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Introduction

The goal of goodness of fit testing is to determine how well a model density p(x) fits an observed sample D = {x i } n i=1 ⊂ X ⊆ R d from an unknown distribution q(x). This goal may be achieved via a hypothesis test, where the null hypothesis H 0 : p = q is tested against H 1 : p = q. The problem of testing goodness of fit has a long history in statistics [START_REF] Massey | The Kolmogorov-Smirnov test for goodness of fit[END_REF], with a number of tests proposed for particular parametric models. Such tests can require space partitioning [START_REF] Györfi | A consistent goodness of fit based on the total variation distance[END_REF][START_REF] Beirlant | On the asymptotic normality of the l 1 -and l 2 -errors in histogram density estimation[END_REF], which works poorly in high dimensions; or closed-form integrals under the model, which may be difficult to obtain, besides in certain special cases [START_REF] Baringhaus | A consistent test for multivariate normality based on the empirical characteristic function[END_REF][START_REF] Bowman | Adaptive smoothing and density based tests of multivariate normality[END_REF][START_REF] Székely | A new test for multivariate normality[END_REF][START_REF] Rizzo | New goodness-of-fit tests for Pareto distributions[END_REF]]. An alternative is to conduct a two-sample test using samples drawn from both p and q. This approach was taken by [START_REF] Lloyd | Statistical model criticism using kernel two sample tests[END_REF], using a test based on the (quadratic-time) Maximum Mean Discrepancy [START_REF] Gretton | A kernel two-sample test[END_REF], however this does not take advantage of the known structure of p (quite apart from the increased computational cost of dealing with samples from p).

More recently, measures of discrepancy with respect to a model have been proposed based on Stein's method [START_REF] Ley | Stein's method for comparison of univariate distributions[END_REF]. A Stein operator for p may be applied to a class of test functions, yielding functions that have zero expectation under p. Classes of test functions can include the W 2,∞ Sobolev space [START_REF] Gorham | Measuring sample quality with Stein's method[END_REF], and reproducing kernel Hilbert spaces (RKHS) [START_REF] Oates | Control functionals for Monte Carlo integration[END_REF]. Statistical tests have been proposed by [START_REF] Chwialkowski | A kernel test of goodness of fit[END_REF][START_REF] Liu | A kernelized Stein discrepancy for goodness-of-fit tests[END_REF] based on classes of Stein transformed RKHS functions, where the test statistic is the norm of the smoothness-constrained function with largest expectation under q . We will refer to this statistic as the Kernel Stein Discrepancy (KSD). For consistent tests, it is sufficient to use C 0 -universal kernels [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF]Definition 4.1], as shown by [START_REF] Chwialkowski | A kernel test of goodness of fit[END_REF]Theorem 2.2], although inverse multiquadric kernels may be preferred if uniform tightness is required [START_REF] Gorham | Measuring sample quality with kernels[END_REF]. 2 The function class F d for the function f is chosen to be a unit-norm ball in a reproducing kernel Hilbert space (RKHS) in [START_REF] Chwialkowski | A kernel test of goodness of fit[END_REF][START_REF] Liu | A kernelized Stein discrepancy for goodness-of-fit tests[END_REF]. More precisely, let F be an RKHS associated with a positive definite kernel k : X × X → R. Let φ(x) = k(x, •) denote a feature map of k so that k(x, x ) = φ(x), φ(x ) F . Assume that f i ∈ F for all i = 1, . . . , d so that f ∈ F × • • • × F := F d where F d is equipped with the standard inner product f , g F d := d i=1 f i , g i F . The kernelized Stein operator T p studied in [START_REF] Chwialkowski | A kernel test of goodness of fit[END_REF] is (T p f ) (x) := ∂x is in F d . We note that the Stein operator presented in [START_REF] Liu | A kernelized Stein discrepancy for goodness-of-fit tests[END_REF] is defined such that (T p f ) (x) ∈ R d . This distinction is not crucial and leads to the same goodness-offit test. Under appropriate conditions, e.g. that lim x →∞ p(x)f i (x) = 0 for all i = 1, . . . , d, it can be shown using integration by parts that E x∼p (T p f )(x) = 0 for any f ∈ F d [9, Lemma 5.1]. Based on the Stein operator, [START_REF] Chwialkowski | A kernel test of goodness of fit[END_REF][START_REF] Liu | A kernelized Stein discrepancy for goodness-of-fit tests[END_REF] define the kernelized Stein discrepancy as S p (q) := sup

f F d ≤1 E x∼q f , ξ p (x, •) F d (a) = sup f F d ≤1 f , E x∼q ξ p (x, •) F d = g(•) F d , (1) 
where at (a), ξ p (x, •) is Bochner integrable [START_REF] Steinwart | Support Vector Machines[END_REF]Definition A.5.20] as long as E x∼q ξ p (x, •) F d < ∞, and g(y) := E x∼q ξ p (x, y) is what we refer to as the Stein witness function. The Stein witness function will play a crucial role in our new test statistic in Section 3. When a C 0 -universal kernel is used [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF]Definition 4.1], and as long as E x∼q ∇ x log p(x) -∇ x log q(x) 2 < ∞, it can be shown that S p (q) = 0 if and only if p = q [9, Theorem 2.2].

The KSD S p (q) can be written as S 2 p (q) = E x∼q E x ∼q h p (x, x ), where h p (x, y) := s p (x)s p (y)k(x, y) + s p (y)∇ x k(x, y) + s p (x)∇ y k(x, y)

+ d i=1 ∂ 2 k(x,y)
∂xi∂yi , and s p (x) := ∇ x log p(x) is a column vector. An unbiased empirical estimator of S 2 p (q), denoted by S 2 = 2 n(n-1) i<j h p (x i , x j ) [START_REF] Liu | A kernelized Stein discrepancy for goodness-of-fit tests[END_REF]Eq. 14], is a degenerate U-statistic under H 0 . For the goodness-of-fit test, the rejection threshold can be computed by a bootstrap procedure. All these properties make S 2 a very flexible criterion to detect the discrepancy of p and q: in particular, it can be computed even if p is known only up to a normalization constant. Further studies on nonparametric Stein operators can be found in [START_REF] Oates | Control functionals for Monte Carlo integration[END_REF][START_REF] Gorham | Measuring sample quality with Stein's method[END_REF].

Linear-Time Kernel Stein (LKS) Test Computation of S 2 costs O(n 2 ). To reduce this cost, a linear-time (i.e., O(n)) estimator based on an incomplete U-statistic is proposed in [START_REF] Liu | A kernelized Stein discrepancy for goodness-of-fit tests[END_REF]Eq. 17], given by S 2 l :=

2 n n/2 i=1 h p (x 2i-1 , x 2i
), where we assume n is even for simplicity. Empirically [START_REF] Liu | A kernelized Stein discrepancy for goodness-of-fit tests[END_REF] observed that the linear-time estimator performs much worse (in terms of test power) than the quadratic-time U-statistic estimator, agreeing with our findings presented in Section 5.

