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On the validity of parametric block correlation matrices with constant within and between group correlations 

k . . . b k 1      n k , A k, = A ,k = c k,l 1 n k 1 n (k < ),
All parameters b k , c k, are assumed to be in ] -1, 1[. When n k = 1 we set by convention b k = 0, and denote by G ≥2 p the set of k ∈ 1, p such that n k ≥ 2.

Such matrices appear in probabilistic models on categorical data, when the levels are partitioned in p groups G 1 , . . . , G p of sizes n 1 , . . . , n p , assuming a constant correlation b k within the group G k and a constant correlation c k,l for each pair of groups (G k , G ). Without loss of generality, we assume that G 1 corresponds to the first n 1 levels, G 2 to the n 2 next ones, and so on. This results in a parameterization of the correlation matrix (see e.g. [START_REF] Peter | Gaussian process models for computer experiments with qualitative and quantitative factors[END_REF]) involving a small number of parameters. In order to further reduce the number of parameters, one may often consider the subset B bg-iso p = {A ∈ B p s.t. for all k, l : c k,l = c} such that the between group correlation has a common value over pairs of groups. Even more parsimonious models are obtained when a common value is also assumed for within group correlations.

There are some common points with statistical models involving groups of variables, such as linear mixed effects models or hierarchical models. When p = 1, A is simply the CS correlation matrix used in random intercept model. When the blocks have the same size, a common within group correlation and a common between group correlations, A is a block CS matrix met in equicorrelated models. In that case, it is also connected to linear models with doubly exchangeable distributed errors [START_REF] Roy | Linear models with doubly exchangeable distributed errors[END_REF].

We aim at answering the question: For which values of b

k , c k, ∈] -1, 1[ (1 ≤ k < l ≤ p)
is the matrix A positive definite? In the simple case where A has a block CS structure, as cited in the previous paragraph, the necessary and sufficient condition for positive definiteness is known (see e.g. [START_REF] Ritter | Bayesian object identification: Variants[END_REF], Lemma 4.3.). There is also a connection to matrix pencils, corresponding to matrices parameterized linearly by a single parameter. However, in general, the result seems not to be known.

The paper is structured as follows. Section 2 fixes notations and gives prerequisites. The main results are given in Section 3, followed by corollaries in Section 4. An illustration is provided in Section 5. For the sake of readability, the proofs are gathered in a separate section (Section 6).

Preliminaries

Additional notations and basics

• Positive definiteness. If A ∈ M n , recall that A is positive semidefinite (p.s.d.), or simply positive, if x Ax ≥ 0 for all x ∈ R n . We denote: A 0. Similarly A is positive definite (p.d.) if x Ax > 0 for all non-zero x ∈ R n . We denote: A 0.
• Matrix of ones. J p = 1 p 1 p denotes the p × p matrix of ones. More generally, J p,q := 1 p 1 q .

• Compound symmetry (CS) matrices. Γ CS p (v, c) = vI p + c(J p -I p ) is the CS covariance matrix. The CS correlation matrix is Γ CS p (1, ρ), and

for v = 0, Γ CS p (v, c) = vΓ CS p (1, c/v) It is well-known that Γ CS p (v, c) 0 ⇐⇒ - v p -1 < c < v (1) 
For instance denoting b = c/v, one can see that the eigenvalues of Γ CS p (v, c) are 1 + (p -1)b with multiplicity 1 (eigenvector 1 p ) and 1 -b with multiplicity p -1 (eigenspace: 1 ⊥ p ).

