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Abstract

We consider the set Bp of parametric block correlation matrices with p blocks of
various (and possibly different) sizes, whose diagonal blocks are compound symme-
try (CS) correlation matrices and off-diagonal blocks are constant matrices. Such
matrices appear in probabilistic models on categorical data, when the levels are par-
titioned in p groups, assuming a constant correlation within a group and a constant
correlation for each pair of groups.
We obtain two necessary and sufficient conditions for positive definiteness of elements
of Bp. Firstly we consider the block average map φ, consisting in replacing a block
by its mean value. We prove that for any A ∈ Bp, A � 0 if and only if φ(A) � 0.
Hence it is equivalent to check the validity of the covariance matrix of group means,
which only depends on the number of groups and not on their sizes. This theorem
can be extended to a wider set of block matrices. Secondly, we consider the subset
Bbg-iso
p of Bp for which the between group correlation is the same for all pairs of

groups. Positive definiteness then comes down to find the positive definite interval
of a matrix pencil on Sp. We obtain a simple characterization by localizing the roots
of the determinant with within group correlation values.
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1 Introduction

We consider the set Bp of real parametric block correlation matrices

A =

A1,1 . . . A1,p
...

...
Ap,1 . . . Ap,p


where diagonal blocs Ak,k are compound symmetry matrices of size nk (k ∈ J1, pK) and
off-diagonal blocks Ak,` are constant matrices of size nk × n`:

Ak,k =


1 bk . . . bk

bk
. . . . . .

...
...

. . . . . . bk
bk . . . bk 1


︸ ︷︷ ︸

nk

, Ak,` = A>`,k = ck,l1nk
1
>
n`

(k < `),

All parameters bk, ck,` are assumed to be in ] − 1, 1[. When nk = 1 we set by convention
bk = 0, and denote by G≥2

p the set of k ∈ J1, pK such that nk ≥ 2.

Such matrices appear in probabilistic models on categorical data, when the levels are
partitioned in p groups G1, . . . , Gp of sizes n1, . . . , np, assuming a constant correlation
bk within the group Gk and a constant correlation ck,l for each pair of groups (Gk, G`).
Without loss of generality, we assume that G1 corresponds to the first n1 levels, G2 to the
n2 next ones, and so on. This results in a parameterization of the correlation matrix (see
e.g. [6]) involving a small number of parameters. In order to further reduce the number of
parameters, one may often consider the subset

Bbg-iso
p = {A ∈ Bp s.t. for all k, l : ck,l = c}

such that the between group correlation has a common value over pairs of groups. Even
more parsimonious models are obtained when a common value is also assumed for within
group correlations.

There are some common points with statistical models involving groups of variables,
such as linear mixed effects models or hierarchical models. When p = 1, A is simply the
CS correlation matrix used in random intercept model. When the blocks have the same
size, a common within group correlation and a common between group correlations, A is a
block CS matrix met in equicorrelated models. In that case, it is also connected to linear
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models with doubly exchangeable distributed errors [9].

We aim at answering the question: For which values of bk, ck,` ∈]−1, 1[ (1 ≤ k < l ≤ p)
is the matrix A positive definite? In the simple case where A has a block CS structure,
as cited in the previous paragraph, the necessary and sufficient condition for positive defi-
niteness is known (see e.g. [8], Lemma 4.3.). There is also a connection to matrix pencils,
corresponding to matrices parameterized linearly by a single parameter. However, in gen-
eral, the result seems not to be known.

The paper is structured as follows. Section 2 fixes notations and gives prerequisites.
The main results are given in Section 3, followed by corollaries in Section 4. An illustration
is provided in Section 5. For the sake of readability, the proofs are gathered in a separate
section (Section 6).

2 Preliminaries

2.1 Additional notations and basics

• Positive definiteness. If A ∈ Mn, recall that A is positive semidefinite (p.s.d.), or
simply positive, if x>Ax ≥ 0 for all x ∈ Rn. We denote: A � 0. Similarly A is
positive definite (p.d.) if x>Ax > 0 for all non-zero x ∈ Rn. We denote: A � 0.