New Statistic: The Finite Set Stein Discrepancy (FSSD)

Although shown to be powerful, the main drawback of the KSD test is its high computational cost of O(n 2 ). The LKS test is one order of magnitude faster. Unfortunately, the decrease in the test power outweighs the computational gain [START_REF] Liu | A kernelized Stein discrepancy for goodness-of-fit tests[END_REF]. We therefore seek a variant of the KSD statistic that can be computed in linear time, and whose test power is comparable to the KSD test.

Key Idea

The fact that S p (q) = 0 if and only if p = q implies that g(v) = 0 for all v ∈ X if and only if p = q, where g is the Stein witness function in [START_REF] Bahadur | Stochastic comparison of tests[END_REF]. One can see g as a function witnessing the differences of p, q, in such a way that |g i (v)| is large when there is a discrepancy in the region around v, as indicated by the i th output of g. The test statistic of [START_REF] Liu | A kernelized Stein discrepancy for goodness-of-fit tests[END_REF][START_REF] Chwialkowski | A kernel test of goodness of fit[END_REF] is essentially given by the degree of "flatness" of g as measured by the RKHS norm • F d . The core of our proposal is to use a different measure of flatness of g which can be computed in linear time.

The idea is to use a real analytic kernel k which makes g 1 , . . . , g d real analytic. If g i = 0 is an analytic function, then the Lebesgue measure of the set of roots {x | g i (x) = 0} is zero [START_REF] Mityagin | The Zero Set of a Real Analytic Function[END_REF]. This property suggests that one can evaluate g i at a finite set of locations V = {v 1 , . . . , v J }, drawn from a distribution with a density (w.r.t. the Lebesgue measure). If g i = 0, then almost surely g i (v 1 ), . . . , g i (v J ) will not be zero. This idea was successfully exploited in recently proposed linear-time tests of [START_REF] Chwialkowski | Fast two-sample testing with analytic representations of probability measures[END_REF] and [START_REF] Jitkrittum | Interpretable Distribution Features with Maximum Testing Power[END_REF][START_REF] Jitkrittum | An adaptive test of independence with analytic kernel embeddings[END_REF]. Our new test statistic based on this idea is called the Finite Set Stein Discrepancy (FSSD) and is given in Theorem 1. All proofs are given in the appendix. Theorem 1 (The Finite Set Stein Discrepancy (FSSD)).

Let V = {v 1 , . . . , v J } ⊂ R d be random vectors drawn i.i.d. from a distribution η which has a density. Let X be a connected open set in R d . Define FSSD 2 p (q) := 1 dJ d i=1 J j=1 g 2 i (v j ). Assume that 1) k : X × X → R is C 0 - universal [6, Definition 4.1] and real analytic i.e., for all v ∈ X , f (x) := k(x, v) is a real analytic function on X . 2) E x∼q E x ∼q h p (x, x ) < ∞. 3) E x∼q ∇ x log p(x) -∇ x log q(x) 2 < ∞. 4) lim x →∞ p(x)g(x) = 0.
Then, for any J ≥ 1, η-almost surely FSSD 2 p (q) = 0 if and only if p = q.

This measure depends on a set of J test locations (or features) {v i } J i=1 used to evaluate the Stein witness function, where J is fixed and is typically small. A kernel which is C 0 -universal and real analytic is the Gaussian kernel k(x, y) = exp - [START_REF] Jitkrittum | An adaptive test of independence with analytic kernel embeddings[END_REF]Proposition 3] for the result on analyticity). Throughout this work, we will assume all the conditions stated in Theorem 1, and consider only the Gaussian kernel. Besides the requirement that the kernel be real and analytic, the remaining conditions in Theorem 1 are the same as given in [START_REF] Chwialkowski | A kernel test of goodness of fit[END_REF]Theorem 2.2]. Note that if the FSSD is to be employed in a setting otherwise than testing, for instance to obtain pseudo-samples converging to p, then stronger conditions may be needed [START_REF] Gorham | Measuring sample quality with kernels[END_REF].

x-y 2 2 2σ 2 k (see

Goodness-of-Fit Test with the FSSD Statistic

Given a significance level α for the goodness-of-fit test, the test can be constructed so that H 0 is rejected when n FSSD 2 > T α , where T α is the rejection threshold (critical value), and FSSD 2 is an empirical estimate of FSSD 2 p (q). The threshold which guarantees that the type-I error (i.e., the probability of rejecting H 0 when it is true) is bounded above by α is given by the (1α)-quantile of the null distribution i.e., the distribution of n FSSD 2 under H 0 . In the following, we start by giving the expression for FSSD 2 , and summarize its asymptotic distributions in Proposition 2.

Let Ξ(x) ∈ R d×J such that [Ξ(x)] i,j = ξ p,i (x, v j )/ √ dJ. Define τ (x) := vec(Ξ(x)) ∈ R dJ
where vec(M) concatenates columns of the matrix M into a column vector. We note that τ (x) depends on the test locations V = {v j } J j=1 . Let ∆(x, y) := τ (x) τ (y) = tr(Ξ(x) Ξ(y)). Given an i.i.d. sample {x i } n i=1 ∼ q, a consistent, unbiased estimator of FSSD 2 p (q) is

FSSD 2 = 1 dJ d l=1 J m=1 1 n(n -1) n i=1 j =i ξ p,l (xi, vm)ξ p,l (xj, vm) = 2 n(n -1) i<j ∆(xi, xj), (2)
which is a one-sample second-order U-statistic with ∆ as its U-statistic kernel [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF]Section 5.1.1]. Being a U-statistic, its asymptotic distribution can easily be derived. We use

d → to denote convergence in distribution. Proposition 2 (Asymptotic distributions of FSSD 2 ). Let Z 1 , . . . , Z dJ i.i.d. ∼ N (0, 1). Let µ := E x∼q [τ (x)], Σ r := cov x∼r [τ (x)] ∈ R dJ×dJ for r ∈ {p, q}, and {ω i } dJ i=1 be the eigenvalues of Σ p = E x∼p [τ (x)τ (x)]. Assume that E x∼q E y∼q ∆ 2 (x, y) < ∞.
Then, for any realization of V = {v j } J j=1 , the following statements hold.

Under H

0 : p = q, n FSSD 2 d → dJ i=1 (Z 2 i -1)ω i . 2. Under H 1 : p = q, if σ 2 H1 := 4µ Σ q µ > 0, then √ n( FSSD 2 -FSSD 2 ) d → N (0, σ 2 H1 ).
Proof. Recognizing that (2) is a degenerate U-statistic, the results follow directly from [27, Section 5.5.1, 5.5.2].

Claims 1 and 2 of Proposition 2 imply that under H 1 , the test power (i.e., the probability of correctly rejecting H 1 ) goes to 1 asymptotically, if the threshold T α is defined as above. In practice, simulating from the asymptotic null distribution in Claim 1 can be challenging, since the plug-in estimator of Σ p requires a sample from p, which is not available. A straightforward solution is to draw sample from p, either by assuming that p can be sampled easily or by using a Markov chain Monte Carlo (MCMC) method, although this adds an additional computational burden to the test procedure. A more subtle issue is that when dependent samples from p are used in obtaining the test threshold, the test may become more conservative than required for i.i.d. data [START_REF] Chwialkowski | A wild bootstrap for degenerate kernel tests[END_REF]. An alternative approach is to use the plug-in estimate Σq instead of Σ p . The covariance matrix Σq can be directly computed from the data. This is the approach we take. Theorem 3 guarantees that the replacement of the covariance in the computation of the asymptotic null distribution still yields a consistent test. We write P H1 for the distribution of n FSSD 2 under H 1 .