The block average map

We denote by φ the block average map on B p , consisting in replacing a block by its mean value:

A ∈ B p → [φ(A)] k,l = 1 n k n i∈G k ,j∈G A i,j .
φ is an example of positive linear map in the sense that if A 0 then φ(A) 0. Indeed, φ(A) = V AV where V is the p × n matrix defined by i∈G k Y i . Finally, we give the explicit form of φ(A) when A ∈ B p . Define for k ∈ 1, p :

V :=       1 n 1 1 n 1 0 . . . 0 
α k = 1 n k + n k -1 n k b k (2) 
Notice that α k ∈] -1 + 2/n k , 1[. Then: 

φ(A) =      α 1 c 1,2 . . . c 1,p c 1,

The block filling map

We call block filling map from M p to B p , the linear map

ψ(C) :=    C 1,1 J n 1 ,n 1 . . . C 1,p J n 1 ,np . . . . . . C p,1 J np,n 1 . . . C p,p J np,np    .
This transformation fills each block (i, j) by a constant value, given by C i,j . Notice that ψ is a positive linear map, since ψ(C) = W CW where W is the p × n matrix

W :=      1 n 1 0 . . . 0 0 1 n 2 . . . . . . . . . . . . . . . 0 0 . . . 0 1 np     
.

Clearly the filling and averaging operations cancel each other when they are done in this order, corresponding to W V = I p and to the relation

φ(ψ(C)) = C.
On the other hand, ψ(φ(C)) is generally not equal to C, and V W is an orthogonal projection of rank p.

A wider class of block matrices

The results of the next section are valid on a wider class of block matrices, that we now introduce. This is the set C p of symmetric block matrices

A =    A 1,1 . . . A 1,p . . . . . . A p,1 . . . A p,p   
where off-diagonal blocks A k, are constant matrices of size n k × n , and diagonal blocks

A k,k are of size n k and verify A k,k -A k,k J n k 0. To see that B p ⊂ C p , notice that if C = Γ CS n (1, r) then C = n -1 (1 + (n -1)r) and C -CJ n = (1 -r)(I n -n -1 J n )
which is p.d. for r < 1 because the symmetric matrix P := I n -n -1 J n is an orthogonal projection: P = P 2 = P P .

Matrix pencil and positive definite interval

When a parametric matrix of M p depends linearly on a single parameter t ∈ R, it can be written as a matrix pencil, t → D + tE where D, E ∈ M p . The problem of finding t such that D + tE is positive definite was investigated in several studies ( [START_REF] Caron | Finding a positive semidefinite interval for a parametric matrix[END_REF], [START_REF] Caron | Feasibility and constraint analysis of sets of linear matrix inequalities[END_REF]). A main result is that the admissible values form an open interval, called positive definite interval (PD interval). Indeed it is the intersection of a straight line with the open convex cone C of positive definite matrices ( [START_REF] Caron | Finding a positive semidefinite interval for a parametric matrix[END_REF]). Now denote

d(c) = det(D + cE). When D is p.d., d is a continuous function such that d(0) = det(D) > 0. Furthermore, d is null on the boundary of C: if A is p.s.d. but not p.d.
, there exists x = 0 such that x Ax = 0 implying that 0 is an eigenvalue of A. The PD interval is then obtained by computing the negative and positive roots of d which are closest to 0. Equivalently, the PD interval is related to the largest and smallest eigenvalues of the symmetric matrix

S = D -1/2 ED -1/2 ([4]). Indeed d(c) = 0 if and only if det - 1 c I p -D -1 E = 0 i.e. -1
c is an eigenvalue of D -1 E, which has the same eigenvalues than S.

3 Main results

Positive definiteness of elements of B p

Positive definiteness of a block matrix (of size n) in C p -and thus in B p -can be simply checked on the block average matrix (of size p):

Theorem 1. Let A ∈ C p . Then, 1. A 0 ⇐⇒ φ(A) 0 and ∀k ∈ 1, p : A k,k 0. 2. A 0 ⇐⇒ φ(A) 0 and ∀k ∈ 1, p : A k,k 0.
The text of the theorem can be simplified on B p , for which diagonal blocks are CS correlation matrices. Indeed, p.d. of A k,k is then equivalent to the two conditions b k < 1 and -(n k -1) -1 < b k (Eq. 1). The former is contained in the definition of B p . The latter is a consequence of p.d. of φ(A) by looking at the signs of its diagonal elements (Eq. 2). Hence, we have:

Theorem 2. Let A ∈ B p . Then, A 0 ⇐⇒ φ(A) 0
For completeness, we provide a description of C p , via a representation of its block diagonal elements. It is shown that C p is in general much wider than B p : the k-th diagonal block of C p is represented by 1 + n k (n k -1)/2 parameters, whereas the k-th diagonal block of B p is a CS correlation matrix described by 1 parameter. Proposition 1. Let R be a n × (n -1) matrix whose columns form a basis of 1 ⊥ n . Then all C symmetric matrices of size n such that C -CJ n 0 are written in a unique way as

C = µJ n + RBR
where B is a p.s.d.matrix of size n -1 and µ is a real number.

Positive definiteness of elements of B bg-iso p

We now focus on the subclass B bg-iso p , for which the positive definiteness condition of Theorem 2 can be further simplified. Let A ∈ B bg-iso p and denote B = φ(A):

B =      α 1 c . . . c c α 2 . . . . . . . . . . . . . . . c c . . . c α p     
where the α k 's are given by Eq. 2 and lie in ] -1 + 2/n k , 1[. We can further restrict the search of a necessary and sufficient condition to vectors α such that α k > 0 (k = 1, . . . , p). Indeed this condition is necessary as all diagonal minors must be strictly positive. Notice that "0 < α k < 1" is the condition for positive definiteness of the block diagonals terms

Γ CS n k (1, b k ) in A.
When α is fixed, the map c → B is a matrix pencil 

B = D + cE
d k (c) = k m=1 (α m -c) + c k m=1     1≤ ≤k =m (α l -c)     . (3) 
Let us further assume that all α k s are > 0. Then the roots r k,1 , . . . , r k,k of d k are all real and interlaced with the α (k) 's:

r k,1 < 0 < α (1) ≤ r k,2 ≤ α (2) ≤ • • • ≤ r k,k ≤ α (k) < 1 Furthermore, - √ α (1) α (2) = r 2,1 ≤ • • • ≤ r k,1 < 0 < r k,2 ≤ • • • ≤ r 2,2 = √ α (1) α (2) Theorem 3. Let A ∈ B bg-iso p .
With the notations of Lemma 1,

A 0 ⇐⇒ 0 < α k < 1 (k ∈ 1, p ) and r p,1 < c < r p,2
Furthermore, for all k ∈ 1, p , the interval ]r p,1 , r p,2 [ is increasing with α k .

Notice that the interval on c given in Theorem 3 can be easily found numerically. Indeed, from Lemma 1, r p,1 and r p,2 are roots of c → det(φ(A)) that are perfectly localized, and can be found by a zero search algorithm such as Brent's algorithm ( [START_REF] Brent | Algorithms for Minimization without Derivatives[END_REF]). More precisely r p,1 is the unique root in the interval ] -√ α (1) α (2) , 0[, and r p,2 the unique root in ]0, √ α (1) α (2) [.

Corollaries

We first give a direct consequence of Theorem 2 for two groups, and a sufficient condition for elements of B bg-iso p obtained by comparison to a compound symmetry matrix. They are expressed with the α k 's of Eq. 2.

Corollary 1 (Case of 2 groups). Let A ∈ B 2 . Then, and-α p-1 < c < α , then A 0. For completeness, we give a specific result when all groups have the same size, a common between group correlation, and a common within group correlation. There is nothing new here, as it is a special case of block CS matrices for which the result is known, but this gives another view of it.

A 0 ⇐⇒ 0 < α k < 1 (k = 1, 2) and |c 1,2 | < √ α 1 α 2 Corollary 2 (A sufficient condition on B bg-iso p ). Let A ∈ B bg-iso p and α = min 1≤k≤p (α k ). If 0 < α k < 1 (k ∈ 1, p )
Corollary 3. Assume that n 1 = • • • = n p = n 0 := n/p and for all k ∈ 1, p , b k = b. Define α = (1 + (n 0 -1)b)/n 0 . Then, A 0 ⇐⇒ 0 < α < 1 and - α p -1 < c < α.