• Matrix of ones. Jp = 1p1
>
p denotes the p × p matrix of ones. More generally,

Jp,q := 1p1
>
q .

• Compound symmetry (CS) matrices. ΓCS
p (v, c) = vIp + c(Jp − Ip) is the CS covari-

ance matrix. The CS correlation matrix is ΓCS
p (1, ρ), and for v 6= 0, ΓCS

p (v, c) =
vΓCS

p (1, c/v) It is well-known that

ΓCS
p (v, c) � 0 ⇐⇒ − v

p− 1
< c < v (1)

For instance denoting b = c/v, one can see that the eigenvalues of ΓCS
p (v, c) are

1 + (p − 1)b with multiplicity 1 (eigenvector 1p) and 1 − b with multiplicity p − 1
(eigenspace: 1⊥p ).
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2.2 The block average map

We denote by φ the block average map on Bp, consisting in replacing a block by its mean
value:

A ∈ Bp 7→ [φ(A)]k,l =
1

nkn`

∑
i∈Gk,j∈G`

Ai,j.

φ is an example of positive linear map in the sense that if A � 0 then φ(A) � 0. Indeed,
φ(A) = V >AV where V is the p× n matrix defined by

V :=


1
n1
1n1 0 . . . 0

0 1
n2
1n2

. . .
...

...
. . . . . . 0

0 . . . 0 1
np
1np

 .

and we retrieve one of the typical cases presented in [1] (Example 2.2.1.(vi)). This also can
be viewed with a probabilistic interpretation. If A � 0, it is a covariance matrix of some
random vector Y = (Y1, . . . , Yn). Then φ(A) is the covariance matrix of the group means
(Y 1, . . . , Y p) where Y k = 1

nk

∑
i∈Gk

Yi.

Finally, we give the explicit form of φ(A) when A ∈ Bp. Define for k ∈ J1, pK:

αk =
1

nk
+
nk − 1

nk
bk (2)

Notice that αk ∈]− 1 + 2/nk, 1[. Then:

φ(A) =


α1 c1,2 . . . c1,p

c1,2 α2
. . .

...
...

. . . . . . cp−1,p

c1,p . . . cp−1,p αp

 .

2.3 The block filling map

We call block filling map from Mp to Bp, the linear map

ψ(C) :=

C1,1 Jn1,n1 . . . C1,p Jn1,np

...
...

Cp,1 Jnp,n1 . . . Cp,p Jnp,np

 .
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This transformation fills each block (i, j) by a constant value, given by Ci,j. Notice that ψ
is a positive linear map, since ψ(C) = W>CW where W is the p× n matrix

W :=


1
>
n1

0 . . . 0

0 1
>
n2

. . .
...

...
. . . . . . 0

0 . . . 0 1
>
np

 .

Clearly the filling and averaging operations cancel each other when they are done in
this order, corresponding to WV = Ip and to the relation

φ(ψ(C)) = C.

On the other hand, ψ(φ(C)) is generally not equal to C, and VW is an orthogonal projec-
tion of rank p.

2.4 A wider class of block matrices

The results of the next section are valid on a wider class of block matrices, that we now
introduce. This is the set Cp of symmetric block matrices

A =

A1,1 . . . A1,p
...

...
Ap,1 . . . Ap,p


where off-diagonal blocks Ak,` are constant matrices of size nk × n`, and diagonal blocks
Ak,k are of size nk and verify Ak,k − Ak,kJnk

� 0.