Theorem 3. Let Σq := 1 n n i=1 τ (x i )τ (x i ) -[ 1 n n i=1 τ (x i )][ 1 n n j=1 τ (x j )] with {x i } n i=1 ∼ q. Suppose that the test threshold T α is set to the (1-α)-quantile of the distribution of dJ i=1 (Z 2 i -1) νi where {Z i } dJ i=1 i.i.d.
∼ N (0, 1), and ν1 , . . . , νdJ are eigenvalues of Σq . Then, under H 0 , asymptotically the false positive rate is α. Under H 1 , for {v j } J j=1 drawn from a distribution with a density, the test power P H1 (n FSSD 2 > T α ) → 1 as n → ∞.

Remark 1. The proof of Theorem 3 relies on two facts. First, under H 0 , Σq = Σp i.e., the plug-in estimate of Σ p . Thus, under H 0 , the null distribution approximated with Σq is asymptotically correct, following the convergence of Σp to Σ p . Second, the rejection threshold obtained from the approximated null distribution is asymptotically constant. Hence, under H 1 , claim 2 of Proposition 2 implies that n FSSD 2 d → ∞ as n → ∞, and consequently P H1 (n FSSD 2 > T α ) → 1.

Optimizing the Test Parameters

Theorem 1 guarantees that the population quantity FSSD 2 = 0 if and only if p = q for any choice of {v i } J i=1 drawn from a distribution with a density. In practice, we are forced to rely on the empirical FSSD 2 , and some test locations will give a higher detection rate (i.e., test power) than others for finite n. Following the approaches of [START_REF] Gretton | Optimal kernel choice for large-scale two-sample tests[END_REF][START_REF] Jitkrittum | An adaptive test of independence with analytic kernel embeddings[END_REF][START_REF] Jitkrittum | Interpretable Distribution Features with Maximum Testing Power[END_REF][START_REF] Sutherland | Generative models and model criticism via optimized Maximum Mean Discrepancy[END_REF], we choose the test locations V = {v j } J j=1 and kernel bandwidth σ 2 k so as to maximize the test power i.e., the probability of rejecting H 0 when it is false. We first give an approximate expression for the test power when n is large.

Proposition 4 (Approximate test power of n FSSD 2 ). Under H 1 , for large n and fixed r, the test power

P H1 (n FSSD 2 > r) ≈ 1 -Φ r √ nσ H 1 - √ n FSSD 2 σ H 1
, where Φ denotes the cumulative distribution function of the standard normal distribution, and σ H1 is defined in Proposition 2.

Proof. P H1 (n FSSD 2 > r) = P H1 ( FSSD 2 > r/n) = P H1 √ n FSSD 2 -FSSD 2 σ H 1 > √ n r/n-FSSD 2 σ H 1
. For sufficiently large n, the alternative distribution is approximately normal as given in Proposition 2. It follows that

P H1 (n FSSD 2 > r) ≈ 1 -Φ r √ nσ H 1 - √ n FSSD 2 σ H 1 . Let ζ := {V, σ 2
k } be the collection of all tuning parameters. Assume that n is sufficiently large. Following the same argument as in [START_REF] Sutherland | Generative models and model criticism via optimized Maximum Mean Discrepancy[END_REF], in

r √ nσ H 1 - √ n FSSD 2 σ H 1
, we observe that the first term , where a small regularization parameter γ > 0 is added for numerical stability. The goodness-of-fit test is performed on the test set to avoid overfitting. The idea of splitting the data into training and test sets to learn good features for hypothesis testing was successfully used in [START_REF] Sutherland | Generative models and model criticism via optimized Maximum Mean Discrepancy[END_REF][START_REF] Jitkrittum | An adaptive test of independence with analytic kernel embeddings[END_REF][START_REF] Jitkrittum | Interpretable Distribution Features with Maximum Testing Power[END_REF][START_REF] Gretton | Optimal kernel choice for large-scale two-sample tests[END_REF].

r √ nσ H 1 = O(n -1/2 ) going to 0 as n → ∞, while the second term √ n FSSD 2 σ H 1 = O(n 1/2 ),
To find a local maximum of FSSD 2 σH 1 +γ , we use gradient ascent for its simplicity. The initial points of {v i } J i=1 are set to random draws from a normal distribution fitted to the training data, a heuristic we found to perform well in practice. The objective is non-convex in general, reflecting many possible ways to capture the differences of p and q. The regularization parameter γ is not tuned, and is fixed to a small constant. Assume that

∇ x log p(x) costs O(d 2 ) to evaluate. Computing ∇ ζ FSSD 2 σH 1 +γ costs O(d 2 J 2 n). The computational complexity of n FSSD 2 and σ2 H1 is O(d 2 Jn
). Thus, finding a local optimum via gradient ascent is still linear-time, for a fixed maximum number of iterations. Computing Σq costs O(d 2 J 2 n), and obtaining all the eigenvalues of Σq costs O(d 3 J 3 ) (required only once). If the eigenvalues decay to zero sufficiently rapidly, one can approximate the asymptotic null distribution with only a few eigenvalues. The cost to obtain the largest few eigenvalues alone can be much smaller. Remark 2. Let μ := 1 n n i=1 τ (x i ). It is possible to normalize the FSSD statistic to get a new statistic λn := n μ ( Σq + γI) -1 μ where γ ≥ 0 is a regularization parameter that goes to 0 as n → ∞. This was done in the case of the ME (mean embeddings) statistic of [START_REF] Chwialkowski | Fast two-sample testing with analytic representations of probability measures[END_REF][START_REF] Jitkrittum | Interpretable Distribution Features with Maximum Testing Power[END_REF]. The asymptotic null distribution of this statistic takes the convenient form of χ 2 (dJ) (independent of p and q), eliminating the need to obtain the eigenvalues of Σq . It turns out that the test power criterion for tuning the parameters in this case is the statistic λn itself. However, the optimization is computationally expensive as ( Σq + γI) -1 (costing O(d 3 J 3 )) needs to be reevaluated in each gradient ascent iteration. This is not needed in our proposed FSSD statistic.

Relative Efficiency and Bahadur Slope

Both the linear-time kernel Stein (LKS) and FSSD tests have the same computational cost of O(d 2 n), and are consistent, achieving maximum power of 1 as n → ∞ under H 1 . It is thus of theoretical interest to understand which test is more sensitive in detecting the differences of p and q. This can be quantified by the Bahadur slope of the test [START_REF] Bahadur | Stochastic comparison of tests[END_REF]. Two given tests can then be compared by computing the Bahadur efficiency (Theorem 7) which is given by the ratio of the slopes of the two tests. We note that the constructions and techniques in this section may be of independent interest, and can be generalised to other statistical testing settings.