A numerical application

Consider the parametric matrix A ∈ B bg-iso 15 corresponding to 4 groups of size 2, 4, 3, 6 with a common between group correlation. The condition 0 < α k < 1 means that: gives the following interval for the between group parameter (printing is limited to the first 2 digits) :

-1 < b 1 < 1, - 1 3 < b 2 < 1, - 1 2 < b 3 < 1, - 1 5 
-0.03 < c < 0.45 Theorem 3 gives the optimal interval, which is a bit larger:

-0.20 < c < 0.49

This interval was obtained by using the Brent's algorithm, implemented in R (function uniroot of package stats, [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]), thanks to the localization given in Theorem 3. The result is illustrated on Figure 1. For a pedagogical purpose, we represented the smallest eigenvalue of A and φ(A) as a function of c, denoted respectively λ A (c), λ φ(A) (c). These eigenvalues have been computed numerically using the eigen function in R. This confirms the results of Theorem 2 and Theorem 3: the values of c such that the smallest eigenvalue is positive is the same in both cases, and correspond to the theoretical interval [START_REF] Caron | Feasibility and constraint analysis of sets of linear matrix inequalities[END_REF]. Notice that the size of φ(A) is much smaller than A. Finally, the plateau on the graph c → λ A (c) is explained by the fact that λ A (0) is equal to 1 -max 1≤k≤p b k , which does not depend on c, which remains true on an open interval containing 0 by continuity of the determinant. Proof of Proposition 1. First of all, notice that finding a symmetric matrix C of size n such that C -CJ n 0 is equivalent to finding a p.s.d. matrix C 0 of size n such that C 0 = 0. The link between C and C 0 is given by C = µJ n + C 0 , where µ is a real number equal to C. Hence, the proposition will be proved if we show that all p.s.d. matrices C 0 such that C 0 = 0 are of the form

C 0 (B) = RBR ( 5 
)
where B is a p.s.d. matrix of size n, and R is a n × (n -1) matrix whose columns form a basis of 1 ⊥ n . Notice that all p.s.d. matrix C 0 of the form 5 satisfy, by definition of R,

C 0 (B) = n -2 1 n RBR 1 n = 0.
Conversely, let C 0 be a p.s.d. matrix such that C 0 = 0. Thus C 0 is the covariance matrix of a random vector Z. Without loss of generality, we can assume that Z is centered:

E(Z) = 0. Then, Z = n -1 1 n Z is also centered and Var(Z) = n -2 1 n C 0 1 n = C 0 = 0.
Hence, Z = 0 with probability 1. Thus 1 n Z = 0 and Z is spanned by the columns of R: there exists a random variable U such that Z = RU . As a consequence, Cov(Z) = RBR , with B = Cov(U ).

To see that B and µ are uniquely determined, assume that C = µ J n + RB R holds for another p.s.d. matrix B of size n -1 and another real µ . Then µ = µ = C. Thus, RB R = RBR . By multiplying this relation at left side by R and by R at right side, we get B = B because the Gram matrix R R has rank n -1 and is thus invertible.

We then give a technical lemma. Proof of Theorem 1. Statement 1. If A is positive then the diagonal blocks A k,k are also positive, and φ(A) is positive since φ is a positive linear map. Conversely, if φ(A) is positive then ψ(φ(A)) is positive, as ψ is a positive linear map. Now, since A has constant off-diagonal blocks, A -ψ(φ(A)) is a block diagonal matrix with diagonal blocks A k,k -A k,k , which are assumed to be positive. Hence A is positive as a sum of two positive matrices. 

Lemma 2. Let C be a n × n symmetric matrix such that C -CJ n is positive. If C is p.d.
β Aβ = β A -A β + β A β =: u + v.
By Statement 1, both matrices A -A and A are positive. Hence, the left hand side is equal to zero iff both terms at the right hand side vanish. Now A -A is block-diagonal, and each diagonal block is the difference between a block A k,k and its average element. By lemma 2, we have u = 0 iff each vector β k is constant (k ∈ 1, p ). The second term v is a quadratic form in the vector of group sums γ := W β = [n 1 β 1 , . . . , n p β p ] , namely v = γ φ(A)γ. So v vanishes iff each average β k does. Thus if β Aβ = 0, each block β k is constant and has zero mean, which is only possible when β = 0.