To see that Bp ⊂ Cp, notice that if C = ΓCS
n (1, r) then

C = n−1(1 + (n− 1)r)

and
C − CJn = (1− r)(In − n−1Jn)

which is p.d. for r < 1 because the symmetric matrix P := In − n−1Jn is an orthogonal
projection: P = P 2 = PP>.
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2.5 Matrix pencil and positive definite interval

When a parametric matrix of Mp depends linearly on a single parameter t ∈ R, it can be
written as a matrix pencil,

t 7→ D + tE

where D,E ∈ Mp. The problem of finding t such that D + tE is positive definite was
investigated in several studies ([3], [4]). A main result is that the admissible values form
an open interval, called positive definite interval (PD interval). Indeed it is the intersection
of a straight line with the open convex cone C of positive definite matrices ([3]). Now denote
d(c) = det(D+cE). When D is p.d., d is a continuous function such that d(0) = det(D) >
0. Furthermore, d is null on the boundary of C: if A is p.s.d. but not p.d., there exists x 6= 0
such that x>Ax = 0 implying that 0 is an eigenvalue of A. The PD interval is then obtained
by computing the negative and positive roots of d which are closest to 0. Equivalently,
the PD interval is related to the largest and smallest eigenvalues of the symmetric matrix
S = D−1/2ED−1/2 ([4]). Indeed d(c) = 0 if and only if

det

(
−1

c
Ip −D−1E

)
= 0

i.e. −1
c

is an eigenvalue of D−1E, which has the same eigenvalues than S.

3 Main results

3.1 Positive definiteness of elements of Bp
Positive definiteness of a block matrix (of size n) in Cp – and thus in Bp – can be simply
checked on the block average matrix (of size p):

Theorem 1. Let A ∈ Cp. Then,

1. A � 0 ⇐⇒ φ(A) � 0 and ∀k ∈ J1, pK : Ak,k � 0.

2. A � 0 ⇐⇒ φ(A) � 0 and ∀k ∈ J1, pK : Ak,k � 0.

The text of the theorem can be simplified on Bp, for which diagonal blocks are CS
correlation matrices. Indeed, p.d. of Ak,k is then equivalent to the two conditions bk < 1
and −(nk − 1)−1 < bk (Eq. 1). The former is contained in the definition of Bp. The latter
is a consequence of p.d. of φ(A) by looking at the signs of its diagonal elements (Eq. 2).
Hence, we have:
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Theorem 2. Let A ∈ Bp. Then,

A � 0 ⇐⇒ φ(A) � 0

For completeness, we provide a description of Cp, via a representation of its block di-
agonal elements. It is shown that Cp is in general much wider than Bp: the k-th diagonal
block of Cp is represented by 1 +nk(nk− 1)/2 parameters, whereas the k-th diagonal block
of Bp is a CS correlation matrix described by 1 parameter.

Proposition 1. Let R be a n × (n − 1) matrix whose columns form a basis of 1⊥n . Then
all C symmetric matrices of size n such that C − CJn � 0 are written in a unique way as

C = µJn +RBR>

where B is a p.s.d.matrix of size n− 1 and µ is a real number.

3.2 Positive definiteness of elements of Bbg-iso
p

We now focus on the subclass Bbg-iso
p , for which the positive definiteness condition of The-

orem 2 can be further simplified. Let A ∈ Bbg-iso
p and denote B = φ(A):

B =


α1 c . . . c

c α2
. . .

...
...

. . . . . . c
c . . . c αp


where the αk’s are given by Eq. 2 and lie in ] − 1 + 2/nk, 1[. We can further restrict the
search of a necessary and sufficient condition to vectors α such that αk > 0 (k = 1, . . . , p).
Indeed this condition is necessary as all diagonal minors must be strictly positive. Notice
that “0 < αk < 1” is the condition for positive definiteness of the block diagonals terms
ΓCS
nk

(1, bk) in A.

When α is fixed, the map c 7→ B is a matrix pencil

B = D + cE
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with D = diag(α1, . . . , αp) and E = Jp − Ip. As recalled in Section 2, the values of c
such that B is positive definite form an open interval, called positive definite interval (PD
interval). It is obtained by computing the negative and positive roots of d : c 7→ det(B)
which are closest to 0.

In this context, our main contribution is to provide a localization of the roots of d as
well as an analytical expression. They both simplify the computation of the PD interval.

Lemma 1. Let B =


α1 c . . . c

c α2
. . .

...
...