We start by introducing the concept of Bahadur slope for a general test, following the presentation of [START_REF] Gleser | On a measure of test efficiency proposed by R[END_REF][START_REF] Gleser | The comparison of multivariate tests of hypothesis by means of Bahadur efficiency[END_REF]. Consider a hypothesis testing problem on a parameter θ. The test proposes a null hypothesis H 0 : θ ∈ Θ 0 against the alternative hypothesis H 1 : θ ∈ Θ\Θ 0 , where Θ, Θ 0 are arbitrary sets. Let T n be a test statistic computed from a sample of size n, such that large values of T n provide an evidence to reject H 0 . We use plim to denote convergence in probability, and write E r for E x∼r E x ∼r . Approximate Bahadur Slope (ABS) For θ 0 ∈ Θ 0 , let the asymptotic null distribution of T n be F (t) = lim n→∞ P θ0 (T n < t), where we assume that the CDF (F ) is continuous and common to all θ 0 ∈ Θ 0 . The continuity of F will be important later when Theorem 9 and 10 are used to compute the slopes of LKS and FSSD tests. Assume that there exists a continuous strictly increasing function ρ : (0, ∞) → (0, ∞) such that lim n→∞ ρ(n) = ∞, and that -2

plim n→∞ log(1-F (Tn)) ρ(n)
= c(θ) where T n ∼ P θ , for some function c such that 0 < c(θ A ) < ∞ for θ A ∈ Θ\Θ 0 , and c(θ 0 ) = 0 when θ 0 ∈ Θ 0 . The function c(θ) is known as the approximate Bahadur slope (ABS) of the sequence T n . The quantifier "approximate" comes from the use of the asymptotic null distribution instead of the exact one [START_REF] Bahadur | Stochastic comparison of tests[END_REF]. Intuitively the slope c(θ A ), for θ A ∈ Θ\Θ 0 , is the rate of convergence of p-values (i.e., 1 -F (T n )) to 0, as n increases. The higher the slope, the faster the p-value vanishes, and thus the lower the sample size required to reject H 0 under θ A .

Approximate Bahadur Efficiency

Given two sequences of test statistics, T

n and T

(2) n having the same ρ(n) (see Theorem 10), the approximate Bahadur efficiency of T

(1)

n relative to T (2) n is defined as E(θ A ) := c (1) (θ A )/c (2) (θ A ) for θ A ∈ Θ\Θ 0 . If E(θ A ) > 1, then T (1)
n is asymptotically more efficient than T [START_REF] Baringhaus | A consistent test for multivariate normality based on the empirical characteristic function[END_REF] n in the sense of Bahadur, for the particular problem specified by θ A ∈ Θ\Θ 0 . We now give approximate Bahadur slopes for two sequences of linear time test statistics: the proposed n FSSD 2 , and the LKS test statistic √ n S 2 l discussed in Section 2.

Theorem 5. The approximate Bahadur slope of n FSSD 2 is c (FSSD) := FSSD 2 /ω 1 , where ω 1 is the maximum eigenvalue of Σ p := E x∼p [τ (x)τ (x)] and ρ(n) = n.

Theorem 6. The approximate Bahadur slope of the linear-time kernel Stein (LKS) test statistic

√ n S 2 l is c (LKS) = 1 2 [Eqhp(x,x )] 2 Ep[h 2 p (x,x )]
, where h p is the U-statistic kernel of the KSD statistic, and ρ(n) = n.

To make these results concrete, we consider the setting where p = N (0, 1) and q = N (µ q , 1).

We assume that both tests use the Gaussian kernel k(x, y) = exp -(xy) 2 /2σ 2 k , possibly with different bandwidths. We write σ 2 k and κ 2 for the FSSD and LKS bandwidths, respectively. Under these assumptions, the slopes given in Theorem 5 and Theorem 6 can be derived explicitly. The full expressions of the slopes are given in Proposition 12 and Proposition 13 (in the appendix). By [START_REF] Gleser | On a measure of test efficiency proposed by R[END_REF][START_REF] Gleser | The comparison of multivariate tests of hypothesis by means of Bahadur efficiency[END_REF] (recalled as Theorem 10 in the supplement), the approximate Bahadur efficiency can be computed by taking the ratio of the two slopes. The efficiency is given in Theorem 7.

Theorem 7 (Efficiency in the Gaussian mean shift problem). Let E 1 (µ q , v, σ 2 k , κ 2 ) be the approximate Bahadur efficiency of n FSSD 2 relative to √ n S 2 l for the case where p = N (0, 1), q = N (µ q , 1), and J = 1 (i.e., one test location v for n FSSD 2 ). Fix σ 2 k = 1 for n FSSD 2 . Then, for any µ q = 0, for some v ∈ R, and for any κ 2 > 0, we have

E 1 (µ q , v, σ 2 k , κ 2 ) > 2.
When p = N (0, 1) and q = N (µ q , 1) for µ q = 0, Theorem 7 guarantees that our FSSD test is asymptotically at least twice as efficient as the LKS test in the Bahadur sense. We note that the efficiency is conservative in the sense that σ 2 k = 1 regardless of µ q . Choosing σ 2 k dependent on µ q will likely improve the efficiency further.

Experiments

In this section, we demonstrate the performance of the proposed test on a number of problems. The primary goal is to understand the conditions under which the test can perform well. 

Sensitivity to Local Differences

We start by demonstrating that the test power objective FSSD 2 /σ H1 captures local differences of p and q, and that interpretable features v are found. Consider a one-dimensional problem in which p = N (0, 1) and q = Laplace(0, 1/ √ 2), a zero-mean Laplace distribution with scale parameter 1/ √ 2. These parameters are chosen so that p and q have the same mean and variance. Figure 1 plots the (rescaled) objective as a function of v. The objective illustrates that the best features (indicated by v * ) are at the most discriminative locations.

Test Power We next investigate the power of different tests on two problems:

1. Gaussian vs. Laplace:

p(x) = N (x|0, I d ) and q(x) = d i=1 Laplace(x i |0, 1/ √ 2)
where the dimension d will be varied. The two distributions have the same mean and variance. The main characteristic of this problem is local differences of p and q (see Figure 1). Set n = 1000.

Restricted Boltzmann Machine

(RBM): p(x) is the marginal distribution of p(x, h) = 1 Z exp x Bh + b x + c x -1 2 x 2 , where x ∈ R d , h ∈ {±1} d h
is a random vector of hidden variables, and Z is the normalization constant. The exact marginal density p(x) = h∈{-1,1} d h p(x, h) is intractable when d h is large, since it involves summing over 2 d h terms. Recall that the proposed test only requires the score function ∇ x log p(x) (not the normalization constant), which can be computed in closed form in this case. In this problem, q is another RBM where entries of the matrix B are corrupted by Gaussian noise. This was the problem considered in [START_REF] Liu | A kernelized Stein discrepancy for goodness-of-fit tests[END_REF]. We set d = 50 and d h = 40, and generate samples by n independent chains (i.e., n independent samples) of blocked Gibbs sampling with 2000 burn-in iterations.