Proof of Theorem 3

Proof of Lemma 1. For the sake of simplicity, and without restriction, we can assume that the α k s have been sorted in increasing order: α (k) = α k (k = 1, . . . , p). Indeed the reordering does not change the determinant. Now for k = 1, . . . , p, define:

d k (c) = det(B [1:k,1:k] )
where B Let us now derive the analytical expression of det(B). We first prove a recurrence formula. By expanding with respect to the last column, we have: 

d k (c) = det       
d k (c) = (α k -c)d k-1 (c) + c k-1 m=1 (α m -c) (6) 
The explicit formula of d k (c) (written in Eq. 3 for k = p) is then proved recursively on k. Indeed, one can easily check it for k = 2, and if it is true for k -1 ≥ 2, then with Eq. 6, it holds:

d k (c) = (α k -c) k-1 m=1 (α m -c) + c k-1 m=1     1≤ ≤k-1 =m (α -c)(α k -c) + k-1 m=1 (α m -c)     = k m=1 (α m -c) + c k m=1     1≤ ≤k =m (α -c)    
We also deduce of Eq.6 that d k is a polynomial of order k whose leading term is (-1) k-1 (k-1)c k . In particular, d k (c) → -∞ when c → -∞.

From now on, assume that 0 < α 1 < • • • < α p . The interlacing of the roots of d k with the α k 's is obtained by evaluating d k at α (1 ≤ ≤ k). Indeed, subtracting column , whose components are all equal to α , one directly obtains:

d k (α ) = α m = (α m -α )
Thus the sign of d k (α ) depends on the rank of in {1, . . . , k}. Those signs alternate when one read the sequence {1, . . . , k} starting by +1 at = 1. Since the limit in -∞ is -∞, and as the number of zeros of d k is less than k, we deduce by the intermediate value theorem that there is exactly 1 zero in

each interval ] -∞, α 1 ], [α 1 , α 2 ], . . . , [α k-1 , α k ]. Furthermore d k (0) = α 1 . . . α k > 0, resulting in the interlacing r k,1 < 0 < α 1 < r k,2 < α 2 < • • • < r k,k < α k < 1
We are now able to locate the roots of d k relatively to those of d k-1 . From Eq 6, it holds:

d k (r k-1, ) = r k-1, k-1 m=1 (α m -r k-1, )
In particular d k (r k-1,1 ) < 0, showing that r k-1,1 < r k,1 < 0 since d k is negative on ]-∞, r k,1 ] and positive on [r k,1 , α 1 ]. Similarly, one deduce from Eq. 6 that d k (r k-1,2 ) < 0 so that 0 < r k,2 < r k-1,2 since d k is positive on [α 1 , r k,2 ] and negative on [r k,2 , α 2 ]. Finally, we obtain by recursion that

- √ α 1 α 2 = r 2,1 < • • • < r k,1 < 0 < r k,2 < • • • < r 2,2 = √ α 1 α 2
More generally, Eq. 6 implies that the positive roots of d k are interlaced with the positive roots of d k-1 . Finally one can check that the previous results remain valid in case of equality of several α k s, where the corresponding strict inequalities are replaced by large inequalities. 

1 Introduction

 1 We consider the set B p of real parametric block correlation matrices diagonal blocs A k,k are compound symmetry matrices of size n k (k ∈ 1, p ) and off-diagonal blocks A k, are constant matrices of size n k × n :A k,k =

  with D = diag(α 1 , . . . , α p ) and E = J p -I p . As recalled in Section 2, the values of c such that B is positive definite form an open interval, called positive definite interval (PD interval). It is obtained by computing the negative and positive roots of d : c → det(B) which are closest to 0.In this context, our main contribution is to provide a localization of the roots of d as well as an analytical expression. They both simplify the computation of the PD interval. Lemma 1. Let B = by α (1) ≤ • • • ≤ α (p) the values of α 1 , . . . , α p rearranged in ascending order. Denote d p (c) = det(B) and more generally let d k (c) be the leading minor of B (k = 1, . . . , p). Then d k is a polynomial of order k given by

