any t ∈ N.

Note that the symmetry assumption entails E(ξj,M ) = 0. Define also De-
fine also

X
(n)
t,M = at

( t

nT

)
X

(n)
t−1,M + ξt,M , 1 ≤ t ≤ nT, n ∈ N

and Jn,M =
1√
nbn

∑
j∈In,s

K
( j
nT − u
bn

)
(X

(n)
j−1)2

(
as
( j
nT

)
− as(u)

)
.

A consequence of (4.39) is:

Var (Jn,M ) ≤ zn E(ξ40,M ) ≤ znM2h(M), (4.40)

with h(M) = E
(
|ξ0|2 I1{|ξ0|>M}

)
which satisfies limM→∞ h(M) = 0.

Moreover,

∣∣Jn − Jn,M ∣∣ =
1√
nbn

∑
j∈In,s

K
( j
nT − u
bn

)
×
∣∣(X(n)

j−1)2 − (X
(n)
j−1,M )2

∣∣∣∣as( j
nT

)
− as(u)

∣∣. (4.41)
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But

X
(n)
j−1,M −X

(n)
j−1 = aj−1

(j − 1

nT

)(
X

(n)
j−2,M −X

(n)
j−2
)

+
(
ξj−1,M − ξj−1

)
,∣∣X(n)

j−1,M −X
(n)
j−1
∣∣ ≤ α

∣∣X(n)
j−2,M −X

(n)
j−2
∣∣+ |ξj−1| I1{|ξj−1|>M}. (4.42)

We first remark from Proposition 2.1 that E(X
(n)
j−1)2 + E(X

(n)
j−1,M )2 ≤ c

for some constant c > 0. Hence, Cauchy-Schwartz Inequality shows that,
for each j:

E
(∣∣(X(n)

j−1)2 − (X
(n)
j−1,M )2

∣∣) ≤√cδj−1,M , (4.43)

with δj−1,M = E
(
|X(n)

j−1 −X
(n)
j−1,M |2

)
.

We are going to bound δj−1,M . A first simple bound is clearly δj−1,M ≤ 2 c
and we use it together with (4.42), and Cauchy-Schwartz inequality in
order to derive

δj−1,M ≤ α2δj−2,M + 2αE
(
|X(n)

j−2,M −X
(n)
j−2||ξj−1| I1{|ξj−1|>M}|

)
+E
(
|ξj−1|2 I1{|ξj−1|>M}

)
≤ α2δj−2,M + 2α

√
2c
√
E|ξj−1|2 I1{|ξj−1|>M} + E|ξj−1|2 I1{|ξj−1|>M}

≤ α2δj−2,M +H(M) (with H(M) = 2α
√

2c
√
h(M) + h(M))

≤ α4δj−3,M + (1 + α2)H(M)

≤ · · ·
≤ α2(j−1)δ0,M + (1 + · · ·+ α2(j−2))H(M)

≤ 2

1− α2
H(M)

since δ0,M ≤ h(M) ≤ H(M).
Now, from (4.43), we obtain for M large enough:

E
∣∣(X(n)

j−1)2 − (X
(n)
j−1,M )2

∣∣ ≤√ 2c

1− α2

√
H(M) ≤ C h1/4(M) (4.44)

with C > 0 and always with h(M) = E
(
|ξ0|2 I1{|ξ0|>M}

)
. Now a careful use

of (4.34) and (4.41) entails:

E|Jn − Jn,M | ≤ C
√
nbn

( An
nbn

+ bn

)
h1/4(M) (4.45)

since x→ |a(x)−a(u)| is a C1 function (in the above defined sense). Finally,
using Cauchy-Schwartz inequality in (4.40), we obtain for M large enough,

E|Jn| ≤ E|Jn − Jn,M |+
√

Var (Jn,M )

≤ C
(√

nbn

( An
nbn

+ bn

)
h1/4(M) +

( An
nbn

+ bρn
)1/2

M h1/2(M)
)

≤ C
(√

nb3n h
1/4(M) + bρ/2n M h1/2(M)

)
(4.46)
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assuming An/nbn = o(b
ρ/2
n ) i.e. (n/An)−2/(2+ρ) = o(bn) (and note that

−2/(2 + ρ) ≤ 1/(1 + 2ρ)).
Now, if E

(
|ξ0|β

)
< ∞ with β ∈ (2, 4], then using Hölder and Markov

Inequalities, there exists Cβ > 0 such as

h(M) = E
(
|ξ0|2 I1{|ξ0|>M}

)
≤ CβM2−β .

Since here bn = o
(
n−1/(1+2ρ)

)
, does not yields the minimax rates, we

deduce that
√
nb3n h

1/4(M) −→
n→+∞

0 when M1+2ρ ≥ n(4ρ−4)/(β−2)

b
ρ/2
n M h1/2(M) −→

n→+∞
0 when M1+2ρ ≤ nρ/(4−β)

.