We evaluate the following six kernel-based nonparametric tests with α = 0.05, all using the Gaussian kernel. 1. FSSD-rand: the proposed FSSD test where the test locations set to random draws from a multivariate normal distribution fitted to the data. The kernel bandwidth is set by the commonly used median heuristic i.e., σ k = median({ x ix j , i < j}). 2. FSSD-opt: the proposed FSSD test where both the test locations and the Gaussian bandwidth are optimized (Section 3.2). 3. KSD: the quadratic-time Kernel Stein Discrepancy test with the median heuristic. 4. LKS: the linear-time version of KSD with the median heuristic. 5. MMD-opt: the quadratic-time MMD two-sample test of [START_REF] Gretton | A kernel two-sample test[END_REF] where the kernel bandwidth is optimized by grid search to maximize a power criterion as described in [START_REF] Sutherland | Generative models and model criticism via optimized Maximum Mean Discrepancy[END_REF]. 6. ME-opt: the linear-time mean embeddings (ME) two-sample test of [START_REF] Jitkrittum | Interpretable Distribution Features with Maximum Testing Power[END_REF] where parameters are optimized. We draw n samples from p to run the two-sample tests (MMD-opt, ME-opt). For FSSD tests, we use J = 5 (see Section A for an investigation of test power as J varies). All tests with optimization use 20% of the sample size n for parameter tuning. Code is available at https://github.com/wittawatj/kernel-gof.

Figure 2 shows the rejection rates of the six tests for the two problems, where each problem is repeated for 200 trials, resampling n points from q every time. In Figure 2a (Gaussian vs. Laplace), high performance of FSSD-opt indicates that the test performs well when there are local differences between p and q. Low performance of FSSD-rand emphasizes the importance of the optimization of FSSD-opt to pinpoint regions where p and q differ. The power of KSD quickly drops as the dimension increases, which can be understood since KSD is the RKHS norm of a function witnessing differences in p and q across the entire domain, including where these differences are small. We next consider the case of RBMs. Following [START_REF] Liu | A kernelized Stein discrepancy for goodness-of-fit tests[END_REF], b, c are independently drawn from the standard multivariate normal distribution, and entries of B ∈ R 50×40 are drawn with equal probability from {±1}, in each trial. The density q represents another RBM having the same b, c as in p, and with all entries of B corrupted by independent zero-mean Gaussian noise with standard deviation σ per . Figure Figure 2: Rejection rates of the six tests. The proposed linear-time FSSD-opt has a comparable or higher test power in some cases than the quadratic-time KSD test.

2b shows the test powers as σ per increases, for a fixed sample size n = 1000. We observe that all the tests have correct false positive rates (type-I errors) at roughly α = 0.05 when there is no perturbation noise. In particular, the optimization in FSSD-opt does not increase false positive rate when H 0 holds. We see that the performance of the proposed FSSD-opt matches that of the quadratic-time KSD at all noise levels. MMD-opt and ME-opt perform far worse than the goodness-of-fit tests when the difference in p and q is small (σ per is low), since these tests simply represent p using samples, and do not take advantage of its structure.

The advantage of having O(n) runtime can be clearly seen when the problem is much harder, requiring larger sample sizes to tackle. Consider a similar problem on RBMs in which the parameter B ∈ R 50×40 in q is given by that of p, where only the first entry B 1,1 is perturbed by random N (0, 0.1 2 ) noise. The results are shown in Figure 2c where the sample size n is varied. We observe that the two two-sample tests fail to detect this subtle difference even with large sample size. The test powers of KSD and FSSD-opt are comparable when n is relatively small. It appears that KSD has higher test power than FSSD-opt in this case for large n. However, this moderate gain in the test power comes with an order of magnitude more computation. As shown in Figure 2d, the runtime of the KSD is much larger than that of FSSD-opt, especially at large n. In these problems, the performance of the new test (even without optimization) far exceeds that of the LKS test. Further simulation results can be found in Section B. Interpretable Features In the final simulation, we demonstrate that the learned test locations are informative in visualising where the model does not fit the data well. We consider crime data from the Chicago Police Department, recording n = 11957 locations (latitude-longitude coordinates) of robbery events in Chicago in 2016. 3 We address the situation in which a model p for the robbery location density is given, and we wish to visualise where it fails to match the data. We fit a Gaussian mixture model (GMM) with the expectationmaximization algorithm to a subsample of 5500 points. We then test the model on a held-out test set of the same size to obtain proposed locations of relevant features v. Figure 3a shows the test robbery locations in purple, the model with two Gaussian components in wireframe, and the optimization objective for v as a grayscale contour plot (a red star indicates the maximum). We observe that the 2-component model is a poor fit to the data, particularly in the right tail areas of the data, as indicated in dark gray (i.e., the objective is high). Figure 3b shows a similar plot with a 10-component GMM. The additional components appear to have eliminated some mismatch in the right tail, however a discrepancy still exists in the left region. Here, the data have a sharp boundary on the right side following the geography of Chicago, and do not exhibit exponentially decaying Gaussian-like tails. We note that tests based on a learned feature located at the maximum both correctly reject H 0 . Recall that in Section 5, we evaluate the test powers of all the six tests on the RBM problem with d = 50 and d h = 40 (i.e., the number of latent variables). We aim to provide more evaluations in this section. In [START_REF] Liu | A kernelized Stein discrepancy for goodness-of-fit tests[END_REF], the setting of d = 50 and d h = 10 was studied. Here we consider the same setting and show the results in Figure 5 where all other problem configurations are the same as in Section 5.

B More Experiments

In Figure 5a, p is set to an RBM with parameters randomly drawn (described in Section 5), and q is the same RBM with all entries of the parameter B ∈ R 50×10 perturbed by independent Gaussian noise with standard deviation σ per , which varies from 0 to 0.06. We observe that the proposed FSSD-opt and KSD perform comparably. Figure 5b considers a hard problem where only the first entry B 1,1 is perturbed by noise following N (0, 0.1 2 ), and the sample size n is varied. In both of these two cases, the overall trend is similar to the case of d = 50 and d h = 40 presented in Figure 2.

It is interesting to note that FSSD-rand, relying on random test locations, performs comparably or even outperforms FSSD-opt in the case of d = 50, d h = 10, but not in the case of d = 50, d h = 40. This phenomenon can be explained as follows. In the case of d = 50, d h = 10, the data generated from the RBM tend to have simple structure (see Figure 6a). By contrast, data generated from the RBM with d = 50, d h = 40 (more latent variables) have larger variance, and can form a complicated structure (Figure 6b), requiring a careful choice of test locations to detect differences of p and q. When d = 50, d h = 10, however, random test locations given by random draws from a Gaussian distribution fitted to the data are sufficient to capture the simple structural difference. This explains why FSSD-rand can perform well in this case. Additionally, FSSD-rand also has 20% more testing data, since FSSD-opt uses 20% of the sample for parameter tuning.