. . . . . . c
c . . . c αp

, and denote by α(1) ≤ · · · ≤ α(p) the values of

α1, . . . , αp rearranged in ascending order.
Denote dp(c) = det(B) and more generally let dk(c) be the leading minor of B (k =
1, . . . , p). Then dk is a polynomial of order k given by

dk(c) =
k∏

m=1

(αm − c) + c
k∑

m=1

 ∏
1≤`≤k
` 6=m

(αl − c)

 . (3)

Let us further assume that all α′ks are > 0. Then the roots rk,1, . . . , rk,k of dk are all real
and interlaced with the α(k)’s:

rk,1 < 0 < α(1) ≤ rk,2 ≤ α(2) ≤ · · · ≤ rk,k ≤ α(k) < 1

Furthermore,

−√α(1)α(2) = r2,1 ≤ · · · ≤ rk,1 < 0 < rk,2 ≤ · · · ≤ r2,2 =
√
α(1)α(2)

Theorem 3. Let A ∈ Bbg-iso
p . With the notations of Lemma 1,

A � 0 ⇐⇒ 0 < αk < 1 (k ∈ J1, pK) and rp,1 < c < rp,2

Furthermore, for all k ∈ J1, pK, the interval ]rp,1, rp,2[ is increasing with αk.

Notice that the interval on c given in Theorem 3 can be easily found numerically. Indeed,
from Lemma 1, rp,1 and rp,2 are roots of c 7→ det(φ(A)) that are perfectly localized, and
can be found by a zero search algorithm such as Brent’s algorithm ([2]). More precisely rp,1
is the unique root in the interval ]−√α(1)α(2), 0[, and rp,2 the unique root in ]0,

√
α(1)α(2)[.
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4 Corollaries

We first give a direct consequence of Theorem 2 for two groups, and a sufficient condition
for elements of Bbg-iso

p obtained by comparison to a compound symmetry matrix. They are
expressed with the αk’s of Eq. 2.

Corollary 1 (Case of 2 groups). Let A ∈ B2. Then,

A � 0 ⇐⇒ 0 < αk < 1 (k = 1, 2) and |c1,2| <
√
α1α2

Corollary 2 (A sufficient condition on Bbg-iso
p ). Let A ∈ Bbg-iso

p and α? = min1≤k≤p(αk). If

0 < αk < 1 (k ∈ J1, pK) and − α?

p−1
< c < α?, then A � 0.

For completeness, we give a specific result when all groups have the same size, a common
between group correlation, and a common within group correlation. There is nothing new
here, as it is a special case of block CS matrices for which the result is known, but this
gives another view of it.

Corollary 3. Assume that n1 = · · · = np = n0 := n/p and for all k ∈ J1, pK, bk = b.
Define α = (1 + (n0 − 1)b)/n0. Then,

A � 0 ⇐⇒ 0 < α < 1 and − α

p− 1
< c < α.

5 A numerical application

Consider the parametric matrix A ∈ Bbg-iso
15 corresponding to 4 groups of size 2, 4, 3, 6 with

a common between group correlation. The condition 0 < αk < 1 means that:

−1 < b1 < 1, −1

3
< b2 < 1, −1

2
< b3 < 1, −1

5
< b4 < 1

Now choose b1 = −0.1, b2 = 0.4, b3 = 0.7, b4 = 0.8. The sufficient condition of Corollary 2
gives the following interval for the between group parameter (printing is limited to the first
2 digits) :

−0.03 < c < 0.45

Theorem 3 gives the optimal interval, which is a bit larger:

− 0.20 < c < 0.49 (4)

This interval was obtained by using the Brent’s algorithm, implemented in R (function
uniroot of package stats, [7]), thanks to the localization given in Theorem 3. The result
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is illustrated on Figure 1. For a pedagogical purpose, we represented the smallest eigenvalue
of A and φ(A) as a function of c, denoted respectively λA(c), λφ(A)(c). These eigenvalues
have been computed numerically using the eigen function in R. This confirms the results
of Theorem 2 and Theorem 3: the values of c such that the smallest eigenvalue is positive is
the same in both cases, and correspond to the theoretical interval (4). Notice that the size
of φ(A) is much smaller than A. Finally, the plateau on the graph c 7→ λA(c) is explained
by the fact that λA(0) is equal to 1 − max1≤k≤p bk, which does not depend on c, which
remains true on an open interval containing 0 by continuity of the determinant.
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Figure 1: Smallest eigenvalue of the 15× 15 block matrix A of the example and the 4× 4
block average matrix φ(A) as a function of the between group correlation c.
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6 Proofs