Thus, from inequality (4.46), we deduce that the optimal choice is obtained
when

4ρ− 4

β − 2
=

ρ

4− β
, which entails β = 4− 2 · ρ

5ρ− 4
.

d. Case ρ = 2.
The expression of the non-central limit for the case of optimal window
widths and the expansion of the bias (4.33) now the asymptotic expression
for (4.35) yields the proposed non-centred Gaussian limit, see Remark 4.1.
The same truncation step as above is also needed.

The proof is now complete.

Remark 4.1. Using the previous bound (4.32) of EJn and Bienaymé-Tchebychev

inequality, we deduce that if bn = o
(
n−1/(1+2ρ)

)
then Jn

P−→
n→+∞

0.

Moreover, if ρ = 2 and bn = c n−1/5, using the expansion (4.33) of EJn and

again Bienaymé-Chebychev inequality, then Jn
P−→

n→+∞
Bs(u) c5/2.

Therefore with the consistency result (4.30), for any u ∈ (0, 1) and s ∈ {1, . . . , T},

Jn

D̂
(n)
s (u)

P−→
n→+∞

Bs(u)
c

5
2

σ2

1 +
∑T−2
i=0 βs,i(u)

1− βs,T−1(u)
.

Remark 4.2. For the general case with maybe ξ0 non symmetric and Eξ0 = 0,

the item 3. of Proposition 2.1 needs some improvements. Denote w
(k)
t = E(Xk

t )

for k = 1, 3, then w
(4)
t = wt and w

(2)
t = vt, then (4.8) turns to be written

wt = qtwt−1 + 4EAtEXt−1µ3 + 6σ2vt + µ4 ≤ α4wt−1 + r(t), (4.47)

as previously supt wt <∞.

We need to derive suitable equivalents of w
(k)
t if k = 1. Firstly

w
(1)
t = EAtw(1)

t−1 = · · · = EAt · · ·EA1 · EX0,
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and in fact this term is negligible and the proof of Proposition 2.1 and Lemma
3. remains unchanged.
In this case the proof of the above point 2/ c. needs a simple improvement and

ξj,M = ξj ∧M ∨ (−M)− E (ξj ∧M ∨ (−M)) .

In this truncated setting, inequality (4.42) writes:

|X(n)
j−1,M −X

(n)
j−1| ≤ α|X

(n)
j−2,M −X

(n)
j−2|

+ |ξj−1| I1{|ξj−1|>M} + E(|ξj−1| I1{|ξj−1|>M})

so that the end of the proof is unchanged by only setting C = 2cEξ20/(1− α).

Remark 4.3. Secondly, in case we even omit the condition Eξ0 = 0 one needs to

also express an asymptotic expansion for w
(3)
t = EA3

tw
(3)
t−1 +3EAtw(1)

t−1σ
2 +µ3 ∼

EA3
tw

(3)
t−1 + µ3; an analogue expansion to Proposition 2.1 and Lemma 3. may

thus be derived. Namely w
(3)
t = γ(3)s (

t

nT
) +O

( 1

n

)
,, with

γ(3)s (v) = µ3 ·
1 +

∑T−2
i=0 ζs,i(v)

1− ζs,T−1(v)
,

ζt,i(v) =

i−1∏
j=0

a3t−j(v) ≤ α3i < 1, for 1 ≤ i ≤ T, v ∈ (0, 1).

Then the expression of the equivalent of wt is also adequately transformed up to
the above relations.

Aknowledgement. This work has been developed within the “MME-DII cen-
tre of excellence” (ANR-11-LABEX-0023-01) and with the help of PAI- CONI-
CYT MEC Nr. 80170072.
The authors thank the referees for their fruitful comments and suggestions,
which notably improved the quality of the paper. The second author wishes
to thank Rainer Dahlhaus for many interesting discussions. As well, numerous
discussions with Karine Bertin were extremely useful.

References

[1] Andrews, D. Laws of large numbers for dependent non-identically dis-
tributed random variables. Econometric Theory 4, 3 (1988), 458–467.

[2] Azrak, R. and Mélard, G. Asymptotic properties of quasi-maximum
likelihood estimators for ARMA models with time-dependent coefficients.
Statistical Inference for Stochastic Processes 9 (2006), 279–330.

[3] Bibi, A. and Francq, C. Consistent and asymptotically normal estima-
tors for cyclically time-dependent linear models. Annals of the Institute of
Statistical Mathematics 55 (2003), 41–68.

imsart-ejs ver. 2014/10/16 file: nonstationarity28062018.tex date: July 20, 2018



Bardet and Doukhan/Local periodic time varying AR(1)–processes 32

[4] Dacunha-Castelle, D., Huong Hoang, H. T. and Parey, S. Model-
ing of air temperatures: preprocessing and trends, reduced stationary pro-
cess, extremes, simulation. Journal de la Société Française de Statistique
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