Figure 5d shows the rejection rates of all the tests as the sample size increases when p and q are the same RBM. All the tests have roughly the right false rejection rates at the set significance level α = 0.05.

2.

Xb has CDF in D(a, t) provided that t ≥ 1.

3. For r > 0, X r has CDF in D(a, r -1 t) provided that F (0) = 0.

4. max(X 1 , . . . , X m ) has CDF in D(a, t).

5. Let a 1 , . . . , a m be non-negative real numbers such that a max := max(a 1 , . . . , a m ) > 0. Then, m i=1 a i X i has CDF in D(a • a -t max , t) provided that m i=1 X i has CDF in D(a, t) and X i ≥ 0 for all i = 1, . . . , m.

E Proof of Theorem 3

Recall Theorem 3:

Theorem 3. Let Σq := 1 n n i=1 τ (x i )τ (x i ) -[ 1 n n i=1 τ (x i )][ 1 n n j=1 τ (x j )] with {x i } n i=1 ∼ q.
Suppose that the test threshold T α is set to the (1-α)-quantile of the distribution of

dJ i=1 (Z 2 i -1) νi where {Z i } dJ i=1 i.i.d.
∼ N (0, 1), and ν1 , . . . , νdJ are eigenvalues of Σq . Then, under H 0 , asymptotically the false positive rate is α. Under H 1 , for {v j } J j=1 drawn from a distribution with a density, the test power P H1 (n FSSD 2 > T α ) → 1 as n → ∞.

Proof. Under H 0 , p = q implies that Σq = Σp (empirical estimate of Σ p ). Let λ j (A) denote the j th eigenvalue of the matrix A. Lemma 16 implies that A → λ j (A) is continuous on the space of real symmetric matrices, for all j. Since plim n→∞ Σp -Σ p = 0, by the continuous mapping theorem, the eigenvalues of Σp converge to the eigenvalues of Σ p in probability. This implies that dJ i=1 (Z 2 i -1) νi converges in probability to dJ i=1 (Z 2 i -1)ω i as n → ∞, where {ω i } dJ i=1 are eigenvalues of Σ p . By Lemma 17, the quantile also converges, and the test threshold thus matches that of the true asymptotic null distribution given in claim 1 of Proposition 2.

Assume H 1 holds. Let tα , t α be (1α)-quantiles of the distributions of dJ i=1 (Z 2 i -1) νi and dJ i=1 (Z 2 i -1)ν i , respectively, where {ν i } dJ i=1 are eigenvalues of Σ q . By the same argument as in the previous paragraph, tα converges in probability to t α , which is a constant independent of the sample size n. Given {v j } J j=1 ∼ η, where η is a distribution with a density, FSSD 2 > 0 by Theorem 1. It follows that

lim n→∞ P n FSSD 2 > tα = lim n→∞ P FSSD 2 - tα n > 0 (a) = P FSSD 2 > 0 = 1,
where at (a), we use the fact that FSSD 2 converges in probability to FSSD 2 by the law of large numbers, and that lim n→∞ tα /n = 0.

F Proof of Theorem 5 (Slope of n FSSD 2 )

Recall Theorem 5: Theorem 5. The approximate Bahadur slope of n FSSD 2 is c (FSSD) := FSSD 2 /ω 1 , where ω 1 is the maximum eigenvalue of

Σ p := E x∼p [τ (x)τ (x)] and ρ(n) = n.
Proof. We will use Theorem 9 to derive the slope. For the assumption 1 of Theorem 9, we first show that the asymptotic null distribution belongs to the class D(a = 1/ω 1 , t = 1) as defined in Definition 8. By Proposition 2, the asymptotic null distribution is

dJ i=1 ω i Z 2 i - dJ i=1 ω i where Z 1 , . . . , Z dJ i.i.d. ∼ N (0, 1) and ω 1 ≥ • • • ≥ ω dJ ≥ 0 are eigenvalues of Σ p . It is known from [1] that the CDF of χ 2 f is in D(1, 1)
for any fixed degrees of freedom f . Thus, it follows from claim 5 of Theorem 11 that the CDF of 

dJ i=1 ω i Z 2 i is in D(a = 1/ω 1 , t = 1
√ n S 2 l is c (LKS) = 1 2 [Eqhp(x,x )] 2 Ep[h 2 p (x,x )]
, where h p is the U-statistic kernel of the KSD statistic, and ρ(n) = n.

Proof. We will use Theorem 9 to derive the slope. By the central limit theorem,

√ n S 2 l -S 2 p (q) d → N (0, 2V q [h p (x, x )]), where V q [h p (x, x )] := E x∼q E x ∼q [h 2 p (x, x )]-(E x∼q E x ∼q [h p (x, x )]) 2 . Under H 0 : p = q, it fol- lows that S 2 p (q) = E x∼q E x ∼q [h p (x,
x )] = 0 by Theorem 14, and Definition 8). Thus, by property 1 of Theorem 11, the CDF of

√ n S 2 l d → N (0, 2V p [h p (x, x )]) where V p [h p (x, x )] := E x∼p E x ∼p [h 2 p (x, x )]. It is known from [1] that the CDF of N (0, 1) is in the class D(1, 2) (see
N (0, 2V p [h p (x, x )]) is in D a = 1 2Vp[hp(x,x )] , t = 2 .
For assumption 2 of Theorem 9, choose R(n) := √ n. It follows from the weak law of large numbers that under

H 1 , √ n S 2 l /R(n) = S 2 l p → S 2 p (q)
. By Theorem 9, the approximate slope is

S 4 p (q) 2Vp[hp(x,x )] .

H Proof of Theorem 7

We will first prove a number of useful results that will allow us to prove Theorem 7 at the end. Recall that v denotes a test location in the FSSD test, σ 2 k denotes the Gaussian kernel bandwidth of the FSSD test, and κ 2 denotes the Gaussian kernel bandwidth of the LKS test. Proposition 12. Under the assumption that J = 1 (i.e., one test location v), p = N (0, 1) and q = N (µ q , σ 2 q ), the approximate Bahadur Slope of n FSSD 2 is

c (FSSD) := σ 2 k 3/2 σ 2 k + 2 5/2 e v 2 σ 2 k +2 - (v-µq) 2 σ 2 k +σ 2 q σ 2 k + 1 µ q + v σ 2 q -1 2 σ 2 k + σ 2 q 3 (σ 6 k + 4σ 4 k + (v 2 + 5) σ 2 k + 2) . (3) 
Proof. This result follows directly from Theorem 5 specialized to the case of p = N (0, 1), q = N (µ q , σ 2 q ), and J = 1. Since dJ = 1, the covariance matrix

Σ p = E x∼p ξ 2 p (x, v) = e -v 2 σ 2 k +2 σ 6 k + 4σ 4 k + v 2 + 5 σ 2 k + 2 σ k (σ 2 k + 2) 5/2
reduces to a scalar, where ξ p (x, v)

= ∂ ∂x log p(x) k(x, v) + ∂ ∂x k(x, v) = -e - (v-x) 2 2σ 2 k xσ 2 k -v + x /σ 2 k .
In this case,

FSSD 2 = E 2 x∼q [ξ p (x, v)] = σ 2 k e - (v-µq) 2 σ 2 k +σ 2 q σ 2 k + 1 µ q + v σ 2 q -1 2 σ 2 k + σ 2 q 3 .
Taking the ratio FSSD 2 /E x∼p ξ 2 p (x, v) gives the result.