6.1 Proof of Theorem 1 and related material.

Proof of Proposition 1. First of all, notice that finding a symmetric matrix C of size n such
that C − CJn � 0 is equivalent to finding a p.s.d. matrix C0 of size n such that C0 = 0.
The link between C and C0 is given by C = µJn + C0, where µ is a real number equal to
C.
Hence, the proposition will be proved if we show that all p.s.d. matrices C0 such that
C0 = 0 are of the form

C0(B) = RBR> (5)

where B is a p.s.d. matrix of size n, and R is a n× (n− 1) matrix whose columns form a
basis of 1⊥n .
Notice that all p.s.d. matrix C0 of the form 5 satisfy, by definition of R,

C0(B) = n−2
1
>
nRBR

>
1n = 0.

Conversely, let C0 be a p.s.d. matrix such that C0 = 0. Thus C0 is the covariance matrix
of a random vector Z. Without loss of generality, we can assume that Z is centered:
E(Z) = 0. Then, Z = n−1

1
>
nZ is also centered and

Var(Z) = n−2
1
>
nC01n = C0 = 0.

Hence, Z = 0 with probability 1. Thus 1>nZ = 0 and Z is spanned by the columns of R:
there exists a random variable U such that Z = RU . As a consequence, Cov(Z) = RBR>,
with B = Cov(U).

To see that B and µ are uniquely determined, assume that C = µ′Jn + RB′R> holds
for another p.s.d. matrix B′ of size n − 1 and another real µ′. Then µ′ = µ = C. Thus,
RB′R> = RBR>. By multiplying this relation at left side by R> and by R at right side,
we get B = B′ because the Gram matrix R>R has rank n− 1 and is thus invertible.

We then give a technical lemma.

Lemma 2. Let C be a n× n symmetric matrix such that C −CJn is positive. If C is p.d.
and if β>

[
C − CJn

]
β = 0 for some vector β, then β has constant elements, i.e. β ∝ 1n.

Proof of Lemma 2. Since C has rang n and CJn has rank 1, the matrix C0 := C − CJn
must have rank n − 1. Thus, by Prop. 1, C0 = RBR> where B is p.d. of size n − 1,
and R is a n × (n − 1) matrix whose columns form an orthonormal basis of 1⊥n . Now,
0 = β>C0β = β>RBR>β. Since B is p.d. it implies β>R = 0. By definition of R, we have
β ∝ 1n.

11



Proof of Theorem 1. Statement 1. If A is positive then the diagonal blocks Ak,k are also
positive, and φ(A) is positive since φ is a positive linear map.
Conversely, if φ(A) is positive then ψ(φ(A)) is positive, as ψ is a positive linear map. Now,
since A has constant off-diagonal blocks, A − ψ(φ(A)) is a block diagonal matrix with
diagonal blocks Ak,k − Ak,k, which are assumed to be positive. Hence A is positive as a
sum of two positive matrices.

Statement 2. If A is p.d. then so are the Ak,k. Moreover ψ(A) = W>AW is p.d. since the
p× n matrix W has rank p.
Now assume that φ(A) and all the Ak,k’s are p.d. Denote A? := ψ(φ(A)), and let β be a
vector of length n with p component vectors βk. Then,

β>Aβ = β>
{
A− A?

}
β + β>A?β =: u+ v.

By Statement 1, both matrices A − A? and A? are positive. Hence, the left hand side is
equal to zero iff both terms at the right hand side vanish. Now A− A? is block-diagonal,
and each diagonal block is the difference between a block Ak,k and its average element.
By lemma 2, we have u = 0 iff each vector βk is constant (k ∈ J1, pK). The second term
v is a quadratic form in the vector of group sums γ := Wβ = [n1β1, . . . , npβp]

>, namely
v = γ>φ(A)γ. So v vanishes iff each average βk does. Thus if β>Aβ = 0, each block βk is
constant and has zero mean, which is only possible when β = 0.