< b 4 < 1 Now choose b 1 =

 11 -0.1, b 2 = 0.4, b 3 = 0.7, b 4 = 0.8. The sufficient condition of Corollary 2

Figure 1 : 6 Proofs 6 . 1

 1661 Figure 1: Smallest eigenvalue of the 15 × 15 block matrix A of the example and the 4 × 4 block average matrix φ(A) as a function of the between group correlation c.

  and if β C -CJ n β = 0 for some vector β, then β has constant elements, i.e. β ∝ 1 n . Proof of Lemma 2. Since C has rang n and CJ n has rank 1, the matrix C 0 := C -CJ n must have rank n -1. Thus, by Prop. 1, C 0 = RBR where B is p.d. of size n -1, and R is a n × (n -1) matrix whose columns form an orthonormal basis of 1 ⊥ n . Now, 0 = β C 0 β = β RBR β. Since B is p.d. it implies β R = 0. By definition of R, we have β ∝ 1 n .

Statement 2 .

 2 If A is p.d. then so are the A k,k . Moreover ψ(A) = W AW is p.d. since the p × n matrix W has rank p. Now assume that φ(A) and all the A k,k 's are p.d. Denote A := ψ(φ(A)), and let β be a vector of length n with p component vectors β k . Then,

  [1:k,1:k] is the matrix extracted from B by keeping the first k rows and first k columns. In particular d p (c) = d(c) = det(B), and d 2 (c) = α 1 α 2 -c 2 .

  The first term is equal to (α k -c)d k-1 (c). For the second one, subtracting the last column to the other ones gives:Finally we obtain a relation linking d k to d k-1 , valid for k ≥ 2:

For- 1 / 2 [ 1 :- 1 / 2 [ 1 :

 121121 completeness, we give an alternative proof of this last statement, using algebraic arguments. Consider the pencil matrix c → B = D + cE. Recall that c is a root of d p if and only if det -1 c I p -D -1 E = 0 i.e. -1 c is an eigenvalue of D -1 E, or equivalently of the symmetric matrix S = D -1/2 ED -1/2 . Similarly, c is the root of d k if and only if -1 c is an eigenvalue of D k,1:k] E [1:k,1:k] D k,1:k] = S [1:k,1:k] ,where we use the fact that D is diagonal for the last equality. Hence the roots of d k are the negative inverse of the eigenvalues of the k th principal submatrix of S. Furthermore, by Sylvester's law, S [1:k,1:k] has the same inertia as E [1:k,1:k] = J k -I k . It is easy to see that E [1:k,1:k] has two eigenvalues: k -1 with multiplicity 1 (eigenvector 1 k ) and -1 with multiplicity k -1 (eigenspace: 1 ⊥ k ). Thus S [1:k,1:k] has 1 positive eigenvalue, and k -1 negative ones. Consequently, d k has 1 negative root and k -1 positive ones. Now by Cauchy interlacing theorem ([5], §4.3.), the eigenvalues of consecutive principal submatrices
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are interlaced. As c → -1 c is increasing on R * -and R * + , it results in two separate interlacings for the roots of consecutive d k 's: one for negative roots, one for positive roots. We finally get the announced inequalities:

Proof of Theorem 3. The result is straightforward from Lemma 1, implying that the PD interval on c is given by ]r p,1 , r p,2 [. An alternative proof is given by applying the Sylvester conditions and using Lemma 1. Indeed the intersection of sets {c, 

Proof of corollaries

Proof of Corollary 2.

Proof of Corollary 3. Here φ(A) = Γ CS p (α, c) which gives the announced necessary and sufficient condition by Theorem 2. Alternatively the result can be obtained directly on A, which is here a p×p block compound symmetry covariance matrix