Proposition 13. Assume that p = N (0, 1) and q = N (µ q , σ 2 q ). Let √ n S 2 l be the linear-time kernel Stein (LKS) test statistic where S 2 l is defined in Section 2 with a Gaussian kernel k(x, y) = exp -(x-y) 2 2κ 2

. Then, the following statements hold.

1. The population kernel Stein discrepancy is S 2 p (q) = µ 2 q κ 2 + 2σ 2 q + σ 2 q -1 2 κ 2 + 2σ 2 q 2σ 2 q κ 2 + 1 .

2. The approximate Bahadur slope of √ n S 2 l is c (LKS) := κ 5 κ 2 + 4 5/2 µ 2 q κ 2 + 2σ 2 q + σ 2 q -1 2 2

2 (κ 8 + 8κ denote the approximate slope c (LKS) specialized to when q = N (µ q , 1). Then, for any µ q = 0, the function κ 2 → c (LKS) 1

(µ q , κ 2 ) is strictly increasing on (0, ∞). Further,

lim κ 2 →∞ c (LKS) 1
(µ q , κ 2 ) = µ 4 q /2. Ep[h 2 p (x,x )] which mainly involves expectations with respect to a normal distribution. In computing the expectation E x ∼q h p (x, x ), the idea is to form the density for a new normal distribution by combining 1 √ 2πσ 2 q e -(x-µq) 2 /2σ 2 q (the density of q) and the term e - It turns out that is obtained straightforwardly by plugging σ 2 q = 1 into the expression of c (LKS) . Assume µ q = 0. It can be seen that c (LKS) 1 (µ q , κ 2 ) is differentiable with respect to κ 2 on the interval (0, ∞). The partial derivative is given by ∂ ∂κ 2 c (LKS) 1 = κ 2 3/2 κ 2 + 4 3/2 7κ 8 + 56κ 6 + 166κ 4 + 216κ 2 + 120 µ 4 q (κ 2 + 2) 2 (κ 8 + 8κ 6 + 21κ 4 + 20κ 2 + 12)

E x∼q E x ∼q [h p (x, x )] = µ 2 q κ 2 + 2σ 2 q + σ 2 q -1 2 κ 2 + 2σ 2 q 2σ 2 q κ 2 + 1 = S 2 p (q),

2

.

Since for any µ q = 0, ∂ ∂κ 2 c

(LKS) 1

> 0 for κ 2 ∈ (0, ∞), we conclude that κ 2 → c (LKS) 1

(µ q , κ 2 ) is a strictly increasing function on (0, ∞). By taking the limit, we have lim κ 2 →∞ c (LKS) 1

(µ q , κ 2 ) = µ 4 q /2.

=

  f , ξ p (x, •) F d , where at (a) we use the reproducing property of F, i.e., f i (x) = f i , k(x, •) F , and that ∂k(x,•) ∂xi ∈ F [28, Lemma 4.34], hence ξ p (x, •) := ∂ log p(x) ∂x k(x, •)+ ∂k(x,•)
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 11 Figure 1: The power criterion FSSD 2 /σ H1 as a function of test location v.

  RBM. n = 1000. Perturb all entries of B.

  RBM. σper = 0.1. Perturb B1,1.
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 3 Figure 3: Plots of the optimization objective as a function of test location v ∈ R 2 in the Gaussian mixture model (GMM) evaluation task.

  RBM. n = 1000. Perturb all entries of B.

  RBM. σper = 0.1. Perturb B1,1.

  RBM. No perturbation. H0 holds.
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 5 Figure 5: Rejection rates of the six tests in the RBM problem with d = 50 and d h = 10.
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 6 Figure 6: Pairwise scatter plots of 1000 points drawn from RBMs. Only the first 4 variates out of 50 are shown. (a): RBM with d = 50 dimensions with d h = 10 latent variables. (b): RBM with d = 50 dimensions with d h = 40 latent variables.
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E p h 2 p (x, x ) = κ 2 + 4 κ 4 + 4κ 2 + 5 κ 2 + 12 κ 3 (κ 2 + 4 ) 2 p
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Data can be found at https://data.cityofchicago.org.

The result of[START_REF] Chwialkowski | Fast two-sample testing with analytic representations of probability measures[END_REF] considers only the case where U = R d . However, the same proof goes through for any open subset U ⊆ R d .
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The aim of this section is to explore the test power of the proposed FSSD test as a function of the number of test locations J. We consider three synthetic problems to illustrate three phenomena depending on the characteristic of the problem. We note that the test power may not necessarily increase with J. Figure 4 shows the rejection rate as a function of the test locations J in the three problems described below. In all cases, the sample size is set to n = 500, the train/test ratio is 50%, and the significance level is α = 0.05. All rejection rates are computed with 200 trials with data sampled from the specified q in every trial.

We emphasize that the FSSD test is not designed to be used with large J, since doing so defeats the purpose of a linear-time test. We show in the main text in Section 2 that using J = 5 is typically sufficient in practice.

Same Gaussian (SG):

In this problem, p = q = N (0, I) in R 5 i.e., H 0 is true. It can be seen in Figure 4a that both the FSSD tests with and without optimization achieve correct false positive rate at roughly α for all J considered. That is, under H 0 , the false rejection rate stays at the right level for all J.

Gaussian vs. Gaussian mixture model (GMM): This is a one-dimensional problem where p = N (0, 1) and q = 0.9N (0, 1) + 0.1N (0, 0.1 2 ) i.e., a mixture of two normal distributions. In this problem, p significantly differs from q in a small region around 0. This difference is created by the second mixture component. The characteristic of this problem is the local difference of p and q.

Figure 4b indicates that using random test locations (FSSD-rand) does not give high test power. With optimization (FSSD-opt), the power increases as J increases up to a point, after which it slightly drops down and reaches a plateau. This behavior can be explained by noting that there is only a very small region around 0 to detect the difference. More signal can be gained with diminishing return by increasing the number of test locations around 0. When J is sufficiently high, the increase in the variance of the statistic outweighs the gain of the signal (recall that the variance of the null distribution increases with J). This increase in the variance reduces the test power.

Gaussian Variance Difference (GVD): This is a synthetic problem studied in [START_REF] Jitkrittum | Interpretable Distribution Features with Maximum Testing Power[END_REF] where p = N (0, I) and q = N (0, diag(2, 1 . . . , 1)) in R 5 . In this case, the region of difference between q and p exists only along the first dimension, and is broad.

In this case, Figure 4c shows that, with optimization, the power increases as the number of test locations increases. Unlike the case of Gaussian vs. GMM, the region of difference in this case is broad, and can accommodate more test locations to increase the signal. Despite this, we expect the test power to reach a plateau when J is sufficiently large for the same reason as described previously. In FSSD-rand, random test locations decrease the power due to the increase in the variance. Since only one dimension is relevant in determining the difference of p and q, it is unlikely that random locations are in the right region.