6.2 Proof of Theorem 3

Proof of Lemma 1. For the sake of simplicity, and without restriction, we can assume that
the α′ks have been sorted in increasing order: α(k) = αk (k = 1, . . . , p). Indeed the
reordering does not change the determinant.
Now for k = 1, . . . , p, define:

dk(c) = det(B[1:k,1:k])

where B[1:k,1:k] is the matrix extracted from B by keeping the first k rows and first k
columns. In particular dp(c) = d(c) = det(B), and d2(c) = α1α2 − c2.

Let us now derive the analytical expression of det(B). We first prove a recurrence
formula. By expanding with respect to the last column, we have:

dk(c) = det


α1 c . . . c 0

c
. . . . . .

...
...

...
. . . . . . c

...
c . . . c αk−1 0
c . . . . . . c αk − c

+ det


α1 c . . . c c

c
. . . . . .

...
...

...
. . . . . . c

...
c . . . c αk−1 c
c . . . . . . c c
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The first term is equal to (αk− c)dk−1(c). For the second one, subtracting the last column
to the other ones gives:

det


α1 c . . . c c

c
. . . . . .

...
...

...
. . . . . . c

...
c . . . c αk−1 c
c . . . . . . c c

 = det


α1 − c 0 . . . 0 c

0
. . . . . .

...
...

...
. . . . . . 0

...
0 . . . 0 αk−1 − c c
0 . . . . . . 0 c


Finally we obtain a relation linking dk to dk−1, valid for k ≥ 2:

dk(c) = (αk − c)dk−1(c) + c

k−1∏
m=1

(αm − c) (6)

The explicit formula of dk(c) (written in Eq. 3 for k = p) is then proved recursively on k.
Indeed, one can easily check it for k = 2, and if it is true for k− 1 ≥ 2, then with Eq. 6, it
holds:

dk(c) = (αk − c)
k−1∏
m=1

(αm − c) + c
k−1∑
m=1

 ∏
1≤`≤k−1
`6=m

(α` − c)(αk − c) +
k−1∏
m=1

(αm − c)



=
k∏

m=1

(αm − c) + c
k∑

m=1

 ∏
1≤`≤k
`6=m

(α` − c)


We also deduce of Eq.6 that dk is a polynomial of order k whose leading term is (−1)k−1(k−
1)ck. In particular, dk(c)→ −∞ when c→ −∞.

From now on, assume that 0 < α1 < · · · < αp. The interlacing of the roots of dk with
the αk’s is obtained by evaluating dk at α` (1 ≤ ` ≤ k). Indeed, subtracting column `,
whose components are all equal to α`, one directly obtains:

dk(α`) = α`
∏
m6=`

(αm − α`)

Thus the sign of dk(α`) depends on the rank of ` in {1, . . . , k}. Those signs alternate
when one read the sequence {1, . . . , k} starting by +1 at ` = 1. Since the limit in −∞
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is −∞, and as the number of zeros of dk is less than k, we deduce by the intermediate
value theorem that there is exactly 1 zero in each interval ]−∞, α1], [α1, α2], . . . , [αk−1, αk].
Furthermore dk(0) = α1 . . . αk > 0, resulting in the interlacing

rk,1 < 0 < α1 < rk,2 < α2 < · · · < rk,k < αk < 1

We are now able to locate the roots of dk relatively to those of dk−1. From Eq 6, it
holds:

dk(rk−1,`) = rk−1,`

k−1∏
m=1

(αm − rk−1,`)

In particular dk(rk−1,1) < 0, showing that rk−1,1 < rk,1 < 0 since dk is negative on ]−∞, rk,1]
and positive on [rk,1, α1]. Similarly, one deduce from Eq. 6 that dk(rk−1,2) < 0 so that
0 < rk,2 < rk−1,2 since dk is positive on [α1, rk,2] and negative on [rk,2, α2]. Finally, we
obtain by recursion that

−
√
α1α2 = r2,1 < · · · < rk,1 < 0 < rk,2 < · · · < r2,2 =

√
α1α2

More generally, Eq. 6 implies that the positive roots of dk are interlaced with the positive
roots of dk−1. Finally one can check that the previous results remain valid in case of equality
of several α′ks, where the corresponding strict inequalities are replaced by large inequalities.