C Proof of Theorem 1

Recall Theorem 1: Theorem 1 (The Finite Set Stein Discrepancy (FSSD)). Let V = {v 1 , . . . , v J } ⊂ R d be random vectors drawn i.i.d. from a distribution η which has a density. Let X be a connected open set in R d . Define FSSD 2 p (q) :=

Then, for any J ≥ 1, η-almost surely FSSD 2 p (q) = 0 if and only if p = q.

Proof. Since k is real analytic, the components g 1 , . . . , g d of g are real analytic by Lemma 15. For each i = 1, . . . , d, if g i is real analytic, then J j=1 g 2 i (v j ) = 0 if and only if g i (y) = 0 for all y ∈ X , η-almost surely (require that the domain X be a connected open set) [START_REF] Mityagin | The Zero Set of a Real Analytic Function[END_REF]. This implies that

= 0 for all y ∈ X , η-almost surely. By Theorem 14, g = 0 (the zero function) if and only if p = q.

D More on Bahadur Slope

In practice, the main difficulty in determining the approximate Bahadur slope is the computation of

, typically requiring the aid of the theory of large deviations. There are further sufficient conditions which make the computation easier. The following conditions are due to [START_REF] Gleser | On a measure of test efficiency proposed by R[END_REF][START_REF] Gleser | The comparison of multivariate tests of hypothesis by means of Bahadur efficiency[END_REF], first appearing in [START_REF] Bahadur | Stochastic comparison of tests[END_REF] in a slightly less general form. Definition 8. Let D(a, t) be a class of all continuous cumulative distribution functions (CDF) F such that -2 log(1 -F (x)) = ax t (1 + o(1)), as x → ∞ for a > 0 and t > 0. Theorem 9 ( [START_REF] Gleser | On a measure of test efficiency proposed by R[END_REF][START_REF] Gleser | The comparison of multivariate tests of hypothesis by means of Bahadur efficiency[END_REF]). Consider a sequence of test statistic T n . Assume that 1. There exists a function F (x) such that for θ ∈ Θ 0 , lim n→∞ P θ (T n < x) = F (x), for all x, and such that F ∈ D(a, t) for some a > 0 and t > 0 (see Definition 8).

2. There exists a continuous, strictly increasing function R : (0, ∞) → (0, ∞) with lim n→∞ R(n) = ∞, and a function b(θ) with 0 < b(θ) < ∞ defined on Θ\Θ 0 , such that for all θ ∈ Θ\Θ 0 ,

, the approximate slope of the sequence T n , where ρ(n) = R(n) t (see Section 4).

Theorem 10 ( [START_REF] Gleser | On a measure of test efficiency proposed by R[END_REF][START_REF] Gleser | The comparison of multivariate tests of hypothesis by means of Bahadur efficiency[END_REF]). Consider two sequences of test statistics T

n and T

n . Let F (i) be the CDF of T (i) n for i = 1, 2. Assume that each sequence satisfies all the conditions in Theorem 9 with

which is the approximate Bahadur efficiency of T

n relative to T

n .

With Theorem 9, the difficulty is in showing that F ∈ D(a, t) for some a > 0, t > 0. Typically verification of the assumption 2 of Theorem 9 poses no problem. [START_REF] Bahadur | Stochastic comparison of tests[END_REF] showed that the CDF of N (0, 1) belongs to D(1, 2) and the CDF of χ 2 k (chi-squared distribution with k degrees of freedom, fixed k) belongs to D(1, 1). The following results make it easier to determine whether a given CDF is in the class D(a, t). Theorem 11 [START_REF] Gleser | The comparison of multivariate tests of hypothesis by means of Bahadur efficiency[END_REF]Theorem 6,[START_REF] Chwialkowski | A wild bootstrap for degenerate kernel tests[END_REF]). Let X have CDF F ∈ D(a, t), and X 1 , . . . , X m be independent random variables, each with CDF F i ∈ D(a, t). Then, the following statements are true.

1. If b > 0, then the CDF of bX is in D(ab -t , t).

We are ready to prove Theorem 7. Recall that σ 2 k is the kernel bandwidth of n FSSD 2 , and κ 2 is the kernel bandwidth of √ n S 2 l (see Section 2). Recall Theorem 7: Theorem 7 (Efficiency in the Gaussian mean shift problem). Let E 1 (µ q , v, σ 2 k , κ 2 ) be the approximate Bahadur efficiency of n FSSD 2 relative to √ n S 2 l for the case where p = N (0, 1), q = N (µ q , 1), and J = 1 (i.e., one test location v for n FSSD 2 ). Fix σ 2 k = 1 for n FSSD 2 . Then, for any µ q = 0, for some v ∈ R, and for any κ 2 > 0, we have

Proof. By Proposition 12, the approximate slope of n FSSD 2 when σ 2 q = 1 is

.

Theorem 10 states that the approximate efficiency E 1 (µ q , v, σ 2 k , κ 2 ) is given by the ratio

(see Propositions 12 and 13) of the approximate slopes of the two tests. Pick σ 2 k = 1, and for any µ q = 0, pick v = 2µ q . These choices give the slope c (FSSD) 1

(µ q , 2µ q , 1) = 9 √ 3e 5µ 2 q 6 µ 2 q 2 4µ 2 q + 12 .

We have

where at (a) we use c

(LKS) 1

(µ q , κ 2 ) ≤ µ 4 q /2 from (5). It can be seen that for µ q = 0, g(µ q ) is an even function i.e., g(µ q ) = g(-µ q ). The second derivative

q + 45µ 6 q -45µ 4 q + 81µ 2 q + 486 / 4µ 4 q µ 2 q + 3 3 > 0.

To see that ∂ 2 ∂µ 2 q g(µ q ) > 0, consider two cases of µ 2 q ≥ 1 and 0 < µ 2 q < 1. When µ 2 q ≥ 1,

q + 45µ 6 q + 486 / 4µ 4 q µ 2 q + 3 3 > 0, because -45µ 4 q + 81µ 2 q ≥ 0. This shows that g(µ q ) is convex on (0, ∞). The function g(µ q ) on R\{0} achieves global minima at µ q = µ * q := ± 3 10 √ 41 -1 ≈ ±1.273. This implies that 

I Known Results

This section presents known results from other works. Theorem 14 ([9, Theorem 2.2]). If the kernel k is C 0 -universal [6, Definition 4.1],

E x∼q E x ∼q h p (x, x ) < ∞, and E x∼q ∇ x log p(x) q(x)

2 < ∞, then S p (q) = E x∼q ξ p (x, •) F d = 0 if and only if p = q. Lemma 15 ([8, Lemma 1]). Let U be an open subset of R d . If k is a bounded, analytic kernel on U × U , then all functions in the RKHS associated with k are analytic. 4 Lemma 16 (Weyl's Perturbation Theorem [4, p. 152]). Let λ j (A) denote the j th eigenvalue of a square matrix A. If A, B are two Hermitian matrices, then