For completeness, we give an alternative proof of this last statement, using algebraic
arguments. Consider the pencil matrix c 7→ B = D + cE. Recall that c is a root of dp if
and only if

det

(
−1

c
Ip −D−1E

)
= 0

i.e. −1
c

is an eigenvalue ofD−1E, or equivalently of the symmetric matrix S = D−1/2ED−1/2.
Similarly, c is the root of dk if and only if −1

c
is an eigenvalue of

D
−1/2
[1:k,1:k]E[1:k,1:k]D

−1/2
[1:k,1:k] = S[1:k,1:k],

where we use the fact that D is diagonal for the last equality. Hence the roots of dk are
the negative inverse of the eigenvalues of the kth principal submatrix of S. Furthermore,
by Sylvester’s law, S[1:k,1:k] has the same inertia as E[1:k,1:k] = Jk − Ik. It is easy to see
that E[1:k,1:k] has two eigenvalues: k − 1 with multiplicity 1 (eigenvector 1k) and −1 with
multiplicity k − 1 (eigenspace: 1

⊥
k ). Thus S[1:k,1:k] has 1 positive eigenvalue, and k − 1

negative ones. Consequently, dk has 1 negative root and k − 1 positive ones. Now by
Cauchy interlacing theorem ([5], §4.3.), the eigenvalues of consecutive principal submatrices
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are interlaced. As c 7→ −1
c

is increasing on R∗− and R∗+, it results in two separate interlacings
for the roots of consecutive dk’s: one for negative roots, one for positive roots. We finally
get the announced inequalities:

−√α(1)α(2) = r2,1 ≤ · · · ≤ rk,1 < 0 < rk,2 ≤ · · · ≤ r2,2 =
√
α(1)α(2)

Proof of Theorem 3. The result is straightforward from Lemma 1, implying that the PD
interval on c is given by ]rp,1, rp,2[. An alternative proof is given by applying the Sylvester
conditions and using Lemma 1. Indeed the intersection of sets {c, dk(c) > 0} when k ∈
J1, pK is the interval ]rp,1, rp,2[.
Furthermore, let k ∈ J1, pK, and 0 < αk < α′k. Denote by D′ the diagonal matrix obtained
by replacing αk by α′k in D. Then D′ + cE > D + cE, which shows that the PD interval
is increasing with αk.

6.3 Proof of corollaries

Proof of Corollary 2. Let B? = ΓCS
p (α?, c). By definition of α?, φ(A) � B?. Now B? �

0 ⇐⇒ − α?

p−1
< c < α?. The result follows from Theorem 2.

Proof of Corollary 3. Here φ(A) = ΓCS
p (α, c) which gives the announced necessary and

sufficient condition by Theorem 2.
Alternatively the result can be obtained directly on A, which is here a p×p block compound
symmetry covariance matrix

A =


Σ0 Σ1 . . . Σ1

Σ1
. . . . . .

...
...

. . . . . . Σ1

Σ1 . . . Σ1 Σ0


with Σ0 = ΓCS

n0
(1, b) and Σ1 = cJn0 . It is known (see e.g. [8], Lemma 4.3.) that A � 0

if and only if − Σ0

p−1
< Σ1 < Σ0. Now, Σ0 − Σ1 = ΓCS

n0
(1− c, b− c) is p.d. if and only if

− 1−c
n0−1

< b − c < 1 − c leading to c < α. Similarly, Σ1 + Σ0

p−1
= ΓCS

n0

(
c+ 1

p−1
, c+ b

p−1

)
is

p.d. if and only if − c+ 1
p−1

n0−1
< c+ b

p−1
< c+ 1

p−1
leading to − α

p−1
< c.
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